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Abstract. The discussion in the preceding paper is
restricted to the uncertainties in magnetic-field-line
tracing in the magnetosphere resulting from published
standard errors in the spherical harmonic coefficients
that define the axisymmetric part of the internal
geomagnetic field (i.e. g0

n � dg0
n). Numerical estimates

of these uncertainties based on an analytic equation for
axisymmetric field lines are in excellent agreement with
independent computational estimates based on stepwise
numerical integration along magnetic field lines. This
comparison confirms the accuracy of the computer
program used in the present paper to estimate the
uncertainties in magnetic-field-line tracing that arise
from published standard errors in the full set of
spherical harmonic coefficients, which define the com-
plete (non-axisymmetric) internal geomagnetic field (i.e.
gm

n � dgm
n and hm

n � dhm
n ). An algorithm is formulated

that greatly reduces the computing time required to
estimate these uncertainties in magnetic-field-line tra-
cing. The validity of this algorithm is checked numeri-
cally for both the axisymmetric part of the internal
geomagnetic field in the general case (1 � n � 10) and
the complete internal geomagnetic field in a restrictive
case (0 � m � n; 1 � n � 3). On this basis it is assumed
that the algorithm can be used with confidence in those
cases for which the computing time would otherwise be
prohibitively long. For the complete internal geomag-
netic field, the maximum characteristic uncertainty in
the geocentric distance of a field line that crosses the
geomagnetic equator at a nominal dipolar distance of 2
RE is typically 100 km. The corresponding characteristic
uncertainty for a field line that crosses the geomagnetic
equator at a nominal dipolar distance of 6 RE is typically
500 km. Histograms and scatter plots showing the
characteristic uncertainties associated with magnetic-
field-line tracing in the magnetosphere are presented for

a range of illustrative examples. Finally, estimates are
given for the maximum uncertainties in the locations of
the conjugate points of selected geophysical observa-
tories. Numerical estimates of the uncertainties in
magnetic-field-line tracing in the magnetosphere, includ-
ing the associated uncertainties in the locations of the
conjugate points of geophysical observatories, should be
regarded as ‘‘first approximations’’ in the sense that
these estimates are only as accurate as the published
standard errors in the full set of spherical harmonic
coefficients. As in the preceding paper, however, all
computational techniques developed in this paper can be
used to derive more realistic estimates of the uncertain-
ties in magnetic-field-line tracing in the magnetosphere,
following further progress in the determination of more
accurate standard errors in the spherical harmonic
coefficients.

1 Introduction

As noted in the introduction to the preceding paper by
Willis, Singh, and Comer (1997), hereafter referred to as
Paper I, the technique of tracing along magnetic field
lines is widely used in magnetospheric physics to provide
a ‘‘magnetic frame of reference’’ that facilitates both the
planning of experiments and the interpretation of
observations. The importance of developing realistic
representations of both the Earth’s internal magnetic
field (i.e. DGRF or IGRF) and the total magnetic field
in the magnetosphere is emphasized in Paper I, and it is
not necessary to repeat that discussion here. It suffices to
note again that an accurate model of the magnetic field
in the magnetosphere would be of great value in solar-
terrestrial physics, particularly in comparisons between
measurements made by ground-based and satellite-
borne instruments. It should be stressed once more,
however, that the present pair of papers begin a
systematic study of the uncertainties in field-line tracing
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in the magnetosphere by considering first those
uncertainties that arise solely from possible errors in
the specification of the geomagnetic field of internal
origin. It must be acknowledged that uncertainties in the
specification of the external sources of magnetic field in
the magnetosphere (viz. ionospheric, Birkeland, ring,
magnetopause and magnetotail currents) may well
produce larger uncertainties in field-line tracing, parti-
cularly for magnetic field lines emanating at high
geomagnetic latitudes (i.e. those passing through the
outer magnetosphere). Nevertheless, a detailed discus-
sion of the uncertainties in field-line tracing for just the
geomagnetic field of internal origin (DGRF or IGRF)
represents a significant advance that has important
applications and implications in several branches of
solar-terrestrial physics.

The estimation of the uncertainties in magnetic-field-
line tracing in the magnetosphere for the geomagnetic
field of internal origin is divided into two separate
papers for the following reasons. As noted in Paper I, an
exact analytic equation exists for the magnetic field lines
of an arbitrary linear combination of axisymmetric
multipoles (Backus, 1988). This equation is used in
Paper I to derive accurate numerical estimates of the
uncertainties in field-line tracing that are due to the
standard errors in the axisymmetric spherical harmonic
coefficients (i.e. g0

n � dg0
n) published by Langel et al.

(1992). In addition, it is also possible to calculate these
uncertainties by using a stepwise numerical integration
procedure to trace along magnetic field lines. It is shown
in Paper I that, for the axisymmetric part of the
geomagnetic field, the uncertainties derived by stepwise
numerical integration along magnetic field lines are
essentially identical to those obtained independently
using the exact equation due to Backus (1988). The
excellent agreement between results derived by these two
different techniques (cf. Tables 3 and 4 in Paper I)
proves that the computer program used for stepwise
numerical integration along magnetic field lines is very
accurate. The primary purpose of this paper is to
estimate the uncertainties in field-line tracing in the
magnetosphere that are due to the standard errors in the
full set of spherical harmonic coefficients (i.e.
gm

n � dgm
n ; hm

n � dhm
n ) published by Langel et al. (1992).

Since there is no known analytic equation for the
magnetic field lines in the case of the complete (non-
axisymmetric) geomagnetic field of internal origin,
uncertainties in field-line tracing in the magnetosphere
must be calculated using stepwise numerical integration
along magnetic field lines.

The main goals of this paper are fourfold: (i)
provision of a concise specification and assessment of
the computer program used for stepwise numerical
integration along magnetic field lines; (ii) generation of
an algorithm that drastically reduces the time required
to compute uncertainties in field-line tracing for the
complete internal geomagnetic field; (iii) presentation of
idealized illustrative results for comparison with the
corresponding results in Paper I; and (iv) calculation of
uncertainties in the locations of conjugate points for
selected geophysical observatories.

2 The internal magnetic field of the Earth

The geomagnetic field of internal origin is defined in this
section. For completeness, the magnetic-field compo-
nents (Br, Bh, B/), which are defined implicitly by Eq. 1
of Paper I (B � ÿgrad V ), are presented explicitly in
Sect. 2.1. This approach admittedly involves some slight
repetition in the definition of the terms that appear in
the normal spherical harmonic expansion of the internal
geomagnetic field, but it does help to make this paper
largely self-contained. For the same reason, the concept
of the ‘‘range’’ of a geomagnetic-field model, which is
introduced in Sect. 2.4 of Paper I, is summarized
succinctly in Sect. 2.2 of this paper. The general
differential equations that define the magnetic field lines
in the magnetosphere are presented in Sect. 2.3.
Stepwise numerical integration along a magnetic field
line is essentially equivalent to finding a numerical
solution of these differential equations.

2.1 The components of the internal magnetic field

It follows from Eq. 1 of Paper I that at any given instant
of time (epoch) the three magnetic-field components of
the Earth’s internal magnetic field can be expressed in
the form (B � ÿgrad V )

Br �
X

1

n�1

�n� 1��RE=r�n�2
X

n

m�0

�gm
n cosm/� hm

n sinm/�

� P m
n �cosh� ; �1�

Bh � ÿ

X

1

n�1

�RE=r�n�2
X

n

m�0

�gm
n cosm/� hm

n sinm/�

� dP m
n �cosh�=dh ; �2�

B/ �
X

1

n�1

�RE=r�n�2
X

n

m�0

m�gm
n sinm/ÿ hm

n cosm/�

� P m
n �cosh�=sinh : �3�

These magnetic-field components are valid only outside
the region of origin of the Earth’s internal magnetic field
(predominantly the liquid metallic outer core), in an
ideal external region containing no sources of magnetic
field (i.e. curl B � 0�: Positions on the surface of the
Earth are specified in terms of geocentric spherical polar
coordinates (r; h;/) with origin O at the centre of the
Earth; r is the geocentric radial distance in km (r � RE),
h is the geographic co-latitude with the north geographic
pole at h � 0, and / is the geographic longitude
measured east from Greenwich. The radius of the
reference sphere, r � RE, is taken to be the mean radius
of the Earth (6371.2 km); P m

n (cos h) is Schmidt’s
partially (or quasi-) normalized associated Legendre
function of order m and degree n (where m and n are
integers; m 2 I�0 and n 2 I�); gm

n and hm
n are the spherical

harmonic (or Schmidt) coefficients for the particular
epoch considered, expressed in units of nanotesla (nT);
and all physical quantities are measured in SI units. In
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this paper the definition of B is such that the spherical
harmonic coefficients gm

n and hm
n have the (conventional)

dimensions of magnetic induction.

2.2 Range of a geomagnetic-field model

As in Sect. 2.4 of Paper I, each spherical harmonic
coefficient gm

n is assumed to lie in the interval of real
numbers [gm

n ÿ dgm
n ; g

m
n � dgm

n ], which is represented by
the ordered pair of real numbers (the ‘‘lower’’ and
‘‘upper’’ end-points), gm

n ÿ dgm
n and gm

n � dgm
n �dgm

n � 0);
similarly for hm

n . The ‘‘range’’, or variability, of a
geomagnetic-field model (DGRF or IGRF) at any
epoch t0 is defined in terms of the set of ‘‘limiting
geomagnetic-field models’’, which results from selecting
every possible permutation of the pairs of ‘‘end-points’’
for gm

n and hm
n . If the infinite summations in Eqs. 1–3 are

truncated at degree nmax, the number (N ) of spherical
harmonic coefficients is given by N � nmax�nmax � 2�.
The number (N) of ‘‘limiting geomagnetic-field models’’
(G) is then given by N � 2N and the set of such field
models can be expressed symbolically in the form
fG1;G2;G3; � � � ;GNg. Since this variability must be
referred to the mean (or central) geomagnetic-field
model G0 (which is defined by the set of central values
gm

n and hm
n ), the number of different ‘‘models’’ to be

considered in this method of determining the uncer-
tainty in field-line tracing is N� 1, that is 2N

� 1.
The uncertainty in the geocentric distance (r) of

an arbitrary point on a magnetic field line is denoted
symbolically by dr, where dr 2 R�

0 . The mean (or
central) model G0 corresponds to r, whereas the
models with errors associated with them, namely
fG1;G2;G3; � � � ;GNg, correspond conceptually to a set
of values fr � drg. However, in the case of the complete
internal geomagnetic field (m 6� 0), the set of values
fr � drg actually defines a small surface area, rather
than a linear (or curvilinear) interval, as occurs in the
case of the axisymmetric part of the internal geomag-
netic field (cf. Sect. 2.4 in Paper I). Therefore, dr and r
should really be regarded as vectors in the sense that dr
has both a magnitude dr�jdrj� and an azimuthal angle
with respect to the central vector r. Although this
definition of dr is slightly imprecise, it is clear in
principle that dr can be measured uniquely with respect
to r in any convenient plane, or on any other well-
defined surface, that passes through the point defined by
r. As in Paper I, an important goal is to find the largest
possible value for dr �drmax� at the geomagnetic equator,
or on the surface of the Earth in the opposite
hemisphere, for any given starting point on the surface
of the Earth.

Reference to Table 1 of Paper I shows that the
number of ‘‘limiting geomagnetic-field models’’ exceeds
3.4�1010 even in the restrictive case nmax � 5. The
purpose of this paper is to consider the more realistic
case nmax � 10, which corresponds to more than
1.3�1036 ‘‘limiting geomagnetic-field models’’ for the
complete geomagnetic field of internal origin (DGRF or
IGRF). In principle, the determination of drmax involves

stepwise numerical integration along a magnetic field
line for every limiting geomagnetic-field model. In
practice, the computing time required to estimate
uncertainties in field-line tracing in the magnetosphere
by this technique can be prohibitively long. An
indication of the computing times required to calculate
drmax by the various methods considered in Paper I
[N � nmax] and this paper [N � nmax�nmax � 2�] is given
in Appendix A. All computations have been performed
using a DEC 3000 AXP (Alpha) – Model 400
computer. Also indicated in Appendix A are those
cases that have been considered (✓) and those cases not
considered �✗� simply because the computing time is
inordinately long. An algorithm that drastically reduces
the computing time required to calculate drmax is
formulated in Sect. 4.

2.3 Differential equations for the magnetic field lines

The universal differential equations for the magnetic
field lines of a general magnetic field (Br;Bh;B/) are
expressible as follows

dr
Br
�

rdh
Bh

�

rsinhd/
B/

�

ds
B
; �4�

where ds denotes an element of arc length along a
magnetic field line and B � �B2

r � B2
h � B2

/�
1=2. In the

present application to the internal geomagnetic field, the
magnetic-field components Br;Bh and B/ are defined by
Eqs. 1, 2 and 3, respectively. For the axisymmetric part
(m � 0) of the internal geomagnetic field, Eq. 4 simplifies
to the single equation

dr
Br
�

rdh
Bh

; �5�

where Br and Bh are defined by Eqs. 1 and 2 with m � 0.
Note from Eq. 3 that B/ � 0 if m � 0, which is a
necessary and sufficient condition for an axisymmetric
magnetic field.

An exact equation for the magnetic field lines of an
individual axisymmetric magnetic multipole of arbitrary
degree (n) has been derived by Willis and Young (1987),
who solved Eq. 5 for the appropriate magnetic-field
components. In this special case, the magnetic-field
components can be obtained from Eqs. 1 and 2 by
putting m � 0, taking just the nth terms in the summa-
tions for both Br and Bh, and using the relation
dP 0

n �cos h�=dh � ÿ�n�n � 1�=2�1=2P 1
n �cos h�. The equa-

tion derived by Willis and Young (1987) is presented
as Eq. 6 in Paper I and this reduces correctly to the well-
known equation for the field lines of a magnetic dipole if
n � 1 (cf. Sect. 3.1 of Paper I). Subsequently, Jeffreys
(1988) presented an alternative, and somewhat simpler,
mathematical derivation of the equation for the field
lines of a single axisymmetric multipole and Backus
(1988) generalized this result to the case of an arbitrary
linear combination of axisymmetric multipoles. Backus
did not solve Eq. 5 explicitly, but his solution, which is
presented as Eq. 4 in Paper I, obviously satisfies Eq. 5
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here. The analytic equation derived by Backus is used in
Paper I to estimate the uncertainties in magnetic-field-
line tracing for the axisymmetric part (m � 0) of the
internal geomagnetic field and to check the accuracy of
the computer program used in this paper to estimate the
corresponding uncertainties in field-line tracing for the
complete internal geomagnetic field. By solving the
three-dimensional Eq. 4 above, Willis and Gardiner
(1988) derived exact equations for the magnetic field
lines of two special non-axisymmetric magnetic multi-
poles of arbitrary degree (n), which may be classified as
either symmetric (m � n) or antisymmetric (m � nÿ 1)
sectorial multipoles. Analytic solutions to Eq. 4 are
relatively rare, however, and it is usually necessary to
solve these equations by numerical techniques. The
computer program used to solve Eq. 4 by stepwise
numerical integration along magnetic field lines in the
case of the complete internal geomagnetic field is
discussed in the following section.

3 The computer program used to trace along
magnetic field lines

The provenance of the computer program used to trace
along magnetic field lines by stepwise numerical
integration is uncertain. In the absence of complete
bibliographic references, which would accord proper
recognition to the original authors, an attempt is made
to note very briefly the origins of the program and to
explain clearly the procedures employed. Although the
primary purpose in this section is to discuss the use of
the computer program in determining uncertainties in
field-line tracing in the magnetosphere, it is hoped that
the following documentation of the program will help to
clarify and validate its use in other contexts.

3.1 The origin of the field-line tracing program

The program was obtained from the EISCAT Scientific
Association as part of a suite of programs and
subroutines concerned with various aspects of the
Earth’s magnetic field. Unfortunately, the origin of
some of these routines is now obscure. Although the
package was based on a subroutine library from the
Stanford Research Institute in California, it is not
known if all the routines originated from that source.
The program traces magnetic field lines by stepwise
numerical integration from a given point on the surface
of the Earth, or within the terrestrial magnetosphere,
until a specified height or latitude is reached. The
magnetic field originates solely from currents flowing in
the Earth’s liquid metallic outer core (i.e. DGRF or
IGRF), and no account is taken of external currents
flowing in the ionosphere and magnetosphere (apart
from Sq currents, as discussed in Sect. 2.3 of Paper I).
This restriction is completely consistent with the
assumption made throughout this study.

3.2 The procedure for tracing along a magnetic field line

To trace along a magnetic field line, the computer
program performs a stepwise numerical calculation
based on the condition that the tangent at each point
on the field line is parallel to the magnetic field at that
same point. Equation 4, which expresses this condition
in mathematical form for a general magnetic field
(Br;Bh;B/), can be rewritten in vector form as follows,

dr=ds � B= jBj � b; �6�

where r is the position vector measured from some
convenient point (in this case the centre of the Earth), s
is the arc length along the magnetic field line, B is the
magnetic-field vector, and b is a unit vector parallel to
the magnetic field line. Equation 6 is used to calculate
the increment in position vector from r to r� dr.
Starting at some initial value of r, this equation is used
to determine the location of the next point on the field
line, and the process is repeated until the desired length
of field line has been traced. The procedure employed
requires the values of b and ds to be known, the latter
being an increment of arc length along the field line. The
unit vector b presents no problems as it can be
calculated from b � B=jBj using a suitable magnetic
field model, but ds requires some assumption about the
shape of the field line. The simplest assumption is that of
a straight line in direction b between one point on the
field line and the next, which would suffice if ds is chosen
to be small enough. The optimum value of ds clearly
depends on the local curvature, which varies along the
field line. However, the problem is approached in a
different way in the program. It is assumed that the field
line is dipolar between successive points, so that the field
line traced is a succession of dipolar elements of arc
length ds. The value of B at each point on the trace is
calculated from the geomagnetic-field model, and the
dipole axis corresponding to the next element is
orientated to give a dipole field at that point parallel
to the field of the model. This dipole axis will change
slightly at each step.

Each location is stored in the program as a co-
latitude, longitude and height, so that the task is to
calculate the coordinates of the next point on the trace.
To accomplish this, the program first determines the
location of the point with respect to the dipole axis by
calculating the corresponding dipole co-latitude, #, from
the relation

2 cot# � tan I ; �7�

which is valid for a dipole field. The parameter I is the
inclination of the field at the point, which is easily
calculated from B. It depends only on the direction of
the field and so is calculated from the geomagnetic-field
model. With # known, the position of the next point is
found by calculating the change in # that corresponds to
ds. The increment d# is calculated from the following
equation
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d# �
r

RE

2 sin#
������������������������

3 cos2
#� 1

p

� �

ds
RE

; �8�

where r is the geocentric distance (in km) of the point
(i.e. the magnitude of r) and RE is the mean radius of the
Earth (6371.2 km), which is assumed to be spherical. A
value of ds (in km) is required, but this remains fixed
throughout the trace. The authors have minor reserva-
tions about the precise functional form of Eq. 8, in the
sense that it may require the use of a value of ds that is
smaller than it actually needs to be [since there are
theoretical grounds for believing that the right-hand side
of Eq. 8 should be multiplied by the factor �RE=r�2].

It is now necessary to specify the present position in
the coordinates employed by the program, which are a
modified form of the spherical polar coordinates r; h and
/. The main difference is the use of the height, h, which
is simply related to r by the equation

h � r ÿ RE ; �9�

since the Earth is assumed to be spherical. The value of r
for the new position is easily found by using the
equation for the field lines of a magnetic dipole (cf. Eq. 5
of Paper I)

r � r1 sin2
# : �10�

The procedure is first to obtain the constant r1 from r
and # at one point and then calculate r at the next point
from #� d# and r1. The value of h at the new position is
found from Eq. 9. The other two coordinates, h and /,
are computed as increments, dh and d/, from one point
to the next. The relevant equations are

dh � cos Dd# �11�

and

d/ �

sin D
sin h

d# ; �12�

where D is the magnetic declination, which is again
calculated from B. As the components of this vector are
not yet known at the new position, those of the previous
point are used. These two increments are then used to
calculate new values of h and /, and hence the
components of B are found at the new point. From
these magnetic-field components, values of I and D are
calculated for this new point and the cycle is repeated.

The procedure can be summarized schematically as
follows:
(a) Start with coordinates �h; h;/� at a given point;
(b) calculate the value of r corresponding to h using

Eq. 9;
(c) obtain the components of B, and hence D and I, for

this point;
(d) determine # from Eq. 7 and then d# from Eq. 8;
(e) obtain the constant r1 in Eq. 10 from r and # at this

point;
(f) use this constant again in Eq. 10 to calculate r at

#� d#;
(g) compute the value of h corresponding to the new r

from Eq. 9;

(h) determine dh and d/ from Eqs. 11 and 12,
respectively;

(j) obtain new values of h and / from dh and d/;
(k) calculate the components of B at the new point and

repeat the cycle.

3.3 Calculation of the magnetic-field components

In the system of spherical polar coordinates defined in
Sect. 2.1, the components of the magnetic field B used in
the previous section are defined by Eqs. 1–3. The
magnetic-field components can be obtained in other
coordinate systems by means of suitable coordinate
transformations. The standard version of the computer
program calculates magnetic-field components using the
spherical harmonic coefficients for the sixth generation
of the International Geomagnetic Reference Field, here
abbreviated to IGRF6 (Langel, 1991, 1992). Tables of
spherical harmonic coefficients can be calculated for any
epoch between 1945 and 1990, with linear extrapolation
beyond (cf. Sec. 2.2 of Paper I). Two different sets of
routines have been used to calculate B from such
spherical harmonic coefficients. One set of routines is
based on the approach adopted by Kluge (1970 a,b,c,
1972): the other is based on an algorithm for
synthesizing the geomagnetic field developed by Malin
and Barraclough (1981).

The standard version of the program employs the
Kluge routines, makes use of all the IGRF6 coefficients
for the required epoch and has the value of ds fixed at 20
km. The following modifications have been made for the
present work on the uncertainties in magnetic-field-line
tracing in the magnetosphere:
(i) The value of ds is now read by the program and can

therefore be varied from trace to trace, but is kept
fixed during each individual trace. A value of 0.01
km has been used in the present calculations.

(ii) Separate versions of the computer program have
been set up to use either the Kluge or the Malin and
Barraclough routines.

(iii) The spherical harmonic expansion can be truncated
so that B is calculated for each of the ten degrees of
the IGRF6 model �1 � nmax � 10�; the simplest of
these corresponds to a dipole field �nmax � 1�.

In course of this work it was found that the Kluge
routines fail in the dipole case; therefore, the Malin and
Barraclough routines have been used exclusively in this
investigation. Moreover, the actual spherical harmonic
coefficients used in this paper are those of the NASA
Goddard Space Flight Center Model designated GSFC
1990D (Langel et al., 1992), rather than those of IGRF6
(Langel, 1991, 1992). This change is necessitated by the
fact that a knowledge of the standard errors in the
coefficients is a prerequisite in the present study. The
values of the spherical harmonic coefficients and their
standard errors for GSFC 1990D are presented in
Appendix B. These values have been used in all
illustrative numerical calculations of the uncertainty in
field-line tracing in the magnetosphere that are pre-
sented in this paper.
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4 An algorithm that curtails the computing time

As indicated in Sect. 2.2 and summarized succinctly in
Appendix A, evaluating drmax by considering all
permutations of the end-points of the uncertainty
intervals for the spherical harmonic coefficients is only
practicable computationally in the case of the axisym-
metric part �m � 0� of the internal geomagnetic field (i.e.
g0

n � dg0
n for 1 � n � 10�. For the complete internal

geomagnetic field, the all-permutations approach is not
really feasible beyond nmax � 3 (i.e. gm

n � dgm
n and

hm
n � dhm

n for 0 � m � n and 1 � n � 3). An algorithm
that relaxes this restriction is formulated in Sect. 4.1.
Although no mathematical proof of the validity of this
algorithm has yet been found, it is shown in Sect. 4.2
that the algorithmic and permutational approaches yield
identical results in those cases for which such compar-
isons are computationally feasible. The comparative
cases considered are (i) the general axisymmetric part of
the internal geomagnetic field �m � 0; nmax � 10� and (ii)
the complete (non-axisymmetric) internal geomagnetic
field for the restrictive case in which fourth- and higher-
degree multipoles are neglected �m 6� 0; nmax � 3�. Illus-
trative numerical estimates of the maximum uncertainty
in field-line tracing from the surface of the Earth to the
magnetic equator are presented in Sec. 4.3.

4.1 Formulation of the algorithm

The formulation of the algorithm may be specified as a
sequence of operations as follows:

(i) Express the spherical harmonic coefficients as an
ordered set of N terms in the conventional way; namely
fg0

1; g
1
1; h

1
1; g

0
2; g

1
2; h

1
2; g

2
2; h

2
2; g

0
3; � � � ; g

nmax
nmax

; hnmax
nmax

g; where N
� nmax�nmax � 2� :

(ii) Let GAi be a �1 � N� array of ordered spherical
harmonic coefficients that represents the ith geomag-
netic-field model from the set of �N � 1� geomagnetic-
field models fGAi g �i � 1; 2; � � � ;N � 1�; defined by the
following operations. Let drAi denote the magnitude of
the corresponding vector uncertainty drAi (as defined in
Sect. 2.2) in the location of a ‘‘reference point’’ on a
magnetic field line, so that the magnitude of this
uncertainty is measured relative to dr � 0 for the central
geomagnetic-field model GA0 �� G0 ; defined by the set of
central values gm

n and hm
n , as in Sect. 2.4 of Paper I).

(iii) Choose the elements of GA1 to be �gm
n � dgm

n ;

hm
n � dhm

n � for 0 � m � n; 1 � n � nmax; dgm
n > 0 and

dhm
n > 0, and calculate drA1 (i.e, choose the ‘‘upper’’

end-points for all spherical harmonic coefficients).
(iv) Define GA2 such that the sign of the uncertainty

�dg0
1� in just the first spherical harmonic coefficient �g0

1� is
changed from a plus (+) to a minus �ÿ� and the signs of
all other coefficients remain unchanged (i.e. �). Calcu-
late drA2 for GA2 .

(v) Compare drA2 with drA1 and select the geomag-
netic-field model with the larger uncertainty. Suppose,
for example, that drA1 > drA2 so that GA1 is selected (i.e.
g0

1 � dg0
1 is accepted and g0

1 ÿ dg0
1 is rejected).

(vi) Define GA3 such that it only differs from GA1 by
having the sign of the uncertainty �dg1

1� in just the second
spherical harmonic coefficient �g1

1� changed from a plus
��� to a minus �ÿ�. Calculate drA3 for GA3 .

(vii) Compare drA3 with drA1 and suppose, for
example, that drA3 > drA1 so that GA3 is selected (i.e.
g1

1 ÿ dg1
1 is accepted and g1

1 � dg1
1 is rejected).

(viii) Continue this procedure, with the sense of the
comparisons always proceeding from left to right
through the ordered set of spherical harmonic coeffi-
cients specified in (i).

(ix) At the end of the �N � 1� comparisons, accept
the model GAN�1�� G

A
max� that gives the largest uncer-

tainty drAN�1. It is assumed that this limiting geomag-
netic-field model, GAN�1, is identical to the limiting
geomagnetic-field model, Gmax, that would be obtained
if it were possible to consider all permutations of the
‘‘end-points’’ of the spherical harmonic coefficients (i.e.
gm

n � dgm
n and hm

n � dhm
n for 0 � m � n and 1 � n � nmax).

Accordingly, it is assumed that drAN�1�� drAmax� is
identical to drmax.

The sequence of operations involved in the applica-
tion of this algorithm is illustrated schematically as
follows in the general case N � nmax�nmax � 2� :

GA1 �

�

g0
1 � dg0

1; g1
1 � dg1

1; h1
1 � dh1

1; g0
2

� dg0
2; � � � ; g

nmax
nmax

� dgnmax
nmax

; hnmax
nmax

� dhnmax
nmax

�

! drA1 ;

GA2 �

�

g0
1 ÿ dg0

1; g1
1 � dg1

1; h1
1 � dh1

1; g0
2

� dg0
2; � � � ; g

nmax
nmax

� dgnmax
nmax

; hnmax
nmax

� dhnmax
nmax

�

! drA2 ;

GA3 �

�

g0
1 � dg0

1; g1
1 ÿ dg1

1; h1
1 � dh1

1; g0
2

� dg0
2; � � � ; g

nmax
nmax

� dgnmax
nmax

; hnmax
nmax

� dhnmax
nmax

�

! drA3 ;

GA4 �

�

g0
1 � dg0

1; g1
1 	 dg1

1; h1
1 ÿ dh1

1; g0
2

� dg0
2; � � � ; g

nmax
nmax

� dgnmax
nmax

; hnmax
nmax

� dhnmax
nmax

�

! drA4 ;

.
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.
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GAN�1 �
�

g0
1 � dg0

1; g1
1 	 dg1

1; h1
1 	 dh1

1; g0
2

� dg0
2; � � � ; g

nmax
nmax

	 dgnmax
nmax

; hnmax
nmax

� dhnmax
nmax

�

! drAN�1 :

The symbols � and 	 are used in this sequence of
operations to denote illustratively positive and negative
signs that are already determined (fixed) by a previous
comparison between drAi and drAj �l � i < j; j �
2; 3; � � � ;N � 1�. Therefore, the algorithm involves
N � 2 field-line tracings: one field-line tracing is
associated with the central geomagnetic-field model G0
and then two tracings are required to determine the sign
��� of the uncertainty dg0

1 in the first spherical harmonic
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coefficient �g0
1�. A further �N ÿ 1� field-line tracings are

required to determine the signs of the uncertainties in
the remaining �N ÿ 1� spherical harmonic coefficients.
Hence the algorithm requires N � 2 field-line tracings,
whereas considering all permutations of the ‘‘end-points’’
of the spherical harmonic coefficients (i.e. gm

n � dgm
n and

hm
n � dhm

n for 0 � m � n and 1 � n � nmax) requires 2N
� 1

field-line tracings (cf. Sect. 2.2).

4.2 Comparison between the algorithmic
and permutational procedures

In the case of the complete internal geomagnetic field
�m 6� 0; nmax � 10�; N � 120 and 122 field-line tracings
are required in the algorithmic procedure, compared
with 2120

� 1 field-line tracings in the permutational
procedure. This reduction in the number of field-line
tracings represents a stupendous curtailment in comput-
ing time from the order of 1028 years on a Cray Y - MP
computer for the permutational procedure, as indicated
in Appendix A, to about 5 min on a DEC 3000 AXP
(Alpha)—Model 400 computer for the algorithmic
procedure. The agreement between the algorithmic and
permutational procedures can be checked rigorously in
two special cases: (i) the axisymmetric part �m � 0� of
the internal geomagnetic field in the general case
N � nmax � 10 and (ii) the complete �m 6� 0� internal
geomagnetic field in the restrictive case nmax � 3;
N � 15. In case (i) the algorithmic procedure requires
12 tracings, whereas the permutational procedure
requires 1025 tracings: in case (ii) the corresponding
numbers are 17 and 32769. The checks are performed by
calculating drmax according to the permutational proce-
dure described in Sect. 2.2 and calculating drAmax
according to the algorithmic procedure described in
Sect. 4.1. These computations indicate that drAmax � drmax
to an accuracy of six decimal places, which confirms the
validity of the algorithmic procedure in both cases for
which a strict comparison between the two numerical
procedures is practicable in terms of computing
resources. On the basis of these two successful
comparisons, it is assumed that the algorithmic
procedure can be used with confidence in those cases
for which the permutational procedure involves prohi-
bitively long computing times.

The success of the algorithm described in Sect. 4.1
depends on the fact that the magnitudes of the spherical
harmonic coefficients in the ordered set
fg0

1; g1
1; h1

1; g0
2; g1

2; h1
2; g2

2; h2
2; g0

3; � � � ; g
nmax
nmax

; hnmax
nmax

g decrea-
se more or less steadily as the degree �n� increases. It has
been found that the algorithm fails if the spherical
harmonic coefficients are considered in reverse order, so
that the signs of the uncertainties in the smallest
spherical harmonic coefficients �n � 10� are determined
first. Although it would undoubtedly be of some interest
to establish how far the ordered set of coefficients can be
permuted before the algorithm fails (perhaps even
without moving the dipole out of the first position),
this question is not considered in the present paper. Such
an extension is not strictly necessary, however, because

it has already been shown that the algorithmic
procedure defined in Sect. 4.1 actually gives identical
results to the permutational procedure in all cases in
which this comparison can be checked with reasonable
computing resources.

4.3 Numerical estimates of the maximum uncertainty
in field-line tracing

Table 1 presents numerical estimates of the maximum
uncertainty drmax�� drAmax� in the geocentric distance at
which a magnetic field line crosses the geomagnetic
equator �h � p=2� for the axisymmetric part �m � 0� of
the geomagnetic field of internal origin �N � nmax � 10�.
As in Paper I, results are presented for nominal (dipolar)
equatorial crossing distances of r1 � 2 RE and r1 � 6 RE.
The values presented in Table 1 repeat those given in
Table 4 of Paper I for the tracing program, although it
should be stressed here that the algorithmic and
permutational procedures give identical results for
drmax (to six decimal places). Moreover, the estimates
of drmax obtained using the tracing program are in
excellent agreement with those obtained independently
in Paper I (cf. Table 4) from the solution of the
polynomial equation �nmax � 10� for the magnetic field
lines of the axisymmetric part �m � 0� of the internal
geomagnetic field. The field-line tracing program is
therefore assumed to be equally accurate in determining
the magnetic field lines of the complete (non-axisym-
metric) geomagnetic field of internal origin.

Having established the accuracy of the magnetic-
field-line tracing program, it is possible to present
numerical estimates for drmax in the case of the complete
internal geomagnetic field. However, since the complete
internal geomagnetic field is non-axisymmetric, the
uncertainties in field-line tracing in the magnetosphere
now depend on both the co-latitude �h� and longitude
�/� of the starting point. In this paper, illustrative
numerical results are presented for the two special
geographic longitudes defined by the centred geomag-
netic dipole axis (i.e. defined by g0

1; g
1
1 and h1

1). These two
special geographic longitudes, which are referred to as
Longitude 1 and Longitude 2, pass through the respective
directions, �h1;/1� and �h2;/2�, defined as follows:

Longitude 1 : h1 � arc cos ��jg0
1j=���g

0
1�

2
��g1

1�
2
��h1

1�
2
��

1=2
��

/1 � arc tan�h1
1=g1

1� �13�

and

Table 1. Numerical estimates for drmax at the geomagnetic equator
in the case of the axisymmetric part of the internal geomagnetic
field (nmax � 10, N � 10), obtained using the field-line tracing
program (�A � algorithmic, P � permutational)

nmax drmax (r1 � 2 RE) drmax (r1 � 6 RE) Procedure
(km) (km) (�A;P)

10 9.30 65.48 A or P
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Longitude 2 : h2 � pÿ arc cos ��jg0
1j=���g

0
1�

2

� �g1
1�

2
� �h1

1�
2
��

1=2
��

/2 � p� arc tan�h1
1=g1

1� : �14�

Tables 2 and 3 present numerical estimates, for
Longitudes 1 and 2 respectively, of the maximum
uncertainty drmax�� drAmax� in the geocentric distance at
which a magnetic field line crosses the geomagnetic
equator �hÿ h1 � p=2 or h2 ÿ h � p=2) for the complete
geomagnetic field of internal origin �nmax �

10; N � 120� : Once again, results are presented for
nominal (dipolar) equatorial crossing distances of r1 � 2
and 6 RE. All these results have been derived using the
algorithmic �A� procedure and those for which
1 � nmax � 3 have been checked using the permutational
(P) procedure. Small differences in the numerical values
of drmax�< 2%� occur if geocentric �r � RE� rather than
true geodetic starting latitudes are derived using the
relations r1 � 2 RE and r1 � 6 RE. Since the magnetic
field of a dipole �n � 1� is axisymmetric, the values of
drmax for nmax � 1 should be the same at the same
geocentric latitude for Longitudes 1 and 2 (for both
r1 � 2 and 6 RE). The very small differences �< 0:8%�
between the corresponding numbers in Tables 2 and 3
result from the conversion from geocentric to geodetic
starting coordinates. Tables 2 and 3 indicate that drmax
increases monotonically as nmax increases from 1 to 10,
apart from the small negative increment from nmax � 4
to nmax � 5 for Longitude 1 and r1 � 2 RE. The values of
drmax for nmax � 10 are substantially larger for the
complete internal geomagnetic field (Tables 2 and 3)
than for just the axisymmetric part (Table 1), which is a
direct consequence of the fact that there are 120
standard errors for the complete field, compared with
only 10 for the axisymmetric part.

The numerical estimates for drmax presented in Tables
1–3 are calculated using the internal geomagnetic-field
model designated GSFC 1990D: the spherical harmonic
coefficients �gm

n ; h
m
n � and their corresponding standard

errors �dgm
n ; dhm

n � are given in Appendix B. As noted in
Sect. 5 of Paper I, if each dgm

n and dhm
n is taken to be the

same multiple (say k) of the standard error, then the

associated numerical uncertainties can be obtained
approximately by multiplying the tabulated values of
drmax by the factor k.

5 Interval mapping for the complete internal
geomagnetic field

As in Paper I, it is assumed implicitly in Sect. 2.2 that in
the case of the complete internal geomagnetic field
�m 6� 0� drmax can be determined by considering every
possible permutation of the ‘‘lower’’ and ‘‘upper’’ end-
points, gm

n ÿ dgm
n ; h

m
n ÿ dhm

n ; g
m
n � dgm

n and hm
n � dhm

n , of
the intervals of real numbers �gm

n ÿ dgm
n ; g

m
n � dgm

n � and
�hm

n ÿ dhm
n ; h

m
n � dhm

n � for 0 � m � n and 1 � n � nmax.
Stated alternatively, it is assumed that the maximum
value of dr �drmax� in the set of values fr � drg corres-
ponds to a particular permutation of the end-points
�gm

n � dgm
n �; �h

m
n � dhm

n � in the coefficient intervals
�gm

n � Dgm
n �; �h

m
n � Dhm

n �, where dr 2 R�

0 ; ÿdgm
n � Dgm

n
� �dgm

n and ÿdhm
n � Dhm

n � �dhm
n . This implicit as-

sumption effectively reduces a continuous interval
mapping problem to a discrete one. Since it is intuitively
clear that the complete spherical harmonic expansion of
the internal geomagnetic field is a well-behaved function
of the spherical harmonic coefficients, this implicit
assumption appears reasonable physically. However,
even with this assumption, the computing time required
to calculate drmax in the case of the complete internal
geomagnetic field is prohibitively long for nmax � 4 (cf.
Sect. 2.2 and Appendix A). Therefore, an algorithm that
essentially eliminates the need to consider every possible
permutation of the ‘‘lower’’ and ‘‘upper’’ end-points is
introduced in Sect. 4.1.

5.1 Conjecture 2: interval mapping
in the non-axisymmetric case �m 6� 0�

Consider the following conjecture for the complete
internal geomagnetic field �m 6� 0�, which is designated
Conjecture 2. (Conjecture 1 is presented in Paper I.)
Conjecture 2: For the contemporary geomagnetic field,
there do not exist points gm

n � Dgm
n and hm

n � Dhm
n ;

where ÿ dgm
n � Dgm

n � � dgm
n �dgm

n � 0� and ÿ dhm
n �

Table 2. Numerical estimates for drmax at the geomagnetic equator
in the case of the complete internal geomagnetic field (nmax 10,
N � 120), obtained using the field-line tracing program for
Longitude 1 (*A � algorithmic, P � permutational)

nmax drmax (r1 � 2 RE) drmax (r1 � 6 RE) Procedure
(km) (km) (�A;P)

1 14.08 94.11 A or P
2 30.26 134.29 A or P
3 45.67 215.73 A or P
4 57.78 270.36 A
5 56.85 297.98 A
6 64.03 322.33 A
7 76.35 339.13 A
8 79.95 354.71 A
9 83.39 368.75 A

10 86.25 380.65 A

Table 3. Numerical estimates for drmax at the geomagnetic equator
in the case of the complete internal geomagnetic field (nmax � 10,
N � 120), obtained using the field-line tracing program for
Longitude 2 (*A � algorithmic, P � permutational)

nmax drmax (r1 � 2 RE) drmax (r1 � 6 RE) Procedure
(km) (km) (�A;P)

1 14.01 93.43 A or P
2 31.65 201.70 A or P
3 48.71 313.65 A or P
4 63.49 437.08 A
5 70.59 483.76 A
6 76.85 528.76 A
7 80.65 553.34 A
8 84.33 573.06 A
9 87.69 589.35 A

10 90.60 603.07 A
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Dhm
n � � dhm

n �dhm
n � 0�; in the respective intervals

�gm
n ÿ dgm

n ; g
m
n � dgm

n � and �hm
n ÿ dhm

n ; h
m
n � dhm

n � for which
J�gm

n � Dgm
n ; h

m
n � Dhm

n � � r � Dr such that Dr > drmax
�dr;Dr � 0; c.f. Sect. 2.2). The symbol J is used to
denote the ‘‘transformation’’ from coefficient intervals
to uncertainty interval using the tracing program
discussed in Sect. 3 to find Dr for given Dgm

n and
Dhm

n �0 � m � n; 1 � n � nmax�. Note that with this
definition J�gm

n ; h
m
n � � r and J�gm

n � dgm
n ; h

m
n � dhm

n �

� r � drmax.
As in Paper I, the credibility of Conjecture 2 is

established by calculating drmax by two different methods
and comparing the results as follows. In Method A the
algorithm formulated in Sec. 4.1 is used to determine
dr A

max�� drAmax� for the GSFC 1990D model (c.f. Appen-
dix B). In Method B the field-line tracing program

described in Sect. 3 is used to perform 105 tracings, in
each of which the 120 spherical harmonic
coefficients gm

n and hm
n �0 � m � n; 1 � n � 10� in the

GSFC 1990D model are assumed to have random
errors Dgm

n and Dhm
n in the respective error intervals

�ÿdgm
n ;�dgm

n � and �ÿdhm
n ;�dhm

n �. Using an appropriate
MATLAB routine (MATLAB Reference Guide, 1992),
the resulting 105 values of drB are arranged as a
monotonic increasing sequence fdrB

min; . . . ; drB
maxg, where

drB
min and drB

max denote the smallest and largest values of
drB calculated by Method B. As noted in Sect. 2.2, in the
case of the complete internal geomagnetic field
�m 6� 0� dr should really be regarded as a vector dr that
has both a magnitude dr �j dr j� and an azimuthal angle
with respect to the central vector r. Hence drB

min � 0,
which is otherwise evident from the figures discussed in

Fig. 1a–d. Plots of the uncertainties (dr) in the geocentric distance at
which a magnetic field line crosses the geomagnetic equator for
Longitude 1 and r1 � 2 RE in the case of the complete internal
geomagnetic field (nmax � 10;N � 120�: a histogram of the uncertain-
ties calculated by Method B, which involves 105 field-line tracings
associated with 105 selections of 120 (random) errors Dgm

n and Dhm
n in

gm
n and hm

n �0 � m � n; 1 � n � 10�, located randomly in the 120

corresponding error intervals �ÿdgm
n ;�dgm

n � and �ÿdhm
n ;�dhm

n �; b
scatter plot of the points where the 105 field-line tracings cross the
geomagnetic equator (cf. Sect. 4.2); c isometric projection (in the
geographic equator) of the 105 geomagnetic equatorial crossing points;
d frequency contour plot (in the geographic equator) of the 105

geomagnetic equatorial crossing points
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the following section. Lastly, the values of drA
max and

drB
max are compared and Conjecture 2 is accepted (at

least as a working hypothesis) if drA
max > drB

max. This
condition has been satisfied in every case examined in
this study. Therefore, a set of 120 internal points lying in
the general coefficient intervals �gm

n ÿ dgm
n ; g

m
n � dgm

n � and
�hm

n ÿ dhm
n ; h

m
n � dhm

n � for 0 � m � n; 1 � n � 10 appar-
ently always maps to a value of dr lying in the
uncertainty interval �0; drmax�.

5.2 Graphical presentation of results for the complete
internal geomagnetic field

The theoretical methods described in Sect. 5.1 are
illustrated in Figs. 1–4, which correspond, respectively,
to the four cases: (i) Longitude 1, r1 � 2 RE; (ii)
Longitude 1, r1 � 6 RE; (iii) Longitude 2, r1 � 2 RE;
and (iv) Longitude 2, r1 � 6 RE. Four panels are
included in each of the four figures as follows: (a) a
histogram of the monotonic increasing sequence fdrB

g

determined by Method B, described in Sect. 5.1; (b) a

scatter plot of the points where the 105 field-line tracings
discussed in Sect. 5.1 cross the geomagnetic equator; (c)
an isometric projection in the geographic equator of the
geomagnetic equatorial crossing points; and (d) a
frequency contour plot in the geographic equator of
these same points. The term ‘‘frequency’’ signifies
absolute frequency in the statistical sense.

The histograms in Figs. 1a–4a are analogous to those
presented in Figs. 1 and 2 of Paper I, although separate
results are presented here for Longitudes 1 and 2. The
actual numerical values of drB

max and drB
min�� 0:00�, as

well as the mean and standard deviation (std), are
included in the appropriate panel. The values of drA

max
derived by Method A (the algorithmic procedure) are
given in the captions to the histograms: these values are
also given in Tables 2 and 3 �nmax � 10�. Comparisons
between the actual numerical values confirm that
drA

max > drB
max in every case considered (including those

presented in Sect. 6). Since drmax�� drA
max � drAmax� is

always associated with a particular permutation of the
end-points of the coefficient intervals �gm

n ÿ dgm
n ;

gm
n � dgm

n � and �hm
n ÿ dhm

n ; hm
n � dhm

n �, as discussed in

Fig. 2a–d. Same as Fig 1, but for Longitude 1 and r1 � 6 RE
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Sects. 4.1 and 4.2, internal points in these coefficient
intervals do not yield values of dr that lie outside the
uncertainty interval �0; drmax�. Therefore, the validity of
Conjecture 2 is established. It should be noted that all
four histograms reach a maximum that is well displaced
from the origin, contrary to the situation in Figs. 1 and 2
of Paper I. In the case of the complete (non-axisym-
metric) internal geomagnetic field, the geomagnetic
equatorial crossing points form a two-dimensional
distribution and the class intervals are defined by annular
areas. Hence the shape of each histogram is determined
by a decreasing density of points with increasing radial
distance from the origin combined with a corresponding
increase in the areas of the class intervals.

The scatter plots in Figs. 1b–4b also show the
orientation of the magnetic field line �F0� that passes
through the central point �dr � 0� and the orientation of
the magnetic field line �F B

max� that passes through the
furthest point �drB

max�; the arrows merely signify the
directions of the field-line tracings. The central and
furthest points are both represented by the symbol � in
panels b, c and d of Figs. 1–4: clearly, the central point

�dr � 0� is near the centre of the distribution of geo-
magnetic equatorial crossing points and the furthest point
is at the very edge of the distribution. Panels b, c and d
of Figs. 1–4 illustrate the fact that the distribution of
crossing points is elongated radially, rather than long-
itudinally, which is to be expected because magnetic field
lines do not deviate drastically from dipolar geomagnetic
meridian planes. Panels c and d in Figs. 1–4 should be
interpreted with some circumspection, since they show
projections from the geomagnetic equatorial plane
defined in Sect. 4.3 onto the geographic equatorial plane.

6 Uncertainties in the conjugate points of selected
geophysical observatories

Table 4 presents estimates of the maximum uncertainties
in the locations of the conjugate points of selected
geophysical observatories. This table gives the geo-
graphic coordinates of the geophysical observatories,
which define the initial points of the field-line tracings,
and the geographic coordinates of their conjugate

Fig. 3a-d. Same as Fig 1, but for Longitude 2 and r1 � 2 RE
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points, which are defined by the end-points of the field-
line tracings at the surface of the Earth in the opposite
hemisphere. The field-line tracings are performed using
the computer program described in Sect. 3 and the
maximum uncertainties drmax are calculated using the
algorithmic procedure formulated in Sect. 4.1, so that
drmax � drA

max � drAmax with the nomenclature adopted in
Sects. 4.1 and 5.1. Table 4 also gives the maximum
uncertainties in the geomagnetic equatorial crossing
points, which are defined in Sect. 4.3. The conjugate
points and their associated uncertainties are calculated
using the GSFC 1990D model of the internal geomag-
netic field. The spherical harmonic coefficients of this
model and their standard errors are listed in Appendix
B. The values of drmax�� drA

max� at both the equator and
the conjugate point are calculated assuming that each
dgm

n and dhm
n is equal to the corresponding standard

error in Appendix B. As noted in Sect. 4.3 (and Paper I),
if each dgm

n and dhm
n is taken to be the same multiple (say

k) of the standard error, then the associated uncertain-
ties can be obtained approximately by multiplying the

values of drmax in Table 4 by the factor k. Therefore,
with the assumptions made in this investigation, it can
be concluded at the 3r confidence level of 99.73% (for
the spherical harmonic coefficients) that upper limits on
the uncertainties in the locations of the conjugate points
are obtained approximately by tripling the values of
drmax in Table 4. Similarly for the geomagnetic
equatorial crossing points. Conversely, assuming ran-
dom errors Dgm

n and Dhm
n in the error intervals

�ÿdgm
n ;�dgm

n � and �ÿdhm
n ;�dhm

n � yields values of drB
max,

calculated according to Method B in Sec. 5.1, which are
about half those given in Table 4 for drA

max. This latter
conclusion is corroborated by the illustrative results
presented in Figs. 1–4.

Certain properties of drmax can be inferred from
visual inspection of the numerical estimates presented in
Table 4. The value of drmax at the geomagnetic equator
increases with increasing geographic latitude for starting
positions in either the northern or southern hemisphere.
Conversely, the value of drmax at the conjugate point
decreases with increasing geographic latitude. These

Fig. 4a–d. Same as Fig 1, but for Longitude 2 and r1 � 6 RE
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results can be interpreted qualitatively in terms of field-
line tracing as follows. Two adjacent field lines at the
same longitude diverge continuously with increasing
distance from the Earth until the geomagnetic equatorial
plane is reached and then they converge continuously
until the conjugate points are reached. Moreover, for
pairs of field lines that are equally separated in latitude
at the surface of the Earth, the separation in the
geomagnetic equatorial plane increases with increasing
magnetic latitude, or increasing geocentric distance in
the geomagnetic equator. Conversely, for pairs of field
lines that are equally separated radially in the geomag-
netic equatorial plane, the corresponding separation at
the surface of the Earth decreases with increasing
magnetic latitude, or increasing geocentric distance in
the geomagnetic equator.

7 Summary and conclusions

As noted in the preceding paper by Willis, Singh and
Comer (1997), which is referred to as Paper I, the goal of
this investigation is to begin a systematic study of the
uncertainties in magnetic-field-line tracing arising from
uncertainties in the specification of the six main sources
of magnetic field in the magnetosphere. These six
sources are: (1) currents flowing in the Earth’s liquid
metallic outer core; (2) ionospheric currents; (3) field-
aligned (or Birkeland) currents; (4) ring currents; (5)
magnetopause currents; and (6) magnetotail currents
(Stern and Tsyganenko, 1992). Following the rationale
adopted in Paper I, it seems logical to commence such a
systematic study with a detailed examination of the
uncertainties in field-line tracing in the magnetosphere
produced solely by possible errors in the specification of
the geomagnetic field of internal origin (Sect. 2). As in
Paper I, the primary purpose of the present investigation
is to estimate these uncertainties by using one of the few
published models of the geomagnetic field that gives
both the spherical harmonic coefficients and their
standard errors (Langel et al., 1989, 1992). Because of
the considerable complexities in computing these
uncertainties in field-line tracing for the complete
geomagnetic field of internal origin, attention is focused
in Paper I on the uncertainties that result from the
standard errors in just the axisymmetric part of the
internal geomagnetic field. The results presented in

Paper I are generalized in this paper to the case of the
complete internal geomagnetic field.

Since there is no known analytic equation for the
magnetic field lines in the case of the complete (non-
axisymmetric) geomagnetic field of internal origin,
uncertainties in field-line tracing in the magnetosphere
are calculated using stepwise numerical integration
along magnetic field lines. The computer program used
to trace along magnetic field lines is discussed in detail,
with particular emphasis on the actual procedures
employed (Sect. 3.2). In the case of the axisymmetric
part of the internal geomagnetic field, the maximum
uncertainties in field-line tracing in the magnetosphere
�drmax) derived by stepwise numerical integration along
magnetic field lines are essentially identical to those
derived independently by the iterative numerical proce-
dure for finding the roots of the polynomial equation
derived by Backus (1988), as noted in Paper I (Sec. 5).
The excellent agreement between results obtained by
these two different techniques confirms that the compu-
ter program used for stepwise numerical integration is
very accurate. However, evaluating uncertainties in
field-line tracing in the magnetosphere by considering
all permutations of the end-points of the uncertainty
intervals for the spherical harmonic coefficients (i.e.
gm

n � dgm
n and hm

n � dhm
n for 0 � m � n and 1 � n � 10� is

only practicable computationally in the case of the
axisymmetric part �m � 0� of the internal geomagnetic
field �N � nmax � 10�. For the complete internal geo-
magnetic field, the all-permutations approach is not
really feasible beyond nmax � 3 �N � 15� because the
computing times are prohibitively long even on a Cray
Y – MP computer (Appendix A).

An algorithm that drastically reduces the computing
time required to estimate the uncertainties in field-line
tracing in the magnetosphere has been formulated (Sect.
4.1). In the case of the complete internal geomagnetic
field �nmax � 10;N � 120�, 122 field-line tracings are
required in the algorithmic procedure, compared with
2120

� 1 field-line tracings in the permutational proce-
dure (Sect. 4.2). This reduction in the number of field-
line tracings represents a quite remarkable curtailment
of the necessary computing time. The agreement
between the algorithmic and permutational procedures
is compared and confirmed numerically in two special
cases: (i) the axisymmetric part �m � 0� of the internal
geomagnetic field in the general case N � nmax � 10, and

Table 4. Numerical estimates for drmax at the geomagnetic equator and at the conjugate point for selected geophysical observatories

Geophysical
Observatory

Site Coordinates Conjugate Point drmax
Geomagnetic

drmax
Conjugate

Geographic
Latitude (°N)

Geographic
Longitude (°E)

Geographic
Latitude (°N)

Geographic
Longitude (°E)

Equator (km) Point (km)

Longyear byen 78.15 16.03 )66.29 85.01 1385.14 20.76
Tromsø 69.58 19.22 )60.85 65.55 419.67 26.42
Goose Bay 53.32 299.64 )77.37 )38.29 280.77 30.63
South Georgia )54.28 323.52 35.50 )56.61 108.06 45.43
Argentine Islands )65.25 295.73 38.93 )68.84 137.88 35.08
Halley )75.58 333.63 53.52 )55.93 280.56 27.27
South Pole )90.00 0.00 64.54 )66.46 1046.37 21.12
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(ii) the complete �m 6� 0� internal geomagnetic field in
the restrictive case nmax � 3;N � 15. On the basis of
these two successful comparisons, it is assumed that the
algorithmic procedure can be used with confidence in
those cases for which the permutational procedure
involves inordinately long computing times.

Tables 2 and 3 provide numerical estimates of the
maximum uncertainties, drmax, in the geocentric dis-
tance at which a magnetic field line crosses the
geomagnetic equatorial plane for the complete geomag-
netic field of internal origin. As in Paper I, results are
presented for nominal (dipolar) magnetic equatorial
crossing distances of r1 � 2 and 6 RE. Since the
complete internal geomagnetic field is non-axisym-
metric, the uncertainties in field-line tracing in the
magnetosphere depend on both the co-latitude �h� and
longitude �/� of the starting point (Sect. 4.3). All
numerical estimates of the maximum uncertainty
�drmax� in field-line tracing in the magnetosphere are
based on the NASA GSFC 1990D model of the internal
geomagnetic field (Appendix B) and are derived using
the algorithmic procedure (Sect. 4.1). Tables 2 and 3
give illustrative numerical values for drmax in the two
special geographic longitudes defined by the centred
geomagnetic dipole axis (i.e. defined by g0

1; g
1
1 and h1

1�.
For the complete internal geomagnetic field
�nmax � 10;N � 120�, the maximum characteristic un-
certainty in the geocentric distance of a field line that
crosses the geomagnetic equator at a nominal dipolar
distance of 2 RE is typically about 100 km (Tables 2 and
3). The corresponding characteristic uncertainty for a
field line that crosses the geomagnetic equator at a
nominal dipolar distance of 6 RE is typically about 500
km (Tables 2 and 3). These values are substantially
larger than those for the axisymmetric part of the
internal geomagnetic field �N � nmax � 10�, namely 10
and 70 km (Table 1). The increases in drmax are a direct
consequence of the fact that there are 120 standard
errors for the complete geomagnetic field, compared
with only 10 for the axisymmetric part.

Table 4 presents estimates of the maximum uncer-
tainties �drmax� in the locations of the conjugate points of
selected geophysical observatories. This table gives the
geographic coordinates of these observatories and their
conjugate points in the opposite hemisphere, which are
determined by field-line tracing. All field-line tracings
are accomplished using the computer program that
performs stepwise numerical integration along magnetic
field lines (Sect. 3.2) and the maximum uncertainties
�drmax� are again calculated using the algorithmic
procedure (Sect. 4.1). For completeness, Table 4 also
gives the maximum uncertainties of the geomagnetic
equatorial crossing points (Sect. 4.3). It can be inferred
from visual inspection of the numerical estimates
presented in Table 4 that the value of drmax at the
geomagnetic equator increases with increasing geo-
graphic (geomagnetic) latitude of the observatory.
Conversely, the value of drmax at the conjugate point
decreases with increasing geographic (geomagnetic)
latitude of the observatory. Both these conclusions are
easily explained in terms of the configuration of the

magnetic field lines of a predominantly dipolar internal
geomagnetic field (Sect. 6).

Numerical estimates of the uncertainties in magnetic-
field-line tracing in the magnetosphere, which are
calculated in this paper for the complete internal
geomagnetic field, should be regarded as ‘‘first approx-
imations’’, in the sense that such estimates are only as
accurate as the published standard errors in the full set
of spherical harmonic coefficients (Langel et al., 1989,
1992). Once again, however, all the procedures devel-
oped in this paper can be applied to the derivation of
more realistic estimates of the uncertainties in magnetic-
field-line tracing in the magnetosphere, following further
progress in the determination of more accurate standard
errors in the spherical harmonic coefficients.

Finally, it must be emphasized again that the results
presented in this paper and in Paper I apply strictly to
the geomagnetic field of internal origin. Further research
is required to determine accurately the uncertainties in
field-line tracing arising from the presence of external
sources of magnetic field in the magnetosphere; for
example, ionospheric currents, field-aligned (or Birke-
land) currents, ring currents, magnetopause currents
and magnetotail currents.
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Appendix A. Catalogue of cases considered and estimates
of computing times required

The following catalogue lists the different cases considered and
provides characteristic estimates of the computing times required
to perform the corresponding calculations. All the various
computational methods considered in Paper I �N � nmax� and in
this paper �N � nmax�nmax � 2�� are included. ‘‘Polynomials’’ refers
to numerical solutions of the polynomial equation defined and
discussed in Sects. 4.3 and 5 of Paper I. ‘‘Tracings’’ refers to
numerical results obtained using the computer program that traces
along magnetic field lines, as discussed in Sect. 3 of this paper. The
symbol ✓ signifies cases for which the computations have been
performed on a DEC 3000 AXP (Alpha) – Model 400 computer
and thus the computing times are known from practical experience.
The symbol ✗ signifies cases for which the computations have not
been performed because estimates of the computing times are
inordinately long even on a Cray Y – MP computer.

�N � nmax�

210 Polynomials � 10s✓

�all permutations � dg0
n;N � 10�

210 Polynomials � 10s✓

�10 random numbersÿ dg0
n � Dg0

n � �dg0
n;N � 10�
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210 Tracings � 11=2h✓

�all permutations � dg0
n;N � 10�

510 Polynomials � 10 h✓

�all permutations 0;��1=2�dg0
n; � dg0

n; N � 10�

510 Polynomials � 10h✓

�10 random numbersÿ dg0
n � Dg0

n � �dg0
n;N � 10�

510 Tracings � 20 days✗

�all permutations 0;��1=2�dg0
n; � dg0

n;N � 10�

�N � nmax�nmax � 2��

215Tracings � 6h✓

�all permutations � dgm
n ;� dhm

n ; nmax � 3;N � 15�

105 Tracings � 8h✓

�120 random numbers ÿ dgm
n � Dgm

n � �dgm
n ;

ÿ dhm
n � Dhm

n � �dhm
n ; nmax � 10;N � 120�

224 Tracings � 1month ✗

(all permutations � dgm
n ;�dhm

n ; nmax � 4;N � 24�

235 Tracings � 102 years ✗

(all permutations � dgm
n ;�dhm

n ; nmax � 5;N � 35�

2120 Tracings � 1028 years ✗

(all permutations� dgm
n ;�dhm

n ; nmax � 10;N � 120�

References

Backus, G. E., The field lines of an axisymmetric magnetic field,
Geophys. J., 93, 413–417, 1988.

Jeffreys, B., Derivations of the equation for the field lines of an
axisymmetric multipole, Geophys. J., 92, 355–356, 1988.

Kluge, G., A generalised method for the calculation of the
geomagnetic field from multipole expansions, ESOC Internal
Note No. 61, Darmstadt, Germany, 1970a.

Kluge, G., Calculation of field lines and the shell parameter L from
multipole expansions of the geomagnetic field, ESOC Internal
Note No. 66, Darmstadt, Germany, 1970b.

Kluge, G., Computer program SHELL for the calculation of B and
L from models of the geomagnetic field, ESOC Internal Note
No. 67, Darmstadt, Germany, 1970c.

Kluge G., Direct computation of the magnetic shell parameter,
Comput. Phys. Commun., 3, 31–35, 1972.

Langel, R. A., International Geomagnetic Reference Field, 1991
revision, Pure Appl. Geophys., 137, 301–308, 1991.

Langel, R. A., International Geomagnetic Reference Field: the
sixth generation, J. Geomagn. Geoelectr.,44, 679 – 707, 1992.

Langel, R. A., R. H. Estes, and T. J. Sabaka, Uncertainty estimates
in geomagnetic field modeling, J. Geophys. Res., 94, 12281–
12299, 1989.

Appendix B. The GSFC 1990D Model

The following table presents the spherical harmonic coefficients
(gn

m, hn
m) and their corresponding standard errors (dgn

m, dhn
m) for

the NASA Goddard Space Flight Center model of the internal
geomagnetic field, designated GSFC 1990D (after Langel et al.,
1992).

n m gm
n dgm

n hm
n dhm

n
(nT) (nT) (nT) (nT)

1 0 )29771.0 10.06 0.0 0.00
1 1 )1851.2 12.42 5410.4 11.10
2 0 )2137.0 8.62 0.0 0.00
2 1 3056.4 8.65 )2276.7 7.74
2 2 1695.1 9.71 )380.2 10.51
3 0 1313.5 8.21 0.0 0.00
3 1 )2235.8 8.37 )283.6 7.55
3 2 1243.8 6.94 293.0 6.88
3 3 810.8 9.24 )346.4 9.98
4 0 939.1 6.70 0.0 0.00
4 1 779.6 7.11 245.6 5.89
4 2 323.9 6.85 )242.3 7.00
4 3 )423.3 5.71 86.5 5.69
4 4 138.2 9.30 )299.4 9.01
5 0 )211.0 4.28 0.0 0.00
5 1 351.9 4.50 49.6 3.90
5 2 241.8 4.41 154.7 4.29
5 3 )112.2 4.62 )156.2 4.56
5 4 )168.4 3.90 )71.1 4.04
5 5 )38.7 5.53 98.9 5.73
6 0 60.8 3.45 0.0 0.00
6 1 63.9 3.85 )15.7 3.36

6 2 61.4 3.69 83.8 3.60
6 3 )174.8 3.69 68.6 3.78
6 4 4.7 3.87 )50.1 3.80
6 5 17.4 3.51 3.8 3.69
6 6 )97.5 5.04 27.7 5.14
7 0 74.1 2.11 0.0 0.00
7 1 )64.3 2.26 )84.9 1.86
7 2 4.7 2.24 )27.8 2.03
7 3 26.5 2.13 1.5 2.03
7 4 )1.0 2.21 22.2 2.22
7 5 5.8 2.14 14.6 2.41
7 6 9.8 2.05 )23.7 2.21
7 7 )2.8 2.65 )3.6 2.76
8 0 22.3 1.84 0.0 0.00
8 1 7.1 1.96 7.1 1.67
8 2 )0.2 1.90 )19.9 1.84
8 3 )10.1 1.93 5.3 1.81
8 4 )10.0 1.99 )23.7 1.97
8 5 3.5 1.92 11.4 2.10
8 6 3.6 1.98 12.5 2.18
8 7 3.6 1.94 )14.7 2.02
8 8 )4.5 2.51 )12.9 2.56
9 0 4.4 1.49 0.0 0.00
9 1 10.2 1.61 )20.1 1.55
9 2 1.5 1.61 15.3 1.56
9 3 )12.7 1.62 10.0 1.67
9 4 8.9 1.73 )5.9 1.67
9 5 )5.0 1.73 )6.7 1.88
9 6 )1.8 1.77 7.8 1.88
9 7 8.1 1.84 8.4 1.89
9 8 1.5 1.87 )6.5 1.92
9 9 )5.9 2.40 1.7 2.36

10 0 )3.4 1.25 0.0 0.00
10 1 )4.4 1.25 0.9 1.21
10 2 1.7 1.30 0.4 1.26
10 3 )5.5 1.32 3.5 1.27
10 4 )2.1 1.39 5.2 1.31
10 5 4.0 1.43 )4.4 1.42
10 6 2.9 1.49 )1.0 1.48
10 7 1.1 1.54 )1.8 1.53
10 8 1.9 1.63 3.5 1.57
10 9 2.4 1.77 )0.8 1.78
10 10 )0.3 2.25 )6.3 2.23

D. M. Willis et al.: Uncertainties in field-line tracing in the magnetosphere 195



Langel, R. A., T. J. Sabaka, and R. T. Baldwin, The geomagnetic
field: 1970–1990 and the NASA candidate models for DGRF
1985 and IGRF 1990, J. Geomagn. Geoelectr., 44, 745–767,
1992.

Malin, S. R. C., and D. R. Barraclough, An algorithm for
synthesizing the geomagnetic field, Comput. Geosci., 7, 401–
405, 1981.

MATLAB Reference Guide, The Math Works, Natick, Mass.,
1992.

Stern, D. P., and N. A. Tsyganenko, Uses and limitations of the
Tsyganenko magnetic field models, EOS Trans. Am. Geophys.
Union, 73, 489, 493 – 494, 1992.

Willis, D. M., and A. R. Gardiner, Equations for the field lines of a
sectorial magnetic multipole, Geophys. J., 95, 625–632, 1988.

Willis, D. M., and L. R. Young, Equation for the field lines of an
axisymmetric magnetic multipole, Geophys. J.R. Astron. Soc.,
89, 1011–1022, 1987.

Willis, D. M., J. R. Singh, and J. Comer, Uncertainties in field-line
tracing in the magnetosphere. Part I: the axisymmetric part of
the internal geomagnetic field, Ann. Geophysicae, submitted,
1997.

196 D. M. Willis et al.: Uncertainties in field-line tracing in the magnetosphere


