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Abstract. A method of wave mode determination, which
was announced in Balikhin and Gedalin, is applied to
AMPTE UKS and AMPTE IRM magnetic field
measurements downstream of supercritical quasiperpen-
dicular shock. The method is based on the fact that the
relation between phase difference of the waves measured
by two satellites, Doppler shift equation, the direction of
the wave propagation are enough to obtain the
dispersion equation of the observed waves. It is shown
that the low frequency turbulence mainly consists of
waves observed below 1 Hz with a linear dependence
between the absolute value of wave vector jkj and the
plasma frame wave frequency. The phase velocity of
these waves is close to the phase velocity of intermediate
waves Vint � Va cos�h�:

1 Introduction

Waves play a crucial role in the many processes which
take place in space plasmas, so the study of wave
turbulence is an important part of experimental space
plasma investigations. The main task of plasma wave
experiments is the determination of the energy stored in
turbulence and the distribution of this energy among
excited wave modes. Estimation of the amount of energy
stored in the waves is a relatively easy task, which can be
done directly from measurements of wave amplitudes.
However, the determination of plasma modes of
observed waves is a more complicated problem which
is related to the problem of distinguishing between
spatial and temporal variations. The primary character-
istic of a plasma mode is the dispersion relation between
the wave vector and the frequency. This cannot be
measured directly. For this reason only the secondary
characteristics of the mode such as observed frequency,

ratio of the amplitudes of the various physical
parameters of the wave (e.g. electric field to magnetic
field, or amplitude of magnetic field oscillations to the
magnitude of electron density fluctuations), or wave
polarization and propagation properties, were often
used for the mode identification (e.g. Vaisberg et al.,
1983; Rodriguez and Gurnett, 1975; Lacombe et al.,
1990). These experimentally obtained secondary char-
acteristics were compared with theoretically estimated
equivalent quantities to determine the mode of the
waves. These quantitative values of the characteristics
often are very sensitive to the fine features of the plasma
state and at the same time they are usually derived
analytically under very specific conditions such as, for
example, an exactly Maxwellian plasma distribution, or
infinitively small wave amplitude. It is hard to accept
this quantitative comparison of wave characteristics
with the real finite amplitude waves observed in space
plasmas. By contrast the general behavior of the
dispersion relation is not so sensitive and can more
often point unambiguously to the observed mode. Since
the first two point measurements of wave fields became
available, the experimental determination of the disper-
sion relation have been possible. In the present study a
method for the determination of the dispersion relation
is based on the calculation of the complex coherency
function of two data sets. The phase of the coherence
function /�m� at the given frequency �m� can be related to
the projection of the wave vector Ks�m� on the separation
direction of the satellites. The direction of the wave
vector can be determined by standard methods (e.g.,
minimum variance). The wave vector itself can be
calculated on the basis of its direction and the projection
on the separation line. The dispersion relation can then
be calculated in the plasma rest frame making use of the
Doppler shift equation, providing knowledge of the
plasma bulk velocity and wave vectors for each
frequency. This method is tested on magnetic field data
obtained from two satellites, AMPTE UKS and
AMPTE IRM, downstream of a supercritical quasiper-
pendicular bow shock.Correspondence to: M. Balikhin
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2 Coherency function of two data sets

In this section we consider some two dimensional, real,
random, stationary process Xt,Yt. Under stationarity we
mean second order stationarity i.e., that all first and
second moments of the process do not depend on time.
The spectral density SXt�m� of a stationary random
discrete process Xt can be estimated from the N point
time series of the process as:

SXt�m� � T
X

Nÿ1

k�0

Xt�k� exp�ÿj2pmkT �;

where j �
�������

ÿ1
p

and T is the sampling period.
The coherency function cXY �m� and the phase /XY �m�

of such stationary processes are defined by the following
equations:

c2
XY �m� �

jCXY �m�j
2

jCXX �m�jjCYY �m�j
�1�

/XY �m� � arctan
ImCXY �m�
ReCXY �m�

� �

; �2�

where:

CXY �m� � hS�

Xt
�m�SYt�m�i:

h. . .i means averaging.
For cXY �m� the following condition must be valid

(e.g., Grenander and Rosenblatt, 1957):

0 � cXY �m� � 1:

The physical meaning of the coherency function is
similar to the meaning of the correlation function but
only for Fourier components at some frequency m. If the
value of the coherency function cXY �m� is close to 1 that
means that Fourier components at the frequency m of
two processes Xt and Yt are strongly related. If cXY �m� is
small these components are statistically independent of
each other. The phase /XY �m� seen from Eq. (2) is simply
a phase difference between two Fourier components at a
frequency m. If the coherency is low the significance of
the phase is also low: if the coherency is zero then the
values for the phase are distributed randomly between 0°
and 360°. The variation of the phase is much less if the
value of the coherence is high. The variation of the phase
can be used as an indicator of the value of the coherency.

It is necessary to mention one property of the phase
function (e.g., Otnes and Enochson, 1978). Suppose xt�t�
is a time-delayed version of yt�t�:

xt�t� � yt�t ÿ s�

The Fourier transform of xt(t) is:

Xf �m� �
Z

1

ÿ1

xt�t� exp�ÿj2pmt�dt

�

Z

1

ÿ1

yt�t ÿ s� exp�ÿj2pmt� dt

� exp�ÿj2pms�
Z

1

ÿ1

yt�t� dt � exp�ÿj2pms�Yf �m�:

The phase in this case is defined by following equation:

/XY �m� � ÿ2pms; �3�

so the phase /XY �m� is a straight line with the slope ÿ2ps.

3 Techniques to determine the dispersion relation

Suppose that in the plasma rest reference frame a wave
can be described as:

B�r; t� �
X

xp:f :

B�xp:f :� exp j�k � r ÿ xp:f :t� � C:C:; �4�

where C.C. is the complex conjugate term. Frequency
xp:f : and wave vector k are related by the dispersion
relation:

k � k�xp:f :�: �5�

If the two point measurements are carried out with a
time shift ∆t and a separation vector R the phase shift of
two measured time series can be estimated as:

Dw � k � R ÿ xp:f :Dt � jkjjRj cos�#� ÿ xp:f :Dt;

where # is the angle between the wave vector and the
separation vector. Plasma frame frequency xp:f : is not a
directly measured quantity. The waves are detected in
the satellite frame at frequency x1, which is shifted from
the plasma reference frame frequency due to the
Doppler effect:

x1 � xp:f : � k � V0: �6�

So the phase shift can be rewritten as:

Dw � jkj � jRj cos�#� ÿ �x1 ÿ jkj � jV0j cos�u��Dt;

where u is the angle between the wave vector and the
plasma bulk velocity direction.

If the calculation of the phase shift according to
Eq. (2) provides some dependence of phase upon the
measured frequency:

Dw � W�x1�

the magnitude of wave vector can be determined as:

jkj�x1� �
W�x1� � x1Dt

jRj cos�#� � jV0jDt cos�u�
: �7�

The absolute value and the direction of plasma bulk
velocity V0 usually can be determined from ion–plasma
experimental data. The direction of the wave vector,
which is needed for the determination of # and u, can be
calculated for magnetic field measurements by
the standard methods of the minimum variance or
maximum variance (Sonnerup and Cahill 1967; La-
combe et al., 1992). Then the dispersion relation (5) can
be calculated from Eqs. (6, 7) if the direction of the wave
vector is known.

This method has the obvious confidence parameters:
the value of the coherency function and the ratios of the
eigenvalues of the variation matrix (Sonnerup and
Cahill, 1967). Only the high level of the coherency
function makes the values of the phase meaningful. The
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existence of the confidence parameters makes simple the
possible onboard real-time realisation of this method.

The fact that three equations [the equation for the
determination of the wave vector (7); the equation for the
Doppler effect (6); the equation for the determination of
the direction of wave propagation] are enough to
determine the dispersion relation was first noted in
(Balikhin and Gedalin, 1993). Instead of the coherency
function for the relation between phase shift and the wave
vector projection, another approach can be used. Making
use of the concept of the local wave number (Beall et al.,
1982) a two-dimensional histogram of the projection of
wave vectors on the direction of R can be produced. Then
the best fit procedure can be used to extract, from this
two-dimensional histogram, a curve which corresponds
to the relation between the projection of the wave vector
and the observed frequency. The other two equations
together with this relation can be used to determine the
wave dispersion. This method does not have obvious
confidence parameters. This is particularly due to the
necessity of extracting a one–dimensional curve from a
two–dimensional histogram. It therefore, for example,
cannot be so readily implemented in real–time onboard
processing. Recently the Beall et al., (1982) method was
applied to the study of low frequency turbulence in a
quasiparallel shock (Dudok de Wit et al., 1995).

4 Experimental data

Some data obtained from AMPTE UKS and AMPTE
IRM magnetometers are analyzed in the present study.
The magnetic field experiments on AMPTE UKS and
AMPTE IRM are described in Lühr et al., (1985) and
Southwood et al., (1985). Both data sets have the same
sampling frequency 8 Hz. (The proposed method can be
used also when sampling rates are different, but in that
case interpolation of one of the signals must be made.)
The time of AMPTE UKS data sets corresponds to the
moment of the measurements; the time of AMPTE IRM
data corresponds to the moment when these data were
received on the Earth. To determine the correspondence
between the data sets we need to follow the procedure
described in Schwartz et al., (1992) and to subtract from
the AMPTE IRM time delay td. The value td is the time
which is needed for the signal to propagate from the
AMPTE IRM satellite to the Earth’s surface:

td �
Lirm

c
Lirm is the distance from the Earth’s surface to the
AMPTE IRM at the moment of the measurement. For
the considered time period Lirm �79 000 km so
td � 0:264 s. The first point which was used in the
AMPTE UKS data set corresponds to the time
14:00:00:076 AMPTE UKS time, the first point of
AMPTE IRM data sets relates to the 14:00:00:375
AMPTE IRM time. So (fortunately) the difference in the
absolute time between two data sets is 0.035 s, this time
shift corresponds to a frequency higher than the Nyquist
frequency. Variations at such frequencies are strongly

attenuated in both magnetometers (Lühr et al., 1985;
Southwood et al., 1985), so we can consider the
measurements as simultaneous.

The ion plasma parameters (density, velocity etc.)
used in the present study, were kindly provided by
A.J. Coates and S.J. Schwartz on the basis of the
AMPTE UKS three-dimensional ion experiment (Mul-
lard Space Science Laboratory) data. Upstream para-
meters were calculated on the basis of solar wind mode
data (Coates et al., 1985). Downstream parameters were
calculated on the basis of fast time resolution mode data.

5 Bow shock crossing on 20 October 1984
at about 14:10 UT

We consider the Earth’s bow shock which was measured
by AMPTE UKS and IRM at about 14:10 UT on
20 October 1984. The position of AMPTE UKS at
14:10 UT was (12.19Re 0.77Re )0.40Re) (GSE). Three
components and the absolute values of the magnetic
fields measured by AMPTE UKS and AMPTE IRM are
shown in Figs. 1 and 2. The time scale on these figures is
in seconds after 14:00:00 UT. In the downstream region,
waves which were observed from 650 s to 1100 s are
studied. The upstream bulk velocity V0 was 680 km · s)1.
The angle between the upstream magnetic field and the
normal to shock front, estimated on the basis of the
coplanarity theorem was 47°. The upstream region ion
inertial length, c=xpi, for this shock was � 130 km. In
the downstream region the bulk velocity was about
115 km · s)1. It is the average value during the time
interval from 14:10:50 UT to 14:18:20 UT. (This time
interval corresponds to the time interval 650–1100 s after
14:00:00 UT). Three components of the bulk plasma
velocity averaged over 5 time periods are listed in Table 1.
The absolute value of downstream magnetic field,
averaged over the time interval studied, 650–1100 se-
conds, was 26 nT, averaged density was ndw � 12 cm)3.
The downstream region Alfven velocity can be estimated
as Va � 164 km · s)1. The downstream b was high: b � 8.

The average magnetic field during the time period
650–1100 s was Ba

UKS � )4.3; 14.3; )21.8 nT according
to UKS data. The angle between Ba

UKS and the average
magnetic field calculated according to IRM data Ba

IRM
was 4.8°. The amplitude difference between amplitudes
of jBa

UKS j and jBa
IRM j was smaller then 5%. The Ba

UKS
magnetic field was used below as average for down-
stream magnetic field.

The bow shock was crossed first by AMPTE UKS
and then by AMPTE IRM. The separation vector
between the two satellites during the crossing was
R � )50.5 km; )24.6 km; 18.2 km (GSE).

6 Downstream waves

6.1 Wave spectrum

The frequency time spectrogram for the shock crossing
considered, obtained by spectral analysis of the AMPTE
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IRM By component of the magnetic field, is shown in
Fig. 3. The features of the spectra dynamics are usual for
the quasiperpendicular shocks. In the foot the main part
of the wave energy resides in the frequency range from
about one to a few Hz. The waves in this frequency
range are whistlers it was shown by Fairfield (1974). As
the satellite approaches the downstream region the wave
frequency drops. The main energy of the turbulence is
present in the downstream region in the frequency range
0.0–1.0 Hz as can be seen in Fig. 3. These are the waves
that are studied in the present study. The stationarity of
the downstream turbulence was studied by the method
based on the calculation of the double Fourier trans-
form (e.g., Bendat and Piersol, 1986). The result of that
study was that turbulence is stationary for the chosen
time interval.

6.2 The direction of propagation
of the downstream waves

To determine the directions of the wave vector k the
standard procedure for calculating the variation matrix
(Sonnerup and Cahill 1967) was used. This procedure
was applied to the three frequency ranges: 0.1 Hz–
0.3 Hz, 0.3 Hz–0.5 Hz, 0.5 Hz–0.8 Hz. The variation
matrix was calculated for five time periods: 14:10:50–
14:18:20 UT (650–1100 s), 14:10:50–14:12:30 UT (650–
750 s), 14:12:30–14:14:10 UT (750–850 s), 14:14:10–
14:15:50 UT (850–950 s), 14:14:10–14:18:20 UT (850–
1100 s). This subdivision was made just to check the
deviations of final results with the change of studied
time interval. The results of these calculations are
presented in Table 2.

Table 2 shows that the smallest eigenvalue can easily
be defined for all frequency ranges and time intervals.
The direction of the propagation in this case is

determined by the direction of the eigenvector, corre-
sponding to this eigenvalue. The eigenvectors corre-
sponding to the smallest eigenvalues are also listed in
Table 2. The direction of propagation for almost all the
waves studied are close to the x-direction. Only the
waves in the frequency range 0.1–0.3 Hz during the
period 14:12:30–14:14:10 and in the frequency range
0.3–0.5 Hz during the period 14:10:50–14:12:30 have
comparatively larger angles with the x-axis: 41 and
37 degrees respectively.

For some cases the ratio of the medium eigenvalue to
the smallest one is not high enough to give confidence in
the direction of k (e.g. 0.5 Hz–0.8 Hz for time interval
14:10:50–14:12:30 UT). But the fact that the majority of
the smallest eigenvalue vectors (particularly with high
ratios of eigenvalues as in the 0.5 Hz–0.8 Hz frequency
range for the time interval 14:14:10–14:15:50 UT), have
approximately the same direction, gives confidence in
the results of the minimum variance analysis.

The minimum variance procedure was also applied to
the whole frequency range 0.1–0.8 Hz for the time
period 650–1100 s. Using data from AMPTE-IRM the
ratio of the eigenvalues was determined to be 1 : 2.3 : 2.8
and the wave vector corresponding to the smallest
eigennumber was kIRM � 0.90; 0.13; )0.41. From the

Fig. 1. Absolute value and three
components of magnetic field mea-
sured by AMPTE UKS during bow
shock crossing which occurred at
about 14:10:00 UT on 20.10.1984.
Time scale is in seconds after
14:00:00. On the figure the moment of
the ramp crossing approximately
corresponds to 600 s

Table 1. Components of plasma bulk velocity

Time
interval

Vx km · s)1 Vy km · s)1 Vz km · s)1
jV jkm · s)1

650–750 )100 21 )10 103
750–850 )117 17 18 120
850–950 )117 33 9 122
950–1100 )114 35 10 120
850–1100 )115 34 10 120
650–1100 )111 27 8 115
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Fig. 2. Absolute value and three
components of magnetic field mea-
sured by AMPTE IRM during bow
shock crossing which occurred at
about 14:10:00 UT on 20.10.1984.
Time scale is in seconds after 14:00:00

Fig. 3. Dynamic spectrum of By component of magnetic field measured by AMPTE IRM during bow shock crossing at about 14:10:00 UT on
20.10.1984. Time scale is in seconds after 14:00:00 UT.
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UKS data the eigenvalue ratios were 1 : 2.3 : 2.6 and the
wave vector kUKS � 0.90; 0.17; )0.41. This shows that
the application of the minimum variance procedure
gives approximately the same results for both satellites.,

6.3 Cospectral characteristics of downstream waves

The coherency function and the phase were calculated
on the basis of Eqs. (1, 2). The coherency function and
the phase calculated for the z-components of the
magnetic field measured by AMPTE UKS and AMPTE
IRM at 14:10:50–14:18:20 UT are shown in Figs. 4, 5.
The magnitude of the coherency function is high enough
in the low frequency region and drops with increasing
frequency. Some increase of the coherency function
which can be seen above 3.0 Hz is artificial. This increase
is connected with small amplitudes of waves in this
frequency range. It appears because both the numerator
and denominator in Eq. (1) are small in this case. The
variation of the phase can be used to reach conclusions
about the real level of coherency in that frequency
range. More information can be seen in the phase
function. In the frequency range 0.02–1.0 Hz approxi-
mately the linear trend of the phase can be easily seen.
The variation of the calculated values of the phase
increases with increasing frequency. Instead of a well-
recognized linear trend above 1 Hz the calculated values
of the phase are spread over a wider range, with a much
greater variation. The comparison of the variation of the
phase below and above 1 Hz shows the relatively high
level of the true coherency value below 1 Hz. The slope
of the linear trend below 1 Hz is:

a �

Dphase�rad�
Dx1

� 0:75 s:;

where x1 is the observed frequency. This corresponds to
the time shift of 0.75 s. according to Eq. (3). The phase
velocity of waves in the frequency range in which the
linear trend is present can be estimated as 62.5 km · s)1

and is directed downstream in the satellite reference

frame. In the plasma frame the waves propagate in the
upstream direction but they are convected downstream
by the plasma flow.

6.4 Determination of K vector,
plasma frame frequency and the dispersion relation

To determine the dependence of the wave vector k upon
the observed frequency x1 we need at first to put the
linear function ax1 instead of W�x1� into Eq. (6) and
rewrite it as:

jkj�x1��km�

ÿ1
�

x10:75�sec :� � x10:035�sec :�
j59�km�j cos�#� � V00:035�sec :� cos�u�

�8�

As was shown, directions of propagation, plasma bulk
velocity and satellite separation vector are close to the
x-axis direction. The cos�#� and cos�u� have the same
order of magnitude. The absolute value of the plasma
bulk velocity is about 115 km · s)1 so it is possible to
disregard the second term in the denominator of Eq. (8)

Table 2. The ratio of three eigenvalues of variational matrix
calculated for three frequency ranges during five time periods and
the wave vector corresponding to the smallest eigennumber

Time
14:00

0.1–0.3 Hz 0.3–0.5 Hz 0.5–0.8 Hz

650– 1.0 : 1.8 : 2.4 1.0 : 1.8 : 3.0 1.0 : 1.9 : 3.5
–750 (0.96,0.12,)0.24) (0.80,0.57,)0.20) (0.98,0.15,)0.10)

750– 1.0 : 2.7 : 5.9 1.0 : 2.5 : 3.2 1.0 : 2.8 : 3.3
–850 (0.76,0.44,)0.47) (0.95,0.27,)0.15) (0.99,0.05,)0.08)

850– 1.0 : 2.1 : 2.6 1.0 : 3.3 : 4.1 1.0 : 4.7 : 5.8
–950 (0.94,0.21,)0.28) (0.98,)0.06,0.20) ()0.97,0.22,0.07)

850– 1.0 : 1.8 : 2.3 1.0 : 2.3 : 2.9 1.0 : 3.0 : 3.5
–1100 (0.97,0.13,)0.23) (0.99,)0.04,0.04) ()0.99,0.01,0.06)

650– 1.0 : 2.1 : 2.7 1.0 : 2.1 : 2.4 1.0 : 2.9 : 3.2
–1100 (0.91,0.23,)0.35) (0.99,0.15,)0.04) (0.99,0.02,)0.07) Fig. 4. Modulus of coherency function calculated for Bz components

of AMPTE UKS and AMPTE IRM magnetic fields for the time
interval 650–1100 s

Fig. 5. Phase function calculated for Bz components of AMPTE
UKS and AMPTE IRM magnetic fields for the time interval 650–
1100 s. The units for y-axis of this plot are degrees
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in comparison with its first term. Instead of Eq. (7) we
can use the simplified equation:

jkj�x1� �
W�x1�

jRj cos�#�
�9�

The resulting dependence of the wave vector upon
observed frequency is shown in Fig. 6. We calculate this
dependence only in the region of observed frequency
where a well-defined trend is seen in the phase function
i.e., in the frequency range 0.02–1.0 Hz (� 0.125–
6.28 rad · s)1). The dependence of the wavelength upon
observed frequency is shown in Fig. 7. It follows from
this figure that the observed waves have wavelengths in
the range �102–103 km.

The next step is to obtain the correspondence
between the observed frequency x1 and the frequency
in the plasma reference frame xp:f : on the basis of
Eq. (5). However, first we should note that the wave
vectors for all case are directed upstream, so the second
term on the right hand side of Eq. (6) is negative. The
direction of wave propagation in the plasma rest frame
is opposite to the direction of waves in the satellite
frame, so the signs of x1 and xp:f : must be opposite.
(This corresponds to the change of the direction of
polarization.) Thus, Eq. (6) can be rewritten for the case
considered as:

jxp:f :j � ÿjx1j � jkV0j: �10�

We use the value of the angle between wave vector and
plasma wave velocity averaged over the full time interval
14:10:50–14:18:20, separately for three observed fre-
quency intervals: 0.1–0.3 Hz, 0.3–0.5 Hz and 0.5–1 Hz.
The plasma frame frequency range of the observed
waves continues far above the ion cyclotron frequency.
Finally the dispersion relation between xp:f : and jkj
obtained from Eqs. (8, 9) is shown in Fig. 8. It can be
seen from this that the dispersion relation is linear in the
frequency range considered. The linear slope of this
dispersion was obvious from the linear dependence of
phase angle upon observed frequency.

7 Discussion

The uniform continuous dependence of the phase upon
the observed frequency in the range 0–1.0 Hz is a sign
that waves observed in these frequencies have the same
mode. As can be seen from the dynamic spectrogram,
the main energy of downstream wave turbulence stored
is also below 1 Hz. The identification of the mode of
these wave is the identification of the most developed
mode in the downstream region. To determine which
mode we can attribute the observed waves to we need to
compare the dispersion relations and propagation
properties of possible candidates. In addition to three
MHD modes the mirror mode, and Alfvenic ion
cyclotron waves are usually observed downstream of a
quasiperpendicular shock front (Lacombe et al., 1990;
1992; Winske and Quest, 1988). The last two modes are
unstable due to the anisotropy in the ion temperature

which is present downstream from the shock front. The
mirror mode can be excluded from consideration
because it has no velocity in the plasma rest frame.
The largest growth rate of Alfven ion cyclotron waves is
for propagation parallel to the magnetic field. In our
case, as can be seen from Table 2, waves are propagating
almost perpendicular to the magnetic field. This fact
together with the existence of waves above the ion
cyclotron frequency, also helps to exclude Alfven ion
cyclotron waves.

Fig. 6. Dependence of wave vector upon observed frequency

Fig. 7. Dependence of wave length upon observed frequency

Fig. 8. Dependence of wave vector upon plasma frame frequency
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Three MHD modes; fast magnetosonic, intermediate
(Alfvenic) and slow magnetosonic, were comprehen-
sively studied analytically (e.g., Akhiezer et al., 1975;
Formisano and Kennel, 1969) and their propagation
properties are well known in a wide range of plasma
parameters. The dispersion relation for all three wave
modes from Formisano and Kennell, (1969) are shown
in Fig. 9 (Cs > Va is the case which corresponds to the
high b situation). As can be seen from these curves, well
below the lower resonance frequency Xr1 � X

�
cos�h�

all three dispersion relations are linear. The phase
velocity of the slow wave decreases as the frequency
approaches Xr1 (where X

�
is the ion cyclotron

frequency and h is the angle between wave vector and
magnetic field direction). Above Xr1 only two branches
exist; fast magnetosonic and intermediate. The ion
gyrofrequency X

�
downstream of the considered shock

is about 2.45 rad · s)1
� 2p 0.78 Hz, the angle between

the direction of the wave propagation and the down-
stream magnetic field exceeds 70°, so the resonance
frequency in our case is Xr1 < 0:85 rad · s)1

� 2p
0.27 Hz. A substantial portion of the observed waves
have plasma rest frequencies higher than this value. So
the waves in the observed frequency range 0.02–1.1 Hz
cannot be attributed to the slow magnetosonic branch
because, as mentioned, they must have the same type in
the whole observed frequency range 0.1–0.8 Hz. Also a
deviation from the linear dispersion must be seen for
the slow magnetosonic branch in the vicinity of the
resonance frequency, Xr1 , whereas the observed waves
have a well-recognized linear dispersion in that
frequency range.

To choose between fast magnetosonic and inter-
mediate branches we need to compare their phase
velocity with the phase velocity of the observed waves.
According to Akhiezer et al., (1975) the phase velocity
of fast magnetosonic and intermediate waves are
determined by the following equations:

Vfast �

������������������������������������������������������������������������������������

V 2
A � C2

s �

���������������������������������������������������������

�V 2
A � C2

s �
2
ÿ 4V 2

A C2
s cos2

�h�
q

2

v

u

u

t

:

�11�

Vint � Va cos�h� �12�

The phase velocity of the fast magnetosonic wave is
higher than the Alfven velocity for the whole range of
angles. The value of averaged phase velocity was
Vph.av. � 37.5 km · s)1

� 0.23 Va. So Vph.av. is much
smaller than possible for the phase velocity of fast
magnetosonic waves. To compare this velocity with the
Vint we need to point out that the angle between the
downstream magnetic field, the median directions of
propagation km �

1
2

ÿ

kUKS � kIRM
�

for this time interval
is 74°. The phase velocity of an intermediate wave
travelling at such an angle to the ambient magnetic field,
must be:

Vint � Va cos�74�� �� 45 km:sÿ1
�13�

The discrepancy between Vint and Vph.av. is small, and
can be attributed to a few degrees error in the estimation
of the directions of the wave vector and the magnetic
field direction. If km as a direction of the wave
propogation is replaced with a direction averaged over
the eigenvectors listed in Table 2, this results in a
propagation angle of � 80° to the magnetic field. This
discrepancy does not affect the conclusion that the phase
velocity of the observed waves is much closer to the
intermedite wave velocity than to the fast mode velocity
as determined from a two fluid plasma model. It is
worth noting that in Fig. 8 the dispersion relation for
experimentally observed waves in the plasma with b > 1
is shown. It might not be suprising that this dispersion
relation differs from dispersion relations obtained in the
two fluid idealization. The comparison of the obtained
dispersion relation with the simulation results in
Krauss–Varban et al., (1994), makes little sense because
the plasma distribution functions in the downstream
region of a supercritical quasiperpendicular shock are
not Maxwellian (e.g., Sckopke et al., 1983).

There is a disagreement between the result, obtained
in the present paper and previous studies of downstream
turbulence (Lacombe et al., 1990, 1992) where mirror
waves were observed in a similar frequency range. This
disagreement can be attributed to two factors. First
mirror waves were not observed in downstream regions
of all shocks (Lacombe et al., 1992). Secondly it may be
that in the case of high b a possible anisotropy of
temperature caused by reflected ions plays a different
role to that in the case of low b shocks.

Fig. 9. Dispersion relations for 3 MHD modes from Formisano
and Kennel, (1969) calculated for the case b > 1
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Conclusions

A method for the determination of the mode of an
observed plasma wave on the basis of two point
magnetic field measurements was presented.

This method was applied to the waves observed by
AMPTE UKS and AMPTE IRM downstream of the
quasiperpendicular shock on the 20 October 1984. It
was established that the plasma turbulence downstream
of the shock mainly consists of waves observed below
1.0 Hz. These waves propagate upstream in the plasma
rest frame but are convected downstream by the plasma
flow in the shock reference frame. The wavelengths of
these waves are between about 102–103 km, observed
frequencies are between 0.05–6.0 rad · s)1

� 0.2–2.5 x
�

.
The velocity of these waves is close to the velocity of

intermediate waves propagating at the same angle as
determined from a two fluid model of plasma.
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