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Influence of elastic deformation of porous materials in adsorption-desorption process.

A thermodynamic approach.

Annie Grosman and Camille Ortega
Institut des Nanosciences de Paris (INSP), Université Paris 6,

UMR-CNRS 75-88, Campus Boucicaut, 140 rue de Lourmel, 75015 Paris, France∗

It has been known for a long time that the adsorption and condensation of gas cause elastic
deformation of the porous matrix. The reversible formation of an adsorbed film, which precedes
capillary condensation, results in an extension of the porous material while, in the hysteresis region,
the negative liquid pressures under the concave menisci contract the porous matrix. The elastic
deformation exhibits an hysteresis loop in the same pressure region as the adsorption phenomenon.
These deformations have been neglected in practically all the theoretical treatments of adsorption.
There are two reasons for this. First, the deformations are small in magnitude and were supposed
to have small effects on the adsorption process, and second, no experiment has contradicted the
existing model according to which, in systems where the pores interact, the source of interactions is
pore-pore intersections. They are the experimental results obtained in SBA-15 and p+-type porous
silicon, systems in which the pores interact whereas they are not connected, which lead us to question
these models and consider the elastic deformation of the pore walls as a possible coupling parameter.
Based on the experimental work of C. H. Amberg and R. McIntosh [Can. J. Chem. 30, 1012 (1952)]
who measured both the linear deformation of a porous glass rod and the adsorbed amount during
isothermal adsorption of water, we develop a thermodynamic approach which includes the elastic
energy of the solid. This approach is generic to all porous materials. In the region of reversible
adsorption preceding the capillary condensation where the variation of the surface free energy can
be deduced from adsorption data, the linear extension of the solid is proportional to the variation of
the surface free energy and to the elastic constant of the solid. This is the crucial point of the paper:
thermodynamics of adsorption is directly connected to the elastic properties of the porous solid. In
the hysteresis region, this linear relation can be used to deduce the variation of the surface free energy
from the deformation measurements, a calculation which cannot be done from adsorption data. We
find that the surface free energy related to the elastic deformation is an important component of the
total free energy. It is shown that the condensation branch represents the more stable states and
that an energy barrier exists to evaporation which depends essentially on the elastic deformation.
The pores interact through the deformation of the walls. Based on this interaction mechanism and
on the shape of the scanning curves which are common to materials with interconnected pores such
as porous glass or noninterconnected pores such as p+-type porous silicon and SBA-15, we propose
a scenario for the filling and emptying of these porous materials.

PACS numbers: 61.43.Gt, 62.20.F-, 68.35.Md, 68.43.-h

I. INTRODUCTION

This paper originates in the experimental observations
we made when studying the adsorption of gas in p+-
type porous silicon1,2. This porous system, formed on
highly boron doped Si(100) substrate, is composed of
straight pores, perpendicular to the substrate, separated
from each other by single crystal Si walls of apparent
constant thickness (∼5 nm). The section of the pores by
a plane parallel to the substrate is polygonal. The pore
size distribution (PSD) is large, for example 13±6 nm for
a porosity of 50%. Except the presence of different facets
on the Si walls which gives some roughness, the ampli-
tude of which is smaller than the apparent wall thickness
and a fortiori than the pore size, the pore section does
not vary along the pore axis. The pores are not intercon-
nected.

At a first glance, this system can be hence classified as
ordered porous system composed of independent pores.
Nevertheless, we have shown that the hysteretic behavior
of such a system, i.e. the shape of the main loop and of

subloops inside the main loop, is characteristic of the
presence of a strong interaction mechanism between the
pores2. In Fig. 1 we have represented the main features
which characterize this system.

(i)- The boundary hysteresis loop, of type H2 in the In-
ternational Union of Pur and Applied Chemists (IUPAC)
classification3, is asymmetrical with a broad condensa-
tion branch characteristic of the broad PSD and a steeper
evaporation branch which suggests, but not proves, that,
as soon as the pressure is reduced to a critical value p∗,
the system begins to empty, leading to the emptying of
the whole system in a avalanchelike manner.

(ii)- If the emptying of the system is commenced when
it is not completely filled, at points M1, M2, M3 on
the boundary condensation branch for example, we ob-
tain the so-called primary descending scanning curves
(PDSCs). Along the PDSCs shown in Fig. 1, evapora-
tion occurs at pressure higher than p∗ which clearly shows
that the evaporation pressure of a given pore depends on
the state of the system.

(iii)- The two subloops between the same pressure end
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FIG. 1: Nitrogen adsorption isotherm at 77.4 K for a p+-type
porous silicon layer of 50% porosity exhibiting a large PSD
(13± 6 nm), together with three PDSCs starting from points
M1, M2 and M3 on the boundary condensation branch. p∗ is
the critical pressure below which the fully filled system begins
to empty. The inset shows a magnification of the hysteresis
loop region and two subloops between the same pressure end
points. The lack of congruence shows that the pores are non
independent.

points shown in inset of Fig. 1 are not superimposable.
For independent pores, according to Preisach model4,
they should be.

The pores of porous silicon interact strongly whereas
they are not connected.

Similar observations have been made in other nonin-
terconnected porous systems. MCM-41 and SBA-155–7,
are composed of almost uniform cylindrical pores and
exhibit hysteresis loops of type H1 with steep and par-
allel branches but, inside the main loop, the PDSCs are
qualitatively similar to that represented in Fig. 1. For
SBA-15, we have shown that two subloops between the
same pressure end points are not congruent which proves
unambiguously that the pores of SBA-15 interact during
the evaporation process7.

Surprising though it may seem, the hysteretic behav-
ior represented in Fig. 1 is quite similar to that observed
by Brown8 in porous glass, a disordered porous mate-
rial composed of cavities connected to one another by
constrictions, a spongelike structure: the same hystere-
sis loop of type H2, the same PDSCs as porous silicon.
Mason9 has developped a model, the so-called pore block-
ing/percolation model, to explain the family of PDSCs
obtained by Brown. From this model, in porous materi-
als where the pores interact, the source of interactions is
thought to be pore-pore intersections10.

The hysteretic behavior of SBA-15 has been compared
to that of Kit-6, an ordered mesoporous silica which con-
sists of a three-dimensional (3D) network of intercon-
nected pores of almost cylindrical shape and same size.

Morishige and coworkers11 noted that despite a large dif-
ference in porous structure, the shape and thermal be-
havior of the adsorption hysteresis, as well as the sorption
scanning behavior for these two materials, are indistin-
guishable.

Finally, if we disregard the boundary hysteresis loops,
the shape of which depends on the porous material, H1
for MCM-41, SBA-15 and Kit-6, H2 for porous glass and
p+-type porous silicon, the hysteretic features inside the
main loop are qualitatively the same for all these porous
systems and show that none of them is composed of inde-
pendent pores. This suggests that the physical parameter
which couple the pores is not interconnectivity.

The hysteresis loop and PDSCs shown in Fig. 1 have
been qualitatively reproduced using mean-field density-
functional theory or Monte Carlo calculations applied to
a disordered lattice-gas model or to a simulated disor-
dered matrix12–16. The calculations show the presence
of multiple metastable states within the hysteresis re-
gion which are connected by PDSCs similar to that ex-
perimentally observed. As noted by the authors, these
calculations reproduce the main features observed in dis-
ordered porous material without explicitly introducing
pore blocking/percolation effects.

Following these calculations, it has been proposed that
the hysteresis loop of type H2 observed in porous silicon
is not due to ”local pore blocking caused by individual
constrictions of pore” but is rather the consequence of a
strong disorder imposed by ”large number of minor varia-
tions” in pore diameter17 or by variation in the fluid/wall
interaction along the pore18. We have already discussed
this idea2 and concluded that the disorder in each pore
of porous silicon cannot explain why the pores interact.

In the present paper, we will thus consider a new
physical parameter, common to all these porous systems,
which couples the pores during the adsorption-desorption
process: the elastic deformation of the porous matrix.

The deformations of porous materials caused by ad-
sorption and condensation of gas is an old subject19. On
the other hand, these deformations have been neglected
in practically all the theoretical treatments of capillary
condensation, that is, the condensed phase was always
treated as a one component system of adsorbed molecules
in the potential field of the adsorbent. However, as far
back as 1956, Yates20 noted that ”the fact that the size
changes do occur, even if small in magnitude, makes the
assumption of an inert adsorbent, for physical adsorp-
tion, of very doubtful validity.”

Hill first introduced, in the classical thermodynamics
of adsorption, the porous matrix as a second element
in addition to the adsorbate21. Following this thermody-
namic development, Quinn and McIntosh in a paper pub-
lished in 1957, showed that the free energy of the porous
glass-butane and porous glass-water22 systems depends
importantly on the elastic deformation of the porous ma-
trix.

Recently, Shen and Monson, based on the same ther-
modynamic property relationships as that developed by
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Hill, have made a Monte Carlo simulation study of gas
adsorption in a semiflexible porous network23. They
show that the flexible network makes a significant dif-
ference to both the adsorption and desorption isotherms.
The evaporation, and to a lesser extent the condensation
branches are shifted towards lower pressures. At the end
of the paper, the authors noted that ”the fact that the
phase change involves a contraction of the solid volume
may add to the barriers to the phase change and the ease
with which hysteresis is exhibited by the system.”

The thermodynamic approach developed in the present
paper is quite different from that of Hill21. The equi-
librium condition for mass transfer is not given by the
equality of the chemical potentials of the adsorbate and
the vapor but depends on the variation of the free energy
of the solid with the adsorbed amount. This equilibrium
condition allows us to introduce, in the thermodynamic
relationships, the elastic energy of the solid besides the
surface free energy that is to connect the deformation of
the solid to the variation of the surface free energy.

The paper is organized as follows. In Sec. IIA, we
present the results found in the literature dealing with
the elastic deformation of porous materials. In Sec. II B,
we establish a thermodynamic approach of adsorption-
desorption process, which takes into account the elastic
deformation of the porous matrix. In this thermody-
namic approach, we use the experimental work of Am-
berg and McIntosh.24 We estimate the numerical values
of the different components of the free energy of the sys-
tem adsorbate solid. In Sec. II C, we show how the pores
can interact through the elastic deformation of the pore
walls and we present a qualitative description of the hys-
teretic behavior shown in Fig. 1 which is common to all
porous materials whether the pores are interconnected or
not.

II. RESULTS AND DISCUSSION

A. Elastic deformation of porous materials

Adsorption and desorption of gas cause deformations
of the porous matrix. These deformations have been
studied in a number of systems such as porous glass24,
charcoal25, silica aerogel26 and porous silicon.27 The
magnitude of the linear deformation depends on the stiff-
ness of the bulk material, on the porosity, and on the
properties of the adsorbed molecules. For adsorption of
pentane, at ambient temperature, in p+-type porous sili-
con, the variation of the lattice parameter (∆a/a), along
the [100] axis perpendicular to the substrate, measured
with regard to the Si substrate by x-ray diffraction ob-
servations, is a few 10−4. For the other cited porous
materials, the order of magnitude of the linear deforma-
tion (∆l/l) is typically 10−3 for water in charcoal and
porous glass and a few 10−2 for neon (T=43 K) in silica
aerogel.

Despite the porous materials cited above having very
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FIG. 2: Schematic representation of an adsorption isotherm
presenting a hysteresis loop of type H2 and the corre-
sponding typical linear extension (∆l/l) observed during the
adsorption-desorption cycle.

different morphologies, the deformation during the con-
densation and evaporation of fluids presents common fea-
tures. Figure 2 represents schematically a hysteresis loop
of type H2 and typical deformations observed in these
porous materials during an adsorption-desorption cycle.

Along the reversible path OA preceding capillary con-
densation, the formation of an adsorbed film results ei-
ther in a marked extension of the porous material (porous
glass) or in small or insignificant changes in the other
materials. The two-dimensional (2D) pressure exerted
on the pore walls by the film is usually called spread-
ing pressure. Between points A and B, where the con-
densation process takes place, a contraction is generally
observed. During this step, the pores sequentially fill,
from the smallest to the largest; menisci are presumably
formed at the top of the filled pores, and the thickness of
the adsorbed film increases reversibly in the empty pores
leading to a further extension of the porous material.
Therefore, the net contraction generally observed during
capillary condensation is attributed to the negative pres-
sure created under the concave menisci. At point B, all
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the pores are filled. Along BC, the upper region of the
isotherm, a marked extension occurs, attributed to the
vanishing of the negative pressure within the fluid as a
result of the flattening of the concave menisci.

Conversely, along CD, marked contraction occurs due
to large negative fluid pressure generated by the forma-
tion of concave menisci. In the region BCD, both adsorp-
tion and deformation data are generally reversible except
for pentane in porous silicon27 for which the authors note
that at the pentane saturation pressure (60 kPa) the ex-
tension has not reached the maximum value found for full
immersion in the liquid. It is necessary to increase the
pressure above the vapor saturation pressure by slightly
heating the liquid reservoir above the temperature of the
sample to obtain a full wetting. We have never observed
such a phenomenon in the case of adsorption of N2, Ar, or
Kr in porous silicon: as soon as the pores are filled (point
B), the adsorption-desorption path BCD is reversible.1,2

Along DA, the pores empty by evaporation and the
deformation recovers the initial value at point A. From
A to O, the path is the reverse of that along OA.

Recently, it has been shown that, along CD, the
lattice constant of solid Kr (90 K) confined to meso-
porous spherical cavities increases as the vapor pressure
is decreased.28 As the increase in the interatomic distance
of the fluid is equivalent to an increase in the negative liq-
uid pressure value, this supports the above explanation–
according to which the contraction of the porous matrix
along CD is due to the increased value of the negative
liquid pressure under menisci.

The above results clearly display the deformation of
the porous matrix during the reversible adsorption (OA),
the capillary condensation (AB), and the evaporation
(DA) processes.

Our aim is now to establish the thermodynamic rela-
tionships which take into account the elastic deformation
of the porous matrix during the adsorption-desorption
process.

B. Thermodynamics of adsorption in elastically

deformed porous materials

I-Reversible adsorption

When a porous matrix of surface area A is brought into
contact with N gas molecules contained in a volume V at
a constant temperature T , the thermodynamic potential
of the adsorption system, including the porous solid (so),
the adsorbate (σ) and the gas reservoir (v) is the free
energy F :

F = Fσ + F bulk
so + Fv (1)

where F bulk
so and Fv are the bulk free energies of the solid

and of the vapor. Fσ, which includes the bulk of the
adsorbate and the adsorbate-vapor and adsorbate-solid
interfaces, depends, for isothermal conditions, on three
extensive independent variables, Vσ, the volume of the

adsorbed phase, Nσ, the number of adsorbed atoms, and
A, the surface of the porous solid.

dFσ = −PσdVσ + µσdNσ + γdA (2)

where µσ is the chemical potential of the adsorbed atoms
and γ is the surface free energy per unit surface area.

The equilibrium condition for mass transfer, at con-
stant T , Vv, Vσ, N = Nσ + Nv, and A is

(

∂F

∂Nσ

)

= 0

=

(

∂Fσ

∂Nσ

)

Vσ,A

+

(

∂F bulk
so

∂Nσ

)

Nso

+

(

∂Fv

∂Nσ

)

Vv

(3)

where Nso is the total number of solid atoms.
As

(

∂Fv/∂Nσ

)

Vσ,A
= -µv since dN = dNv + dNσ = 0,

equilibrium condition (3) becomes

µσ = µv −

(

∂F bulk
so

∂Nσ

)

Nso

. (4)

If the properties of the bulk of the porous solid are
supposed to be unaffected by the adsorbed molecules,

(

∂F bulk
so

∂Nσ

)

Nso

= 0 (5)

and equilibrium condition (4) becomes

µσ = µv. (6)

The study of the adsorbed phase can be then discon-
nected from that of the porous solid as is generally done.

Now, if the elastic deformation of the solid is taken
into account,

(

∂F bulk
so /∂Nσ

)

Nso

6= 0 and the equilibrium

condition is given by Eq. (4), contrary to what has been
assumed in all the papers where the deformation of the
solid has been taken into account.21–23 Actually, as is
shown below, the shift (µσ −µv) is small, but even small
it cannot be ignored if we want to treat consistently the
influence of the elastic deformation on adsorption. Then,
for isothermal conditions, Fσ can be written as

dFσ = −PσdVσ +µvdNσ −

(

∂F bulk
so

∂Nσ

)

Nso

dNσ +γdA. (7)

For a given porous solid, A = aNso where, let us point
out it, Nso is the total number of solid atoms and not the
number of surface atoms. Equation (7) becomes

dFσ = −PσdVσ +µvdNσ−

(

∂F bulk
so

∂Nσ

)

Nso

dNσ +γ
′

dNso (8)

where γ
′

= aγ is the surface free energy per solid atom.
It is convenient to introduce in Eq. (8), instead of the

total free energy of the solid, the change of its free energy
with adsorption, which is nothing other than the elastic
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energy stored in the solid during the adsorption process,
F el

so :

F el
so = F bulk

so − F ∗bulk
so , (9)

where F ∗bulk
so (T, V ∗

so, Nso) is the bulk free energy of
the porous matrix without adsorbate (the empty ma-
trix) but at the same T and P as F bulk

so (T, Vso, Nso).
V ∗

so and Vso are the volumes of the porous solid before
and after adsorption. F el

so can be expressed as a func-
tion of the independent variables (T , Nσ, Nso) instead
of (T , Vso, V ∗

so, Nso). Note that Nσ is not an extensive
variable for F el

so in contrast to Nso:

F el
so = Nso fel

so (T, Nσ), (10)

where fel
so (T, Nσ) is the elastic energy per solid atom.

For isothermal conditions, we get

dF el
so =

(

∂F el
so

∂Nσ

)

Nso

dNσ + fel
so dNso. (11)

As (∂F el
so/∂Nσ)Nso

=(∂F bulk
so /∂Nσ)Nso

, equilibrium con-
dition (4) becomes

µσ = µv −

(

∂F el
so

∂Nσ

)

Nso

(12)

and Eq. (11) can be rewritten as

dF el
so = (µv − µσ)dNσ + fel

so dNso. (13)

Finally, from Eqs. (8) and (11), we obtain

d(Fσ + F el
so) = −PσdVσ + µvdNσ + ΨdNso, (14)

where we have put

Ψ = fel
so + γ

′

. (15)

Ψ can be considered as an ”effective” surface free en-
ergy per solid atom. After integrating and by introducing
the new notation Fσ + F el

so = Fσ,so, Eq. (14) becomes

Fσ,so = −PσVσ + µvNσ + ΨNso. (16)

a. Relationship between Ψ and the elastic deformation.

The Gibbs-Duhem relationship is, for isothermal condi-
tions,

−VσdPσ + Nσdµv + NsodΨ = 0. (17)

Assumming that the vapor follows the perfect gas law,
and that Pσ ≈ P , Eq. (17) becomes

Nso

∫

dΨ =

∫

Nσ(vσ − kBT/P )dP, (18)

where vσ, the volume occupied by an adsorbed molecule,
is much smaller than kBT/P , the volume occupied by
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FIG. 3: Linear extension (∆l/l) of a porous glass rod mea-
sured by Amberg and McIntosh (Ref.24) during water adsorp-
tion at 18.75◦C as a function of (Nso/A)

ˆ

Ψ(l)−Ψ(l0)
˜

, where
Nso is the total number of solid atoms, A, the surface area
and

ˆ

Ψ(l)−Ψ(l0)
˜

, the variation of the ”effective” surface free
energy per solid atom as defined in Eq. (15) and calculated
according to Eq. (19). l0 is the length of the porous rod before
adsorption. The surface area equals 129 m2/g. The regression
coefficient of the linear fit equals 0.999.

a vapor molecule, and can be neglected. Pσ is in gen-
eral different from the vapor pressure P since in porous
materials the adsorbate-vapor interface is curved but, as
long as we are concerned by the reversible adsorption of
a few monolayers before the capillary condensation takes
place, the term PσVσ is much smaller than γA and can
be neglected:29

Nso

∫

dΨ = −

∫

Nσ kBT
dP

P
. (19)

Equation (19) gives Ψ as a function of adsorption data.
At this stage, it is noteworthy that the calculation of Ψ

from adsorption data does not provide any information
about the magnitude of the porous solid deformation.
Independent measurements are hence necessary.

Some investigators24,30 have measured the deformation
of a porous glass rod and have observed a linear variation
of the relative extension of the rod length

(

∆l/l
)

with
∫

NσkBT dP/P :

∫ P

0

Nσ kBT
dP

P
= k

(

l − l0
l0

)

(20)

where l0 and l are the rod length before and after ad-
sorption and k, a proportionality factor. From Eq. (19)
and experimental relation (20), we get

Nso

[

Ψ(l) − Ψ(l0)
]

= −k

(

l − l0
l0

)

. (21)
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Figure 3 shows for example the data obtained by Am-
berg and McIntosh24 for adsorption of water in porous
glass. Similar results have been obtained in the case of
butanol adsorption on exfoliated graphite.31 For further
discussions, we have also represented in Fig. 4 the relative
extension (∆l/l) as a function of the adsorbed amount.

b. Relationship between k and the elastic constants of

the porous matrix. For small deformation, F el
so can be

represented by the equation

F el
so =

1

2
C V ∗

so

(

l − l0
l0

)2

, (22)

where C is a constant which depends on the elastic con-
stants of the porous solid, i.e., Young’s modulus and Pois-
son’s ratio and also on the geometry of the material. In
adsorption experiment, if the porous material is isotropic,
the stresses and the deformations are isotropic. In this
condition, the classical theory of elasticity gives C = 9 K,
where K is the bulk modulus.

Equation (16) can be written in the form:

Fσ,so = −PσVσ + µvNσ

+
1

2
C Nso v∗so

(

l − l0
l0

)2

+ γA. (23)

The minimisation of Fσ,so with respect to l, keeping con-
stant all the other variables, i.e., Vσ, Nσ and also l0 (that
is Nso), yields

∂Fσ,so

∂l
= 0 = C V ∗

so

(l − l0)

l20
+

∂(γA)

∂l
. (24)

l(∂/∂l) = αA(∂/∂A) where α is a coefficient, the value
of which depends whether or not the porous material is

isotropic. If the material is isotropic, as it is always the
case for powders, dA/A = 2dl/l and α = 2. In the case
of porous silicon, the porous layer is supported by the
substrate and the planes perpendicular to the interface
are constrained to have the same interatomic spacing as
that of the substrate so that the transverse deformations
can be neglected and α = 1. We get:

αA
∂(γA)

∂A
= l0

∂(γA)

∂l
. (25)

The partial derivative, ∂(γA)/∂A , is directly related to
the spreading pressure, Π, exerted by the adsorbed film
on the substrate. Thus, equilibrium condition (24) leads
to

Π =
∂(γA)

∂A
= −C

V ∗

so

αA

(l − l0)

l0
, (26)

which is Hooke’s law. The relation between the spreading
pressure Π and the surface free energy per unit area γ
follows from Eq. (25):

Π =
∂(γA)

∂A
= γ + A

∂γ

∂A
= γ +

l0
α

∂γ

∂l
(27)

or

Π = γ +
∂γ

∂(α l
l0

)
, (28)

which is a relation analogous to that established by
Shuttleworth.32 Similar calculations have been done by
Dash et al.33 and by Thibault et al.34 to determine the
relation between the deformation of a porous solid and
the variation of the surface free energy.

The fact that NsoΨ varies linearly with
(

∆l/l
)

as

shown by Eq. (21), indicates that fel
so ≪ γ

′

[see Eq. (15)].

In this condition, as Nsoγ
′

= γA, Eq. (21) becomes

γ(l) − γ(l0) ≈ −
k

A

(l − l0)

l0
. (29)

Hence,

∂γ

∂( l
l0

)
= −

k

A
(30)

and from the above equations, we get

k =
C V ∗

so

α
(31)

and

Π = γ(l) − γ(l0) = −
CV ∗

so

αA

(l − l0)

l0
. (32)

The spreading pressure Π exerted by the adsorbed
molecules on the porous matrix is hence equal to the vari-
ation of the surface free energy. The difference between
these two quantities is discussed in a note.33
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Equation (31), applied to an isotropic material, gives
k = 9KV ∗

so/2, a relation identical to that found by
Scherer35 for adsorption on a spherical material.

Equation (32) is the crucial point of our problem. The
variation of the surface free energy is directly connected
to the variation of the elastic energy of the porous solid.
This is an old result which has never been taken into
account in the physics of adsorption.

c. Numerical estimations. The comparison of elas-
tic constants deduced from adsorption measurement (in-
ternal stress) and from external loading is a compli-
cated task since it requires geometrical model describ-
ing the porous solids and is not the subject of this pa-
per. We only give here an estimation of Young’s mod-
ulus, E, deduced from the data represented in Fig. 3
where k = 1.39 × 104 J/g.adsorbent. Assuming that
porous glass is isotropic, we have k = 9KV ∗

so/2 and
K = E/3(1 − 2ν), where Poisson’s coeficient ν equals
0.2 to 0.25.35 Taking a density of 2.7 g/cm3, we find
≃ 14 GPa. If, on the other hand, the tranverse deforma-
tions are neglected as has been done by Amberg et al.,24

k = EV ∗

so which gives E = 37.7 GPa. These values are of
the same order of magnitude as those found by Scherer35

using sonic resonance namely in the range (15−30 GPa).
Now, compare the elastic energy stored in the porous

matrix to the corresponding variation of the surface free
energy. Equations (22) and (32) show that the ratio
F el

so/γA is of the order of (∆l/l). More precisely, in
Fig. 3, the last measurement point, for example, cor-
responds to a variation of surface free energy equal to
125 mJ/m2 × 129 m2/g=16 J/g. The corresponding ex-
tension is (∆l/l) = 1.19 × 10−3 so that F el

so = 70 ×
10−3 J/g.

F el
so is hence a small perturbation of Fσ,so but even

small, it cannot be ignored if we want to understand how
the surface free energy is connected to the relative defor-
mation (∆l/l).

Finally, we can estimate the difference (µv−µσ). From
Eq. (13) we get, at constant Nso as it is the case in ad-
sorption experiments,

∫

(µv − µσ) dNσ = F el
so ≪ γA, (33)

which means that (µv −µσ) is small compared to each of
the two terms.

d. Summary. The above thermodynamic approach
is quite different from that of Hill.21 The phase equilib-
rium is not given by Eq. (6) as is assumed by Hill, but
by Eq. (4). This allows us to introduce, in the ther-
modynamic relationships, the elastic energy of the solid
besides the surface free energy that is to connect the de-
formation of the solid to the variation of the surface free
energy. In the approach of Hill, the surface term is not
separated from the perturbation undergone by the bulk
of the solid. Moreover, this perturbation is not clearly
depicted since the variation of the volume of the solid in-
duced by adsorption, i.e., the elastic energy, is not taken
into account.
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FIG. 5: Adsorption isotherm of water in porous glass
at 18.75 oC and the corresponding linear extension mea-
sured during the adsorption-desorption cycle by Amberg
and McIntosh (Ref.24). For a given adsorbed amount,
equal to 0.22 g.H2O/g.porous glass, we have represented
the two corresponding states of the system, α [Pα/P0=0.81,
(∆l/l)α=0.145× 10−2] and β [Pβ/P0=0.68, (∆l/l)β=0.096×

10−2].

II-Hysteresis region

As shown above, the variation of the surface free energy
is proportional to the deformation. Quinn and McIntosh
were the first to use this fact to determine the variation
of the surface free energy within the hysteresis loop by
measuring the dimensional change of the solid; in fact
this cannot be done any other way.

In the hysteresis region, it is interesting to estimate the
variation of Fσ,so between two states (α, β) corresponding
to the same adsorbed amount, Nσ, on the two branches
of the hysteresis loop as has been done by Quinn and
McIntosh for the porous glass-water and porous glass-
butane22 systems. The sign of this variation indicates
which of these states is the more stable.

For such an estimate, we use the data of Amberg and
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McIntosh represented in Fig. 5, which correspond to wa-
ter adsorption isotherm data in a porous glass rod to-
gether with the associated variation of the rod length.
We consider two states (α, β) at the top of the hysteresis
loop. Let us recall that in this region, the adsorption
is reversible just as the marked observed contraction so
that no capillaries empty. It has been suggested that this
contraction is due to the increased value of negative pres-
sure as a result of the changing radii of concave menisci
at the outer region of the porous solid.24

According to Eq. (16) we have:

∣

∣

∣
Fσ,so

∣

∣

∣

β

α
=

∣

∣

∣
−PLVL

∣

∣

∣

β

α
+kBTNσ ln

(

Pβ

Pα

)

−k

∣

∣

∣

∣

∆l

l

∣

∣

∣

∣

β

α

, (34)

where PL is the liquid pressure.
The term k(∆l/l) concerns the solid-liquid interface.

Rigorously, we must take into account a new interface,
the interface between the liquid which fills the pores and

the vapor, by introducing the term γlv

∣

∣Am

∣

∣

β

α
, where γlv

is the surface tension at the liquid-vapor interface and
Am is the surface area of the menisci. The order of mag-
nitude of the surface area of the menisci is given by the
external surface area of the porous material. In Amberg
and McIntosh experiment, the porous glass rod used was
0.73 cm in diameter and 11.1 cm in length, which cor-
responds to an external surface area of 2.1 cm2/g. As

γlv ≈ 70 mJ/m2, γlv

∣

∣Am

∣

∣

β

α
is of the order of 10−5 J/g

which is extremely small compared to the two last terms
of Eq. (34) as shown below.

The estimation of the first term is not so easy. The
pores are full of liquid submitted to negative pres-
sures due to the presence of concave menisci at the liq-
uid/vapor interface. The problem is how to estimate PL.

In a porous solid assumed to be inert, the liquid pres-
sure is classically calculated as follows. Two equilibrium
conditions are formulated simultaneously. One mechani-
cal given by Laplace’s law

P − PL = 2
γlv

rm

(35)

where γlv is the surface tension at the liquid/vapor in-
terface and rm is the radius of the menisci, the other
chemical given by Eq. (6) if the porous solid is supposed
to be inert. The Laplace-Kelvin equation resulting from
these two equilibrium conditions gives PL as a function
of P :

PL − P =
kBT

vL

ln

(

P

P0

)

≈ PL, (36)

where vL is the molecular volume of the liquid.
As we have already noted in Sec. I, the hysteresis

loop observed in porous glass is explained so far by the
so-called pore blocking model. At the top of the hystere-
sis loop the porous system cannot empty as long as the
constrictions located at the outer surface of the porous
system are full of liquid. As the vapor pressure is re-
duced, menisci are formed in these constrictions, all the

menisci having the same radius. Thus, if the emptying
of porous glass is indeed controlled by pore blocking, the
liquid pressure should obey Eq. (36) as long as the porous
system is full of liquid. According to Eq. (36), PL should
be, at a given vapor pressure, 5.9 times higher for water
than for butane.

Hooke’s law tell us that the deformation is proportional
to the pressure:

∆PL = −3K(∆l/l) (37)

where K is the bulk modulus. Thus, in the same vapor
pressure range, (∆l/l) should be also 5.9 times higher for
water than for butane. It is not the case. Indeed, if we
consider the results shown in Fig. 5 (water at 18.75oC)
together with those of Ref. 22 (butane at −6.2oC), we
find that along the reversible region at the top of the
hysteresis loop, the relationship (∆l/l) vs ln(P/P0) is
practically linear but the slope is only 1.9 times higher
for water than for butane.

This leads to an embarrassing result: the K value is
found to depend markedly on the adsorbate: it is 3 times
higher for water than for butane. In those days, these
results were discussed at length. According to Quinn
and McIntosh, this discrepancy could be due to ”a dif-
ferent stress distribution in the solid in the (two) cases
owing possibly to different distributions of adsorbate.”
The question is why this occurs only when the pores are
full of liquid. On the contrary, when the pores are full of
liquid, there should be a nearly uniform stress distribu-
tion throughout the adsorbent. The idea of Quinn and
McIntosh was also criticized by Sereda and Feldman,19

who proposed that ”perhaps the real reason for the dis-
crepancy is that the concept of changing curvature of the
menisci is not valid.”

In fact, the above results can be explained if we take
into account the elastic deformation of the porous ma-
trix. PL is not given by Eq. (36) because the chemical
equilibrium of the system is governed by Eq. (12) and
not by Eq. (6). Concerning the mechanical equilibria, in
addition to the liquid-vapor interface [Eq. (35)], we must
take into account the solid-liquid interface. For a cylin-
drical interface of radius R, Laplace’s law can be written
as

τn − PL =
γsl

R
, (38)

where τn is the bulk stress along the normal to the in-
terface and γsl is the surface tension at the solid-liquid
interface. Thus, through Eq. (38), PL depends on the
state of deformation of the solid and through Eq. (35),
rm depends on PL. The radius of the menisci can be
controlled through the deformation of the porous solid
to homogenize, for example, the liquid pressure in the
porous material if the pores are noninterconnected as it
is the case, e.g., in porous silicon.

A last remark concerning the experiment of Quinn and
McIntosh. The linear deformation is significantly higher
for water adsorption than for butane adsorption which



9

suggests that the deformation increases with the surface
tension (γlv ≃ 70 mJ/m2 for water and ≃ 15 mJ/m2 for
butane36). This was also observed by Herman et al.26 in
silica aerogel.

We consider the results of Quinn and McIntosh as the
first proof that the evaporation of fluid from porous glass
is not governed by pore blocking.

Finally, we cannot use Eq. (36) to determine the term
∣

∣ − PLVL

∣

∣

β

α
in Eq. (34), but we know that PL decreases

with the vapor pressure P since the relative extension
(∆l/l) decreases with P so that this term is positive.

The two last terms of the right member of Eq. (34) can
be easily calculated. We obtain

∣

∣

∣
Fσ,so

∣

∣

∣

β

α
(J/g.adsorbent) =

∣

∣

∣
−PLVL

∣

∣

∣

β

α
−5.14 +7.06. (39)

Thus, the free energy difference at the top of the
plateau is positive and at least equal to (7.06 −
5.14) J/g.adsorbent.

Consider now the case of porous Si. We have no in-
formation on the deformation of porous silicon for N2

adsorption but we know that in the hysteresis region,
the deformations of porous material depend on the nega-
tive pressure of the liquid and thus, through Eq. (35),
on the surface tension γlv. For pentane at ambient
temperature,27 γlv ≃ 14 mJ/m2, while for nitrogen,3

γlv ≃ 9 mJ/m2. Thus, we can expect that for nitro-
gen adsorption, the deformation is of the same order of
magnitude as for pentane. We can repeat the calcula-
tions represented by Eq. (34) for the isotherm of Fig. 1
where (P/P0)β = 0.65 and (P/P0)α = 0.8. We find

kBTNσ ln

(

Pβ

Pα

)

= −1.64 J/g (the mass of the porous

solid equals 36.36 × 10−3 g).
From Eq. (31), we can estimate the proportionality

factor k. As we have seen above, in the case of porous
silicon layers, the contraction or the extension is unilat-
eral. Thus α = 1 and, according to classical theory of
elasticity,37 the constant C defined by Eq. (22) is related
to Young’s modulus Ep by the relation

C = Ep

1 − νp

1 − νp − 2ν2
p

, (40)

where νp is the Poisson’s coefficient of the porous layer.
Young’s modulus Ep for porous silicon can be estimated
by the Gibson and Ashby38 relation Ep = E (1 − Por)

2,
where E = 166 GPa is Young’s modulus for silicon and
Por is the porosity of the layer. In our case, Por ≃ 0.5 so
that Ep ≃ 40 GPa. For a porous sample39 similar to that
under study, νp = 0.09 so that C ≃ Ep. For pentane,
the relative contraction of the lattice parameter of the
porous layer perpendicular to the substrate, (∆a/a)⊥,
measured in the hysteresis region, equals a few 10−4.
Taking (∆a/a)⊥ = 10−4 and a density of 2.32 g/cm3 for

silicon, we find k
∣

∣

∣
(∆a/a)⊥

∣

∣

∣

β

α
= 1.72 J/g. We see that, as

for porous glass, the variation of the surface free energy

caused by the deformation of the porous material is an
important component of the total free energy.

We note, concerning the assumption of inert adsor-
bents, that if the solid is supposed to be inert, we have

∣

∣

∣
Fσ

∣

∣

∣

β

α
=

∣

∣

∣
−PLVL

∣

∣

∣

β

α
+kBTNσ ln

(

Pβ

Pα

)

+γlv

∣

∣Am

∣

∣

β

α
(41)

where PL is given by Eq. (36). In this case,
∣

∣−PLVL

∣

∣

β

α
=

−kBT Nσ ln
(

Pβ/Pα

)

so that
∣

∣Fσ

∣

∣

β

α
≃ γlv

∣

∣Am

∣

∣

β

α
. We

found that γlv

∣

∣Am

∣

∣

β

α
≃ 10−5 − 10−4 J/g for porous

glass and porous silicon. Thus, the difference of the
free energy between the two branches of the hysteresis
loops would be extremely small compared to the two
first terms of Eq. (41). The fluctuations of each of these
two terms in adsorption experiments are certainly higher
that 10−5 − 10−4 J/g so that the hysteresis phenomenon
should be unobserved for these porous materials.

At the end of this section we summarize a few impor-
tant conclusions which can be extended to all the porous
materials:

i) The surface free energy is directly related to the elas-
tic deformation of the solid and is a major component of
Fσ,so, the total free energy of the two-component system.

ii) The variation of Fσ,so between two states (α, β) cor-
responding to the same adsorbed amount, Nσ, on the two
branches of the hysteresis loop is positive. This shows
that the condensation branch represents the more sta-
ble states and that a barrier exists to the emptying of
the porous system, the height of the barrier depending
essentially on the solid deformation.

In the following section, we describe qualitatively how
the pores can interact during the adsorption-desorption
process through the pore wall deformation.

C. A qualitative description of the interaction

between the pores during the adsorption-desorption

process through the pore wall deformation

We have seen in Sec. IIA that the deformation of
porous materials during the condensation-evaporation
process presents common features. The amplitude of
these deformations depends evidently on the stiffness of
the porous material. The stiffer the material, the lower
the amplitude of the deformation. Intuitively, we could
believe that the effect of the elastic deformation on the
adsorption-desorption process would be small in stiff ma-
terial and large in weak material. It is not the case. Actu-
ally, in Sec. II B, we have shown that the crucial parame-
ter is the surface free energy, which is proportional to the
linear elastic deformation and to the elastic constant of
the solid, so that the effect of which we speak–the surface
free energy change–can be as important in stiff material
such as porous silicon or porous glass as in weak material
such as aerogel.

At this stage, we must specify the limits of the follow-
ing discussion. It concerns porous materials for which:
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(1) the notion of pores separated by walls makes sense,
which is not the case of the low density aerogels40,41

which rather consist of void in which some small solid
particle impurities have aggregated.

(2) the change in pore size or volume upon conden-
sation or evaporation can be neglected which is not the
case of most of aerogels.42 This does not mean that the
effect that we analyse in this paper does not exist in
these materials–the thermodynamics approach developed
in Sec. II B is generic–this means that this effect is in
addition to others which complicates the analysis. For
example, the analysis of subloops inside the boundary
hysteresis loop which is essential to determine whether a
porous material is composed of independent pores or not
is rendered problematic if the change in pore size cannot
be neglected.

In the present section, we describe qualitatively how
fluid molecules adsorbed in neighboring pores can inter-
act through the elastic deformation of the pore walls.
Basing on this interaction mechanism and on the hys-
teretic behavior shown in Fig. 1, we then propose a qual-
itative description of the pore filling and emptying.

1. Interaction mechanism through pore wall elastic
deformation

The linear relationship between the variation of the
surface free energy and the elastic deformation of the
solid [Eq. (32)] is the result of equilibrium conditions.
The first, given by Eq. (12) corresponds to chemical equi-
librium, the second, given by Eq. (24), corresponds to
mechanical equilibrium. Adsorption or capillary conden-
sation of gas in a given pore causes elastic deformation
not only of its inner pore walls but also of the inner walls
of its neighbors and thus causes a change of their sur-
face free energy. Figure 6 gives, for example, a picture of
the interaction between a filled pore with a meniscus and
surrounding larger empty pores with an adsorbed film
on their walls. The negative pressure of the liquid in the
filled pore tends to contract its inner walls whereas the
inner walls of the neighboring empty pores are submit-
ted to the spreading pressure exerted by the adsorbate.
The forces exerted on both sides of the pore walls cre-
ate elastic stresses in the solid, which reduce both the
contraction of the inner walls of the filled pore and the
extension of the inner walls of the empty pores. Thus,
the surface free energy of a pore, and hence the adsorbed
amount if it is empty (see Figs. 3 and 4) or the liquid
pressure, according to Eqs. (35) and (38), if it is filled,
depends on the state of the neighboring pores.

2. Scenario for the pore filling and emptying

Based on this interaction mechanism, we give here a
qualitative description of the pore filling and emptying.
We take p+-type porous silicon as an example, the mor-

FIG. 6: (Color online). Schematic representation of the de-
formation of the pore walls (in black) surrounding a filled
pore with a concave liquid meniscus. The negative pressure
of the liquid in the filled pore contracts its inner walls and
reduces the extension of the inner walls of the neighboring
empty pores submitted to the spreading pressure exerted by
an adsorbed film (hatched zones).

phology of which is pretty well known and has the ad-
vantage of being easily and accurately schematized as a
2D image1,2 such as those shown in Figs. 7 and 8.

The beginning of the condensation process is illus-
trated in Fig. 7(a) where the smallest pores are filled.
They are randomly distributed in the porous matrix,
most of them being surrounded by larger pores still
empty. The walls of the neighboring empty pores con-
tract compared to their states before the filling of the
central pore, their surface free energy increases, result-
ing in a decrease of the adsorbed amount (see Fig. 4).
Thus, the presence of a filled pore tends to delay the fill-
ing of its neighbors towards higher pressure or at least
does not favor their filling. During the condensation pro-
cess the filled pores are not grouped but rather randomly
scattered. The order according to which the pores fill is
not perturbed by the interaction mechanism: they fill
sequentially from the narrowest to the largest. This is
supported by the fact that the extension of the conden-
sation branch on the pressure axis is representative of the
pore size distribution. As shown below, it is not the case
for evaporation.

In the beginning of the condensation process, the av-
erage distance between the filled pores is the longer as
they are fewer. The interaction between them can be
neglected. They do not ”see” each other. The PDSCs
shown in Figs. 1 and 9 indicate that as the reversal point
M on the condensation branch approaches the lowest
closure point of the hysteresis loop, the hysteresis phe-
nomenon is less and less important. These two observa-
tions suggest that the emptying of filled pores surrounded
by empty pores and located far from other filled pores is
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(a) (b)

FIG. 7: (Color online). Binary image of a bright field trans-
mission electron microscopy plane view of a porous Si layer
obtained by reproducing both the porosity of the layer and the
consistency in the wall thickness (see Ref. 2 for more details).
The empty pores (in white) and the filled pores (in gray) are
separated by Si walls (in black). Panels (a) and (b) represent
different steps for the adsorption process, the vapor pressure
increasing from panel (a) to (b). In panel (b) we have pointed
out two filled pores of similar size, number 1 with neighboring
empty pores and number 2 with neighboring filled pores.

quasireversible.

As the vapor pressure is increased, larger pores, in
various environments, fill. Figure 7(b) illustrates two
extreme cases: two filled pores of similar size, number
1 with neighboring empty pores, number 2 with neigh-
boring filled pores. The walls of the filled pore are less
contracted in the first case than in the second. Clearly,
the surface free energy of these two pores is different
and this can change their evaporation pressure. The
PDSCs shown in Fig. 1 indicate that the hysteresis phe-
nomenon becomes increasingly important as the reversal
point tends to the highest closure point of the hystere-
sis loop. Since, as we saw previously, a filled pore sur-
rounded by empty pores fills and empties quasireversibly,
this suggests that the emptying of a pore surrounded by
filled pores is blocked by the presence of the neighboring
filled pores. This idea is supported by the calculations
of the previous section which show that when the porous
material is completely filled, there is an energy barrier to
evaporation, the height of which depends essentially on
the elastic deformation.

Consider now the boundary evaporation branch. As
the pressure is decreased from C to D (Fig. 2), the porous
material contracts under the effect of the negative liquid
pressure created under the concave menisci at the top
of the pores. As one further decreases the pressure, the
porous system begins to empty.

At this stage, very little is known about the exact man-
ner in which the pores empty. According to the pore
blocking model and its derivatives, a concave meniscus
is formed at the liquid-vapor interface and recedes from
the interface to the inside of the porous solid, at ther-
modynamic equilibrium. In p+-type porous silicon, this
model has been ruled out.1,2,17,43 For example, the exper-

(a) (b)

FIG. 8: (Color online). Schematic representation of the be-
ginning of the evaporation viewed from the same binary image
such as that shown in Fig. 7. The vapor pressure decreases
from panel (a) to (b). Panel (a) shows two pores (in white) in
which the evaporation is initiated. Panel (b) shows the evapo-
ration of the nearest neighboring pores in a single cooperative
event.

iment of Wallacher et al.17 shows that a porous layer can
drain across layers, several microns thick, full of liquid.
In porous glass, the experimental observations of Quinn
and McIntosh do not match this model either. This sug-
gests that the evaporation of fluid from porous materials
is either via the formation of gas bubbles or via the sud-
den propagation of the menisci leading to evaporation
out of equilibrium. This will be discussed in detail in a
future paper.43

What is known is that the evaporation branch is
steeper than the condensation branch, which indicates
that the evaporation occurs in an avalanchelike manner.
Some pores begin to empty [Fig. 8(a)], leading to the ex-
tension of the neighboring pore walls. The neighboring
filled pores are now in contact with empty pores which,
as we have seen above, facilitates their draining, leading
to the emptying of some of them in a single cooperative
event [see Fig. 8(b)]. Note that, in Fig. 8(b), the distri-
bution of the empty pores, around the two pores at the
origin of the evaporation, is schematic, the exact manner
in which the empty pores ”propagate” being probably
more complicated.

Avalanche phenomena have been experimentally
observed in draining of superfluid helium from
Nuclepore.10,44 The authors attributed this behavior to
the presence of both the mobile helium film and pore-pore
intersections. However, since the presence of pore-pore
intersections has no significant role in the evaporation
process, their presence is probably not relevant in these
avalanche phenomena. To confirm this idea it would be
interesting to carry out such experiments in porous sili-
con.

Pore-space correlation in porous glass has been stud-
ied using ultrasonic attenuation and light scattering.45,46

These studies show that the distributions of the empty
pores are quite different on filling and on draining. Dur-
ing the condensation process, no long-range correlation
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FIG. 9: (Color online). Magnification of the hysteresis loop
region of the nitrogen adsorption isotherm shown in Fig. 1,
together with three PDSCs starting from points M4, M5 and
M6 on the boundary condensation branch. As the reversal
point approaches the lowest closure point of the hysteresis
loop, the hysteresis loop shrinks.

of the empty pores are observed, while, on drainage, the
empty pores exhibit long range correlations with a frac-
tal structure which, according to the authors, suggests
that the drainage can be modeled by analogy to invasion
percolation. We have seen above that in porous glass,
the experimental observations of Quinn and McIntosh do
not match a pore blocking/percolation process. Accord-
ing to our wall elastic deformation model, the emptying
of pores occurs from neighbor to neighbor, a mechanism
which seems difficult to distinguish, at a first glance, from
percolation. It is the reason why the hysteretic behavior
simulated by Mason9 resembles qualitatively the experi-
mental hysteretic behavior of porous silicon.

III. CONCLUSION

It has been known for a long time that the adsorp-
tion and condensation of gas induce elastic deformation
of the porous matrix. The reversible formation of an ad-
sorbed film, which preceeds capillary condensation, re-
sults in an extension of the porous material while, when
the pores are full of liquid, a marked contraction occurs
due to large negative liquid pressure generated by the
formation of concave menisci. The elastic deformation
exhibits an hysteresis loop in the same pressure region as
the adsorption phenomenon.

In the present paper, we develop a thermodynamic ap-
proach which takes into account these elastic deforma-
tions. In addition to the adsorbate and the adsorbate-
solid interface, the two-component system we consider

includes the elastic energy stored in the solid during ad-
sorption, a parameter which has been always ignored in
the physics of adsorption.

Our theoretical approach is developed in parallel to
the experimental work of Amberg and McIntosh,24 who
measured both the length change of a porous glass rod
and the adsorbed amount during adsorption of water. In
the region of reversible adsorption, before capillary con-
densation occurs, they found that the relative extension
of the rod is proportional to the decrease of the surface
free energy.

Taking into account the elastic energy of the solid, we
explain why the variation of the surface free energy de-
pends on the deformation and on the elastic constants of
the porous solid. The surface free energy is an important
component of the total free energy: the assumption of an
inert solid in physics of adsorption is totally unjustified.

In the hysteresis region, we show that the condensa-
tion branch represents the more stable states and that
an energy barrier exists to the evaporation, the height of
which depends essentially on the elastic deformation of
the substrate.

Since the surface free energy of pores is directly related
to the deformation of their inner walls, the fluid inside
them interacts through the deformation of the pore walls.
Based on this interaction mechanism and on the shape
of the descending scanning curves which are similar for
all the studied porous systems, we propose a scenario for
the filling and emptying of pores.

During the condensation process, the interaction mech-
anism does not modify the order according to which the
pores fill, i.e., from the smallest to the largest. The
emptying of a filled pore surrounded by empty pores is
quasireversible and becomes irreversible when it is sur-
rounded by filled pores. This provides an explanation for
the steepness of the boundary evaporation branch. When
the porous system begins to empty, the filled pores in
contact with empty pores will first empty, leading to the
emptying of their neighbors and then of the whole sys-
tem in an avalanchelike manner. The irreversibility of the
adsorption-desorption process in porous media would not
originate in the irreversibility of the process in individual
pores but would be a property of the whole system.

MCM-41 and SBA-15 porous materials exhibit bound-
ary hysteresis loops of type H1, with steep and parallel
condensation and evaporation branches while porous sil-
icon and porous glass present hysteresis loop of type H2
with a broad condensation branch and a steep evapora-
tion branch. Two different mechanisms for evaporation
were attributed to these two hysteresis loops: evapora-
tion at thermodynamic equilibrium for H1 type, pore
blocking/percolation process for H2 type. The present
paper and previous ones show the fallacy of this classifi-
cation: the cylindrical pores of SBA-15 and MCM-41 do
not empty at equilibrium,7,47 and there is no pore block-
ing/percolation process in porous silicon2 and in porous
glass. Hysteresis loops of type H1 and H2 could be simply
characteristic of a narrow pore size distribution (PSD)
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and of a large PSD, respectively, whatever the shape of
the pores is and whether they are connected or not.

The interaction mechanism we propose acts as an al-
ternative to the percolation process. The coupling pa-
rameter is the surface free energy which is transmitted
from a pore to its neighbors through the elastic deforma-
tion of the pore walls. This coupling parameter, which
is common to all porous materials, allows us to explain
why the pores interact whether they are interconnected
or not.
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