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The aim of this paper is to introduce a new three-dimensional elastoviscoplastic model that combines both the Oldroyd viscoelastic model and the Herschel-Bulkley viscoplastic model with a power-law index n > 0. The present model is derived to satisfy the second law of thermodynamics. Various fluids of practical interest, such as liquid foams, droplet emulsions or blood, present such elastoviscoplastic behavior: at low stress, the material behaves as a viscoelastic solid, whereas at stresses above a yield stress, the material behaves as a fluid. When n = 1, a recently introduced elastoviscoplastic model proposed by the author is obtained. When 0 < n < 1, then the plasticity criteria becomes smooth, the elongational viscosity is always well defined and the shear viscosity shows a shear thinning behavior. This is a major improvement to the previous elastoviscoplastic model. Finally, when n > 1, the material exhibits the unusual shear thickening behavior.

Introduction

In 1926, Herschel and Bulkley [START_REF] Herschel | Measurement of consistency as applied to rubber-benzene solutions[END_REF] proposed a power law variant of the viscoplastic Bingham model [START_REF] Bingham | Fluidity and plasticity[END_REF] :

   |τ | ≤ τ 0 when ε = 0 τ = k| ε| n-1 ε + τ 0 ε | ε| otherwise ⇐⇒ max 0, |τ | -τ 0 k|τ | n 1 n τ = ε
where τ is the stress, ε the rate of deformation, k > 0 the consistency parameter and τ 0 > 0 the yield stress. Note that k| ε| n-1 has the dimension of a viscosity. Here, n > 0 is the power index. When n = 1 the model reduces to the Bingham model. The shear thinning behavior is associated with 0 < n < 1 and the unusual shear thickening behavior to n > 1. In [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF], by introducting viscoelasticity into a viscoplastic model, a three-dimensional combination of the viscoelastic Oldroyd and viscoplastic Bingham model has been derived, and has been studied in the context of liquid foam in [START_REF] Cheddadi | Numerical modelling of foam couette flows[END_REF]. The aim of this paper is to explore the elastoviscoplastic extension of the Herschel and Bulkley model, that is written in one-dimensional form:

1 µ τ + max 0, |τ | -τ 0 k|τ | n 1 n τ = ε (1)
where µ > 0 is the elasticity parameter and σ = τ + η ε is the total stress, where η > 0 is a viscosity, often called the solvent viscosity in the context of polymer melts. When n = 1 and τ 0 = 0 we obtain a onedimensional version of the Oldroyd viscoelastic model [START_REF] Oldroyd | A rational formulation of the equations of plastic flow for a Bingham solid[END_REF]. The new model is motivated by the existence of materials that exhibit viscoelastic solid-like behavior at low stress and power-index shear thinning fluid-like behavior at high stress. Various authors have fitted their rheological data to the Herschel-Bulkley model with 0 < n < 1 e.g. [START_REF] Iordan | Fractal approach to the rheology of concentrated cell suspensions[END_REF][START_REF] Katgert | Rate dependence and role of disorder in linearly sheared two-dimensional foams[END_REF][START_REF] Ketz | Rheology of concentrated micro-gel solutions[END_REF][START_REF] Langlois | Rheological properties of the soft disk model of 2D foams[END_REF][START_REF] Piau | Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges. meso-and macroscopic properties, constitutive equations and scaling laws[END_REF][START_REF] Weaire | Velocity dependence of shear localisation in a 2D foam[END_REF], in a variety of elastoviscoplastic applications that include concentrated Carbopol micro-gel dispersions, liquid foams and biological flows containing cells. Notice also that Laun (see [17, p. 265] and related references) points out the unusual shear thickening behavior (n > 1 case) for suspensions of solid particles. The mechanical model is represented in Fig. 1a. At stresses below the yield stress, the friction element remains rigid. The level of the elastic strain energy required to break the friction element is determined by the von Mises yielding criterion. Consequently, before yielding, the whole system predicts only recoverable Kelvin-Voigt viscoelastic deformation due to the spring µ and the viscous element η. The elastic behavior τ = µε is expressed in (1) in differential form, where τ denotes the elastic stress. Before yielding, the total stress is σ = µε + η ε. As soon as the strain energy exceeds the level required by the von Mises criterion, the elastic stress in the friction element attains the yield value and the element breaks allowing deformation of all the other elements. After yielding, the deformation of these elements describes a non-linear viscoelastic behavior.

The evolution in time of elongation ε(t) for a fixed imposed traction σ (creeping) is represented on Fig 1b.

When σ ≤ τ 0 , the elongation for a fixed imposed traction is bounded in time: the material behaves as a Kelvin-Voigt viscoelastic solid. Otherwise, σ > τ 0 , the elongation is unbounded in time: the material behaves as a viscoelastic fluid. A number of other closely related models have appeared in the literature and an historical presentation in 2005 is available in [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF]. More recently, in 2007, Fusi and Farina [START_REF] Fusin | Modelling of Bingham-like fluids with deformable core[END_REF] proposed a new model that combines an elastic solid before yielding and a Newtonian fluid after yielding.

Based on an explicit description of the free surface separating the solid and the fluid parts, this model leads to complex formulations and computations, even for some simple shear flows such as the Poiseuille flow.

In 2008, Benito et al. [START_REF] Benito | An elasto-visco-plastic model for immortal foams or emulsions[END_REF] performed a review of the subject and proposed a classification of elastoviscoplastic models. Combining a solid Burger material before yielding and a viscoelastic fluid after yielding, these authors proposed also a variant of the model [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF].

The aim of the present article is to build the proposed model for the general three-dimensional case (section 2) and to study it with simple shear and extensional flows (section 3). The impatient reader -and the reader who is unfamiliar with the thermodynamic framework -could jump directly to the end of section 2 where the complete set of equations [START_REF] Fusin | Modelling of Bingham-like fluids with deformable core[END_REF] governing such a flow is presented, before reading section 3 devoted to applications.

2 The proposed model

Thermodynamic framework

The state of the system is described by using two independent variables : the total deformation tensor ε and an internal variable, the elastic deformation tensor ε e . We have ε = ε e + ε p where ε p represents the plastic deformation tensor. Following Halphen and Nguyen [START_REF] Halphen | Sur les matériaux standard généralisés[END_REF] (see e.g. [START_REF] Tallec | Numerical analysis of viscoelastic problems[END_REF] or [18, p. 97]) we say that a generalized standard material is characterized by the existence of a free energy function E and a potential of dissipation D, that are both convex functions of their arguments. The proposed model can be written as:

E (ε, ε e ) = µ |ε e | 2 , D ( ε, εe ) = ϕ ( ε ) + ϕ p ( ε -εe ) , (2) 
where µ > 0 is the elasticity parameter and where |.| denotes the matrix norm, defined by a double contraction of indices : |ε e | 2 = ε e : ε e . The functions ϕ and ϕ p are expressed by :

ϕ ( ε) = η | ε | 2
when tr ε = 0, +∞ otherwise, and

ϕ p ( εp ) =    2k n + 1 | εp | n+1 + τ 0 | εp | when tr εp = 0, +∞ otherwise. (3) 
When n = 1, the model coincides with the elastoviscoplastic model introduced in [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF] that combines the Bingham and the Oldroyd models. The ϕ function expresses the incompressible viscous behavior and is associated with the viscosity η ≥ 0 while the ϕ p function expresses the viscoplastic behavior by using a power law index n > 0 and a consistency parameter k > 0, acting on continuous modification of the network links, and also a yield stress value τ 0 ≥ 0. When the elastic stress becomes higher than this value, some topological modifications appear in the network of contacts. This model satisfies the second law of thermodynamics: in the framework of generalized standard materials, see [START_REF] Halphen | Sur les matériaux standard généralisés[END_REF][START_REF] Tallec | Numerical analysis of viscoelastic problems[END_REF][START_REF] Maugin | The thermomechanics of plasticity and fracture[END_REF]. This property is a direct consequence of the convexity of both E and D.

The general constitutive law

Let Ω be a bounded domain of R N , where N = 1, 2, 3. Since both ϕ and ϕ p are non-linear and nondifferentiable, the following manipulations involve subdifferential calculus from convex analysis. The material constitutive laws can be written as:

σ ∈ ∂E ∂ε + ∂D ∂ ε and 0 ∈ ∂E ∂ε e + ∂D ∂ εe , ( 4 
)
where σ is the total Cauchy stress tensor. Using definition ( 2) of E and D, we get:

σ ∈ ∂ϕ ( ε) + ∂ϕ p ( ε -εe ) and 0 ∈ 2µε e -∂ϕ p ( ε -εe ) . ( 5 
)
The combination of the two previous relations leads to σ -2µε e ∈ ∂ϕ( ε). Then, by using equation [START_REF] Herschel | Measurement of consistency as applied to rubber-benzene solutions[END_REF] from appendix A, and by introducing the pressure field p, we get the following expression of the total Cauchy stress tensor: σ = -p.I + 2η ε + 2µε e when tr( ε) = 0. Then, the second relation in ( 5) is equivalent to εεe ∈ ∂ϕ * p (2µε e ) where ϕ * p is the dual of ϕ p . Let us introduce the elastic stress tensor τ = 2µε e . Equation [START_REF] Halphen | Sur les matériaux standard généralisés[END_REF] in appendix A gives the expression for ∂ϕ * , which yields:

1 2µ τ + max 0, |τ d | -τ 0 2k |τ d | r-1 1 n τ = ε (6) 
where τ d = τ -1 N tr(τ ) I denotes the deviatoric part of τ .

The system of equations

Since the material is considered in large deformations, we choose to use the Eulerian mathematical framework, more suitable for fluid flow computations. We assume that ε = D(v) = ∇v + ∇v T /2 is the rate of deformation, while the material derivative τ of tensor τ in the Eulerian framework is expressed by the Gordon-Schowalter derivative [START_REF] Gordon | Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions[END_REF] :

2 τ = ∂τ ∂t + v.∇τ + τ W (v) -W (v)τ -a (τ D(v) + D(v)τ ) where W (v) = ∇v -∇v T /2
is the vorticity tensor. The material parameter a ∈ [-1, 1] is associated with the Gordon-Schowalter's derivative. When a = 0 we obtain the Jaumann derivative of tensors, while a = 1 and a = -1 are associated with the upper and the lower convected derivatives, respectively.

The elastoviscoplastic fluid is then described by a set of three equations associated with three unknowns (τ, v, p): the differential equation ( 6) is completed with the conservation of momentum and mass:

           1 2µ 2 τ + max 0, |τ d | -τ 0 2k |τ d | n 1 n τ -D(v) = 0, ρ ∂v ∂t + v.∇v -div (-pI + 2ηD(v) + τ ) = f , div v = 0,
where ρ denotes the constant density and f a known external force, such as the gravity. These equations are completed by some suitable initial and boundary conditions in order to close the system. For instance the initial conditions τ (t = 0) = τ 0 and v(t = 0) = v 0 and the boundary condition v = 0 on the boundary ∂Ω are convenient. The total Cauchy stress tensor can be written as:

σ = -pI + 2ηD(v) + τ.
Note that the incompressibility condition has been enforced by the definition of ϕ in (3): ε is deviatoric and, since ε = D(v), we get the incompressibility condition div v = tr ε = 0. Conversely, the definition of ϕ p in (3) enforce that εp is deviatoric. While εe = ε-εp and the elastic stress tensor τ = 2µ εe are expected to be deviatoric, the replacement of τ by the Gordon-Schowalter tensor derivative 2 τ do not preserve this property. Instead, the non-deviatoric component of the elastic stress, that acts as an extra pressure component, decays over the elastic timescale.

Dimensionless formulation

Let U , L be some characteristic velocity and length of the flow, respectively. Let us introduce η p = k(L/U ) 1-n , that has the dimension of a viscosity, and η 0 = η + η p that denotes the total viscosity. Let λ = η p /µ that has the dimension of a time. Let T = L/U and Σ = (η + η p )U/L be some characteristic time and stress, respectively. We introduce the following classical dimensionless numbers: which are the Weissenberg, Bingham and Reynolds numbers, respectively. The Weissenberg number is the ratio of the material time scale λ by the experiment characteristic timescale L/U while the Bingham number is the ratio of the yield stress σ 0 to the characteristic viscous stress. We use also the retardation parameter α = η p /η 0 ∈ ]0, 1]. The problem reduces to that of finding dimensionless fields, also denoted by (τ, v, p) such that:

W e = λU L , Bi = τ 0 L η 0 U and Re = ρU L η 0 n = 0.05 n = 0.2 n = 0.6 n = 1 n = 1.5 n = 2 n = 3 Bi 2α 1-n n κ n (s) s/Bi
       W e 2 τ + κ n (|τ d |) τ -2αD(v) = 0, Re ∂v ∂t + v.∇v -div (-pI + 2(1 -α)D(v) + τ ) = f , div v = 0, (7) 
where κ n denotes the plasticity criteria function :

κ n (s) = max 0, s -Bi (2α) 1-n s n 1 n , ∀s ≥ 0 ( 8 
)
and f denotes some known dimensionless vector field. These equations are completed by the initial and boundary conditions. Notice that when W e = 0 and α = 1 the model reduces to the viscoplastic Herschel-Bulkley model and when Bi = 0 and n = 1 it reduces to the usual viscoelastic Oldroyd model [START_REF] Oldroyd | On the formulation of rheological equations of states[END_REF][START_REF] Saramito | Efficient simulation of nonlinear viscoelastic fluid flows[END_REF].

When both W e = Bi = 0 and n = 1 the fluid is Newtonian and the set of equations reduces to the classical Navier-Stokes equations. Conversely, when both W e = 0 and Bi = 0 the fluid is elastoviscoplastic. The function is continuous and its left derivative is zero while its right derivative is also zero when n < 1, it is 1/Bi when n = 1 and +∞ when n > 1. As a consequence, the function is smooth, i.e. its derivative is continuous, at s = Bi if and only if 0 < n < 1. Observe also that, when 0 < n < 1, then κ n is unbounded. Conversely, when n ≥ 1, then κ n is bounded in R + by a value denoted by κ * n that depend upon n, Bi and α. More precisely, the derivative of κ n is:

κ ′ n (s) = (s -Bi) 1-n n (2α) 1-r n s 2 Bi + 1 -n n s , ∀s > Bi
and then, for n ≥ 1, κ n reaches its maximum κ * n at s * = n n -1

Bi and

κ * n =    1 when n = 1 2α Bi n-1 n (n -1) n-1 n n when n > 1
These basic properties of κ n are essential for studying the model with practical examples. This is the subject of the following section.

3 Examples

Uniaxial elongation

The fluid is at rest at t = 0 and a constant elongational rate ε0 is applied: the Weissenberg number is W e = λ ε0 and the Bingham number Bi = τ 0 /(η 0 ε0 ). All quantities presented in this paragraph are dimensionless.

The flow is three-dimensional and the dimensionless velocity gradient is ∇v = diag(1, -1/2, -1/2). The problem reduces to find τ 11 , τ Since τ (0) = 0 and τ (t) is continuous, there exists t 0 > 0 such that when t ∈ [0, t 0 ] we have |τ d | ≤ Bi and thus κ n = 0: this is the linear flow regime. The eigenvalues of the system are 2a and -a. For t > t 0 , the case κ n (|τ d |) > 0 occurs. When n ≥ 1, since κ n is bounded by κ * n , when aW e > κ * n /2 the elastic stress is unbounded. Fig. 3a that plots the elongational viscosity η + e normalized by 3η 0 (see e.g. [3, p. 132]). The ratio 3η 0 is the elongational viscosity for a Newtonian fluid. Note that for our dimensionless system we have η + e /(3η 0 ) = (τ 11τ 22 )/3. Conversely, when 0 < n < 1, since κ n is strictly increasing and unbounded in R + , the factor κ n (|τ d |) -2aW e remains positive for large |τ d |. Then the system is amortized and the solution always remains bounded. This feature when 0 < n < 1 is an important improvement to the case n = 1 that was previously considered in [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF]. This drawback for n ≤ 1 is still true for the Oldroyd viscoelastic model, i.e. when n = 1 and Bi = 0. In the context of viscoelastic models, some alternate constitutive equations that extend the Oldroyd model have been proposed, such as the Phan-Thien and Tanner model [START_REF] Phan-Thien | A new constitutive equation derived from network theory[END_REF][START_REF] Saramito | Efficient simulation of nonlinear viscoelastic fluid flows[END_REF] and the FENE-P model [START_REF] Bird | Dynamics of polymeric liquids[END_REF]. 

η e 3η 0 = 1 -α + (2/3)ψ = 1 -α + (2/3) 1-n 2 α + (2/3) 1 2 Bi
Note that when a = 0, n = 1 and Bi = 0, we obtain the classical result η e = 3η 0 i.e. the elongational viscosity in the Newtonian case is three times the total viscosity. Fig. 4 plots the normalized steady elongational viscosity when a = 1. The computation is no longer explicit for a = 0, and requires numerical solution. We observe that it depends upon W e, while it was independent of W e when a = 0. Moreover, when n ≥ 1, there exists a critical value of W e upon which the elongational viscosity is no longer defined. Conversely, when 0 < n < 1, the elongational viscosity is defined for any W e and is an increasing function of W e.

Simple shear flow

The fluid is at rest at t = 0 and a constant shear rate γ0 is applied: the Weissenberg number is W e = λ γ0 and the Bingham number Bi = τ 0 /(η 0 γ0 ).

The flow is two-dimensional and the dimensionless velocity gradient is constant: ∇v = ([0, 1]; [0, 0]). The problem reduces to finding τ 11 , τ 22 and τ 12 , such that, for all t > 0: with the initial condition τ (0) = 0, where When a = 1 (see Fig. 5, where τ 22 = 0) the solution tends to a constant value as t → ∞ for any Bi ≥ 0. Observe on Fig. 5a that τ 12 presents an overshoot that is more pronounced for small values of n. Conversely, the steady value of τ 11τ 22 is monotonically increasing for any values of n (Fig. 5b). The experimental evidence of non-vanishing first normal stress difference in shear flows can be found in [START_REF] Janiaud | Foam in a two-dimensional Couette shear: a local measurement of bubble deformation[END_REF] for a liquid foam in a Taylor-Couette geometry. Classical viscoplastic models such as the usual Bingham and Herschel-Bulkley models do not predict first normal stress difference in shear flows: this feature is due to viscoelasticity. Since the present model combines both viscoplasticity and viscoelasticity, it is able to predict yield stress behavior together with first normal stress difference in shear flows. In [START_REF] Cheddadi | Numerical modelling of foam couette flows[END_REF], the numerical prediction with the special case n = 1 of the present model has been compared for the Taylor-Couette geometry with experimental data from [START_REF] Janiaud | Foam in a two-dimensional Couette shear: a local measurement of bubble deformation[END_REF]. We show in Fig. 6 the steady shear viscosity η s /η 0 (see e.g. [3, p. 104]). as a function of W e. Notice that the dimensionless steady shear viscosity η s /η 0 coincides with the dimensionless steady total shear stress σ 12 = 1α + τ 12 . The material presents a shear thinning character when 0 < n < 1 and a shear thickening character when n > 1. This feature is a second major improvement to the case n = 1 that was previously considered in [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF]. For 0 < n < 1, the shear viscosity decreases monotonically when α = 1 (Fig. 6a), and tends to 1α when α < 1, due to the additional viscous contribution to the total shear stress σ 12 . The shear viscosity tends also to a plateau when n = 1 (Fig. 6b) and increases monotonically when n > 1 (Fig. 6c). The value of Bi controls the viscosity plateau at small values of W e while it has less influence on the viscosity for large values of W e. Note that this power-law behavior introduced here together with the Herschel-Bulkley viscoplastic model has been already introduced in the context of generalized Newtonian fluids by Carreau and Yasuda (see e.g. [4, p.171]) in order to be in agreement with shear rheology data.

A a =    0 0 -(1 + a) 0 0 1 -a 1 -a 2 - 1 + a 2 
n = 1 n = 0.5 n = 0.2 n = 0.05
When a = 0 and Bi is small enough (see Fig. 7a, where τ 22 = -τ 11 ), the solution tends also to a steady value with decaying oscillations. These oscillations are due to presence of complex eigenvalues in the system. When a = 0 and Bi becomes larger, oscillations no longer decay and instabilities appear, while the solution remains bounded (Fig. 7b). The Lissajou plot on Fig. 8 shows the asymptotical orbit of the solution for various values of n. The orbit tangents the von Mises circle associated with |τ d | = Bi (dotted lines). When the trajectory enters in the von Mises circle, the trajectory is exactly a circle, since the equations are linear when κ n (|τ d |) = 0, while when its goes outside the circle, it decays, since the equations are non-linear. and κ n (|τ d |) > 0. The asymptotical orbit is then completely included in the von Mises circle. We observe that the orbit in the Lissajou plot satisfies :

τ 12 = R 0 sin(ωt + ϕ) and ψ = τ 11 -τ 22 2 = 1 + R 0 cos(ωt + ϕ)
where R 0 is the radius of the orbit and ϕ is the phase shift that depends upon the initial value. The von Mises criteria for the asymptotical orbit is max

t |τ d (t)| = Bi i.e.: max t (1 + R 0 cos(ωt)) 2 + (R 0 sin(ωt)) 2 = Bi 2 /2
and thus R 0 = Bi/ √ 2 -1. Finally, the asymptotical orbit is a circle of radius R 0 and center (τ 12 , ψ) = (0, 1) on the Lissajou plane. The power-law parameter n does not change the orbit. It changes the speed of decay, as shown in Fig. 8. Finally, the critical Bingham number at which oscillations no longer decay is Bi c = √ 2. The shear viscosity η s is no longer defined when a = 0 and W e becomes large, since the solution for simple shear flow is no longer stationary and oscillates. The stability of the solution depends upon the values of the dimensionless parameters. This conditional stability is common in the context of viscoelastic models (Bi = 0): see e.g. [START_REF] Guillopé | Global existance and one-dimensional non-linear stability of shearing motions of viscoelastic fluids of Oldroyd type[END_REF] for Poiseuille flow and [START_REF] Sureshkumar | Linear stability and dynamics of viscoelastic flows using time-dependent numerical simulations[END_REF] for Couette-Taylor flows.

Bi = 0 Bi = 1 Bi = 2 Bi = 4 η s η 0 (a) W e

Conclusion

A new model for elastoviscoplastic fluid flows that is objective and satisfies the second law of thermodynamics is proposed in [START_REF] Fusin | Modelling of Bingham-like fluids with deformable core[END_REF]. It extends the previous elastoviscoplatic model introduced in [START_REF] Saramito | A new constitutive equation for elastoviscoplastic fluid flows[END_REF] by introducing a power law index n > 0. As a major improvement, when 0 < n < 1 this model presents finite extensional properties and a shear thinning behavior. In [START_REF] Cheddadi | Numerical modelling of foam couette flows[END_REF], the numerical prediction with the present model and in the case when n = 1 has been compared for Taylor-Couette geometry with experimental data from [START_REF] Janiaud | Foam in a two-dimensional Couette shear: a local measurement of bubble deformation[END_REF]. Future work will extends quantitative comparisons between experimental measurements and numerical predictions to the case when 0 < n < 1. As many elastoviscoplatic materials have been found to exhibit shear thinning behavior, this model is a good candidate for numerical simulation of such materials in complex multi-dimensional geometries (see e.g. [START_REF] Dollet | Flow of a foam past an elliptical obstacle[END_REF][START_REF] Roquet | Errors estimate for a viscoplastic fluid by using Pk finite elements and adaptive meshes[END_REF][START_REF] Roquet | An adaptive finite element method for Bingham fluid flows around a cylinder[END_REF]). 
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 1 Figure 1: Creeping test for the present model.
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 2 Figure 2: The Herschel-Bulkley plasticity criteria function κ n for various n values.
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 2 Fig. 2 plots a scaled version of the κ n function for various values of n. Observe the κ n (s) behavior at s = Bi.The function is continuous and its left derivative is zero while its right derivative is also zero when n < 1, it is 1/Bi when n = 1 and +∞ when n > 1. As a consequence, the function is smooth, i.e. its derivative is continuous, at s = Bi if and only if 0 < n < 1. Observe also that, when 0 < n < 1, then κ n is unbounded. Conversely, when n ≥ 1, then κ n is bounded in R + by a value denoted by κ * n that depend upon n, Bi and

22 and τ 33 such 1 2

 1 n (|τ d |) -2aW e)τ 11 = 2α, W e dτ jj dt + (κ n (|τ d |) + aW e)τ jj = -α, j = 2, 3 with the initial condition τ (t = 0) = 0. Since τ 33 = τ 22 we have: |τ d | = (2/3) |τ 11τ 22 |.

W

  The stationary problem reduces to find τ 11 and τ 22 such that (κ n (|τ d |) -2aW e)τ 11 = 2α (κ n (|τ d |) + aW e)τ 22 = -α

Figure 3 :

 3 Figure 3: Normalized elongational viscosity η + e (t)/(3η 0 ) for uniaxial elongation when Bi = 1, a = 1 and α = 1: (a) influence of W e for r = 2; (b) influence of n for W e = 0.75.
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 124 Figure 4: Normalized steady elongational viscosity η e /(3η 0 ) for a = 1, Bi = 1, α = 1.

  condition τ (0) = 0 and where |τ d | 2 = (1/2) (τ 11τ 22 ) 2 + 2τ 2 12 . Let ψ = (τ 11τ 22 )/2 be the dimensionless normal elastic stress difference. Then τ 11 = 1 + a 2 ψ and τ 22 = -1a 2 ψ. The solution (τ 12 , ψ) is represented on Fig. 5. Since τ (0) = 0 and τ (t) is continuous, there exists t 0 > 0 such that when t ∈ [0, t 0 ] we have |τ d | ≤ Bi and thus κ n (|τ d |) = 0: this is the linear flow regime. The eigenvalues of the system are 0 and ±i √ 1a 2 . At t = t 0 , |τ d | reaches Bi. Then, for t > t 0 , the non-linear factor κ n (|τ d |) > 0 occurs: the corresponding term reduces the growth of the solution, which now remains bounded for any n > 0.
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 5 Figure 5: Simple shear flow for a = 1, W e = 1, Bi = 1 and α = 1: (a) τ 12 ; (b) (τ 11τ 22 )/2.
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 6 Figure 6: Steady shear viscosity for a = 1, α = 1 and (a) n = 0.5; (b) n = 1; (c) n = 1.5.
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 178 Figure 7: Simple shear flow for a = 0, n = 0.5, W e = 1 and α = 1: (a) Bi = 1; (b) Bi = 2.