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A new elastoviscoplastic model based on the Herschel-Bulkley

viscoplastic model

Pierre Saramito

November 4, 2008

Abstract – The aim of this paper is to introduce a new three-dimensional elastoviscoplastic
model that combines both the Oldroyd viscoelastic model and the Herschel-Bulkley viscoplastic
model with a power-law index n > 0. The present model is derived to satisfy the second law
of thermodynamics. Various fluids of practical interest, such as liquid foams, droplet emulsions
or blood, present such elastoviscoplastic behavior: at low stress, the material behaves as a vis-
coelastic solid, whereas at stresses above a yield stress, the material behaves as a fluid. When
n = 1, a recently introduced elastoviscoplastic model proposed by the author is obtained. When
0 < n < 1, then the plasticity criteria becomes smooth, the elongational viscosity is always well
defined and the shear viscosity shows a shear thinning behavior. This is a major improvement to
the previous elastoviscoplastic model. Finally, when n > 1, the material exhibits the less usual
shear thickening behavior.
Keywords – non-Newtonian fluid; viscoelasticity; viscoplasticity; constitutive equation.

1 Introduction

In 1926, Herschel and Bulkley [10] proposed a power law variant of the viscoplastic Bingham model [2] :







|τ | ≤ τ0 when ε̇ = 0

τ = k|ε̇|n−1ε̇+ τ0
ε̇

|ε̇| otherwise
⇐⇒ max

(

0,
|τ | − τ0
k|τ |n

)
1

n

τ = ε̇

where τ is the stress, ε̇ the rate of deformation, k > 0 the consistency parameter and τ0 > 0 the yield
stress. Note that k|ε̇|n−1 has the dimension of a viscosity. Here, n > 0 is the power index. When n = 1
the model reduces to the Bingham model. The shear thinning behavior is associated with 0 < n < 1 and
the less usual shear thickening behavior to n > 1. In [25], by introducting viscoelasticity into a viscoplastic
model, a three-dimensional combination of the viscoelastic Oldroyd and viscoplastic Bingham model has
been derived, and has been studied in the context of liquid foam in [5]. The aim of this paper is to explore
the elastoviscoplastic extension of the Herschel and Bulkley model, that is written in one-dimensional form:

1

µ
τ̇ + max

(

0,
|τ | − τ0
k|τ |n

)
1

n

τ = ε̇ (1)

where µ > 0 is the elasticity parameter and σ = τ + ηε̇ is the total stress, where η > 0 is a viscosity, often
called the solvent viscosity in the context of polymer melts. When n = 1 and τ0 = 0 we obtain a one-
dimensional version of the Oldroyd viscoelastic model [18]. The new model is motivated by the existence of
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materials that exhibit viscoelastic solid-like behavior at low stress and power-index shear thinning fluid-like
behavior at high stress. Various authors have fitted their rheological data to the Herschel-Bulkley model with
0 < n < 1 e.g. [11, 13, 14, 15, 21, 27], in a variety of elastoviscoplastic applications that include concentrated
Carbopol micro-gel dispersions, liquid foams and biological flows containing cells. Notice also that Laun
(see [16, p. 265] and related references) points out the less usual shear thickening behavior (n > 1 case) for
suspensions of solid particles.
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Figure 1: Creeping test for the present model.

The mechanical model is represented in Fig. 1a. At stresses below the yield stress, the friction element
remains rigid. The level of the elastic strain energy required to break the friction element is determined by
the von Mises yielding criterion. Consequently, before yielding, the whole system predicts only recoverable
Kelvin-Voigt viscoelastic deformation due to the spring µ and the viscous element η. The elastic behavior
τ = µε is expressed in (1) in differential form, where τ denotes the elastic stress. Before yielding, the total
stress is σ = µε+ ηε̇. As soon as the strain energy exceeds the level required by the von Mises criterion, the
elastic stress in the friction element attains the yield value and the element breaks allowing deformation of
all the other elements. After yielding, the deformation of these elements describes a non-linear viscoelastic
behavior.

The evolution in time of elongation ε(t) for a fixed imposed traction σ (creeping) is represented on Fig 1b.
When σ ≤ τ0, the elongation for a fixed imposed traction is bounded in time: the material behaves as
a Kelvin-Voigt viscoelastic solid. Otherwise, σ > τ0, the elongation is unbounded in time: the material
behaves as a viscoelastic fluid. A number of other closely related models have appeared in the literature
and an historical presentation in 2005 is available in [25]. More recently, in 2007, Fusi and Farina [7]
proposed a new model that combines an elastic solid before yielding and a Newtonian fluid after yielding.
Based on an explicit description of the free surface separating the solid and the fluid parts, this model leads
to complex formulations and computations, even for some simple shear flows such as the Poiseuille flow.
In 2008, Benito et al. [1] performed a review of the subject and proposed a classification of elastoviscoplastic
models. Combining a solid Burger material before yielding and a viscoelastic fluid after yielding, these
authors proposed also a variant of the model [25].

The aim of the present article is to build the proposed model for the general three-dimensional case (section 2)
and to study it with simple shear and extensional flows (section 3). The impatient reader – and the reader
who is unfamiliar with the thermodynamic framework – could jump directly to the end of section 2 where
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the complete set of equations (7) governing such a flow is presented, before reading section 3 devoted to
applications.

2 The proposed model

2.1 Thermodynamic framework

The state of the system is described by using two independent variables : the total deformation tensor ε
and an internal variable, the elastic deformation tensor εe. We have ε = εe + εp where εp represents the
plastic deformation tensor. Following Halphen and Nguyen [9] (see e.g. [26] or [17, p. 97]) we say that a
generalized standard material is characterized by the existence of a free energy function E and a potential of
dissipation D, that are both convex functions of their arguments. The proposed model can be written as:

E (ε, εe) = µ |εe|2 ,
D (ε̇, ε̇e) = ϕ ( ε̇ ) + ϕp (ε̇− ε̇e) ,

(2)

where µ > 0 is the elasticity parameter and where |.| denotes the matrix norm, defined by a double contraction

of indices : |εe|2 = εe : εe. The functions ϕ and ϕp are expressed by :

ϕ (ε̇) =

{

η | ε̇ |2 when tr ε̇ = 0,
+∞ otherwise,

and ϕp (ε̇p) =







2k

n+ 1
|ε̇p|n+1

+ τ0 |ε̇p| when tr ε̇p = 0,

+∞ otherwise.
(3)

When n = 1, the model coincides with the elastoviscoplastic model introduced in [25] that combines the
Bingham and the Oldroyd models. The ϕ function expresses the incompressible viscous behavior and is
associated with the viscosity η ≥ 0 while the ϕp function expresses the viscoplastic behavior by using
a power law index n > 0 and a consistency parameter k > 0, acting on continuous modification of the
network links, and also a yield stress value τ0 ≥ 0. When the elastic stress becomes higher than this value,
some topological modifications appear in the network of contacts. This model satisfies the second law of
thermodynamics: in the framework of generalized standard materials, see [9, 26, 17]. This property is a
direct consequence of the convexity of both E and D.

2.2 The general constitutive law

Let Ω be a bounded domain of R
N , where N = 1, 2, 3. Since both ϕ and ϕp are non-linear and non-

differentiable, the following manipulations involve subdifferential calculus from convex analysis. The material
constitutive laws can be written as:

σ ∈ ∂E
∂ε

+
∂D
∂ε̇

and 0 ∈ ∂E
∂εe

+
∂D
∂ε̇e

, (4)

where σ is the total Cauchy stress tensor. Using definition (2) of E and D, we get:

σ ∈ ∂ϕ (ε̇) + ∂ϕp (ε̇− ε̇e) and 0 ∈ 2µεe − ∂ϕp (ε̇− ε̇e) . (5)

The combination of the two previous relations leads to σ − 2µεe ∈ ∂ϕ(ε̇). Then, by using equation (11)
from appendix A, and by introducing the pressure field p, we get the following expression of the total
Cauchy stress tensor: σ = −p.I + 2ηε̇+ 2µεe when tr(ε̇) = 0. Then, the second relation in (5) is equivalent
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to ε̇− ε̇e ∈ ∂ϕ∗

p (2µεe) where ϕ∗

p is the dual of ϕp. Let us introduce the elastic stress tensor τ = 2µεe.
Equation (10) in appendix A gives the expression for ∂ϕ∗, which yields:

1

2µ
τ̇ + max

(

0,
|τd| − τ0

2k |τd|r−1

)
1

n

τ = ε̇ (6)

where τd = τ − 1

N tr(τ) I denotes the deviatoric part of τ .

2.3 The system of equations

Since the material is considered in large deformations, we choose to use the Eulerian mathematical frame-
work, more suitable for fluids flows computations. We assume that ε̇ = D(v) =

(

∇v + ∇vT
)

/2 is the
rate of deformation, while the material derivative τ̇ of tensor τ in the Eulerian framework is expressed

by the Gordon-Schowalter derivative [8] :
2

τ= ∂τ
∂t + v.∇τ + τW (v) −W (v)τ − a (τD(v) +D(v)τ) where

W (v) =
(

∇v −∇vT
)

/2 is the vorticity tensor. The material parameter a ∈ [−1, 1] is associated with the
Gordon-Schowalter’s derivative. When a = 0 we obtain the Jaumann derivative of tensors, while a = 1 and
a = −1 are associated with the upper and the lower convected derivatives, respectively.

The elastoviscoplastic fluid is then described by a set of three equations associated with three unknowns (τ,v, p):
the differential equation (6) is completed with the conservation of momentum and mass:























1

2µ

2

τ + max

(

0,
|τd| − τ0
2k |τd|n

)
1

n

τ − D(v) = 0,

ρ

(

∂v

∂t
+ v.∇v

)

− div (−pI + 2ηD(v) + τ) = f ,

div v = 0,

where ρ denotes the constant density and f a known external force, such as the gravity. These equations are
completed by some suitable initial and boundary conditions in order to close the system. For instance the
initial conditions τ(t=0) = τ0 and v(t=0) = v0 and the boundary condition v = 0 on the boundary ∂Ω are
convenient. The total Cauchy stress tensor can be written as:

σ = −pI + 2ηD(v) + τ.

Note that the incompressibility condition has been enforced by the definition of ϕ in (3): ε̇ is deviatoric and,
since ε̇ = D(v), we get the incompressibility condition div v = tr ε̇ = 0. Conversely, the definition of ϕp

in (3) enforce that ε̇p is deviatoric. While ε̇e = ε̇− ε̇p and the elastic stress tensor τ = 2µε̇e are expected to be

deviatoric, the replacement of τ̇ by the Gordon-Schowalter tensor derivative
2

τ do not preserve this property.
Instead, the non-deviatoric component of the elastic stress, that acts as an extra pressure component, decays
over the elastic timescale.

2.4 Dimensionless formulation

Let U , L be some characteristic velocity and length of the flow, respectively. Let us introduce ηp = k(L/U)1−n,
that has the dimension of a viscosity, and η0 = η + ηp that denotes the total viscosity. Let λ = ηp/µ that
has the dimension of a time. Let T = L/U and Σ = (η + ηp)U/L be some characteristic time and stress,
respectively. We introduce the following classical dimensionless numbers:

We =
λU

L
, Bi =

τ0L

η0U
and Re =

ρUL

η0
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Figure 2: The Herschel-Bulkley plasticity criteria function κn for various n values.

which are the Weissenberg, Bingham and Reynolds numbers, respectively. The Weissenberg number is
the ratio of the material time scale λ by the experiment characteristic timescale L/U while the Bingham
number is the ratio of the yield stress σ0 by the characteristic stress. We use also the retardation parameter
α = ηp/η0 ∈ ]0, 1]. The problem reduces to that of finding dimensionless fields, also denoted by (τ,v, p) such
that:















We
2

τ + κn(|τd|) τ − 2αD(v) = 0,

Re

(

∂v

∂t
+ v.∇v

)

− div (−pI + 2(1 − α)D(v) + τ) = f ,

div v = 0,

(7)

where κn denotes the plasticity criteria function :

κn(s) = max

(

0,
s−Bi

(2α)1−n sn

)
1

n

, ∀s ≥ 0 (8)

and f denotes some known dimensionless vector field. These equations are completed by the initial and
boundary conditions. Notice that when We = 0 and α = 1 the model reduces to the viscoplastic Herschel-
Bulkley model and when Bi = 0 and n = 1 it reduces to the usual viscoelastic Oldroyd model [19, 24].
When both We = Bi = 0 and n = 1 the fluid is Newtonian and the set of equations reduces to the classical
Navier-Stokes equations. Conversely, when both We 6= 0 and Bi 6= 0 the fluid is elastoviscoplastic.

Fig. 2 plots a scaled version of the κn function for various values of n. Observe the κn(s) behavior at s = Bi.
The function is continuous and its left derivative is zero while its right derivative is also zero when n < 1,
it is 1/Bi when n = 1 and +∞ when n > 1. As a consequence, the function is smooth, i.e. its derivative is
continuous, at s = Bi if and only if 0 < n < 1. Observe also that, when 0 < n < 1, then κn is unbounded.
Conversely, when n ≥ 1, then κn is bounded in R

+ by a value denoted by κ∗n that depend upon n, Bi and
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α. More precisely, the derivative of κn is:

κ′n(s) =
(s−Bi)

1−n

n

(2α)
1−r

n s2

(

Bi+

(

1 − n

n

)

s

)

, ∀s > Bi

and then, for n ≥ 1, κn reaches its maximum κ∗n at s∗ =

(

n

n− 1

)

Bi and

κ∗n =







1 when n = 1
(

2α

Bi

)
n−1

n (n− 1)
n−1

n

n
when n > 1

These basic properties of κn are essential for studying the model with practical examples. This is the subject
of the following section.

3 Examples

3.1 Uniaxial elongation

The fluid is at rest at t = 0 and a constant elongational rate ε̇0 is applied: the Weissenberg number
is We = λε̇0 and the Bingham number Bi = τ0/(η0ε̇0). All quantities presented in this paragraph are
dimensionless.

The flow is three-dimensional and the dimensionless velocity gradient is ∇v = diag(1,−1/2,−1/2). The
problem reduces to find τ11, τ22 and τ33 such that











We
dτ11
dt

+ (κn(|τd|) − 2aWe)τ11 = 2α,

We
dτjj

dt
+ (κn(|τd|) + aWe)τjj = −α, j = 2, 3

with the initial condition τ(t=0) = 0. Since τ33 = τ22 we have: |τd| = (2/3)
1

2 |τ11 − τ22|. Since τ(0) = 0 and
τ(t) is continuous, there exists t0 > 0 such that when t ∈ [0, t0] we have |τd| ≤ Bi and thus κn = 0: this is
the linear flow regime. The eigenvalues of the system are 2a and −a. For t > t0, the case κn(|τd|) > 0 occurs.
When n ≥ 1, since κn is bounded by κ∗n, when aWe > κ∗n/2 the elastic stress is unbounded. Fig. 3a that
plots the elongational viscosity η+

e normalized by 3η0 (see e.g. [3, p. 132]). The ratio 3η0 is the elongational
viscosity for a Newtonian fluid. Note that for our dimensionless system we have η+

e /(3η0) = (τ11 − τ22)/3.
Conversely, when 0 < n < 1, since κn is strictly increasing and unbounded in R

+, the factor κn(|τd|)−2aWe
remains positive for large |τd|. Then the system is amortized and the solution always remains bounded. This
feature when 0 < n < 1 is an important improvement to the case n = 1 that was previously considered
in [25].

This drawback for n ≤ 1 is still true for the Oldroyd viscoelastic model, i.e. when n = 1 and Bi = 0. In the
context of viscoelastic models, some alternate constitutive equations that extend the Oldroyd model have
been proposed, such as the Phan-Thien and Tanner model [20, 24] and the FENE-P model [4].

The stationary problem reduces to find τ11 and τ22 such that

{

(κn(|τd|) − 2aWe)τ11 = 2α
(κn(|τd|) + aWe)τ22 = −α
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Figure 3: Normalized elongational viscosity η+
e (t)/(3η0) for uniaxial elongation when Bi=1, a=1 and α=1:

(a) influence of We for r=2; (b) influence of n for We=0.75.

When a = 0 the stationary solution is independent of We and ψ = (τ11 − τ22)/2 satisfies: κn(|τd|)ψ = 3α/2.
Then ψ ≥ 0 and |τd| =

√

8/3 ψ. The previous equation leads to the following explicit expression of the
steady elongational viscosity ηe:

ηe

3η0
= 1 − α+ (2/3)ψ = 1 − α+ (2/3)

1−n

2 α + (2/3)
1

2Bi

Note that when a = 0, n = 1 and Bi = 0, we obtain the classical result ηe = 3η0 i.e. the elongational
viscosity in the Newtonian case is three times the total viscosity.

Fig. 4 plots the normalized steady elongational viscosity when a = 1. The computation is no longer explicit
for a 6= 0, and requires numerical solution. We observe that it depends upon We, while it was independent
of We when a = 0. Moreover, when n ≥ 1, there exists a critical value of We upon which the elongational
viscosity is no longer defined. Conversely, when 0 < n < 1, the elongational viscosity is defined for any We
and is an increasing function of We.

3.2 Simple shear flow

The fluid is at rest at t = 0 and a constant shear rate γ̇0 is applied: the Weissenberg number is We = λγ̇0

and the Bingham number Bi = τ0/(η0γ̇0).

The flow is two-dimensional and the dimensionless velocity gradient is constant: ∇v = ([0, 1]; [0, 0]). The
problem reduces to finding τ11, τ22 and τ12, such that, for all t > 0:

We
d

dt





τ11
τ22
τ12



+ (WeAa + κn(|τd|).I)





τ11
τ22
τ12



 =





0
0
α



 ,
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Figure 4: Normalized steady elongational viscosity ηe/(3η0) for a = 1, Bi = 1, α = 1.

with the initial condition τ(0) = 0, where

Aa =







0 0 −(1 + a)
0 0 1 − a

1 − a

2
−1 + a

2
0







with the initial condition τ(0) = 0 and where |τd|2 = (1/2) (τ11 − τ22)
2
+ 2τ2

12. Let ψ = (τ11 − τ22)/2 be the

dimensionless normal elastic stress difference. Then τ11 =
1 + a

2
ψ and τ22 = −1 − a

2
ψ. The solution (τ12, ψ)

is represented on Fig. 5. Since τ(0) = 0 and τ(t) is continuous, there exists t0 > 0 such that when t ∈ [0, t0]
we have |τd| ≤ Bi and thus κn(|τd|) = 0: this is the linear flow regime. The eigenvalues of the system are 0
and ±i

√
1 − a2. At t = t0, |τd| reaches Bi. Then, for t > t0, the non-linear factor κn(|τd|) > 0 occurs: the

corresponding term reduces the growth of the solution, which now remains bounded for any n > 0.

When a = 1 (see Fig. 5, where τ22 = 0) the solution tends to a constant value as t → ∞ for any Bi ≥ 0.
Observe on Fig. 5a that τ12 presents an overshoot that is more pronounced for small values of n. Conversely,
the steady value of τ11 − τ22 is monotonically increasing for any values of n (Fig. 5b). The experimental
evidence of non-vanishing first normal stress difference in shear flows can be found in [12] for a liquid foam in
a Taylor-Couette geometry. Classical viscoplastic models such as the usual Bingham and Herschel-Bulkley
models do not predict first normal stress difference in shear flows: this feature is due to viscoelasticity. Since
the present model combines both viscoplasticity and viscoelasticity, it is able to predict yield stress behavior
together with first normal stress difference in shear flows. In [5], the numerical prediction with the special
case n = 1 of the present model has been compared for the Taylor-Couette geometry with experimental
data from [12]. We show in Fig. 6 the steady shear viscosity ηs/η0 (see e.g. [3, p. 104]). as a function of
We. Notice that the dimensionless steady shear viscosity ηs/η0 coincides with the dimensionless steady total
shear stress σ12 = 1 − α + τ12. The material presents a shear thinning character when 0 < n < 1 and a
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n = 1
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2
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t
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Figure 5: Simple shear flow for a = 1, We = 1, Bi = 1 and α = 1: (a) τ12; (b) (τ11 − τ22)/2.

shear thickening character when n > 1. This feature is a second major improvement to the case n = 1 that
was previously considered in [25]. For 0 < n < 1, the shear viscosity decreases monotonically when α = 1
(Fig. 6a), and tends to 1−α when α < 1, due to the additional viscous contribution to the total shear stress
σ12. The shear viscosity tends also to a plateau when n = 1 (Fig. 6b) and increases monotonically when
n > 1 (Fig. 6c). The value of Bi controls the viscosity plateau at small values of We while it has less influence
on the viscosity for large values of We. Note that this power-law behavior introduced here together with the
Herschel-Bulkley viscoplastic model has been already introduced in the context of generalized Newtonian
fluids by Carreau and Yasuda (see e.g. [4, p.171]) in order to be in agreement with shear rheology data.

When a = 0 and Bi is small enough (see Fig. 7a, where τ22 = −τ11), the solution tends also to a steady
value with decaying oscillations. These oscillations are due to presence of complex eigenvalues in the system.
When a = 0 and Bi becomes larger, oscillations no longer decay and instabilities appear, while the solution
remains bounded (Fig. 7b). The Lissajou plot on Fig. 8 shows the asymptotical orbit of the solution for
various values of n. The orbit tangents the von Mises circle associated with |τd| = Bi (dotted lines). When
the trajectory enters in the von Mises circle, the trajectory is exactly a circle, since the equations are linear
when κn(|τd|) = 0, while when its goes outside the circle, it decays, since the equations are non-linear. and
κn(|τd|) > 0. The asymptotical orbit is then completely included in the von Mises circle. We observe that
the orbit in the Lissajou plot satisfies :

τ12 = R0 sin(ωt+ ϕ) and ψ =
τ11 − τ22

2
= 1 +R0 cos(ωt+ ϕ)

where R0 is the radius of the orbit and ϕ is the phase shift that depends upon the initial value. The von
Mises criteria for the asymptotical orbit is maxt |τd(t)| = Bi i.e.:

max
t

(1 +R0 cos(ωt))
2

+ (R0 sin(ωt))
2

= Bi2/2

and thus R0 = Bi/
√

2− 1. Finally, the asymptotical orbit is a circle of radius R0 and center (τ12, ψ) = (0, 1)
on the Lissajou plane. The power-law parameter n does not change the orbit. It changes the speed of decay,
as shown in Fig. 8. Finally, the critical Bingham number at which oscillations no longer decay is Bic =

√
2.

The shear viscosity ηs is no longer defined when a = 0 and We becomes large, since the solution for simple
shear flow is no longer stationary.
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Figure 6: Steady shear viscosity for a = 1, α = 1 and (a) n = 0.5; (b) n = 1; (c) n = 1.5.

4 Conclusion

A new model for elastoviscoplastic fluid flows that is objective and satisfies the second law of thermodynamics
is proposed in (7). It extends the previous elastoviscoplatic model introduced in [25] by introducing a power
law index n > 0. As a major improvement, when 0 < n < 1 this model presents finite extensional properties
and a shear thinning behavior. In [5], the numerical prediction with the present model and in the case when
n = 1 has been compared for Taylor-Couette geometry with experimental data from [12]. Future work will
extends quantitative comparisons between experimental measurements and numerical predictions to the case
when 0 < n < 1. As many elastoviscoplatic materials have been found to exhibit shear thinning behavior,
this model is a good candidate for numerical simulation of such materials in complex multi-dimensional
geometries (see e.g. [6, 22, 23]).

A Technical details

A.1. The ϕp function – The subgradient ∂ϕp, as introduced in (3), is defined for any tensor D by:

∂ϕp(D) = {τ, τ : (H −D) ≤ ϕp(H) − ϕp(D), ∀H}
= {τ, jp(D) ≤ jp(H), ∀H with tr(H) = 0 and tr(D) = 0},

with the notation jp(H) = 2k
n+1

|H |n+1+τ0|H |−τ : H . When the minimizerD of jp over the set {D, trD = 0}
is non vanishing, it satisfies, from the theory of Lagrange multipliers:

∇jp(D) − p.I = 0 and tr(D) = 0,

where p is the Lagrange multiplier. Then 2k|D|n−1D + τ0
D

|D| − τ − p.I = 0 and tr(D) = 0. Thus finally,

the subgradient is:

∂ϕp(D) =















{τ, |τd| ≤ τ0} when D = 0,
{

τ, τ = −p.I + 2k|D|n−1D + τ0
D

|D|

}

when D 6= 0 and tr(D) = 0,

∅ otherwise,

(9)
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Figure 7: Simple shear flow for a = 0, n = 0.5, We = 1 and α = 1: (a) Bi = 1; (b) Bi = 2.

where τd denotes the deviatoric part of τ . The dual ϕ∗

p of ϕp is then characterized by the Fenchel identity,
that is, for any τ ∈ ∂ϕp(D), by ϕ∗

p(τ) = τ : D − ϕp(D). Moreover, τ ∈ ∂ϕp(D) is equivalent to D ∈ ∂ϕ∗

p(τ).

From τ+p.I = (2k|D|n−1 +τ0/|D|)D we get |τd| = 2k|D|n +τ0 and thus |D| = ((|τd|−τ0)/(2k))1/n. Finally:

∂ϕ∗

p(τ) =

{

D, D = max

(

0,
|τd| − τ0
2k|τd|n

)1/n

τd

}

, (10)

where τd denotes the deviatoric part of τ .

A.2. The ϕ function – The function ϕ, as introduced in (3), is a particular case of ϕp with τ0 = 0, n = 1
and k = η. From (9), the subgradient is:

∂ϕ(D) =

{

{τ, τ = −p.I + 2ηD} when tr(D) = 0,
∅ otherwise.

(11)
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[13] G. Katgert, M. E. Möbius, and M. van Hecke. Rate dependence and role of disorder in linearly sheared
two-dimensional foams. Phys. Rev. Lett., 101:058301, 2008.

[14] R. J. Ketz, R. K. Prud’homme, and W. W. Graessly. Rheology of concentrated micro-gel solutions.
Rheol. Acta, 27:531–539, 1988.

[15] V. J. Langlois, S. Hutzler, and D. Weaire. Rheological properties of the soft disk model of 2D foams.
Phys. Rev. E, 78:021401, 2008.

[16] R. G. Larson. The structure and rheology of complex fluids. Oxford University Press, 1999.

[17] G. Maugin. The thermomechanics of plasticity and fracture. Cambridge University Press, 1992.

[18] J. G. Oldroyd. A rational formulation of the equations of plastic flow for a Bingham solid. Proc. Camb.

Philos. Soc., 43:100–105, 1947.

[19] J. G. Oldroyd. On the formulation of rheological equations of states. Proc. Roy. Soc. London, A
200:523–541, 1950.

12



[20] N. Phan-Thien and R. I. Tanner. A new constitutive equation derived from network theory. J. Non-

Newtonian Fluid Mech., 2:353–365, 1977.

[21] J. M. Piau. Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges.
meso- and macroscopic properties, constitutive equations and scaling laws. J. Non-Newtonian Fluid

Mech., 144:1–29, 2007.

[22] N. Roquet, R. Michel, and P. Saramito. Errors estimate for a viscoplastic fluid by using Pk finite
elements and adaptive meshes. C. R. Acad. Sci. Paris, Série I, 331(7):563–568, 2000.

[23] N. Roquet and P. Saramito. An adaptive finite element method for Bingham fluid flows around a
cylinder. Comput. Appl. Meth. Mech. Engrg., 192(31-32):3317–3341, 2003.

[24] P. Saramito. Efficient simulation of nonlinear viscoelastic fluid flows. J. Non-Newtonian Fluid Mech.,
60:199–223, 1995.

[25] P. Saramito. A new constitutive equation for elastoviscoplastic fluid flows. J. Non Newtonian Fluid

Mech., 145(1):1–14, 2007.

[26] P. Le Tallec. Numerical analysis of viscoelastic problems. Masson, France, 1990.

[27] D. Weaire, S. Hutzler, V. J. Langlois, and R. J. Clancy. Velocity dependence of shear localisation in a
2D foam. Philos. Mag. Lett., 88:387–396, 2008.

13


