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Standard discriminant analysis supposes that both th@rigasample and the test sample are derived from
the same population. When these samples arise from pamsatiffering from their descriptive parameters,
a generalization of discriminant analysis consists in &dgphe classification rule related to the training
population to another rule related to the test populatigreiimating a link map between both populations.
This paper extends an existing work in the multinormal cantie the case of binary data. In order to solve
the problem of defining a link map between the two binary pafoms, it is assumed that the binary data
result from the discretization of latent Gaussian data. simetion method and a robustness study are

presented, and two applications in a biological conteusitiate this work.

Keywords: Biological application; Discriminant analysis; EM algibwin; Latent class model; Stochastic

link.

1. Introduction

Consider a first (training) sample of individuals descritbgdexplanatory variables, for
which a partition in groups or classes is known. Considey alsew sample of individ-

uals (test sample), drawn from the same population of theitigasample. Discriminant
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analysis consists in estimating an allocation rule fromttaming sample in order to clas-
sify individuals of the test sample (see McLachlan [21] fauavey).

Since works of Fisher [14], who introduced a linear discniatit rule between two groups,
numerous evolutions have been proposed. All of them cortbernature of the discrim-
inant rule: Parametric quadratic rule (see for example Bsmae et al. [27]), semi para-
metric rule (as logistic discrimination, Anderson [2]) oomparametric rule (Fix and
Hodges [15], Friedman and Stuetzle [16], Hand [18], Silvanrf23]).

An alternative approach, introduced by Van Franeker andBfack [28] and developed
further by Biernacki et al. [5], considers the case in which training sample does not
necessarily arise from the same population as the one oéthasample. Biernacki et al.
define several models generalized discriminant analysis a multinormal context, and
conduct experiments for biological data consisting of ificom the same species, but
with different geographical origins. In many domains (irsce, medicine, biologgtc)

a large number of applications deals with binary data as. Wélé goal of the present
paper is to extend the generalized discriminant analydiiexhacki et al. [5] to the case
of binary data.

The paper is organized as follows. The next section preseatdata and the latent class
model for both training and test populations. Section 3 raake assumption that these
binary data are discretized latent continuous variableghith the order information is
lost. This hypothesis is the key to establish a general aitahlink map between the two
populations, from which many pertinent parsimonious suizlels can be obtained. In
Section 4, estimation is performed based on the maximurtilid@d principle using the
EM algorithm. Then, a robustness studythe Gaussian assumptigcarried outin Sec-
tion 5 involving both theoretical and experimental (simethdata) arguments. In Section
6, two applications in a biological context illustrate igti¢ situations where the proposed

generalized discriminant analysis outperforms stand&tichinant analysis and cluster-
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ing. Finally, the last section concludes this paper by dising possible extensions of the

present work.

2. The data and the latent class model

The data consist in two samples: The first sanfl@belled and drawn from the training
populationP, and the second sampfé unlabelled and drawn from the test population
P. A fundamental assumption of the present work is that pdjmma P and P may be
different.

The training sampleS is composed of. pairs (x1,21),. .., (Xn,2,), Wherex; is the
binary explanatory vector for thagh object withx; = (x;1,...,2:9)7 € {0,1}¢ and
wherez; = (z,...,z)" is the group membership with;, being equal to 1 if the
ith object belongs to théth group and being equal to 0 otherwise=£ 1,...,n, k =
1,...,K). The number of binary explanatory variables and the nunatberoups are
respectively denoted by and K. Each pair(x;, z;) is assumed to be an independent

realization of the random vect¢KX, Z;) with distribution:
Xij, ., ~Blag;) forallj=1,....d and Z;~M(,py,....px), (1)

where B(ay;) is the Bernoulli distribution of parameter;; (0 < o < 1),
and M(1,p1,...,pk) defines the one order multinomial distribution of paranseter
p1,-.,px (0 < pp < 1, Z,lepk = 1). Moreover, using the latent class model as-
sumption of conditional independence of the explanatoriatates (Celeux and Govaert

[7], Everitt [12]), the probability function oK conditionally to the group membership is:

d
Jre(@i1, ..., m1q) = H ™ (1 — ) 0. 2)
i=1

This is one of the most popular generative method for didoditing categorical data since

it is straightforward to implement and it is often efficieseé for instance experimental
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comparisons with alternative methods, not necessarilgiggine, in Goldstein and Dillon
[17], Celeux and Nakache [8] Chap. 9 or also Titteringtonl g08]).

Similarly, the test sampl€ is composed of: pairs (X1,%1), . . ., (X, Z3 ), where thed
explanatory variables are the same as in the training sabglehere th&; are unknown.

These pairs are assumed to be independent realizatidXs, o ) with distribution:

~ B(ay;) forallj=1,....,d and Z;~M(L,p,....pr). (3)

1j\21k:1

The explanatory variableiflj, forj =1,...,d, are also assumed to be conditionally in-
dependent. Basically, the distribution (X, Z1) differs from this one of X1, Z;) only

by the values of the parameterg; andp;,.

Our goal is to estimate the unknown labeéls. .., z; by using information from both
training and test samples. The challenge resides in findlimk anap between the popu-
lations P and P.

Remarks

¢ In fact, since both labelled and unlabelled data are usegtheg in the inference
process, our problem is related to the so-called semi-sigael learning purpose. Ob-
viously, the originality of our work is that the data sets d necessarily arise from the
same population.

e The use of the terminology “test” for the sampigand the populatiot) is abu-
sive because this sample is used to determine the disctiorinale. Nevertheless, this
terminology is adopted in order to facilitate the link withetstandard discrimination
methodsMoreover, it appears to be a usual notation in the semi-sigsst classifica-

tion community (see for instance Chapelle et al. [9], Chap. 1
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3. Relationship between test and training populations

3.1. Formalizing the link between populations

In a multinormal context, a linear stochastic relationsigpveenP andP is not only jus-
tified (under very few assumptions that will be recalledrgleit also intuitive (Biernacki
et al. [5]). In the binary context, since such an intuitivetienship seems more difficult
to exhibit, an additional assumption is stated: The binanyables are supposed to result
from the discretization of some latent Gaussian varialflesinstance, if a binary variable
is a product purchased by a customer, it is assumed that ghencar gives a score to the
product, and buys it only if this score is greater than a giheeshold. This assumption is
not new in statistics: See for example Thurstone [25], whexliuthis idea in his compar-
ative judgment model to choose between two stimialiderson and Pemberton [3] also
modelled multivariate ordered categorical variables astent multinormal distribution
involving a possibly full correlation matrix (see de LeorO]Xor a more recent refer-
ence) Moreover, Everitt [13] proposed a classification algaritfor binary, categorical
and continuous data.

Thus, the explanatory variabléélj‘zlkz1 having a Bernoulli distributiorB(cy,;) are as-
sumed to arise from the discretization of latent continuarsablesyy; , _ in the fol-
lowing manner:

0if )‘jylj\zlk=1 < )\ij for . p (4)
] = P Y

lj\Zm:l -
1if )‘jylj\zlk=1 > )\ij
wheres; € R is the discretization threshold, and € {—1,1} is introduced to avoid
choosing to which value oky; ., 0 or 1, corresponds a positive valuelf; , _,
and then to avoid binary variables to inherit from the ndtarder induced by continuous
variables.

Moreover, the joint distribution oYy, _, = (Y11, _,,--- ,Yld‘zlk:l)T is assumed to
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be multivariate normal, with marginal distributio$ (.5, o7.;), such the obtained dis-
cretized variableé(lj‘zlk=1 (j = 1,...,d) are independent in order to retrieve the con-
ditional independence assumption on the binary varialtletould be noted that condi-
tional independence of the latent Gaussian variax‘i*:iﬂg;lk:1 (j =1,...,d)is asufficient
assumption for conditional independence of the binaryatdeis. However, this assump-
tion may not be necessary.

From (1) and (4) the following relationship betweegy, \;, 1;; andoy,; can be derived:

S5 — Hkj
agj =p(Xy;, =1 =1- ‘I’()\j#) (5)
J

where® is the A/(0, 1) cumulative density function.

As for the variableX ;, the binary variableX;; is also assumed to arise from the dis-
cretization of a latent Gaussian variabig with distribution\(fiz, &,%j). The equations
are the same as (4) and (5), by changing into &y, 1 Into jig; andoy; into 6;,;. The
thresholdss; are naturally supposed to be equakja(s; = s;) since, with the previous
example, it is equivalent to assume that customers of bathilptions buy the product if
the score is greater than the same threshold. In the san’rte5§|di; supposed to be equal
to \;, so the rule of purchase — lower or higher than the threshaddhe same for both
populations.

In a Gaussian setting, Biernacki et al. [5] showed that thg possible link map between
the latent continuous variabé, , _, of P anle‘Zlk=1 of P is linear when the two
following reasonable hypotheses are satisfied: (i) Thesfoamation betwee® andP is
¢! and (ii) thejth componenff/lj‘zm:1 of ?hzlﬁl is only related to thgth component

Ylj‘zlkzl of Yy,  _,. More precisely, this relationship is expressed by

~ Ale‘Zlkzl + bk’? (6)

I\Z“lkzl
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where Ay, is a diagonal matrix oR?*? containing the elements;; andby is a vector of
R? containing the elements,; (1 < k < K, 1 < j < d).

By using (6) and (5) the following relationship between tla@gmetersy;,; andoy,; can

be obtained (see details in Appendix A):
Q) = q>(5kj o Hay;) + )\ﬂkj), (7)

whered;; € RT\ {0}, \; € {—1,1} andy; € R. Note that this relationship corresponds
to a linear link between thgrobit functions of bothy;,; anday, ;. Conditionally to the fact
thatoy,; are known (they will be estimated in practice), estimatibthe i d continuous
parametersy,; is thus obtained from the estimated parameters of the libkéenP and

P (plug-in method)5y;, 1; and);. Note that the choice of the discretization thresholds
s; is not important. However, estimating the number of paransefor the link map is
2K d and one thus obtain that the model is overparameterized. fabht should not be
surprising since the underlying Gaussian model is by farensmmplex (in terms of the
number of parameters) than the Bernoulli model. Hence we teeeduce the number
of free continuous parameters in (7), and one way to do this [opose sub-models
definedvia imposing natural additional constraints on the transfaionabetween both

populationsP andP.

3.2. Models of constraints on the stochastic link map

The parameterg,; (1 < £ < K andl < j < d) will be successively constrained to be
equal tol (denoted byl), to be class- and dimension-independeéit {0 be only class-
dependenty;) or only dimension-dependem. In the same wayy;; can be constrained
to be equal td), v (constant w.r.tk andy), v, (constant w.r.tj) or ; (constant w.r.tk).
Thus, 16 models can be defined and indexed using the folloaihigocnotation:[1 0]

meansj,; = 1 and~,; = 0 (it corresponds to the usual discriminant analysis model),
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[0k vj] meansyy; = 0, andy,; =, (1 <k < K andl < j <d), etc

For these 16 models, an additional assumption on the groagpopions is taken into
account: Either the proportions #fare constrained to be equal to thosé?obr they have
to be estimated. In the followingp 1 0] denotes the modél 0] with equal proportions
whereagp, 1 0] denotes this model with free proportions. The number of taimsed
models is thus growing to 32. Table 1 gives the number of (naous) parameters to be
estimated for these models. If the mixing proportions affewint fromP to P, K — 1

must be added to these values.
[Table 1 about here.]

Finally, we chose to use the BIC criterioBgyesian Information CriterionSchwarz
[22]) for automatic selection among the 32 generalizedritinant models. However,
other criteria such AICAn Information Criterion Akaike [1]) could be used as well. BIC

is defined by:

BIC = —21(6) + vlog(n),

A~

whered = (i, dxj, Aj, ki) for 1 <k < K andl < j < d, [(0) is the maximum log-
likelihood corresponding to the estimatiérof 6, andv is the number of free continuous
parameters associated to the given model. The model letwlthg smallest BIC value is
then selected.

Before estimating the parametby the maximum likelihood method, we need to discuss

identifiability of each parametrization.

3.3. Model identifiability

Some of the constrained models previously defined can badsntifiable. It is neces-
sary to clarify these identifiability problems, which areetwo levels: Identifiability of

the model parameters whe; is transformed inta ;, and identifiability of the transfor-
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mation which ensures that,; can be only transformed int®;; and not intoa; (with
k' # k). We call respectively thenmtra-groupandinter-groupidentifiability.

The reader can find theoretical and experimental discusdiont these two kinds of iden-
tifiability in Appendix B. The conclusion of this discussianidentifiability will occur in

practical situations.

4. Parameter estimation

In this section, only the situation where proportions arknawn is presented, otherwise

it is straightforward.

4.1. The three estimation steps

Generalized discriminant analysis needs three estimatigws. The first step consists in
estimating parametefg, andoy,; (1 < k < K andl < j < d) from populationP based
on training samples. SinceS is a labelled sample, the maximum likelihood estimate is

simply given by (Celeux and Govaert [7], Everitt [12]):

N R A 1
Pr = z; Zik and gy = z;ngzzk
1= 1=

The second step consists in estimating paramgfesigday,; (1 < k£ < K andl < j < d)

of populationP by usingpy, d; (1 < k < K and1 < j < d) and@. Thus, for estimating
ayj, the parameter,;, vi,; and)\; of the link betweerP and P have to be estimated, and
then an estimate af,,; is deduced by plug-in inside Equation (7). This step is desdr
below.

Finally, the third step consists in estimating group mersbigr of individuals from the

test sampleS, by maximum a posteriori
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4.2. Estimation of the link parameters

For the second step above, maximum likelihood estimatiorbezefficiently based on the

EM algorithm (Dempster et al. [11]). The likelihood is givew:

The E step. From a current valu@'? of the parametef, the E step of the EM algo-

rithm consists in computing the conditional expectatiothef completed log-likelihood:

Q0(0;09D) = Eg[1.(0; Zy, ..., Z3)|X1, . .., %]

_ Zﬁ: itl(g){ log(pr) + zdzlog <dkj Ti(1 — dkj)l—fij)}

i=1 k=1 j=1

where

tz(g) =p(Zi, = 1%1,...,%5;09) = j=1

is the conditional probability for the individuako belong to the group.

The M step. The M step of the EM algorithm consists in choosing the val{fe?)

which maximizes the conditional expectati9ncomputed at the E step:

07+ = argmax Q(0;0?) (8)
6co

where® is a parameter space depending on the model at hand. The Nkstep de-

scribed for each component 8f= {py, 0x;, \j, Yk}
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For proportions, the maximum is:

Bt 1
=% thk

The parameter§,; and~y,; are never considered because the full generalized discrimi
nant analysis model is overparameterized. Thus, only tinstcained models are to be
estimated. In this context, it is proved in Appendix C tlgais a strictly concave func-
tion of o, d;, 4, Yk, 7; and~y. Thus, the maximisation o®(8; 8(?)) is computed by an
alternated iterative algorithm which consists in a sudoessomponentwise, of simplex
algorithms if the optimization is unconstraineg,(y; € R). If the optimization is con-
strained §, 6; > 0), the same algorithm is used but if the optimization leadsnegative
result, the value 0 is retained (in this case the EM algorithmsed on its generalized
form: GEM, Dempster et al. [11]). The starting point of theeahating algorithm i9(®,
and this one of the EM algorithmd(?), is the point which corresponds fo = P.

For the discrete parametexs, if the dimensiond is sufficiently low, the maximization is
carried out by computin@(8; 6(9) for all 2¢ possible values for these discrete param-
eters. Since computational limits are quickly reached Jaxegion method can be used,
which consists in assuming thaj is not a binary parameter -1, 1} but a continuous
one in[—1,1], named\; (see Wolsey [29] for instance). Optimization is thus perfed

on this continuous parameter, with the previous alternaltgadrithm sinceQ is a strictly

91 is then discretized to ob-

concave function of\; (Appendix C), and the solutiohj.(
tain a binary solutior)\§.q+1) as foIIows:)\§.q+1) = sgr()\;f(‘”l)), where sgn denotes the
sign function. This relaxed approach is not used in the exy@ts of this paper but see
Jacques [19] for some examples of use.

Remark: Here, the estimation aofpy, oy;) and@ is performed in a sequential fashion.

This procedure enjoys the advantage to be algorithmicaiyghtforward unlike the pro-

cedure involving the full likelihood function of all paratees. Moreover, experiments
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below indicate good behaviour of this strategy. Howevereaifull likelihood estimates
are expected to have less bias, this new way could be expilofetire works (see Section

7).

5. Robustness study to the Gaussian assumption

In this section, we first prove that the Gaussian hypothesisbe weakened into a new
assumption and, then, some experiments illustrate andiaeathe robustness of the

methodology when this weakened assumption is itself \édlat

5.1. Theoretical robustness study

Under the hypothesis that the link between the latent viasatf both population® and
P is linear, the assumption of normality of the latent varesdf; , andfflj‘m:1 is

in fact not necessary, and sufficient conditions are theviolig:

_ . s
Ylj\z -1 (y) = (I)(M) for Yy =35j andy = u’ (9)
" Tki agj

whereFy,, , _ denotes the conditional cumulative density function ofalaleYy; ,
andu;, o5 its mean and standard deviation respectively. Note therdifice between
initial assumption in Subsection 3.1: This equality wassstdor ally values inR, whereas
it is now stated for only two specific values @f

However it is straightforward to verify that Equations ($)da(A1) remain valid in this

context. Since they are the key for establishing Relatign&t), this latter is still right.

5.2. Practical robustness study

To illustrate the robustness against Condition (9) itselatibed in the previous subsec-
tion, consider the following exampl€or alll < 7 < 5andl < k < 2, le‘zlkzl (re-

spectiverle‘Zlkzl) is the binary discretization (with the threshalg= s) of Ylj‘zlk:l
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(resp.f/lj‘zlﬁl), whose distribution is a mixture of two Gaussians.
The mixture density distribution ofy; , _ and ?lj‘zlﬁl (for fixed j andk), and the
Gaussian corresponding density (with the same momerﬁ&rjfa}i:1 andiflj‘zlkzl) are

givenin (Figure 1).
[Figure 1 about here.]

The values of the discretization threshold, of the tramsfdion parameters between
P and P (ax; andby;) and of the first and second moments}af , | (u;. a,%j) are
arbitrary chosens = 13; ay; = 1.2 andb,; = 1forl < k£ < 2andl < j < 5
(p1j, p2j) = (10,13) and(o1;,09;) = (1.8,1.7) for 1 < j < 5.

Now, let choose (by numerical optimization) the parametérthe mixture density of

Ylj‘zkzl with respect to the following constraints, for< e < 1:

Fyu‘zlk=1 (s) = (I)(Sj;—k‘j’”) + (1 — P(ELE)) x €

Ukj

b b b (10)
(51— kj) - (I)(sj—akjukj— kj) + (1 _ (p(sj_akjﬂkj_ lw)) X €.

Ylj‘Zlkzl Qg j Ak Okj QO kj

Whene = 0, these constraints correspond to (9) and then satisfy themgstions of
Generalized Discriminant Analysis (GDA), and the greaset, the less (9) is respected.
(Figure 2) illustrates the cumulative density function lo¢ tatent variables for different

values ofe.
[Figure 2 about here.]

The sample size is set to 50, the experiments are repeatéd@9dnd the mean error
rate,estimated on “out-of-sample” datia presented on (Figure 3) for different strategies:
GDA with model[p, 05 %], standard discriminant analysis and clustering. Moredher
optimal error rate is also given. GDA outperforms usual rmd#where is moderated <
0.22), and for higher, the assumed model of GDA is too incorrect and then clusierin

becomes better.
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[Figure 3 about here.]

6. Comparison of methods on biological data

6.1. Discretized continuous data

The first motivations for which GDA was developed are biotadapplications (Biernacki
et al. [5], Van Franeker and Ter Brack [28]), in which the aimswo predict sex of birds
from biometrical variables. Very powerful results have mebtained with multinormal
assumptions.

The species of birds considered in the present applicati@ory’s ShearwateCalanec-
tris diomedea(Thibault et al. [24]). Two subspecies can be identifibdrealis which
lives in the Atlantic islands (the Azores, Canariets;) anddiomedeawhich lives in the
Mediterranean islands (Balearics, Corsies,).

A sample ofBorealis(n = 206, 45% females) was measured using skins in several Na-
tional Museums. Five morphological variables were meakutalmen (bill length), tar-
sus, wings and tail lengths, and culmen depth. Similarlgrage ofdiomedegn = 38,
58% females) was measured using the same set of variablesslaxample, two groups
are present, males and females, and all the birds are of keexv(irom dissection). (Fig-
ure 4) illustrates differences between the two subspddesalisanddiomedeafor two

biometrical variables.

[Figure 4 about here.]

To provide an application of the present work, the contirsubiometrical variables
are discretized into binary data. As it can be shown on (leigr discretization must
be carried out carefully, especially concerning the choicthe discretization threshold.
Indeed, if this threshold equals the mean of the biometriaghbles for one subspecies

for instance, then all the values for the other subspecikdwion the same side of this
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discretization thresholdConsequently, conditionally to each biometrical variabide

threshold is chosen such that there is (roughly) a maximumddfiduals of each popu-
lation on each side of the discretization threshold.

The subspecigmorealisis selected as the training population and the subspditiexedea
as the test population. The 32 GDA models, including stathdiégcriminant analysis
[pr 10], and clustering are applied on these data. The classificatimr rate and the

value of the BIC criterion are given in Table 2.
[Table 2 about here.]

If the results are compared according to the error rate, GA the modeljp;, 6; ;]
is the best method, with errd6.78%. This error is lower than the one obtained by stan-
dard discriminant analysid%.1%) or by clustering £3.68%). By using the BIC criterion,
which leads to select the modgl. 6 7], the error rateX1.05%) is still better than usual
discriminating method.
This application illustrates the interest of GDA with resp® standard discriminant anal-
ysis or clustering. Indeed, by adapting the classificatibederived from the training pop-
ulation to the test population, GDA gives lower classificaterror rates than by applying
directly the rule derived from the training population (edard discriminant analysis), or
by omitting the training population and applying directlystering on the test popula-
tion.
It is worth pointing out that the assumption for binary daiebe derived from the dis-
cretization of Gaussian variables (biometrical variapleselatively realistic in this ap-
plication. Nevertheless, there exists a strong correidietween the five biometrical vari-
ables, which violates the assumption that discretizedhisées are independent.
Remark Although the “test sample” is used for estimating the disamiant rule through
theunlabelleddata ofS and is used also for estimating the error rate but this ormoetfh

thelabelleddata ofS, this estimated error rate is usually not an optimistic measf the
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classification method'’s performance. This fact is wellaknan the semi-supervised set-
ting (Chapelle et al. [9], Subsection 21.1.2). In additive, have also verified this claim

with our biological data by performing a hold-out proced(results not reported here).

6.2. Real binary data

The second application considers sea birds from the spedidiss (Bretagnolle [6]).
Two groups of subspecies are considered: The first one is @saapof subspecies liv-
ing in Pacific Islands subalaris(Galapagos Islandjpolynesia) dichrous(Enderbury and
Palau Islands) andunax— and the second one is composed of subspecies living in At-
lantic Islands -boydi(Cap Verde Islands). Here, the difference between pojpmstis
the geographical range (Pacifis. Atlantic Islands). A sample of Pacific birds & 171)
was measured using skins in several National Museums. Foiables are measured on
these birds: Coller, stripe and piping (absence or prestemdbese three variables) and
under-caudal (self couloured or not). Similarly, a samgléttantic birds (2 = 19) was
measured using the same set of variables. Like in the preagample, two groups are
present (males and females) and the sex of all the birds iskr@acific birds are chosen
as the training population and Atlantic ones as the testlatipn. Choosing Atlantic birds
as the test population corresponds to a realistic situdgmause it could be hazardous to
perform a clustering process on a sample of such a small Bigs.is a typical situa-
tion where our methodology could be expected to provide sip@anious and meaningful
alternative. According to the biologist Vincent Bretagapthe morphological variables
which are used in this application are not very discrimirggtand then one can not expect
that the error rate will be better thafi — 45%.

The 32 GDA models, among which standard discriminant arg|ys 1 0], are applied
on these data and the results are presented in Table 3. @igstealso applied, and the

obtained error rate $9.05%.
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[Table 3 about here.]

As in the previous study, GDA is more efficient than standasgriminant analysis
(50.94%) and clustering49.05%) to classify birds according to their sex. Moreover the
BIC criterion leads to choose the model with the smallegiraite. The relatively poor
classification results (the minimal error ratet%) confirm the assumption of the biolo-

gist.

7. Conclusion

Generalized discriminant analysis extends standardidis@nt analysis by allowing
training and test samples to arise from different but stetibally linked populations.
Our contribution consists in extending previous originairky derived in a multinormal
context, to the case of binary data.

Applications to a biological problem illustrate the powé&oar methodology. A classifica-
tion of birds according to their sex is provided by using gafieed discriminant analysis,
and this classification is better than those obtained bydstahdiscriminant analysis or
by clustering.

Perspectives for this work are numerous. Firstly, the patars of both population®
and P are estimated successively;; andp;, are estimated in a first step and thep,
andp;, are deduced from these estimations and from those of alhpseas. It should
be very (computationally) useful to consider a joint estioraof this four parametern
particular, Lourme and Biernacki [20] extended the eaxierk of Biernacki et al. [5] to
the full likelihood estimation of parameters in the multimal situation. It appears that
error rates obtained by sequential estimate and by joimhast are quite similar when the
learning sample is large (situation of the current papeu}, Bhen the learning sample
has a small sample size, joint estimation could signifigaintiprove the error rate. We

could expect the same behaviour for our current model bataksumption needs to be



18 REFERENCES

confirmed by a future specific study.

Secondly, the link between both populations was defined guSaussian cumulative
density function. Although it seemed initially difficult find this link, a simple link in-
volving the probit function was obtained. It was not easyragine it, but it is meaningful
afterwards. It would be interesting to try other types of alative density functions; Ob-
viously theoretical reasons will have to be developed amadtfral tests will have to be
carried out.

Thirdly, with this contribution generalized discriminaanalysis is now developed for
continuous data and for binary data. To allow to analysegelaumber of practical cases,
it is important to study the case of categorical variabies inore than two modalities),
and thereafter the case of mixed variables (binary, caiegj@and continuous together).
Everitt's works (Everitt [13]), which defined a classifiaati algorithm for mixed vari-
ables, can be helpful for this topics.

Finally, it would be also interesting to extend other cleakiliscriminant method like non-
parametric discrimination or semi-parametric discrintioa See Biernacki and Beninel

[4] for logistic regression.
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Appendix A. Proof of the relation between test and training ppulations

From (6) it follows thaffflj‘zlkz1 is Gaussian with meagiy.; = ax;iuj+0by; and with stan-
dard deviatiors; = |ax;|oy;. However, this transformation is clearly non-identifiable
There exists more than one coupl,, by, ) which satisfies Relationship (6). To solve this
problem, all thez;; are assumed to be non negatiug;(> 0).

It is possible to derived from Equation (5):

o
Nj—L = =0 N agy) + A Mk7
O'k] Ukj

and then, using expressionsjgf; anday,; just given above:

Grj=1— (NI ) g g (A Gl Ok
Okj Qkj Okj QkjOkj

o1 . rs A D — 1ns
— P < (ak]) + )\j Qg ks + kj ;uk:]> ‘ (Al)
akj aij'kj

Alternatively, it is also possible to write from (5) again:

JE @ (o) 4+ 0y

O‘kj O‘kj

and thus, following the same process as in (Al),

Ry b
akal—q)<)\jw> :1—<I><—)\ B ), 7’”>
Okj Okj QKO0 kj

_ ak;jsj + bgj — s
=0 | P 1(Ozkj) + A ke kg L. (A2)
AkjOkj
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Of course, Equations (Al) and (A2) are equivalent but the ding will be retained since
Parametrization (A1) will be more convenient for propodaigr numerous parsimonious
models of constraints on the link betweBrand P. Consequently, the following relation-

ship betweeny;; anday; is obtained:
Qj = q’(&cj (o) + )\j’}’kj)a

wheredy; € RT\ {0}, A; € {~1,1} andy,; € R.

Appendix B. Model identifiability

B.1. Intra-group identifiability

Firstly, the identifiability of the couplé);, ;) in different constrained model situations

is reaching as follows:

e Models involvingy,; = 0 or v;; = ;. By setting for instance\; = +1 (j =
1,...,d),

e Models involvingy; = 7 or v4; = - By setting for instance; = +1.

By this way, the produck;~;; is allways identifiable and obviously all these constraints
on )\; have no impact on the estimation of the proddgt,;, as the reader can easily
convince himself.

Secondly, the identifiability of the couple of parametgis;, v1,) conditionally to); is

discussed. Equation (7) leads to
(I)_l(dkj) = 5kj <I>_1(akj) + )\j”ykj (B1)
which can be expressed as the following linear system

(IDICI))\XU&Y
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where® = (&~ (a11),..., 2 Hax),..., 2 (axq))" € RE? and®, andus., are
respectively a matrix and a vector, with dimension depamdimthe model at hand, rep-
resenting the values df ! (ay;) and); for ®,, and the values afy; and~y; for Us .
Identifiability is obtained if and only if the matris ), is of full rank. It is easily noticed
(see the example below) théf, is not of full rank only for very particular values of;;
(typically ay,; = % for somek, j for instance). Moreover these theoretical non-identi&abl
situations lead seldom to practical non-identifiable sitwes since an estimatat;,; is
used instead of the unknown true vahug;. To be definitively convinced of this fact, the
reader can take a look at the robustness study (Section Seveiraulations involve a
theoretically non-identifiable model (adl;; = %) but where practical identifiability is

observed.

Example with mode[py. 8y, ] for intra-group identifiability In this situation®, = [M|N]
is a (Kd x 2K)-matrix formed by two block matrice8/ = (Mj;)1<x<x and N =
1<I<Kd

(Nik)1<k<k defined by

1<I<Kd

®aqp) 0 0 MO ... 0
d(ayy) 0 0 A 0 0
0 .00 Y ag) 0. .. 0 0...0X\0...0

P, =
0 02 N agg) 0 ... 0 0...0X0...0
0 0 Yag) |0 ... 0 A\
0 0 d Yagqg) |0 0 M\
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®, is not of full rank min(Kd, 2K)) if and only if

e Possibility 1: Thereexists € {1,...,K} such thatay; = % forallj €
{1,...,d},

e Possibility 2: There exists,, ..., k. € {1,...,K}, ki1,..., k. being all differ-
ent, witht € {1,...,K} satisfyingd(K — 7) < 2K, such that forallj,;’ €

{1, e ,d}, forall k {]{71, ey kT}, )\j@_l(akj) = )\j@_l(akj/).

B.2. Inter-group identifiability

This non-identifiability problem means that one group of plopulationP can be trans-
formed into more than one group of the populatiBn It cannot happen if the group
proportionspy, in P are all different (it is likely in practice) and if simultaoesly all the
constrained models are with fixed proportions between @tjous (modelspy, . . |). But
if these proportions conditions are not verified, the nanidiability problem is the fol-
lowing: For fixedk; andks (k1, k2 € {1, ..., K}, k1 # ko) andfor fixed;j (j € {1,...,d})
there exists two sets of parametesis, j, A, k,5) # (9, A} %%, ;) Which transform re-
spectivelyay, ; into ay, ; and intoay, ;. In fact, if the groupk; of P is transformed into
the groupk;, of P (instead of the group, of P) then necessarily the group of P is not
transformed into the group, of P, but into a groupks # ky of P; The simplest solution
is ks = kq butit is not certain ifK’ > 2.

Thus, the identifiability problem can be rewritten equivdl There existg, = k; and

k3 # ko such that, for any and(x, j, Aj, Vk.5)s (Ok. i, Aj» Vi) SUCh that

O (ayj) = Oy P (kys) + ATy (B2)

(I)_l (d]%j) = 5k2j (I)_l (ak2j) + )‘j/}/kﬂ" (BB)



24 REFERENCES
there eXIStg’xék 150 7’7],4313') 7é (5k1j7 )‘j>’7k1j) and (5],432j7 )‘;'77]/@2]') 7& (5k2j7 A]‘?’Ykzj) such

that
O (apyy) = 61y D (akyy) + Mok (B4)
O (Gkys) = Ory; () + NiVhyj- (BS)

It follows from (B2) and (B4)

/

5
O (g, ) = =L Oy, ) — A %]5ku+)‘

B6
5]{:1] 5 i k’1] ( )
and similarly from (B3) and (B5)
Oy Vhaj
Equations (B6) and (B7) lead to the following linear system
plhaks) — @t s ) (B8)
where®*2k3) = (&1 (ay,1), ..., 2 (Anya), @ H(Gra1), - - - » @ Hanyq)) € R* and

@&klfﬁ anduf;’f;;f”) are respectively a matrix and a vector, with dimension ddjpgon
the model at hand, representing valuesbof (i, ;), ® 1 (Gkyi)s Okjs Okajs Vhrjs Viajs
Aj, A for @ék;’ja) and values ob; ;, 0+, 7y j» Vk,; for u(kl””)

Conditionally to the values of’, the problem is identifiable if no solution exists to System
(B8) or, in other words, if the number of linearly indepentiénes of égk;fﬂ is no
less than the number of free parametermi“f *) The number of lines o@f;k;”ﬁ)/ is
equal to2d and in most cases of interest these lines are independeanyovalues\’.
See for instance the following example with the mo@eld, ;| for a discussion on this
subject. The number of free parameterméﬂ?jg) corresponds to the values in Table 1 by

artificially fixing K = 2 in this table. Except for modépy, J; v;] the maximum number

of free parameters is equal toax(4, d + 2). Thus, a sufficient condition of inter-group
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identifiability is 2d > max(4,d + 2). Sinced > 2 usually for binary data, all models
are identifiable except the modgl; ¢, v;] since the number of free parameter2is
Although this model is non-identifiable, it can neverthelbs used by bearing in mind
that a label switching may occur frofto P.

Remark Only a single switch between 2 classé;( k;) of P becomegks, k) of P)
may occur with the modep;, J; ;). Indeed in case of a switch between more than 2
classes, for instancés, ko, k3) of P becomesks, k3, k1) of Por (k1, ko, ks, kq) Of P
becomed ks, k1, k4, k3) Of P, the number of equations reaches at l&asfor 2d free

parameters: The modgly d; ;] is then identifiable.

Example with model[pg 8 vx] for inter-group identifiability. In this Situation<I>gk;’]/\€2))\, =

[M|N] is a(2d x 4)-matrix formed by two matrix blockd/ = (Ms)1<s<2 andN =

1<1<2d

(le)1<s§2 defined by

1<i<2d

1 —1/~ Yyl /
5k11 0] (akll) — )\1 —51@11 0 )\1 0
1 -1/~ _ Ykyd !
(I)(khk’z) _ 6k‘1dq) (akld) )\d 5k‘1d 0 )\d 0
6777A}A, o
0 =0 (A1) — Mg 0N
Oko1 ka1 1 Oko1 1
1 -1/~ Vkod /
0 5k2dq) (ak2d) - )\d 5k; 0 )‘d

The reader can easily convince himself thatZtiéines are generally linearly independent
in practice. For instance, the simulation involved in thieustness study (Section 5) con-
siders this model and none identifiability problem is endetad (the classification error

rates are always strictly lower th&0% and thus none label switching has been obtained).
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Appendix C. Proof of the concavity of the functionQ (6, 8(2))

The aim of this appendix is to prove th@(#,0?) is a strictly concave function of,
~; and~, and also oby, ¢;, 6 and\;. The fundamental key of the proof is to study first
concavity ofQ(8, 8?) for ;.
Let Q(yx;) be the functionQ(0, 0(@) with parametersy, o, A; and@'? fixed, and let
prove thatQ(;;) is strictly concave:
d
Q(Vk;) Z thk{ log(pk) + me log ( (Ckj) ) + ) (1 —4y)log ( q’((kj))}
i=1 k=1 j=1

with (p,; = 5kj<I>_l(akj) + NV

The derivative of the functio®(~;) is

¢(ij) ~ ¢(ij)
o ZthkZ{ PGy O G)
where¢ is the probability density function of/(0, 1).

8q5(bm+a) _

Using that—>—— = —b(bz + a)¢(bx + a) with a, b € R, the second derivative is:

Q) _ itik i /\j{i‘- =G (G ) P(Crj) — A p(Crj)?

i = [©(Cry)]?

- NGOGy ) (1 = (Cry)) — Ny(Cry)?

+(1 — Fij) TR },
that can be rewritten
P o) _ _ i it’k i A2 B(Cr ‘){ S (Ck ‘(I)(;l’(;i)(b@k i)
87/33’ i=1 k=1 ' j=1 ! ! [@(ij)]Z ! ! !
92(Cky)
pr e G D e} (D)
[1— ()2 !

To prove thatQ is strictly concave, it is sufficient to prove that both fupnas g; andg,

are strictly positive:
o Forallz € R: gi(z) = 2®(z) + ¢(z) > 0, because lim g;(z) = 0 andg; is
strictly increasing since, (z) = ®(x) + z¢(x) — zp(x) = ®(x) > 0,

o Forallz € R: g2(x) = 2®(z) — 2+ ¢(z) > 0, because lir}rl g2(x) = 0 andg
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is strictly decreasing sinag (z) = ®(z) — 1 + z¢(z) — z¢(z) = ®(z) — 1 < 0.

Thus Z2(Qw) 9(7’”) < 0 andQ(~;) is strictly concave.
If Qis no longer function ofy,; but now of+, (respectively ofy;, of ) the expression of
the second derivative is the same as (C1) by removing the syn(resp. ork, on(k, j)),
and thusQ is still strictly concave.
Consider now the functio@(dy;) with the above conventionf, v, A; and6@ fixed).
Same type of calculus leads to:
d ~ ~
o? Q 5@ _ ;;tzk 2:: ( akj))QQS(ij){[q)éﬁgl(ij) + %gz(%)}
and thusQ(é;) is strictly concave. By using the above arguments, it aiisesediately
that Q(dx), Q(6;), Q(d) are also strictly concave.

Consider finally the functio@();). The second derivative is:

1—1‘2"
a)\Q ZZ%Z%] Ckg{ (G )]291(Ckg) %m(%)},

=1 k=1 j=1

82

andQ()\;) is strictly concave.
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Table 1. Number of continuous parameters (param.) to be estimateddaonstrained models.

model [px. 10] [P 17] e 1vk] [Pk 1] [p1 6 0] [Pk 7] [Prdvk] [Pk 0]
param. 0 1 K d 1 2 K+1 d+1
model [Pk 0r 0] [Pk Ok 7] e ok k] [Prdrv]  [pr ;0] [Pk 05 7] [Prdjve] [Pk S5 ;)
param. K K+1 2K K+d d d+1 K+d 2d

Table 2. Classification error rate$§4) and value of the BIC criterion for test populatidiomedeawith training populatiorborealis

model [px. 10] [Pk 17] e 1] [Pk 1] [p1 6 0] [Pk 7] [Prdvk] [Pk 0]
error 42.1 23.68 15.78 18.42 57.89 23.68 15.78 18.42
BIC 648 216 218 225 263 214 218 214
model [Pk 0r O] [Pk Ok ] POk vkl [Pe okl [px ;0] [Pk 05 7] [Pr 05 vkl [Pk 65 4]
error 57.89 15.78 18.42 18.42 57.89 18.42 18.42 15.78
BIC 270 1219 216 220 281 214 220 228
model [Pr 10] [Pr 17] [Pr 17k] [Pr 17;] [Pr 9 0] [Pr 0] [Pr 9 1] [Pk 0 ;]
error 42.1 26.31 23.68 21.05 42.1 21.05 23.68 21.05
BIC 595 215 215 226 267 213 215 215
model [P 0r 0] [Pr Ok 7] [Pr ok k] [Prdrv]  [Pr ;0] [Pk 05 7] (Prdjve]  [Pr 65 ;)
error 42.1 23.68 21.05 21.05 42.1 21.05 21.05 23.68
BIC 274 217 217 222 285 215 222 225
0.25
= = =Preal density
KR T R T P Guussian densi ty
' AY
0.2 2 \ ——— P real dersity
PakS ! ~r -
,j D S v P oGassi an densi ty

0.1

10 12 14 16 18 20 22
(s—bkj)/akj s

Figure 1. Density distribution 011/131‘2“‘_1 and171j‘2 _ for the robustness study.
= L=
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Table 3. Classification error rate$%) and value of the BIC criterion for test population of Atlanbirds with training on Pacific birds population.

model [Pk 10] [Pk 17] Pr1ve] [Pk 1) [Pk 6 0] [Pk 7] [Prdvk] [Pk 0]
error 50.94 43.39 45.28 43.39 50.94 43.39 45.28 45.28
BIC 212 209 216 224 212 209 216 224
model [Pk 0k O] [Pk Ok ] Pk Ok il [Pk okl [prd;0] [Pk 05 7] [Pr 05 k] [Pr 65 4]
error 45.28 45.28 52.83 45.28 45.28 52.83 50.94 50.94
BIC 210 210 215 226 225 224 227 239
model [Pr 10] [Pr 17] [Pr 17k] [Pr 17;] [P 0 0] [Pr 0] [Pr 9 1] [Pk 0 ;]
error 45,28 50.94 50.94 45.28 45.28 50.94 50.94 45.28
BIC 213 213 220 228 213 213 220 228
model Br 0k 0] [Broky]  [Peduk]  [Prdrvi]  [Prd; 0] Br 057 [Brdjve] [Pk 5]
error 45,28 45,28 47.16 45.28 45.28 52.83 45,28 52.83
BIC 214 213 213 229 228 227 224 243
£=05

b - - -real cdf

—— Gaussian cdf

— Gaussian cdf
- = -real cdf

— Gaussian cdf

- - real cdf

Figure 2. Cumulative density function of the latent variables fofefiént values o.
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Figure 3. Classification error rate for usual discriminant analygeneralized discriminant analysis (GDA) and

clustering compared to the optimal error rate for differeaities ofe.
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