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Standard discriminant analysis supposes that both the training sample and the test sample are derived from

the same population. When these samples arise from populations differing from their descriptive parameters,

a generalization of discriminant analysis consists in adapting the classification rule related to the training

population to another rule related to the test population, by estimating a link map between both populations.

This paper extends an existing work in the multinormal context to the case of binary data. In order to solve

the problem of defining a link map between the two binary populations, it is assumed that the binary data

result from the discretization of latent Gaussian data. An estimation method and a robustness study are

presented, and two applications in a biological context illustrate this work.

Keywords: Biological application; Discriminant analysis; EM algorithm; Latent class model; Stochastic

link.

1. Introduction

Consider a first (training) sample of individuals describedby explanatory variables, for

which a partition in groups or classes is known. Consider also a new sample of individ-

uals (test sample), drawn from the same population of the training sample. Discriminant
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analysis consists in estimating an allocation rule from thetraining sample in order to clas-

sify individuals of the test sample (see McLachlan [21] for asurvey).

Since works of Fisher [14], who introduced a linear discriminant rule between two groups,

numerous evolutions have been proposed. All of them concernthe nature of the discrim-

inant rule: Parametric quadratic rule (see for example Tomassone et al. [27]), semi para-

metric rule (as logistic discrimination, Anderson [2]) or non parametric rule (Fix and

Hodges [15], Friedman and Stuetzle [16], Hand [18], Silverman [23]).

An alternative approach, introduced by Van Franeker and TerBrack [28] and developed

further by Biernacki et al. [5], considers the case in which the training sample does not

necessarily arise from the same population as the one of the test sample. Biernacki et al.

define several models ofgeneralized discriminant analysisin a multinormal context, and

conduct experiments for biological data consisting of birds from the same species, but

with different geographical origins. In many domains (insurance, medicine, biology,etc.)

a large number of applications deals with binary data as well. The goal of the present

paper is to extend the generalized discriminant analysis ofBiernacki et al. [5] to the case

of binary data.

The paper is organized as follows. The next section presentsthe data and the latent class

model for both training and test populations. Section 3 makes the assumption that these

binary data are discretized latent continuous variables inwhich the order information is

lost. This hypothesis is the key to establish a general stochastic link map between the two

populations, from which many pertinent parsimonious sub-models can be obtained. In

Section 4, estimation is performed based on the maximum likelihood principle using the

EM algorithm. Then, a robustness studyfor the Gaussian assumptionis carried out in Sec-

tion 5 involving both theoretical and experimental (simulated data) arguments. In Section

6, two applications in a biological context illustrate realistic situations where the proposed

generalized discriminant analysis outperforms standard discriminant analysis and cluster-
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ing. Finally, the last section concludes this paper by discussing possible extensions of the

present work.

2. The data and the latent class model

The data consist in two samples: The first sampleS, labelled and drawn from the training

populationP , and the second samplẽS, unlabelled and drawn from the test population

P̃ . A fundamental assumption of the present work is that populationsP andP̃ may be

different.

The training sampleS is composed ofn pairs (x1, z1), . . . , (xn, zn), wherexi is the

binary explanatory vector for theith object withxi = (xi1, . . . , xid)
T ∈ {0, 1}d and

wherezi = (zi1, . . . , ziK)T is the group membership withzik being equal to 1 if the

ith object belongs to thekth group and being equal to 0 otherwise (i = 1, . . . , n, k =

1, . . . ,K). The number of binary explanatory variables and the numberof groups are

respectively denoted byd andK. Each pair(xi, zi) is assumed to be an independent

realization of the random vector(X1,Z1) with distribution:

X1j|Z1k=1
∼ B(αkj) for all j = 1, . . . , d and Z1 ∼ M(1, p1, . . . , pK), (1)

where B(αkj) is the Bernoulli distribution of parameterαkj (0 < αkj < 1),

and M(1, p1, . . . , pK) defines the one order multinomial distribution of parameters

p1, . . . , pK (0 < pk < 1,
∑K

k=1 pk = 1). Moreover, using the latent class model as-

sumption of conditional independence of the explanatory variables (Celeux and Govaert

[7], Everitt [12]), the probability function ofX1 conditionally to the group membership is:

fk(x11, . . . , x1d) =

d∏

j=1

αkj
x1j(1 − αkj)

1−x1j . (2)

This is one of the most popular generative method for discriminating categorical data since

it is straightforward to implement and it is often efficient (see for instance experimental
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comparisons with alternative methods, not necessarily generative, in Goldstein and Dillon

[17], Celeux and Nakache [8] Chap. 9 or also Titterington et al. [26]).

Similarly, the test samplẽS is composed of̃n pairs(x̃1, z̃1), . . . , (x̃ñ, z̃ñ), where thed

explanatory variables are the same as in the training sample, but where thẽzi are unknown.

These pairs are assumed to be independent realizations of(X̃1, Z̃1) with distribution:

X̃1j|Z̃1k=1
∼ B(α̃kj) for all j = 1, . . . , d and Z̃1 ∼ M(1, p̃1, . . . , p̃K). (3)

The explanatory variables̃X1j , for j = 1, . . . , d, are also assumed to be conditionally in-

dependent. Basically, the distribution of(X̃1, Z̃1) differs from this one of(X1,Z1) only

by the values of the parametersαkj andpk.

Our goal is to estimate the unknown labelsz̃1, . . . , z̃ñ by using information from both

training and test samples. The challenge resides in finding alink map between the popu-

lationsP andP̃ .

Remarks

• In fact, since both labelled and unlabelled data are used together in the inference

process, our problem is related to the so-called semi-supervised learning purpose. Ob-

viously, the originality of our work is that the data sets do not necessarily arise from the

same population.

• The use of the terminology “test” for the sampleS̃ (and the populatioñP ) is abu-

sive because this sample is used to determine the discrimination rule. Nevertheless, this

terminology is adopted in order to facilitate the link with the standard discrimination

methods.Moreover, it appears to be a usual notation in the semi-supervised classifica-

tion community (see for instance Chapelle et al. [9], Chap. 1).
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3. Relationship between test and training populations

3.1. Formalizing the link between populations

In a multinormal context, a linear stochastic relationshipbetweenP andP̃ is not only jus-

tified (under very few assumptions that will be recalled later) but also intuitive (Biernacki

et al. [5]). In the binary context, since such an intuitive relationship seems more difficult

to exhibit, an additional assumption is stated: The binary variables are supposed to result

from the discretization of some latent Gaussian variables.For instance, if a binary variable

is a product purchased by a customer, it is assumed that the customer gives a score to the

product, and buys it only if this score is greater than a giventhreshold. This assumption is

not new in statistics: See for example Thurstone [25], who used this idea in his compar-

ative judgment model to choose between two stimuli.Anderson and Pemberton [3] also

modelled multivariate ordered categorical variables as a latent multinormal distribution

involving a possibly full correlation matrix (see de Leon [10] for a more recent refer-

ence). Moreover, Everitt [13] proposed a classification algorithm for binary, categorical

and continuous data.

Thus, the explanatory variablesX1j|Z1k=1
having a Bernoulli distributionB(αkj) are as-

sumed to arise from the discretization of latent continuousvariablesY1j|Z1k=1
in the fol-

lowing manner:

X1j|Z1k=1
=







0 if λjY1j|Z1k=1
< λjsj

1 if λjY1j|Z1k=1
≥ λjsj

for j = 1, . . . , d, (4)

wheresj ∈ R is the discretization threshold, andλj ∈ {−1, 1} is introduced to avoid

choosing to which value ofX1j|Z1k=1
, 0 or 1, corresponds a positive value ofY1j|Z1k=1

,

and then to avoid binary variables to inherit from the natural order induced by continuous

variables.

Moreover, the joint distribution ofY1|Z1k=1
= (Y11|Z1k=1

, . . . , Y1d|Z1k=1
)T is assumed to
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be multivariate normal, with marginal distributionsN (µkj , σ
2
kj), such the obtained dis-

cretized variablesX1j|Z1k=1
(j = 1, . . . , d) are independent in order to retrieve the con-

ditional independence assumption on the binary variables.It should be noted that condi-

tional independence of the latent Gaussian variablesY1j|Z1k=1
(j = 1, . . . , d) is a sufficient

assumption for conditional independence of the binary variables. However, this assump-

tion may not be necessary.

From (1) and (4) the following relationship betweenαkj, λj, µkj andσkj can be derived:

αkj = p(X1j|Z1k=1
= 1) = 1 − Φ

(
λj

sj − µkj

σkj

)
(5)

whereΦ is theN (0, 1) cumulative density function.

As for the variableX1j , the binary variableX̃1j is also assumed to arise from the dis-

cretization of a latent Gaussian variableỸ1j with distributionN (µ̃kj, σ̃
2
kj). The equations

are the same as (4) and (5), by changingαkj into α̃kj, µkj into µ̃kj andσkj into σ̃kj. The

thresholds̃sj are naturally supposed to be equal tosj (s̃j = sj) since, with the previous

example, it is equivalent to assume that customers of both populations buy the product if

the score is greater than the same threshold. In the same spirit λ̃j is supposed to be equal

to λj , so the rule of purchase – lower or higher than the threshold –is the same for both

populations.

In a Gaussian setting, Biernacki et al. [5] showed that the only possible link map between

the latent continuous variableY1|Z1k=1
of P andỸ1|Z̃1k=1

of P̃ is linear when the two

following reasonable hypotheses are satisfied: (i) The transformation betweenP andP̃ is

C1 and (ii) thejth component̃Y1j|Z̃1k=1
of Ỹ1|Z̃1k=1

is only related to thejth component

Y1j|Z1k=1
of Y1|Z1k=1

. More precisely, this relationship is expressed by

Ỹ1|Z̃1k=1
∼ AkY1|Z1k=1

+ bk, (6)
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whereAk is a diagonal matrix ofRd×d containing the elementsakj andbk is a vector ofRd containing the elementsbkj (1 ≤ k ≤ K, 1 ≤ j ≤ d).

By using (6) and (5) the following relationship between the parameters̃αkj andαkj can

be obtained (see details in Appendix A):

α̃kj = Φ
(

δkj Φ−1(αkj) + λjγkj

)

, (7)

whereδkj ∈ R+ \ {0}, λj ∈ {−1, 1} andγkj ∈ R. Note that this relationship corresponds

to a linear link between theprobit functions of bothαkj andα̃kj. Conditionally to the fact

thatαkj are known (they will be estimated in practice), estimation of the Kd continuous

parameters̃αkj is thus obtained from the estimated parameters of the link betweenP and

P̃ (plug-in method):δkj, γkj andλj. Note that the choice of the discretization thresholds

sj is not important. However, estimating the number of parameters for the link map is

2Kd and one thus obtain that the model is overparameterized. This fact should not be

surprising since the underlying Gaussian model is by far more complex (in terms of the

number of parameters) than the Bernoulli model. Hence we need to reduce the number

of free continuous parameters in (7), and one way to do this isto propose sub-models

definedvia imposing natural additional constraints on the transformation between both

populationsP andP̃ .

3.2. Models of constraints on the stochastic link map

The parametersδkj (1 ≤ k ≤ K and1 ≤ j ≤ d) will be successively constrained to be

equal to1 (denoted by1), to be class- and dimension-independent (δ), to be only class-

dependent (δk) or only dimension-dependent (δj). In the same way,γkj can be constrained

to be equal to0, γ (constant w.r.t.k andj), γk (constant w.r.t.j) or γj (constant w.r.t.k).

Thus, 16 models can be defined and indexed using the followingad-hocnotation:[1 0]

meansδkj = 1 andγkj = 0 (it corresponds to the usual discriminant analysis model),
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[δk γj] meansδkj = δk andγkj = γj (1 ≤ k ≤ K and1 ≤ j ≤ d), etc.

For these 16 models, an additional assumption on the group proportions is taken into

account: Either the proportions of̃P are constrained to be equal to those ofP , or they have

to be estimated. In the following,[pk 1 0] denotes the model[1 0] with equal proportions

whereas[p̃k 1 0] denotes this model with free proportions. The number of constrained

models is thus growing to 32. Table 1 gives the number of (continuous) parameters to be

estimated for these models. If the mixing proportions are different fromP to P̃ , K − 1

must be added to these values.

[Table 1 about here.]

Finally, we chose to use the BIC criterion (Bayesian Information Criterion, Schwarz

[22]) for automatic selection among the 32 generalized discriminant models. However,

other criteria such AIC (An Information Criterion, Akaike [1]) could be used as well. BIC

is defined by:

BIC = −2l(θ̂) + ν log(ñ),

whereθ = (p̃k, δkj , λj , γkj) for 1 ≤ k ≤ K and1 ≤ j ≤ d, l(θ̂) is the maximum log-

likelihood corresponding to the estimation̂θ of θ, andν is the number of free continuous

parameters associated to the given model. The model leadingto the smallest BIC value is

then selected.

Before estimating the parameterθ by the maximum likelihood method, we need to discuss

identifiability of each parametrization.

3.3. Model identifiability

Some of the constrained models previously defined can be non-identifiable. It is neces-

sary to clarify these identifiability problems, which ariseat two levels: Identifiability of

the model parameters whenαkj is transformed intõαkj, and identifiability of the transfor-
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mation which ensures thatαkj can be only transformed intõαkj and not intoα̃k′j (with

k′ 6= k). We call respectively themintra-groupandinter-groupidentifiability.

The reader can find theoretical and experimental discussionabout these two kinds of iden-

tifiability in Appendix B. The conclusion of this discussionis identifiability will occur in

practical situations.

4. Parameter estimation

In this section, only the situation where proportions are unknown is presented, otherwise

it is straightforward.

4.1. The three estimation steps

Generalized discriminant analysis needs three estimationsteps. The first step consists in

estimating parameterspk andαkj (1 ≤ k ≤ K and1 ≤ j ≤ d) from populationP based

on training sampleS. SinceS is a labelled sample, the maximum likelihood estimate is

simply given by (Celeux and Govaert [7], Everitt [12]):

p̂k =
1

n

n∑

i=1

zik and α̂kj =
1

n

n∑

i=1

xijzik.

The second step consists in estimating parametersp̃k andα̃kj (1 ≤ k ≤ K and1 ≤ j ≤ d)

of populationP̃ by usingp̂k, α̂kj (1 ≤ k ≤ K and1 ≤ j ≤ d) andθ̂. Thus, for estimating

α̃kj , the parametersδkj , γkj andλj of the link betweenP andP̃ have to be estimated, and

then an estimate of̃αkj is deduced by plug-in inside Equation (7). This step is described

below.

Finally, the third step consists in estimating group membership of individuals from the

test samplẽS, by maximum a posteriori.
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4.2. Estimation of the link parameters

For the second step above, maximum likelihood estimation can be efficiently based on the

EM algorithm (Dempster et al. [11]). The likelihood is givenby:

L(θ) =

ñ∏

i=1

K∑

k=1

p̃k

d∏

j=1

α̃
x̃ij

kj (1 − α̃kj)
1−x̃ij ,

and the completed log-likelihood is:

lc(θ; z̃1, . . . , z̃ñ) =

ñ∑

i=1

K∑

k=1

z̃ik log
(

p̃k

d∏

j=1

α̃
x̃ij

kj (1 − α̃kj)
(1−x̃ij)

)

.

The E step. From a current valueθ(q) of the parameterθ, the E step of the EM algo-

rithm consists in computing the conditional expectation ofthe completed log-likelihood:

Q(θ;θ(q)) = Eθ(q) [lc(θ; Z̃1, . . . , Z̃ñ)|x̃1, . . . , x̃ñ]

=

ñ∑

i=1

K∑

k=1

t
(q)
ik

{

log(p̃k) +

d∑

j=1

log
(

α̃kj
x̃ij(1 − α̃kj)

1−x̃ij

)}

where

t
(q)
ik = p(Z̃ik = 1|x̃1, . . . , x̃ñ;θ(q)) =

p̃
(q)
k

d∏

j=1

(α̃
(q)
kj )

x̃ij

(1 − α̃
(q)
kj )(1−x̃ij)

K∑

κ=1

p̃(q)
κ

d∏

j=1

(α̃
(q)
κj )

x̃ij

(1 − α̃
(q)
κj )(1−x̃ij)

is the conditional probability for the individuali to belong to the groupk.

The M step. The M step of the EM algorithm consists in choosing the valueθ(q+1)

which maximizes the conditional expectationQ computed at the E step:

θ(q+1) = argmax
θ∈Θ

Q(θ;θ(q)) (8)

whereΘ is a parameter space depending on the model at hand. The M stepis now de-

scribed for each component ofθ = {p̃k, δkj , λj , γkj}.
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For proportions, the maximum is:

p̃
(q+1)
k =

1

ñ

ñ∑

i=1

t
(q)
ik .

The parametersδkj andγkj are never considered because the full generalized discrimi-

nant analysis model is overparameterized. Thus, only the constrained models are to be

estimated. In this context, it is proved in Appendix C thatQ is a strictly concave func-

tion of δk, δj , δ, γk, γj andγ. Thus, the maximisation ofQ(θ;θ(q)) is computed by an

alternated iterative algorithm which consists in a succession, componentwise, of simplex

algorithms if the optimization is unconstrained (γk, γj ∈ R). If the optimization is con-

strained (δk, δj > 0), the same algorithm is used but if the optimization leads toa negative

result, the value 0 is retained (in this case the EM algorithmis used on its generalized

form: GEM, Dempster et al. [11]). The starting point of the alternating algorithm isθ(q),

and this one of the EM algorithm,θ(0), is the point which corresponds toP = P̃ .

For the discrete parametersλj, if the dimensiond is sufficiently low, the maximization is

carried out by computingQ(θ;θ(q)) for all 2d possible values for these discrete param-

eters. Since computational limits are quickly reached, a relaxation method can be used,

which consists in assuming thatλj is not a binary parameter in{−1, 1} but a continuous

one in[−1, 1], namedλ∗
j (see Wolsey [29] for instance). Optimization is thus performed

on this continuous parameter, with the previous alternatedalgorithm sinceQ is a strictly

concave function ofλj (Appendix C), and the solutionλ∗(q+1)
j is then discretized to ob-

tain a binary solutionλ(q+1)
j as follows:λ(q+1)

j = sgn(λ∗(q+1)
j ), where sgn denotes the

sign function. This relaxed approach is not used in the experiments of this paper but see

Jacques [19] for some examples of use.

Remark: Here, the estimation of(pk, αkj) andθ is performed in a sequential fashion.

This procedure enjoys the advantage to be algorithmically straightforward unlike the pro-

cedure involving the full likelihood function of all parameters. Moreover, experiments
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below indicate good behaviour of this strategy. However, since full likelihood estimates

are expected to have less bias, this new way could be exploredin future works (see Section

7).

5. Robustness study to the Gaussian assumption

In this section, we first prove that the Gaussian hypothesis can be weakened into a new

assumption and, then, some experiments illustrate and evaluate the robustness of the

methodology when this weakened assumption is itself violated.

5.1. Theoretical robustness study

Under the hypothesis that the link between the latent variables of both populationsP and

P̃ is linear, the assumption of normality of the latent variablesY1j|Z1k=1
andỸ1j|Z̃1k=1

is

in fact not necessary, and sufficient conditions are the following:

FY1j|Z1k=1
(y) = Φ(

y − µkj

σkj

) for y = sj andy =
sj − bkj

akj

, (9)

whereFY1j|Z1k=1
denotes the conditional cumulative density function of variableY1j|Z1k=1

andµkj, σkj its mean and standard deviation respectively. Note the difference between

initial assumption in Subsection 3.1: This equality was stated for ally values inR, whereas

it is now stated for only two specific values ofy.

However it is straightforward to verify that Equations (5) and (A1) remain valid in this

context. Since they are the key for establishing Relationship (7), this latter is still right.

5.2. Practical robustness study

To illustrate the robustness against Condition (9) itself described in the previous subsec-

tion, consider the following example:For all 1 ≤ j ≤ 5 and1 ≤ k ≤ 2, X1j|Z1k=1
(re-

spectivelyX̃1j|Z̃1k=1
) is the binary discretization (with the thresholdsj = s) of Y1j|Z1k=1
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(resp.Ỹ1j|Z̃1k=1
), whose distribution is a mixture of two Gaussians.

The mixture density distribution ofY1j|Z1k=1
and Ỹ1j|Z̃1k=1

(for fixed j andk), and the

Gaussian corresponding density (with the same moments asY1j|Z1k=1
andỸ1j|Z̃1k=1

) are

given in (Figure 1).

[Figure 1 about here.]

The values of the discretization threshold, of the transformation parameters between

P and P̃ (akj andbkj) and of the first and second moments ofY1j|Z1k=1
(µkj , σ2

kj) are

arbitrary chosen:s = 13; akj = 1.2 and bkj = 1 for 1 ≤ k ≤ 2 and1 ≤ j ≤ 5;

(µ1j , µ2j) = (10, 13) and(σ1j , σ2j) = (1.8, 1.7) for 1 ≤ j ≤ 5.

Now, let choose (by numerical optimization) the parametersof the mixture density of

Y1j|Zk=1
with respect to the following constraints, for0 ≤ ǫ ≤ 1 :







FY1j|Z1k=1
(sj) = Φ(sj−µkj

σkj
) + (1 − Φ(sj−µkj

σkj
)) × ǫ

FY1j|Z1k=1
(sj−bkj

akj
) = Φ(sj−akjµkj−bkj

akjσkj
) + (1 − Φ(sj−akjµkj−bkj

akjσkj
)) × ǫ.

(10)

When ǫ = 0, these constraints correspond to (9) and then satisfy the assumptions of

Generalized Discriminant Analysis (GDA), and the greater is ǫ, the less (9) is respected.

(Figure 2) illustrates the cumulative density function of the latent variables for different

values ofǫ.

[Figure 2 about here.]

The sample size is set to 50, the experiments are repeated 20 times and the mean error

rate,estimated on “out-of-sample” data, is presented on (Figure 3) for different strategies:

GDA with model[p̃k δk γk], standard discriminant analysis and clustering. Moreover, the

optimal error rate is also given. GDA outperforms usual methods whenǫ is moderate (ǫ <

0.22), and for higherǫ, the assumed model of GDA is too incorrect and then clustering

becomes better.
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[Figure 3 about here.]

6. Comparison of methods on biological data

6.1. Discretized continuous data

The first motivations for which GDA was developed are biological applications (Biernacki

et al. [5], Van Franeker and Ter Brack [28]), in which the aim was to predict sex of birds

from biometrical variables. Very powerful results have been obtained with multinormal

assumptions.

The species of birds considered in the present application is Cory’s ShearwaterCalanec-

tris diomedea(Thibault et al. [24]). Two subspecies can be identified:borealis which

lives in the Atlantic islands (the Azores, Canaries,etc.) anddiomedeawhich lives in the

Mediterranean islands (Balearics, Corsica,etc.).

A sample ofBorealis(n = 206, 45% females) was measured using skins in several Na-

tional Museums. Five morphological variables were measured: Culmen (bill length), tar-

sus, wings and tail lengths, and culmen depth. Similarly, a sample ofdiomedea(n = 38,

58% females) was measured using the same set of variables. In this example, two groups

are present, males and females, and all the birds are of knownsex (from dissection). (Fig-

ure 4) illustrates differences between the two subspeciesborealisanddiomedea, for two

biometrical variables.

[Figure 4 about here.]

To provide an application of the present work, the continuous biometrical variables

are discretized into binary data. As it can be shown on (Figure 4), discretization must

be carried out carefully, especially concerning the choiceof the discretization threshold.

Indeed, if this threshold equals the mean of the biometricalvariables for one subspecies

for instance, then all the values for the other subspecies will be on the same side of this
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discretization threshold.Consequently, conditionally to each biometrical variables, the

threshold is chosen such that there is (roughly) a maximum ofindividuals of each popu-

lation on each side of the discretization threshold.

The subspeciesborealisis selected as the training population and the subspeciesdiomedea

as the test population. The 32 GDA models, including standard discriminant analysis

[pk 1 0], and clustering are applied on these data. The classification error rate and the

value of the BIC criterion are given in Table 2.

[Table 2 about here.]

If the results are compared according to the error rate, GDA with the model[pk δj γj ]

is the best method, with error15.78%. This error is lower than the one obtained by stan-

dard discriminant analysis (42.1%) or by clustering (23.68%). By using the BIC criterion,

which leads to select the model[p̃k δ γ], the error rate (21.05%) is still better than usual

discriminating method.

This application illustrates the interest of GDA with respect to standard discriminant anal-

ysis or clustering. Indeed, by adapting the classification rule derived from the training pop-

ulation to the test population, GDA gives lower classification error rates than by applying

directly the rule derived from the training population (standard discriminant analysis), or

by omitting the training population and applying directly clustering on the test popula-

tion.

It is worth pointing out that the assumption for binary data to be derived from the dis-

cretization of Gaussian variables (biometrical variables) is relatively realistic in this ap-

plication. Nevertheless, there exists a strong correlation between the five biometrical vari-

ables, which violates the assumption that discretized variables are independent.

Remark Although the “test sample” is used for estimating the discriminant rule through

theunlabelleddata ofS̃ and is used also for estimating the error rate but this once through

the labelleddata ofS̃, this estimated error rate is usually not an optimistic measure of the
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classification method’s performance. This fact is well-known in the semi-supervised set-

ting (Chapelle et al. [9], Subsection 21.1.2). In addition,we have also verified this claim

with our biological data by performing a hold-out procedure(results not reported here).

6.2. Real binary data

The second application considers sea birds from the speciespuffins (Bretagnolle [6]).

Two groups of subspecies are considered: The first one is composed of subspecies liv-

ing in Pacific Islands –subalaris(Galapagos Island),polynesial, dichrous(Enderbury and

Palau Islands) andgunax– and the second one is composed of subspecies living in At-

lantic Islands –boydi (Cap Verde Islands). Here, the difference between populations is

the geographical range (Pacificvs.Atlantic Islands). A sample of Pacific birds (n = 171)

was measured using skins in several National Museums. Four variables are measured on

these birds: Coller, stripe and piping (absence or presencefor these three variables) and

under-caudal (self couloured or not). Similarly, a sample of Atlantic birds (n = 19) was

measured using the same set of variables. Like in the previous example, two groups are

present (males and females) and the sex of all the birds is known. Pacific birds are chosen

as the training population and Atlantic ones as the test population. Choosing Atlantic birds

as the test population corresponds to a realistic situationbecause it could be hazardous to

perform a clustering process on a sample of such a small size.This is a typical situa-

tion where our methodology could be expected to provide a parsimonious and meaningful

alternative. According to the biologist Vincent Bretagnolle, the morphological variables

which are used in this application are not very discriminative, and then one can not expect

that the error rate will be better than40 − 45%.

The 32 GDA models, among which standard discriminant analysis [pk 1 0], are applied

on these data and the results are presented in Table 3. Clustering is also applied, and the

obtained error rate is49.05%.
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[Table 3 about here.]

As in the previous study, GDA is more efficient than standard discriminant analysis

(50.94%) and clustering (49.05%) to classify birds according to their sex. Moreover the

BIC criterion leads to choose the model with the smallest error rate. The relatively poor

classification results (the minimal error rate is43%) confirm the assumption of the biolo-

gist.

7. Conclusion

Generalized discriminant analysis extends standard discriminant analysis by allowing

training and test samples to arise from different but stochastically linked populations.

Our contribution consists in extending previous original work, derived in a multinormal

context, to the case of binary data.

Applications to a biological problem illustrate the power of our methodology. A classifica-

tion of birds according to their sex is provided by using generalized discriminant analysis,

and this classification is better than those obtained by standard discriminant analysis or

by clustering.

Perspectives for this work are numerous. Firstly, the parameters of both populationsP

and P̃ are estimated successively:αkj andpk are estimated in a first step and thenα̃kj

and p̃k are deduced from these estimations and from those of all parameters. It should

be very (computationally) useful to consider a joint estimation of this four parameters.In

particular, Lourme and Biernacki [20] extended the earlierwork of Biernacki et al. [5] to

the full likelihood estimation of parameters in the multinormal situation. It appears that

error rates obtained by sequential estimate and by joint estimate are quite similar when the

learning sample is large (situation of the current paper). But, when the learning sample

has a small sample size, joint estimation could significantly improve the error rate. We

could expect the same behaviour for our current model but this assumption needs to be
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confirmed by a future specific study.

Secondly, the link between both populations was defined by using Gaussian cumulative

density function. Although it seemed initially difficult tofind this link, a simple link in-

volving the probit function was obtained. It was not easy to imagine it, but it is meaningful

afterwards. It would be interesting to try other types of cumulative density functions; Ob-

viously theoretical reasons will have to be developed and practical tests will have to be

carried out.

Thirdly, with this contribution generalized discriminantanalysis is now developed for

continuous data and for binary data. To allow to analyse a large number of practical cases,

it is important to study the case of categorical variables (i.e. more than two modalities),

and thereafter the case of mixed variables (binary, categorical and continuous together).

Everitt’s works (Everitt [13]), which defined a classification algorithm for mixed vari-

ables, can be helpful for this topics.

Finally, it would be also interesting to extend other classical discriminant method like non-

parametric discrimination or semi-parametric discrimination. See Biernacki and Beninel

[4] for logistic regression.
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Appendix A. Proof of the relation between test and training populations

From (6) it follows thatỸ1j|Z̃1k=1
is Gaussian with meañµkj = akjµkj+bkj and with stan-

dard deviatioñσkj = |akj |σkj. However, this transformation is clearly non-identifiable:

There exists more than one couple(Ak,bk) which satisfies Relationship (6). To solve this

problem, all theakj are assumed to be non negative (akj ≥ 0).

It is possible to derived from Equation (5):

λj
sj

σkj

= −Φ−1(αkj) + λj
µkj

σkj

,

and then, using expressions ofµ̃kj andσ̃kj just given above:

α̃kj = 1 − Φ

(

λj
sj − µ̃kj

σ̃kj

)

= 1 − Φ

(
1

akj

λjsj

σkj

− λj
akjµkj + bkj

akjσkj

)

= Φ

(
Φ−1(αkj)

akj
+ λj

akjµkj + bkj − µkj

akjσkj

)

. (A1)

Alternatively, it is also possible to write from (5) again:

λj
µkj

σkj
= Φ−1(αkj) + λj

sj

σkj
,

and thus, following the same process as in (A1),

α̃kj = 1 − Φ

(

λj
sj − µ̃kj

σ̃kj

)

= 1 − Φ

(

−λj
µkj

σkj

+ λj
sj − bkj

akjσkj

)

= Φ

(

Φ−1(αkj) + λj
akjsj + bkj − sj

akjσkj

)

. (A2)
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Of course, Equations (A1) and (A2) are equivalent but the first one will be retained since

Parametrization (A1) will be more convenient for proposinglater numerous parsimonious

models of constraints on the link betweenP andP̃ . Consequently, the following relation-

ship betweenαkj andα̃kj is obtained:

α̃kj = Φ
(

δkj Φ−1(αkj) + λjγkj

)

,

whereδkj ∈ R+ \ {0}, λj ∈ {−1, 1} andγkj ∈ R.

Appendix B. Model identifiability

B.1. Intra-group identifiability

Firstly, the identifiability of the couple(λj , γkj) in different constrained model situations

is reaching as follows:

• Models involvingγkj = 0 or γkj = γj : By setting for instanceλj = +1 (j =

1, . . . , d),

• Models involvingγkj = γ or γkj = γk: By setting for instanceλ1 = +1.

By this way, the productλjγkj is allways identifiable and obviously all these constraints

on λj have no impact on the estimation of the productλjγkj, as the reader can easily

convince himself.

Secondly, the identifiability of the couple of parameters(δkj , γkj) conditionally toλj is

discussed. Equation (7) leads to

Φ−1(α̃kj) = δkj Φ−1(αkj) + λjγkj (B1)

which can be expressed as the following linear system

Φ̃ = Φλ × uδ,γ
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whereΦ̃ = (Φ−1(α̃11), . . . ,Φ
−1(α̃kj), . . . ,Φ

−1(α̃Kd))
T ∈ RKd andΦλ anduδ,γ are

respectively a matrix and a vector, with dimension depending on the model at hand, rep-

resenting the values ofΦ−1(αkj) andλj for Φλ, and the values ofδkj andγkj for uδ,γ .

Identifiability is obtained if and only if the matrixΦλ is of full rank. It is easily noticed

(see the example below) thatΦλ is not of full rank only for very particular values ofαkj

(typically αkj = 1
2 for somek, j for instance). Moreover these theoretical non-identifiable

situations lead seldom to practical non-identifiable situations since an estimator̂αkj is

used instead of the unknown true valueαkj. To be definitively convinced of this fact, the

reader can take a look at the robustness study (Section 5) where simulations involve a

theoretically non-identifiable model (allα1j = 1
2 ) but where practical identifiability is

observed.

Example with model[pk δk γk] for intra-group identifiability In this situation,Φλ = [M |N ]

is a (Kd × 2K)-matrix formed by two block matricesM = (Mlk)1≤k≤K
1≤l≤Kd

andN =

(Nlk)1≤k≤K
1≤l≤Kd

defined by

Φλ =










































Φ−1(α11) 0 . . . 0 λ1 0 . . . 0

...
...

Φ−1(α1d) 0 . . . 0 λd 0 . . . 0

...
...

0 . . . 0 Φ−1(αk1) 0 . . . 0 0 . . . 0 λ1 0 . . . 0

...
...

0 . . . 0 Φ−1(αkd) 0 . . . 0 0 . . . 0 λd 0 . . . 0

...
...

0 . . . 0 Φ−1(αK1) 0 . . . 0 λ1

...
...

0 . . . 0 Φ−1(αKd) 0 . . . 0 λd










































.



REFERENCES 23

Φλ is not of full rank (min(Kd, 2K)) if and only if

• Possibility 1: There existsk ∈ {1, . . . ,K} such thatαkj = 1
2 for all j ∈

{1, . . . , d},

• Possibility 2: There existsk1, . . . , kτ ∈ {1, . . . ,K}, k1, . . . , kτ being all differ-

ent, with τ ∈ {1, . . . ,K} satisfying d(K − τ) < 2K, such that for allj, j′ ∈

{1, . . . , d}, for all k ∈ {k1, . . . , kτ}, λj′Φ−1(αkj) = λjΦ
−1(αkj′).

B.2. Inter-group identifiability

This non-identifiability problem means that one group of thepopulationP can be trans-

formed into more than one group of the populationP̃ . It cannot happen if the group

proportionspk in P are all different (it is likely in practice) and if simultaneously all the

constrained models are with fixed proportions between populations (models[pk . . ]). But

if these proportions conditions are not verified, the non-identifiability problem is the fol-

lowing: For fixedk1 andk2 (k1, k2 ∈ {1, ...,K}, k1 6= k2) and for fixedj (j ∈ {1, . . . , d})

there exists two sets of parameters(δk1j , λj , γk1j) 6= (δ′k1j, λ
′
j , γ

′
k1j) which transform re-

spectivelyαk1j into α̃k1j and intoα̃k2j . In fact, if the groupk1 of P is transformed into

the groupk2 of P̃ (instead of the groupk1 of P̃ ) then necessarily the groupk2 of P is not

transformed into the groupk2 of P̃ , but into a groupk3 6= k2 of P̃ ; The simplest solution

is k3 = k1 but it is not certain ifK > 2.

Thus, the identifiability problem can be rewritten equivalently: There existsk2 6= k1 and

k3 6= k2 such that, for anyj and(δk1j, λj , γk1j), (δk2j , λj , γk2j) such that

Φ−1(α̃k1j) = δk1j Φ−1(αk1j) + λjγk1j (B2)

Φ−1(α̃k2j) = δk2j Φ−1(αk2j) + λjγk2j , (B3)
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there exists(δ′k1j, λ
′
j , γ

′
k1j) 6= (δk1j , λj , γk1j) and(δ′k2j, λ

′
j , γ

′
k2j) 6= (δk2j , λj , γk2j) such

that

Φ−1(α̃k2j) = δ′k1j
Φ−1(αk1j) + λ′

jγ
′
k1j

(B4)

Φ−1(α̃k3j) = δ′k2j
Φ−1(αk2j) + λ′

jγ
′
k2j

. (B5)

It follows from (B2) and (B4)

Φ−1(α̃k2j) =
δ′k1j

δk1j
Φ−1(α̃k1j) − λj

γk1j

δk1j
δ′k1j

+ λ′
jγ

′
k1j

(B6)

and similarly from (B3) and (B5)

Φ−1(α̃k3j) =
δ′k2j

δk2j

Φ−1(α̃k2j) − λj
γk2j

δk2j

δ′k2j + λ′
jγ

′
k2j

. (B7)

Equations (B6) and (B7) lead to the following linear system

Φ̃(k2,k3) = Φ
(k1,k2)
δ,γ,λ,λ′ × u

(k1,k2)
δ′,γ′ (B8)

whereΦ̃(k2,k3) = (Φ−1(α̃k21), . . . ,Φ
−1(α̃k2d),Φ

−1(α̃k31), . . . ,Φ
−1(α̃k3d))

′ ∈ R2d and

Φ
(k1,k2)
δ,γ,λ,λ′ andu

(k1,k2)
δ′,γ′ are respectively a matrix and a vector, with dimension depending on

the model at hand, representing values ofΦ−1(α̃k1j), Φ−1(α̃k2j), δk1j, δk2j, γk1j, γk2j,

λj , λ′
j for Φ

(k1,k2)
δ,γ,λ,λ′ and values ofδ′k1j, δ′k2j

, γ′
k1j

, γ′
k2j

for u
(k1,k2)
δ′,γ′ .

Conditionally to the values ofλ′
j , the problem is identifiable if no solution exists to System

(B8) or, in other words, if the number of linearly independent lines of Φ
(k1,k2)
δ,γ,λ,λ′ is no

less than the number of free parameters inu
(k1,k2)
δ′,γ′ . The number of lines ofΦ(k1,k2)

δ,γ,λ,λ′ is

equal to2d and in most cases of interest these lines are independent forany valuesλ′
j.

See for instance the following example with the model[p̃k δk γk] for a discussion on this

subject. The number of free parameters ofu
(k1,k2)
δ′,γ′ corresponds to the values in Table 1 by

artificially fixing K = 2 in this table. Except for model[p̃k δj γj] the maximum number

of free parameters is equal tomax(4, d + 2). Thus, a sufficient condition of inter-group
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identifiability is 2d > max(4, d + 2). Sinced > 2 usually for binary data, all models

are identifiable except the model[p̃k δj γj] since the number of free parameters is2d.

Although this model is non-identifiable, it can nevertheless be used by bearing in mind

that a label switching may occur fromP to P̃ .

Remark Only a single switch between 2 classes ((k1, k2) of P becomes(k2, k1) of P̃ )

may occur with the model[p̃k δj γj ]. Indeed in case of a switch between more than 2

classes, for instances(k1, k2, k3) of P becomes(k2, k3, k1) of P̃ or (k1, k2, k3, k4) of P

becomes(k2, k1, k4, k3) of P̃ , the number of equations reaches at least3d for 2d free

parameters: The model[p̃k δj γj ] is then identifiable.

Example with model[p̃k δk γk] for inter-group identifiability. In this situationΦ
(k1,k2)
δ,γ,λ,λ′ =

[M |N ] is a (2d × 4)-matrix formed by two matrix blocksM = (Mls)1≤s≤2
1≤l≤2d

andN =

(Nls)1≤s≤2
1≤l≤2d

defined by

Φ
(k1,k2)
δ,γ,λ,λ′ =






















1
δk11

Φ−1(α̃k11) − λ1
γk11

δk11
0 λ′

1 0

...
...

1
δk1d

Φ−1(α̃k1d) − λd
γk1d

δk1d
0 λ′

d 0

0 1
δk21

Φ−1(α̃k21) − λ1
γk21

δk21
0 λ′

1

...
...

0 1
δk2d

Φ−1(α̃k2d) − λd
γk2d

δk2d
0 λ′

d






















The reader can easily convince himself that the2d lines are generally linearly independent

in practice. For instance, the simulation involved in the robustness study (Section 5) con-

siders this model and none identifiability problem is encountered (the classification error

rates are always strictly lower than50% and thus none label switching has been obtained).
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Appendix C. Proof of the concavity of the functionQ(θ, θ(q))

The aim of this appendix is to prove thatQ(θ,θ(q)) is a strictly concave function ofγk,

γj andγ, and also ofδk, δj, δ andλj . The fundamental key of the proof is to study first

concavity ofQ(θ,θ(q)) for γkj.

Let Q(γkj) be the functionQ(θ,θ(q)) with parameters̃pk, δkj, λj andθ(q) fixed, and let

prove thatQ(γkj) is strictly concave:

Q(γkj) =
ñ∑

i=1

K∑

k=1

tik

{

log(p̃k) +
d∑

j=1

x̃ij log
(

Φ(ζkj)
)

+
d∑

j=1

(1 − x̃ij) log
(

1 − Φ(ζkj)
)}

with ζkj = δkjΦ
−1(αkj) + λjγkj.

The derivative of the functionQ(γkj) is:

∂Q(γkj)

∂γkj
=

ñ∑

i=1

K∑

k=1

tik

d∑

j=1

{

x̃ijλj
φ(ζkj)

Φ(ζkj)
+ (1 − x̃ij)λj

−φ(ζkj)

1 − Φ(ζkj)

}

,

whereφ is the probability density function ofN (0, 1).

Using that∂φ(bx+a)
∂x

= −b(bx + a)φ(bx + a) with a, b ∈ R, the second derivative is:

∂2Q(γkj)

∂γ2
kj

=
ñ∑

i=1

K∑

k=1

tik

d∑

j=1

λj

{

x̃ij

−λjζkjφ(ζkj)Φ(ζkj) − λjφ(ζkj)
2

[Φ(ζkj)]2

+(1 − x̃ij)
λjζkjφ(ζkj)(1 − Φ(ζkj)) − λjφ(ζkj)

2

[1 − Φ(ζkj)]2

}

,

that can be rewritten:

∂2Q(γkj)

∂γ2
kj

= −
ñ∑

i=1

K∑

k=1

tik

d∑

j=1

λ2
jφ(ζkj)

{ x̃ij

[Φ(ζkj)]2
(

g1(ζkj)
︷ ︸︸ ︷

ζkjΦ(ζkj) + φ(ζkj))

+
(1 − x̃ij)

[1 − Φ(ζkj)]2
(

g2(ζkj)
︷ ︸︸ ︷

ζkj(φ(ζkj) − 1) + φ(ζkj))
}

. (C1)

To prove thatQ is strictly concave, it is sufficient to prove that both functionsg1 andg2

are strictly positive:

• For allx ∈ R : g1(x) = xΦ(x) + φ(x) > 0, because lim
x→−∞

g1(x) = 0 andg1 is

strictly increasing sinceg′1(x) = Φ(x) + xφ(x) − xφ(x) = Φ(x) > 0,

• For allx ∈ R : g2(x) = xΦ(x) − x + φ(x) > 0, because lim
x→+∞

g2(x) = 0 andg2
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is strictly decreasing sinceg′2(x) = Φ(x) − 1 + xφ(x) − xφ(x) = Φ(x) − 1 < 0.

Thus ∂2Q(γkj)
∂γ2

kj

< 0 andQ(γkj) is strictly concave.

If Q is no longer function ofγkj but now ofγk (respectively ofγj , of γ) the expression of

the second derivative is the same as (C1) by removing the sum on j (resp. onk, on(k, j)),

and thusQ is still strictly concave.

Consider now the functionQ(δkj) with the above convention (p̃k, γkj , λj andθ(q) fixed).

Same type of calculus leads to:

∂2Q(δkj)

∂δ2
kj

= −
ñ∑

i=1

K∑

k=1

tik

d∑

j=1

(

Φ−1(αkj)
)2

φ(ζkj)
{ x̃ij

[Φ(ζkj)]2
g1(ζkj) +

(1 − x̃ij)

[1 − Φ(ζkj)]2
g2(ζkj)

}

,

and thusQ(δkj) is strictly concave. By using the above arguments, it arisesimmediately

thatQ(δk), Q(δj), Q(δ) are also strictly concave.

Consider finally the functionQ(λj). The second derivative is:

∂2Q(λj)

∂λ2
j

= −
ñ∑

i=1

K∑

k=1

tik

d∑

j=1

γ2
kjφ(ζkj)

{ x̃ij

[Φ(ζkj)]2
g1(ζkj) +

(1 − x̃ij)

[1 − Φ(ζkj)]2
g2(ζkj)

}

,

andQ(λj) is strictly concave.
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Table 1. Number of continuous parameters (param.) to be estimated for the constrained models.

model [pk 1 0] [pk 1 γ] [pk 1 γk ] [pk 1 γj ] [pk δ 0] [pk δ γ] [pk δ γk ] [pk δ γj ]

param. 0 1 K d 1 2 K + 1 d + 1

model [pk δk 0] [pk δk γ] [pk δk γk ] [pk δk γj ] [pk δj 0] [pk δj γ] [pk δj γk ] [pk δj γj ]

param. K K + 1 2K K + d d d + 1 K + d 2d

Table 2. Classification error rates (%) and value of the BIC criterion for test populationdiomedeawith training populationborealis.

model [pk 1 0] [pk 1 γ] [pk 1 γk ] [pk 1 γj ] [pk δ 0] [pk δ γ] [pk δ γk ] [pk δ γj ]

error 42.1 23.68 15.78 18.42 57.89 23.68 15.78 18.42

BIC 648 216 218 225 263 214 218 214

model [pk δk 0] [pk δk γ] [pk δk γk ] [pk δk γj ] [pk δj 0] [pk δj γ] [pk δj γk ] [pk δj γj ]

error 57.89 15.78 18.42 18.42 57.89 18.42 18.42 15.78

BIC 270 1219 216 220 281 214 220 228

model [p̃k 1 0] [p̃k 1 γ] [p̃k 1 γk ] [p̃k 1 γj ] [p̃k δ 0] [p̃k δ γ] [p̃k δ γk ] [p̃k δ γj ]

error 42.1 26.31 23.68 21.05 42.1 21.05 23.68 21.05

BIC 595 215 215 226 267 213 215 215

model [p̃k δk 0] [p̃k δk γ] [p̃k δk γk ] [p̃k δk γj ] [p̃k δj 0] [p̃k δj γ] [p̃k δj γk ] [p̃k δj γj ]

error 42.1 23.68 21.05 21.05 42.1 21.05 21.05 23.68

BIC 274 217 217 222 285 215 222 225
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Figure 1. Density distribution ofY1j|Z1k=1
andỸ1j

|Z̃1k=1
for the robustness study.
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Table 3. Classification error rates (%) and value of the BIC criterion for test population of Atlantic birds with training on Pacific birds population.

model [pk 1 0] [pk 1 γ] [pk 1 γk ] [pk 1 γj ] [pk δ 0] [pk δ γ] [pk δ γk ] [pk δ γj ]

error 50.94 43.39 45.28 43.39 50.94 43.39 45.28 45.28

BIC 212 209 216 224 212 209 216 224

model [pk δk 0] [pk δk γ] [pk δk γk ] [pk δk γj ] [pk δj 0] [pk δj γ] [pk δj γk ] [pk δj γj ]

error 45.28 45.28 52.83 45.28 45.28 52.83 50.94 50.94

BIC 210 210 215 226 225 224 227 239

model [p̃k 1 0] [p̃k 1 γ] [p̃k 1 γk ] [p̃k 1 γj ] [p̃k δ 0] [p̃k δ γ] [p̃k δ γk ] [p̃k δ γj ]

error 45.28 50.94 50.94 45.28 45.28 50.94 50.94 45.28

BIC 213 213 220 228 213 213 220 228

model [p̃k δk 0] [p̃k δk γ] [p̃k δk γk ] [p̃k δk γj ] [p̃k δj 0] [p̃k δj γ] [p̃k δj γk ] [p̃k δj γj ]

error 45.28 45.28 47.16 45.28 45.28 52.83 45.28 52.83

BIC 214 213 213 229 228 227 224 243
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Figure 2. Cumulative density function of the latent variables for different values ofǫ.
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Figure 3. Classification error rate for usual discriminant analysis,generalized discriminant analysis (GDA) and

clustering compared to the optimal error rate for differentvalues ofǫ.
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Figure 4. Wings and tarsus lengths fordiomedeaandborealis.


