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Abstract

Standard discriminant analysis supposes that both th@rigasample
and the test sample are issued from the same population. Wasa sam-
ples arise from populations differing from their descriptiparameters, a
generalization of discriminant analysis consists in adgghe classification
rule related to the training population to another ruletegldo the test pop-
ulation, by estimating a link between both populations. sTgaper extends
an existing work available in a multinormal context to theseaf binary
data. To raise the major challenge which consists in defiailngk between
the two binary populations, it is supposed that binary desalt from the
discretization of latent Gaussian data. Estimation metod robustness
study are presented, and two applications in a biologicatesa illustrate
this work.

keywords Biological application; Discriminant analysis; EM algibnin; Latent
class model; Stochastic link.

1 Introduction

Let consider a first (training) sample of individuals delsed by explanatory vari-
ables, for which a partition in groups or classes is knownt dansider also a
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new sample of individuals (test sample), drawn from the spomulation than
the training sample. Discriminant analysis consists iinesding an allocation
rule from the training sample in order to class individudlthe test sample (see
McLachlan [1992] for a survey).

Since works of Fisher [1936], who introduced a linear disinant rule between
two groups, numerous evolutions have been proposed. Aharhtconcern the
nature of the discriminant rule: Parametric quadratic (sée for example Tomas-
sone et al. [1988]), semi parametric rule (as logistic disicration Anderson
[1972]) or non parametric rule (Fix and Hodges [1951], Fmeah and Stuetzle
[1981], Hand [1982], Silverman [1986]).

An alternative evolution, introduced by Van Franeker andBieack [1993] and
developed further by Biernacki et al. [2002], considersddge in which the train-
ing sample does not arise necessary from the same populagiothe test sample.
Biernackiet al. define several models gfeneralized discriminant analysis a
multinormal context, and experiment them in a biologicalation, in which both
populations consist of birds from the same species, but ttifi@ent geographi-
cal origins. The difference between the training and thepgepulations was the
geographical range in this application, but it could be #ésaporal considerations
or other. However in many domains (insurance, medicindp@io etc) a large
number of applications deals with binary data as well. Cqusatly the goal of
this paper is to extend generalized discriminant analgsigblished in a multi-
normal context, to the case of binary data.

The paper is organized as follows. The next section prefiemtiata and the latent
class model for both training and test populations. Se@iomakes the assump-
tion that these binary data are discretized latent contiswariables in which the
order information is lost. This hypothesis is the key to leksh a general stochas-
tic link between both populations, from which many meanihgfarsimonious
models are declined. Thereafter in Section 4, estimatiagpirameters of these
models is performed by invoking the maximum likelihood nuetlrand the EM
algorithm. Then, a robustness study is carried out in Sedianvolving both
theoretical and experimental (simulated data) argumednt$Section 6, two ap-
plications in a biological context illustrate realistitusitions where the proposed
generalized discriminant analysis outperforms standeatichinant analysis and
clustering. Finally, the last section concludes this pdpediscussing possible
extensions of the present work.

2 The data and the latent class model

Data consist in two samples: The first samplelabelled and issued from the
training population?, and the second sampfe unlabelled and issued from the



test population?. A fundamental assumption of the present work is that pepula
tions P and P may be different.
The training samples is composed by pairs (z1, 1), - . ., (Tn, 2,), Wherex;
is the binary explanatory vector for thth object withz; = (z;1,...,24)7 €
{0,1}¢ and wherez; = (2, ..., zix)? is the group membership with, equal
to 1 if theith object belongs to thkth group and equalto O ifnot & 1,...,n
k =1,...,K). The number of binary explanatory variables and the nurober
groups are respectively denoted dwnd K. Each pair(z;, z;) is assumed to be
an independent realization of the random ve¢tor, 7, ) with distribution:

lj\ZUc:l B(O{kj) for a.”j = 1,...,(1 and Zl NM(l,pl,,pKOl)
whereB(«y;) is the Bernoulli distribution of parametes,; (0 < «oy; < 1), and
M(1,p1,...,pk) defined the one order multinomial distribution of parameter
P1,. - (0 < pp < 1, Zszlpk = 1). Moreover, using the latent class model
assumption that explanatory variables are conditionaligpendent (Celeux and
Govaert [1991], Everitt [1984]), the probability functiai X; conditionally to
the group membership is:

fk(xll,...,xld HOék 1—0{ )1 mlj. (2)

Similarly, the test samplé is composed byi pairs (i, %), . .., (i, Z:), where
the d variables are the same as in the training sample, but wherg tire un-
known. These pairs are assumed to be independent reatigatioX,, Z; ) with
distribution:

iz ™ B(ay;) forallj=1,....,d and Z; ~M(1,p1,...,px). (3)
The explanatory variableﬁ’lj, forj = 1,...,d, are also assumed to be condi-
tionally independent. Basically, the distribution(0f,, Z,) differs from this one
of (X1, Z1) only by the values of the parameters; andp;.

Our goal is to estimate the unknown labéls. . ., Z; by using information from
both training and test samples. The challenge is then to fimkdetween the
populations? andP.

Remark The use of the terminology “test” for the samgand the pop-
ulation P) is abusive because this sample is used to determine thénlisation
rule. Nevertheless, this terminology is adopted in orddatditate the link with
the usual discrimination methods.



3 Relationship between test and training populations

3.1 Formalizing the link between populations

In a multinormal context, a linear stochastic relationdsepveenP and P is not
only justified (with very few assumptions that we will rechltther) but also in-
tuitive (Biernacki et al. [2002]). In the binary contextnse such an intuitive
relationship seems more difficult to exhibit spontanequestyadditional assump-
tion is stated: The binary variables are supposed restimg the discretization
of latent Gaussian variables. For example, if a binary Wéeiés a purchase of a
product by a customer, it is assumed that the customer gsesra to the product,
and buys it only if this score is greater than a given threshdhis assumption
IS not new in statistics: See for example Thurstone [1921p wsed this idea in
his comparative judgment model to choose between two stimublso Everitt
[1988], who proposed a classification algorithm for binagtegorical and con-
tinuous data.

Thus, the explanatory variablcz‘élj‘zlkz1 of Bernoulli distributionB(«ay;) are as-
sumed to arise from the discretization of latent continuarsablesYy; , _, in
the following manner:

0 if Aj}/lj\z =1 < )\jsj .
le‘zlkzl - { 1 if )\j}/lj‘zlizl 2 )\jsj for] = ]., e ,d, (4)

wheres; € R is the discretization threshold, and € {—1, 1} is introduced to
avoid choosing to which value of;;, 0 or 1, corresponds a positive valuelgf,
and then to avoid binary variables to inherit from the ndtorder induced by
continuous variables.
Moreover, the joint distribution oty , _, = (Yir, ..., Yia,, _,)" is as-
sumed to be multivariate normal with marginal distribusd¥(,.;, o7.;) and such
that the obtained discretized variablﬁfsj‘zlkz1 (j = 1,...,d) are independent
in order to retrieve the conditional independence assumpn the binary vari-
ables. It should be noted that the conditional independehttee latent Gaussian
variablesYlj‘Z1 _, (4 = 1,...,d) is a particular situation which conduces to the
conditional in&ependence of the binary variables, but gribably not the only
one situation.
From (1) and (4) the following relationship betweep;, A;, u; andoy; can be
derived:

55— Hkj

agj = p(X,, , =1 =1-2() ) ()

Ukj

where® is the /' (0, 1) cumulative density function.
As for the variableX, ;, the binary variableX; is also assumed to arise from the
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discretization of a latent Gaussian variaﬁlga with distribution (i, &gj). The
equations are the same than (4) and (5), by changinmto é;, 11 into fi,; and
ox; into oy;. The thresholds; are naturally supposed to be equakidqs; = s;)
since, with the previous example, it is equivalent to asstiratcustomers of both
populations buy the product if the score is greater thandheeshreshold. In the
same spiritS\j is supposed to be equal #9, so the rule of purchase — lower or
higher than the threshold — is the same for both populations.

In a Gaussian context, Biernacki et al. [2002] showed theabtily possible stochas-
tic relationship between the latent continuous variale _, of P andY/l‘Zlk:l

of P is linear when the two following plausible hypotheses asia®ed: (i) The
transformation betwee® and P is C* and (ii) the jth componenﬁ/lj‘zlk:1 of

}71‘2 i only depends on thgh componemi/lj‘zll;1 of Vi, 1+ More precisely,
k= = 1K=
this relationship is expressed by

}/l‘zlk ~ Ak)/i‘zlkzl + bk? (6)

=1
where A;, is a diagonal matrix oR?*¢ containing the elements,; andb; is a
vector ofR? containing the elements; (1 < k < K,1 < j < d).

By using (6) the following relationship between the paraereed;; anday; can
be obtained (see details in Appendix A):

Qg = (I><5kj O () + )‘j7kj>> (7)

whered,; € R\ {0}, \; € {—1,1} andv; € R. Let notice that this rela-
tionship corresponds to a linear link between pinebit functions of both,; and
ay;. Conditionally to the fact that,; are known (they will be estimated in prac-
tice), estimation of thé{d continuous parameters,; is thus obtained from the
estimated parameters of the link betwegeand P (plug-in method)9y;, v, and
A;. Note that the choice of the discretization threshalddoes not have any im-
portance. It implies that the number of free continuous p&tars is2/K'd and
it means that the model is overparameterized. It could beard since the un-
derlying Gaussian model is by far more complex (in numberasameters) than
the Bernoulli model. Consequently there is a need to redue@timber of free
continuous parameters in (7). Thus some sub-models areeddy imposing
constraints on the transformation between both populatiband P.

3.2 Models of constraints on the stochastic link

The parameter§;; (1 < k < K andl < j < d) will be successively constrained
to be equal td (denoted byl), to be class- and dimension-independétto be



only class-dependent,) or only dimension-depender;. In the same wayyy
can be constrained with easy understood notations to bd m0ay, v, or ;.
Then, 16 models are defined; They are summarized in (Tabldé&)jerarad-hoc
notation is also given. For instance, the notatjpfi] means that,; = 1 and
vk; = 0, and corresponds to the usual discriminant analysis model.

For these 16 models, an additional assumption on the graypogions is
taken into account: They are conserved or not frBro P. In the following,
[pr 1 0] denotes the modél 0] with equal proportions wheregs; 1 0] denotes this
model with free proportions. The number of constrained neethus growing
to 32. (Table 2) gives the number of (continuous) paramétebe estimated for
these models. If the mixing proportions are different be® and P, K — 1
must be added to these numbers.

Finally, to automatically choose among the 32 generalizecrighinant mod-
els, the BIC criterion Bayesian Information CriterionSchwarz [1978]) can be
employed. It is defined by:

BIC = —2I(6) + v log(n),
whered = (f, 0, A\j, ;) for 1 < k < K and1 < j < d, () is the maximum
log-likelihood corresponding to the estimatiéof 6, andv is the number of free
continuous parameters associated to the given model. Thielrteading to the
smallest BIC value is then retained.
Before estimating the parameteby the maximum likelihood method, there is a
need to discuss identifiability of each parametrization.

3.3 Model identifiability

Some of the constrained models previously defined can bedemiiable, and

the aim of this section is to clarify these problems. The nhmtbatifiability arises

at two levels: Identifiability of the model parameters wienis transformed into
ay;, and identifiability of the transformation which ensureattt,; can be only

transformed intay,; and not intody; (with &' # k). We call respectively them
intra-groupandinter-groupidentifiability.

3.3.1 Intra-group identifiability

Firstly, the identifiability of the coupl¢);, ;) in different constrained model
situations is reaching as follows:

e models involvingy,; = 0 or v,; = 7,: By setting for instance\, = +1
(G=1,...,4d),



e models involvingy,; = v or y;; = 7,: By setting for instance,; = +1.

By this way, the produck;~;; is allways identifiable and obviously all these con-
straints on\; have no impact on the estimation of the prodAict,;, as the reader
can easily convince himself.

Secondly, the identifiability of the couple of paramet@s, vi,) conditionally to

A; is discussed. Equation (7) leads to

O™ (agy) = Oy @7 (g) + Ay (8)
which can be expressed as the following linear system
&) = (I))\ X U~

where® = (&~ 1(ay),..., 0 (Gxy), ..., P Haxq))" € RE? and®y andus.,
are respectively a matrix and a vector, with dimension dépgnon the model at
hand, representing the values®f! (a,;) and), for ®,, and the values of;; and
Vi; for us 4.

Identifiability is obtained if and only if the matri, is of full rank. It is easily
noticed (see the example below) tligt is not of full rank only for very particu-
lar values ofoy; (typically a,; = 5 for somek;, j for instance). Moreover these
theoretical non-identifiable situations lead seldom t@fecal non-identifiable sit-
uations since an estimat@y,; is used instead of the unknown true vatyg. To be
definitively convinced of this fact, the reader can have alyéaok at the robust-
ness study (Section 5) where simulations involve a thezaiyi non-identifiable

model (alla,; = 1) but where practical identifiability is observed.

2
Example with model [p; 05 x| for intra-group identifiability  In this situa-
tion, &, = [MN] is a(Kd x 2K)-matrix formed by two matrix blockd/ =
(Mlk)lgk’SK andN = (le)lgk’SK defined by
1<I<Kd 1<I<Kd
My, = (b_l(akl—(k—l)d)1'{1+(k—1)d§l§kd}
Nie = Mei—(e—yadl i (k—1)d<i<kdy

anduy, = (01,...,0k,71,--.,7K)" is a(2K)-vector. See Appendix B for a
developed version cb,.
®, is not of full rank (nin(Kd, 2K)) if and only if

e Possibility 1: there exists € {1,..., K} such thaty,; = % forall j €
{1,...,d},

e Possibility 2: there exists,, ..., k. € {1,...,K}, ki,...,k, being all
different, with7 > 0 satisfyingd(K — 7) < 2K, such that for allj, j €
{1, S ,d}, forall k£ € {]{31, RN k’T}, Ajé_l(akj) = )\j/(I)_l(Oékj/).

7



3.3.2 Inter-group identifiability

This non-identifiability problem means that one group ofgbeulation” can be
transformed into more than one group of the populafforit cannot happen if the
group proportiong,, in P are all different (it is likely in practice) and if simultane
ously all the constrained models are with fixed proportiogsveen populations
(models[py ..]). But if these proportions conditions are not verified, thoan
identifiability problem is the following: For fixe&; andk, (k1, ks € {1, ..., K},
k1 # ko) and for fixedj (j € {1,...,d}) there exists two sets of parameters
(Okajs Ajs Vhrg) 7 (Opy o Aoy Vhy;) Which transform respectivelyy, ; into ay,; and
au,j. In fact, if the groupk, of P is transformed into the groufy, of P (instead
of the groupk; of P) then necessarily the group of P is not transformed into
the groupk, of P, but into a groug:; # k» of P; The simplest solution is; = k1
but it is not certain ifK’ > 2.

Thus, the identifiability problem can be rewritten equivelg There existg, #
ki andks # ko such that, for any and(dx,;, Aj, Vk1j)s (Okajs Ajs Vke;) SUCh that

O (Ggyj) = Okry D (kys) + A ks 9)
O (Gkyj) = Orgs D (k) + AjYkgs (10)

there eXIStq(Sk 157 ]7,7]:;1]') 7é (5k1]7)‘ja’7klj) and (5];237)‘377]@2]) 7é (6k2]7>\]7’7k2])
such that

(I)_l(dk?]) 6klj (aklj> + )\]’}/klj (11)
(b_l(dkiij) = 5/62] (akQJ) )\j’yk’gj (12)
It follows from (9) and (11) that
6/
P () = O () = A+ X (13)
k1j

and similarly from (10) and (12)

5
k‘2J(I) ( kz]) Aj Thaj 5/ +)\37k23' (14)

o (ay.
(aksj) 514:23 J 5 Yo kaj

Equations (13) and (14) lead to the following linear system

Hk2:ks) (I)c(S]f;:f?)?’ U((g]f’l,;/kQ) (15)

Where@ (ka,ks) — ((13 1(&k21), RN (b—l(&de)’ (b_l(d]%l), RN (b_l(d]%d))/ € R
(k1,k2)

and {3, anduj;") are respectively a matrix and a vector, with dimension
depending on the model at hand, representing values &féy, ), ®(u,;),

8



Srugs Okags Vhwjs Vhojs Ajr Aj Tor @52 and values o, 0 . ki Vhy; TOF
ugfl ka)

Cdnditionally to the values of’, the problem is identifiable if no solution exists
to System (15) or, in other words, if the number of linearlgependent lines of

{12 is no less than the number of free parameters . The number

of lines of égk;fa) is equal to2d and in most cases of interest these lines are
independent for any values. See for instance the following example with the
model [px. o vx] for a discussion on this subject. The number of free paramete
of uf;’ffy’f”) corresponds to the values in (Table 2) by artificially fixiRg= 2 in

this table. Except for modép;, J; ;] the maximum number of free parameters is
equal tomax(4,d + 2). Thus, a sufficient condition of inter-group identifiahyjlit

is that2d > max(4,d + 2). Sinced > 2 usually for binary data, all models are
identifiable except the modél,, J; ;] since the number of free parameter&ds
Although this model is non-identifiable, it can neverthelbs used by bearing in
mind that a label switching may occur fromto P.

Remark Only a single switch between 2 classés;(k,) of P becomes
(kq, k1) of P) may occur with the modéjp; 6, v,]. Indeed in case of a switch
between more than 2 classes, for instariéesk,, k3) of P become ks, ks, k1) of
P or (k1, ko, k3, ky) of P becomes ks, k1, ky, k3) Of P, the number of equations
reaches at lea8t! for 2d free parameters: The modg}, §; ;] is then identifiable.

Example with model [p, 0, x| for inter-group identifiability.  In this situa-

tion @f;kl fi, = [MN] is a(2d x 4)-matrix formed by two matrix blockd/ =

(Mls>1§s§2 andN = (le)1§s§2 defined by

1<i<2d 1<1<2d

M, = (il@_l(&lﬁl) )‘lak >1|{1+(5 1)d<I<sd}
Ny, = )\2_(5_1)d1|{1+(s—1)d§l§sd}
k’l k2)
andu I

(K1, kz)
®6’PY)A7>\I '

The reader can easily convince himself that #aelines are generally linearly
independent in practice. For instance, the simulationliain the robustness
study (Section 5) consider this model and none identifigipifoblem is encoun-
tered (the classification error rates are always strictiyelothan50% and thus

none label switching has been obtained).

= (0%, 0%, Vi» Vi) - REfET to Appendix B for a developed version of



4 Parameter estimation

In this section, only the situation where proportions arenavn is presented, the
contrary case being immediate.

4.1 The three estimation steps

Generalized discriminant analysis needs three estimstéps. The first step con-
sists in estimating parametepg andoy; (1 < £ < K andl < j < d) of
populationP from the training sampl&. SincesS is a labelled sample, the max-
imum likelihood estimate is simply given by (Everitt [198@eleux and Govaert
[1991)):

N R N
Pr = z; Zik and Hj = z;ngzzk
1= 1=

The second step consists in estimating parameiessida;; (1 < & < K and
1 < j < d) of the Bernoulli mixture by usingy, &;; (1 < k < K andl < j <d)
andé. For estimatingi,;, the parameters,;, v, and\; of the link betweenP
and P are to be estimated, and then an estimat,efs deduced by Equation (7)
by plug-in. This step is described below.

Finally, the third step consists in estimating the group maership of the individ-
uals from the test sampl& by maximuma posteriori

4.2 Estimation of the link parameters

For the second step above, maximum likelihood estimation bm efficiently
based on the EM algorithm (Dempster et al. [1977]). The ililagd is given
by:

L0) = [T>_ e [T a1 = )=,

The completed log-likelihood is given by:

n K d
lc(lg; 21, cey Zﬁ) = Z Z 2ik log <]5k H &i;-j(l — @kj)(l_jij)>.
j=1

i=1 k=1

10



The E step From a current valué'@ of the parametef, the E step of the
EM algorithm consists in computing the conditional expgotaof the completed
log-likelihood:

Q(0;09) = Eyolle(0:Zy,...,Z:)|%1,. .., %z

where

. ~ ) L1

tEZ) = p(Zip = 1|%1, ..., %5; 0'9) = _ j .
ST (@)™ (1 — aldht-m)
k=1 j=1

is the conditional probability that the individuabelongs to the group.

The M step The M step of the EM algorithm consists in choosing the value
6la+1) which maximizes the conditional expectatigrcomputed at the E step:

glath) — argmax Q(6:0) (16)
€

where®© is a parameter space depending on the model at hand. The Msstep
described for each componenttot= {py, dx;, A, Vi }-
For proportions, the maximum is:

) 1
o == o
=1

The parameter;; and~;; are never considered because the full generalized dis-
criminant analysis model is overparameterized. Thus, thr@gonstrained models
are to be estimated. For this, itis proved in Appendix C th& a strictly concave
function of &, d;, 6, v, 7; andy. Thus, the maximisation of(4; 69 is com-
puted by an alternated iterative algorithm which consise succession, parame-
ter component per parameter component, of simplex algosihthe optimisation

IS unconstrainedy, v; € R). If the optimisation is constrained,(, 5, > 0), the
same algorithm is used but if the optimisation conduces tegative result, the
value 0 is retained (in this case the EM algorithm is used®generalized form:
GEM, Dempster et al. [1977]). The starting point of the al&ted algorithm is

11



09, and this one of the EM algorithii® is the point which correpond tB = P.

For the discrete parametexs, if the dimensiond is not too high, the maximiza-
tion is carried out by computin@(¢; 6@) for all possible values of these discrete
parameters. For high dimension, a relaxation method carsed, which con-
sists to assume that is not a binary parameter ifi-1, 1} but a continuous one
in [—1, 1], named\; (see Wolsey [1998] for instance). Optimization is thus per-
formed on this continuous parameter, with the previousradted algorithm since
Qs a strictly concave function of; (Appendix C), and the solutiok} " is then

discretized to obtain a binary solutiof’*" as follows: A" = sgr(x’@*V),
where sgn denotes the sign function. This relaxation methowt used in the
experiments of this paper but see Jacques [2005] for sonmepe&a of use.

5 Robustness study

Generalized discriminant analysis for binary data esakytielies on three kinds
of assumptions:

1. Assumption on the binary data: Inside a populatienot P) the binary
variables are conditionally independent;

2. Assumption on the link between binary and continuousaldes inside a
population @ or P): The binary variables arise from the discretization of a
multivariate Gaussian distribution preserving the canddl independence
for binary variables;

3. Assumption on the link between continuous variables off ipopulations
P andP: They are exactly the assumption of generalized discrintianal-
ysis for Gaussian data.

Only the second assumption is in the depth of this work, tleedtler ones arising
from a context different from generalized discriminantlgsis for binary data. In
Assumption 2, continuous variables preserving conditiordependence for bi-
nary variables (inside a population) seems weak since itrigas to this one of
Assumption 1; The robustness against this hypothesis wilidvertheless illus-
trated by both the practical robustness study (Sectiondng)also by the first
biological application (Section 6.1). Finally, the mairsasption of the present
work is that binary variables arise from the discretizanbGaussian variables.
In this section, we first prove that the Gaussian hypotheside weakened into a
new assumption and, then, some experiments illustrate\ahagiete the robustness
of the methodology when this weakened assumption is itsalkited.

12



5.1 Theoretical robustness study for the Gaussian assumpi
Under the hypothesis that the link between the latent visadf both populations
P andPis linear, the assumption of normality of the latent varehl; , _, and
}ﬁj‘z.lkzl is in fact not necessary, and sufficient conditions are theviting:

{ P, (s)) = ®(*t)

j—bkj 85— Qb —bkj
F 517k — P JHkj —Ok;
YIJ\Zlkzl( ax; ) ( Ok )

(17)

Whererlj‘Z ) denotes the conditional cumulative density function ofalale
1k=

Y1), _, andpy;, oy; its mean and its standard deviation respectively.
Effectively, by using these two relationships, it is posio write:

1—ij 7(8]') |f)\]:1
Oékj = p(le\Zlkzl = ]_) — { 1 |Z1=1

FYlj\Zlkzl (Sj) |f >‘j =—1 Okj
and also
~ ]_ — F‘i)‘l" (Sj) |f )‘j = ]_
S ‘ _ _ 9|2y =1 _
e I N I PV
Nzy=1
8i=brj\ ie Yy
P T P GO AT s it = by
By Ca) =1

The values oty;; anday; are the same than in the situation whete, _ and
}71]-‘2 _, were Gaussian, and consequently Relationship (7) is igffit.r
e

5.2 Practical robustness study for both Gaussian and condi-
tional independence assumptions
To illustrate the robustness against both Condition (1d)@nditional indepen-

dence for binary variables after discretization, let cdesthe following example:
Foralll < j <5, X1j, 2 (respectiverle‘Z kfl) is the binary discretization
- =

(with the thresholds; = s) of Y1, , _, (resp. Ylj‘zlk:l), whereYy; , _ (resp.
Y/lj‘z-lk:l) is a mixture of two Gaussians\ (yu1,0x1%) + 7N (1, |, 04,%) (resp.
TN (firs, 57,) + TN (%)) forall 1 <k <2 (r +x =1and7 + 7 = 1),
The mixture density distribution df,; , _, andYy; . (for fixedj andk), and
the Gaussian corresponding density (with the same mon“iaaaurlﬁ/tj‘zlkz1 and
Yij,, _,) are presented in (Figure 1).

13



Table 1: Generalized discriminant analysis models.
Vi
0 g Vi v
Lo[ro] 1o [Tl 1]
2 0 1600 [59] [oul [69]
o [0k 0] [0ky] [0k ] [0kl
o; 16,01 [6;~] [05] 105

Table 2: Number of continuous parameters (param.) to bmastd for the con-
strained models.
model [, 10] [pr19] [pelw) [pel7] [Ped0] [pedr]  [pedw] [prdl

param. O 1 K d 1 2 K+1 d+1
model  [px 05 0] [pk Ok Y] [Pk Ok Vel [Pk 0k v5) [Pk 6501 [Pk 0; 9] [k 65 vl [Pk 057,
param. K K+1 2K K+d d d+1 K+d 2d
o = = =Preal dersity
N == P Gaussi an densi ty
02+ Vil "\/ ——— P real density
,;!-s‘ "\ o P Gassian densi ty

0.15(

0.1

0.05

4 6 8 10 12 14 16 18 20 22
(s—bkj)/akj s

Figure 1. Density distribution oYlj‘Zlk:l andfflj‘z - for the robustness study.
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The values of the discretization threshold, of the tramsfdron parameters
betweenP and P (ax; andby;) and of the first and of the second moments of
Yij,,.., and ﬁj‘zmzl (kxj» on;°s fx; @and ay;) are arbitrary chosens = 13;
ap; = 1.2 andb,; = 1forl < k <2andl < j <5; (u5, poj) = (10,13) and
(0'1j,0'2j) = (18, 17) for 1 <7 <5,

Now, let choose the parameters of the mixture densit}/"pjz1 with respect to
the following constraints, fob < e < 1:

{ Py, (57) = (50 4 (1= () x ¢

by e pi s —br s o pi s —b s
Fylj‘zlkzl(sfaT’”) = @(%) (1 - B r;k]:j;;k;j k)Y X €

(18)

Whene = 0, these constraints correspond to (17), and the greatgthie less (17)
are respected. (Figure 2) illustrates the cumulative defsnction of the latent
variables for different values ef

The sample size is set to 70, the experiments are repeatath@g and the
mean error rate is presented on (Figure 3) for differentesgias: Generalized
discriminant analysis (GDA) with modél;, J x|, standard discriminant analysis
and clustering. Moreover, the optimal error rate is alseg@ivGDA outperforms
usual methods whea is moderated < 0.22), and for highere, the assumed
model of generalized discriminant analysis is too incdraeal then the clustering
becomes better.

6 Comparison of methods on biological data

6.1 Discretized continuous data

The first motivations for which generalized discriminanalysis was developed
are biological applications (Biernacki et al. [2002], Varaeker and Ter Brack
[1993]), in which the aim was to predict sex of birds from betnical variables.
Very powerful results have been obtained with multinornssianptions.

The species of birds considered in the present applicasi@ory’s Shearwater
Calanectris diomede&Thibault et al. [1997]). Two subspecies can be identi-
fied: borealiswhich lives in the Atlantic islands (the Azores, Canarids,)eand
diomedeawhich lives in the Mediterranean islands (Balearics, QGarsetc.).

A sample oBorealis(n = 206, 45% females) was measured using skins in several
National Museums. Five morphological variables were messuCulmen (bill
length), tarsus, wings and tail lengths, and culmen depithil&ly, a sample of
diomedegn = 38, 58% females) was measured using the same set of variables.
In this example, two groups are present, males and femaidsalathe birds are

of known sex (from dissection). (Figure 4) illustrates éi#fnces between the two
subspecieborealisanddiomedeafor two biometrical variables.
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Figure 2: Cumulative density function of the latent varegbfor different values

of e.
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Figure 3: Classification error rate for usual discriminardlgsis, generalized dis-
criminant analysis (GDA) and clustering compared to thenogit error rate for

different values ot.
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To provide an application of the present work, the contirsidmiometrical vari-
ables are discretized into binary data. As it can be showrigu(e 4), discretiza-
tion must be carried out carefully, and particularly for ti®ice of the discretiza-
tion threshold. Effectively, if this threshold is fixed attimean of the biometrical
variables for one subspecies, all the values for the othiespcies will be on
the same side of this discretization threshold. Conseguéné threshold is cho-
sen such that there is a maximum of individuals in each sidbeotliscretization
threshold. (Table 3) presents values of retained disert@tiz thresholds for the
five biometrical variables and (Table 4) displays frequeoicgach couple (sub-
species, sex) for two binarized biometrical variables.

The subspecieborealisis selected as the training population and the sub-
speciediomedeaas the test population. The 32 generalized discriminariyana
sis models, standard discriminant analyig ( 0]) and clustering are applied on
these data. The classification error rate and the value @&ltberiterion are given
in (Table 5).

If the results are compared according to the error rate,rgéped discrimi-
nant analysis with the modgl;, ¢, ;] is the best method, with erra@6.78%. This
error is lower than that obtained by standard discriminaatysis (2.1%) and by
clustering £3.68%). By using the BIC criterion, which leads to select the model
[Dr 0 7], the error rateX1.05%) is still the best with generalized discriminant anal-
ysis.

This application illustrates the interest of generalizegtdminant analysis with
respect to standard discriminant analysis or clusterinffecively, by adapting
the classification rule issued from the training populatonthe test population,
generalized discrimination analysis gives lower classiifon error rates than by
applying directly the rule issued from the training popuat(standard discrimi-
nant analysis), or by omitting the training population ap@lging directly clus-
tering on the test population.

It is interesting to remark that the assumption which suppdhlat binary data
are issued from the discretization of Gaussian variablesn(@trical variables) is
relatively realistic in this application. Nevertheledsere exists a strong corre-
lation between the five biometrical variables, which vietathe assumption that
discretized variables are independent.

6.2 Real binary data

The second application considers sea birds from the speaiffaiss(Bretagnolle(2006),
personnal communication). Two groups of subspecies arsidemred: The first
one is composed of subspecies living in Pacific Islandsibalaris(Galapagos
Island), polynesia) dichrous(Enderbury and Palau Islands) agdnax— and the
second one is composed of subspecies living in Atlantimtida—boydi (Cap
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Figure 4: Wings and tarsus lengths thomedeandborealis

Table 3: Chosen discretization thresholds for the five bioiced variables for the

two subspeciediomedeandborealis

culmen depth culmen
14.35 51.50

tarsus wing length
54.45 342.50

tail length

discret. threshold (mm) 28.40

Table 4: Binary wings and tarsus lengths fiomedeandborealis

wings
0 1
borealis diomedea borealis diomedea
" male 108 6 2 3
7 female 76 1 4 1
8 male 3 3 0 4
female 11 1 2 19
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Verde Islands). The difference between populations isthergeographical range
(Pacificvs. Atlantic Islands). A sample of Pacific birds & 171) was measured
using skins in several National Museums. Four variablesragsured on these
birds: Coller, stripe and piping (absence or presence fesdlthree variables)
and under-caudal (self couloured or not). Similarly, a sengb Atlantic birds
(n = 19) was measured using the same set of variables. Like in tiveopiseex-
ample, two groups are present (males and females) and dlirtteeare of known
sex. Pacific birds are selected as the training populatidnAdlantic ones as the
test population. According to the biologist Vincent Bratatie (CEBC-CNRS),
the morphological variables which are used in this appbeoaare not very dis-
criminative, and then one can not expect better than an aroond40 — 45%.

The 32 generalized discriminant analysis models — amonghwtiscriminant
analysis [py 1 0]) — are applied on these data, and the results are preser{iet in
ble 6). Clustering is also applied, and the obtained ertterisal9.05%.

As in the previous study, generalized discriminant analysimore efficient
than standard discriminant analysis and clustering tcsiflabirds according to
their sex, and moreover the BIC criterion leads to choosenttdel with the small-
est error rate. The relatively poor classification resuhs (ninimal error rate is
43%) confirm the assumption of the biologist.

7 Conclusion

Generalized discriminant analysis extends standardidis@nt analysis by al-
lowing training and test samples to arise from different siothastically linked
populations. Our contribution consists to adapt precunswks in a multinormal
context to the case of binary data.

Applications in a biological context illustrates this wowk classification of birds
according to their sex is provided by using generalizedroiisnant analysis, and
this classification is better than those obtained by disoamt analysis or by clus-
tering.

Perspectives for this work are numerous. Firstly, the patars of both popula-
tions P and P are estimated successively;,; andp,, are estimated in a first step
and afteri,; andp,, are deduced from these estimation and from those of the link
parameters. It should be very (computationally) usefutidonsider a joint estima-
tion of this four parameters.

Secondly, the link between the two populations was definatsbyg Gaussian cu-
mulative density function. Although it seemed initiallyffaiult to find this link, a
simple link involving the probit function was obtained. lag/not easy to imagine
it, but it is meaningful afterwards. It would be interestittgtry other types of
cumulative density functions; Obviously theoretical @swill have to be devel-
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Table 5: Classification error rate&) and value of the BIC criterion for test pop-

ulationdiomedeawith training populatiorborealis
model [p;10] [px17] [pel7] [pPel7] [ped0] [pedy] [prdywl [prd)
error 421 23.68 1578 18.42 57.89 23.68 1578 18.42
BIC 648 216 218 225 263 214 218 214
model  [py; 6x 0] [pk 0k Y] [Pk Ok Vi) [Pk 0k vs] (P2 65 0] [P 659] [pwe 65 k] [Pk 6551
error 57.89 1578 18.42 18.42 57.89 18.42 18.425.78
BIC 270 1219 216 220 281 214 220 228
model [P 10] [pe1v] [Pele] [Brlvy] P00l [Pedy] [Drdv] [Pro ]
error 421 26.31 23.68 21.05 421 21.05 23.68 21.05
BIC 595 215 215 226 267 213 215 215
model [Py, 6x O] [Pk 0k ] [Pr Ok Vil [Pr Ok vs] [Pr 05 0] [P 059] [Pre 05 %] [Pk 6551
error  42.1 23.68 21.05 21.05 421 21.05 21.05 23.68
BIC 274 217 217 222 285 215 222 225

Table 6: Classification error rateé%) and value of the BIC criterion for test pop-

ulation of Atlantic birds with training on Pacific birds pdation.
model  [p;10] [px19] [pely] [pPel7] [ped0] [pedy] [pkd vl [pedy]
error 50.94 43.39 4528 4339 50.94 4339 45.28 45.28
BIC 212 209 216 224 212 209 216 224
model  [p 0, 0] [Pk 0k ] [Pk Ok Ve [Pk Ok 5] [Pk ;0] [k 05 7] [k 05 V] [Pk 05 7]
error 4528 4528 52.83 4528 4528 52.83 50.94 50.94
BIC 210 210 215 226 225 224 227 239
model  [px 10]  [px 1] [Pr 1) [Prlv] k0] [Ped]  [Prd vl [Prd )
error 4528 50.94 50.94 4528 4528 50.94 50.94 45.28
BIC 213 213 220 228 213 213 220 228
model [Py 05 0] [Pk Ok Y] [Pk Ok Ve [Pk Ok V5] [P ;01 [Pk 0;9] [k 0; vl [Pk 65 ;]
error 4528 4528 47.16 4528 4528 52.83 4528 52.83
BIC 214 213 213 229 228 227 224 243
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oped and practical tests will have to be carried out.

Thirdly, with this contribution generalized discriminamtalysis is now developed
for continuous data and for binary data. To allow to analys&r@e number of
practical cases, it is important to study the case of caiegjorariablesi(e. much
than two modalities), and thereafter the case of mixed blesa(binary, categor-
ical and continuous together). Everitt’'s works (Everit®$8]), which defined a
classification algorithm for mixed variables, can be hdlfduthis topics.

Finally, it would be also interesting to extend other cleakdiscriminant method
like non-parametric discrimination or semi-parametriscdimination. See Bier-
nacki and Beninel [2005] for logistic regression.
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A Proof of the relation between test and training
populations

From (6) it follows thatf/lj‘zlk:l is Gaussian with meaj,; = ax;pu; + br; and
with standard deviatiow,; = |ax;|ox;. However, this transformation is non-
identifiable: There exists more than one couple, b;) which satisfies Relation-
ship (6). To solve this problem, we assume then than alkth@re non negative
(akj Z 0)
It is possible to derived from Equation (5):

s . .

Nt = o o) + A\
Okj Okj

and then, using expressions/gf; anda,; just given above:

R 1 A\:Ss s .
G = 1—<I><)\j8] Mka) :1_(I><_)‘353 _)\'akjﬂkj‘i‘bkj) (19)

~ J
Okj Akj Okj QO kj

_ % (@-1(akj) 4o, Qhitths Drj — Mk:j) ' (20)

akj aij'k;j

Alternatively, it is also possible to write from (5) again:
Hj -1 S
Ai—= = d (ay;) + A\j—,
]Ukj ( k]) ]Ukj
and thus, following the same process than in (19),
s . by

Ukj Ukj aij'kj

- b (cp—l(akj) oo, Ba% T bry sj) . (22)

aij'kj

Of course, Equations (19) and (21) are equivalent but thidiirs will be retained
since Parametrization (19) will be more convenient for pIpg later numer-
ous parsimonious models of constraints on the link. Corsettyy the following
relationship betweea,; anda; is obtained:

O~ékj = @(5@ (I)_I(Oékj) + )\j’ﬂ;j),

whered,; € RT\ {0}, \; € {—1,1} andy; € R.

23



B Developed version of the linear system matrices
for intra-group and inter-group identifiability ex-
ample

The linear system matricds, are for the intra-group identifiability example:

q)_l(Oéll) 0 ce 0 )\1 0
(I)_l(ald) 0 S 0 A O
0 0 & Yap) 0O 0 0 0 A 0
D, =
0 0 ® Yax) 0 0
0 0 (I)_l(OéKd) 0 0

and for the inter-group identifiability example:

1 1/~ o Ykq1 /
—5k11q) (akll) )\1 Bry1 0 )\1 0

1 F—1/(x Vhyd /
(I)(k’hk?) _ 5k1dq> (akld) )\d5k d 0 y )\d 0
Oy, NN T 1 -1/ _ kol /
0 5k21 P (Oék21) )\1 5k21 0 )\1
1 1 _ ’W@Qd /
0 —6k2dq) (Oéde) )\d—cSde 0 A

C Proof of the concavity of the function Q(#, 69))

The aim of this appendix is to prove th@{(9, ) is a strictly concave function
of v, 7; and~, and also oby, J;, 6 and ;. The fundamental key of the proof is
to study first concavity o©(6, 0(@)) for ;.

Let Q(vx;) be the functionQ(¢, #@) with parametergy, d;;, \; and 9@ fixed,
and let prove tha@(~y;) is strictly concave:

Q(Vks) Z thk{ log(pk) + Ziﬂzg log ( (Cks) ) + Zd: — Tj;) log (1 - (Ck]))}

i=1 k=1 j=1
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with gk‘] = 5]” (Oékj) + )\]’ykj
The derivative of the functio®(~y,) is

8Q %J ¢(ij) - —P(Cry)
ZZMZ{ i J‘D(ﬁk ) Ta-E ))\Jl - (ﬁky)}

i=1 k=1

where¢ is the probability density function 0¥/ (0, 1).

Using that?%t% — _p(bz + a)¢(bx + a) with a,b € R, the second derivative

is:

n

Q(Vk;) Zi%i) { =G (i) P(Chj) — Ajd(Crj)

em] Lo L [B(Gy)P
2 A0 (G) (1 = P(Ghg)) — A (Grs)?
) 1= 0GP i
that can be rewritten:
920 91(Crj)
ij — Z thk Z )\ ¢ ij { C )] (Ck] (Ck;]) + (ﬁ((@))
=1 k=1 =
(1 ) g2(£kj)
+M(Ck](¢(gkj) 1)+ ¢(ij))}- (23)

To prove thatQ is strictly concave, it is sufficient to prove that both funos ¢;
andg, are strictly positive:

e forallz € R: gi(z) = 2®(z) + ¢(z) > 0, becauselim g¢,(z) = 0 and
g1 is strictly increasing sincg/ (z) = ®(z) + z¢(x) — zp(x) = ®(x) > 0,
o forallz € R: go(z) = 2®(z) — v+ ¢(x) > 0, becauselim go(z) =0

T——+00
and g, is strictly decreasing sincg(z) = ®(x) — 1 4+ z¢(x) — zp(x) =
O(z) —1<0.

Thus Z2m) Q(”’”) < 0 andQ(~y;) is strictly concave. O

If Qis no longer function ofy;; but now of~, (respectively ofy;, of ) the

expression of the second derivative is the same than (23)rhgving the sum on

j (resp. onk, on (k, 7)), and thusQ is still strictly concave.

Let consider now the functio@(d;;) with the above conventiorpg, vx;, A; and
9) fixed). Same type of calculus leads to:

Q[0 v (1—ay)
852 Z Ztlk Z < am)) ¢(<kg){[ B(C; )]291(@]) mgz(@j)},

=1 k=1 7j=1
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and thusQ(dy;) is strictly concave. By using the above arguments, it afises
mediately tha©Q(d;), Q(d;), Q(d) are also strictly concave. O
Let finally consider the functio®@();). The second derivative is:

82

Tij (1 —ay)
a>\2 ;;tsz'Ykg Ck]{ C )]291(<k]) mgz(gkﬂ},

andQ(\;) is strictly concave. O
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