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Abstract

Standard discriminant analysis supposes that both the training sample
and the test sample are issued from the same population. Whenthese sam-
ples arise from populations differing from their descriptive parameters, a
generalization of discriminant analysis consists in adapting the classification
rule related to the training population to another rule related to the test pop-
ulation, by estimating a link between both populations. This paper extends
an existing work available in a multinormal context to the case of binary
data. To raise the major challenge which consists in defininga link between
the two binary populations, it is supposed that binary data result from the
discretization of latent Gaussian data. Estimation methodand robustness
study are presented, and two applications in a biological context illustrate
this work.

keywords Biological application; Discriminant analysis; EM algorithm; Latent
class model; Stochastic link.

1 Introduction

Let consider a first (training) sample of individuals described by explanatory vari-
ables, for which a partition in groups or classes is known. Let consider also a
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new sample of individuals (test sample), drawn from the samepopulation than
the training sample. Discriminant analysis consists in estimating an allocation
rule from the training sample in order to class individuals of the test sample (see
McLachlan [1992] for a survey).
Since works of Fisher [1936], who introduced a linear discriminant rule between
two groups, numerous evolutions have been proposed. All of them concern the
nature of the discriminant rule: Parametric quadratic rule(see for example Tomas-
sone et al. [1988]), semi parametric rule (as logistic discrimination Anderson
[1972]) or non parametric rule (Fix and Hodges [1951], Friedman and Stuetzle
[1981], Hand [1982], Silverman [1986]).
An alternative evolution, introduced by Van Franeker and Ter Brack [1993] and
developed further by Biernacki et al. [2002], considers thecase in which the train-
ing sample does not arise necessary from the same populationthan the test sample.
Biernackiet al. define several models ofgeneralized discriminant analysisin a
multinormal context, and experiment them in a biological situation, in which both
populations consist of birds from the same species, but fromdifferent geographi-
cal origins. The difference between the training and the test populations was the
geographical range in this application, but it could be alsotemporal considerations
or other. However in many domains (insurance, medicine, biology, etc.) a large
number of applications deals with binary data as well. Consequently the goal of
this paper is to extend generalized discriminant analysis,established in a multi-
normal context, to the case of binary data.
The paper is organized as follows. The next section presentsthe data and the latent
class model for both training and test populations. Section3 makes the assump-
tion that these binary data are discretized latent continuous variables in which the
order information is lost. This hypothesis is the key to establish a general stochas-
tic link between both populations, from which many meaningful parsimonious
models are declined. Thereafter in Section 4, estimating the parameters of these
models is performed by invoking the maximum likelihood method and the EM
algorithm. Then, a robustness study is carried out in Section 5 involving both
theoretical and experimental (simulated data) arguments.In Section 6, two ap-
plications in a biological context illustrate realistic situations where the proposed
generalized discriminant analysis outperforms standard discriminant analysis and
clustering. Finally, the last section concludes this paperby discussing possible
extensions of the present work.

2 The data and the latent class model

Data consist in two samples: The first sampleS, labelled and issued from the
training populationP , and the second samplẽS, unlabelled and issued from the
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test populatioñP . A fundamental assumption of the present work is that popula-
tionsP andP̃ may be different.
The training sampleS is composed byn pairs (x1, z1), . . . , (xn, zn), wherexi

is the binary explanatory vector for theith object withxi = (xi1, . . . , xid)
T ∈

{0, 1}d and wherezi = (zi1, . . . , ziK)T is the group membership withzik equal
to 1 if theith object belongs to thekth group and equal to 0 if not (i = 1, . . . , n,
k = 1, . . . , K). The number of binary explanatory variables and the numberof
groups are respectively denoted byd andK. Each pair(xi, zi) is assumed to be
an independent realization of the random vector(X1, Z1) with distribution:

X1j|Z1k=1
∼ B(αkj) for all j = 1, . . . , d and Z1 ∼ M(1, p1, . . . , pK),(1)

whereB(αkj) is the Bernoulli distribution of parameterαkj (0 < αkj < 1), and
M(1, p1, . . . , pK) defined the one order multinomial distribution of parameters
p1, . . . , pK (0 < pk < 1,

∑K
k=1 pk = 1). Moreover, using the latent class model

assumption that explanatory variables are conditionally independent (Celeux and
Govaert [1991], Everitt [1984]), the probability functionof X1 conditionally to
the group membership is:

fk(x11, . . . , x1d) =
d∏

j=1

αkj
x1j (1 − αkj)

1−x1j . (2)

Similarly, the test samplẽS is composed bỹn pairs(x̃1, z̃1), . . . , (x̃ñ, z̃ñ), where
the d variables are the same as in the training sample, but where the z̃i are un-
known. These pairs are assumed to be independent realizations of (X̃1, Z̃1) with
distribution:

X̃1j|Z̃1k=1
∼ B(α̃kj) for all j = 1, . . . , d and Z̃1 ∼ M(1, p̃1, . . . , p̃K). (3)

The explanatory variables̃X1j , for j = 1, . . . , d, are also assumed to be condi-
tionally independent. Basically, the distribution of(X̃1, Z̃1) differs from this one
of (X1, Z1) only by the values of the parametersαkj andpk.
Our goal is to estimate the unknown labelsz̃1, . . . , z̃ñ by using information from
both training and test samples. The challenge is then to find alink between the
populationsP andP̃ .

Remark The use of the terminology “test” for the sampleS̃ (and the pop-
ulationP̃ ) is abusive because this sample is used to determine the discrimination
rule. Nevertheless, this terminology is adopted in order tofacilitate the link with
the usual discrimination methods.
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3 Relationship between test and training populations

3.1 Formalizing the link between populations

In a multinormal context, a linear stochastic relationshipbetweenP andP̃ is not
only justified (with very few assumptions that we will recallfurther) but also in-
tuitive (Biernacki et al. [2002]). In the binary context, since such an intuitive
relationship seems more difficult to exhibit spontaneously, an additional assump-
tion is stated: The binary variables are supposed resultingfrom the discretization
of latent Gaussian variables. For example, if a binary variable is a purchase of a
product by a customer, it is assumed that the customer gives ascore to the product,
and buys it only if this score is greater than a given threshold. This assumption
is not new in statistics: See for example Thurstone [1927], who used this idea in
his comparative judgment model to choose between two stimuli, or also Everitt
[1988], who proposed a classification algorithm for binary,categorical and con-
tinuous data.
Thus, the explanatory variablesX1j|Z1k=1

of Bernoulli distributionB(αkj) are as-
sumed to arise from the discretization of latent continuousvariablesY1j|Z1k=1

in
the following manner:

X1j|Z1k=1
=

{

0 if λjY1j|Z1k=1
< λjsj

1 if λjY1j|Z1k=1
≥ λjsj

for j = 1, . . . , d, (4)

wheresj ∈ R is the discretization threshold, andλj ∈ {−1, 1} is introduced to
avoid choosing to which value ofX1j , 0 or 1, corresponds a positive value ofY1j,
and then to avoid binary variables to inherit from the natural order induced by
continuous variables.
Moreover, the joint distribution ofY1|Z1k=1

= (Y11|Z1k=1
, . . . , Y1d|Z1k=1

)T is as-
sumed to be multivariate normal with marginal distributionsN (µkj, σ

2
kj) and such

that the obtained discretized variablesX1j|Z1k=1
(j = 1, . . . , d) are independent

in order to retrieve the conditional independence assumption on the binary vari-
ables. It should be noted that the conditional independenceof the latent Gaussian
variablesY1j|Z1k=1

(j = 1, . . . , d) is a particular situation which conduces to the
conditional independence of the binary variables, but it isprobably not the only
one situation.
From (1) and (4) the following relationship betweenαkj, λj, µkj andσkj can be
derived:

αkj = p(X1j|Z1k=1
= 1) = 1 − Φ

(
λj

sj − µkj

σkj

)
(5)

whereΦ is theN (0, 1) cumulative density function.
As for the variableX1j, the binary variablẽX1j is also assumed to arise from the
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discretization of a latent Gaussian variableỸ1j with distributionN (µ̃kj, σ̃
2
kj). The

equations are the same than (4) and (5), by changingαkj into α̃kj, µkj into µ̃kj and
σkj into σ̃kj. The thresholds̃sj are naturally supposed to be equal tosj (s̃j = sj)
since, with the previous example, it is equivalent to assumethat customers of both
populations buy the product if the score is greater than the same threshold. In the
same spirit̃λj is supposed to be equal toλj , so the rule of purchase – lower or
higher than the threshold – is the same for both populations.
In a Gaussian context, Biernacki et al. [2002] showed that the only possible stochas-
tic relationship between the latent continuous variableY1|Z1k=1

of P andỸ1|Z̃1k=1

of P̃ is linear when the two following plausible hypotheses are assumed: (i) The
transformation betweenP and P̃ is C1 and (ii) thejth component̃Y1j|Z̃1k=1

of

Ỹ1|Z̃1k=1
only depends on thejth componentY1j|Z1k=1

of Y1|Z1k=1
. More precisely,

this relationship is expressed by

Ỹ1|Z̃1k=1
∼ AkY1|Z1k=1

+ bk, (6)

whereAk is a diagonal matrix ofRd×d containing the elementsakj and bk is a
vector ofRd containing the elementsbkj (1 ≤ k ≤ K, 1 ≤ j ≤ d).
By using (6) the following relationship between the parametersα̃kj andαkj can
be obtained (see details in Appendix A):

α̃kj = Φ
(

δkj Φ−1(αkj) + λjγkj

)

, (7)

whereδkj ∈ R
+ \ {0}, λj ∈ {−1, 1} andγkj ∈ R. Let notice that this rela-

tionship corresponds to a linear link between theprobit functions of bothαkj and
α̃kj. Conditionally to the fact thatαkj are known (they will be estimated in prac-
tice), estimation of theKd continuous parameters̃αkj is thus obtained from the
estimated parameters of the link betweenP andP̃ (plug-in method):δkj, γkj and
λj . Note that the choice of the discretization thresholdssj does not have any im-
portance. It implies that the number of free continuous parameters is2Kd and
it means that the model is overparameterized. It could be expected since the un-
derlying Gaussian model is by far more complex (in number of parameters) than
the Bernoulli model. Consequently there is a need to reduce the number of free
continuous parameters in (7). Thus some sub-models are defined by imposing
constraints on the transformation between both populationsP andP̃ .

3.2 Models of constraints on the stochastic link

The parametersδkj (1 ≤ k ≤ K and1 ≤ j ≤ d) will be successively constrained
to be equal to1 (denoted by1), to be class- and dimension-independent (δ), to be
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only class-dependent (δk) or only dimension-dependent (δj). In the same way,γkj

can be constrained with easy understood notations to be equal to 0, γ, γk or γj.
Then, 16 models are defined; They are summarized in (Table 1) where anad-hoc
notation is also given. For instance, the notation[1 0] means thatδkj = 1 and
γkj = 0, and corresponds to the usual discriminant analysis model.

For these 16 models, an additional assumption on the group proportions is
taken into account: They are conserved or not fromP to P̃ . In the following,
[pk 1 0] denotes the model[1 0] with equal proportions whereas[p̃k 1 0] denotes this
model with free proportions. The number of constrained models is thus growing
to 32. (Table 2) gives the number of (continuous) parametersto be estimated for
these models. If the mixing proportions are different betweenP andP̃ , K − 1
must be added to these numbers.

Finally, to automatically choose among the 32 generalized discriminant mod-
els, the BIC criterion (Bayesian Information Criterion, Schwarz [1978]) can be
employed. It is defined by:

BIC = −2l(θ̂) + ν log(ñ),

whereθ = (p̃k, δkj, λj , γkj) for 1 ≤ k ≤ K and1 ≤ j ≤ d, l(θ̂) is the maximum
log-likelihood corresponding to the estimationθ̂ of θ, andν is the number of free
continuous parameters associated to the given model. The model leading to the
smallest BIC value is then retained.
Before estimating the parameterθ by the maximum likelihood method, there is a
need to discuss identifiability of each parametrization.

3.3 Model identifiability

Some of the constrained models previously defined can be non-identifiable, and
the aim of this section is to clarify these problems. The model identifiability arises
at two levels: Identifiability of the model parameters whenαkj is transformed into
α̃kj, and identifiability of the transformation which ensures that αkj can be only
transformed intõαkj and not intoα̃k′j (with k′ 6= k). We call respectively them
intra-groupandinter-groupidentifiability.

3.3.1 Intra-group identifiability

Firstly, the identifiability of the couple(λj , γkj) in different constrained model
situations is reaching as follows:

• models involvingγkj = 0 or γkj = γj: By setting for instanceλj = +1
(j = 1, . . . , d),
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• models involvingγkj = γ or γkj = γk: By setting for instanceλ1 = +1.

By this way, the productλjγkj is allways identifiable and obviously all these con-
straints onλj have no impact on the estimation of the productλjγkj, as the reader
can easily convince himself.
Secondly, the identifiability of the couple of parameters(δkj, γkj) conditionally to
λj is discussed. Equation (7) leads to

Φ−1(α̃kj) = δkj Φ−1(αkj) + λjγkj (8)

which can be expressed as the following linear system

Φ̃ = Φλ × uδ,γ

whereΦ̃ = (Φ−1(α̃11), . . . , Φ
−1(α̃kj), . . . , Φ

−1(α̃Kd))
T ∈ R

Kd andΦλ anduδ,γ

are respectively a matrix and a vector, with dimension depending on the model at
hand, representing the values ofΦ−1(αkj) andλj for Φλ, and the values ofδkj and
γkj for uδ,γ.
Identifiability is obtained if and only if the matrixΦλ is of full rank. It is easily
noticed (see the example below) thatΦλ is not of full rank only for very particu-
lar values ofαkj (typically αkj = 1

2
for somek, j for instance). Moreover these

theoretical non-identifiable situations lead seldom to practical non-identifiable sit-
uations since an estimatorα̂kj is used instead of the unknown true valueαkj. To be
definitively convinced of this fact, the reader can have an early look at the robust-
ness study (Section 5) where simulations involve a theoretically non-identifiable
model (allα1j = 1

2
) but where practical identifiability is observed.

Example with model [pk δk γk] for intra-group identifiability In this situa-
tion, Φλ = [MN ] is a (Kd × 2K)-matrix formed by two matrix blocksM =
(Mlk)1≤k≤K

1≤l≤Kd

andN = (Nlk)1≤k≤K
1≤l≤Kd

defined by

{
Mlk = Φ−1(αk l−(k−1)d)1I{1+(k−1)d≤l≤kd}

Nlk = λk l−(k−1)d1I{1+(k−1)d≤l≤kd}

anduλ,γ = (δ1, . . . , δK , γ1, . . . , γK)T is a (2K)-vector. See Appendix B for a
developed version ofΦλ.
Φλ is not of full rank (min(Kd, 2K)) if and only if

• Possibility 1: there existsk ∈ {1, . . . , K} such thatαkj = 1
2

for all j ∈
{1, . . . , d},

• Possibility 2: there existsk1, . . . , kτ ∈ {1, . . . , K}, k1, . . . , kτ being all
different, withτ > 0 satisfyingd(K − τ) < 2K, such that for allj, j′ ∈
{1, . . . , d}, for all k ∈ {k1, . . . , kτ}, λjΦ

−1(αkj) = λj′Φ
−1(αkj′).
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3.3.2 Inter-group identifiability

This non-identifiability problem means that one group of thepopulationP can be
transformed into more than one group of the populationP̃ . It cannot happen if the
group proportionspk in P are all different (it is likely in practice) and if simultane-
ously all the constrained models are with fixed proportions between populations
(models[pk . . ]). But if these proportions conditions are not verified, the non-
identifiability problem is the following: For fixedk1 andk2 (k1, k2 ∈ {1, ..., K},
k1 6= k2) and for fixedj (j ∈ {1, . . . , d}) there exists two sets of parameters
(δk1j, λj, γk1j) 6= (δ′k1j, λ

′
j, γ

′
k1j) which transform respectivelyαk1j into α̃k1j and

α̃k2j. In fact, if the groupk1 of P is transformed into the groupk2 of P̃ (instead
of the groupk1 of P̃ ) then necessarily the groupk2 of P is not transformed into
the groupk2 of P̃ , but into a groupk3 6= k2 of P̃ ; The simplest solution isk3 = k1

but it is not certain ifK > 2.
Thus, the identifiability problem can be rewritten equivalently: There existsk2 6=
k1 andk3 6= k2 such that, for anyj and(δk1j, λj , γk1j), (δk2j, λj , γk2j) such that

Φ−1(α̃k1j) = δk1j Φ−1(αk1j) + λjγk1j (9)

Φ−1(α̃k2j) = δk2j Φ−1(αk2j) + λjγk2j, (10)

there exists(δ′k1j, λ
′
j, γ

′
k1j) 6= (δk1j, λj , γk1j) and(δ′k2j , λ

′
j, γ

′
k2j) 6= (δk2j , λj, γk2j)

such that

Φ−1(α̃k2j) = δ′k1j Φ−1(αk1j) + λ′
jγ

′
k1j (11)

Φ−1(α̃k3j) = δ′k2j Φ−1(αk2j) + λ′
jγ

′
k2j. (12)

It follows from (9) and (11) that

Φ−1(α̃k2j) =
δ′k1j

δk1j

Φ−1(α̃k1j) − λj

γk1j

δk1j

δ′k1j + λ′
jγ

′
k1j (13)

and similarly from (10) and (12)

Φ−1(α̃k3j) =
δ′k2j

δk2j

Φ−1(α̃k2j) − λj

γk2j

δk2j

δ′k2j + λ′
jγ

′
k2j . (14)

Equations (13) and (14) lead to the following linear system

Φ̃(k2,k3) = Φ
(k1,k2)
δ,γ,λ,λ′ × u

(k1,k2)
δ′,γ′ (15)

whereΦ̃(k2,k3) = (Φ−1(α̃k21), . . . , Φ
−1(α̃k2d), Φ

−1(α̃k31), . . . , Φ
−1(α̃k3d))

′ ∈ R
2d

andΦ
(k1,k2)
δ,γ,λ,λ′ andu

(k1,k2)
δ′,γ′ are respectively a matrix and a vector, with dimension

depending on the model at hand, representing values ofΦ−1(α̃k1j), Φ−1(α̃k2j),
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δk1j, δk2j , γk1j, γk2j , λj, λ′
j for Φ

(k1,k2)
δ,γ,λ,λ′ and values ofδ′k1j, δ′k2j, γ′

k1j , γ′
k2j for

u
(k1,k2)
δ′,γ′ .

Conditionally to the values ofλ′
j, the problem is identifiable if no solution exists

to System (15) or, in other words, if the number of linearly independent lines of
Φ

(k1,k2)
δ,γ,λ,λ′ is no less than the number of free parameters inu

(k1,k2)
δ′,γ′ . The number

of lines of Φ
(k1,k2)
δ,γ,λ,λ′ is equal to2d and in most cases of interest these lines are

independent for any valuesλ′
j. See for instance the following example with the

model[p̃k δk γk] for a discussion on this subject. The number of free parameters
of u

(k1,k2)
δ′,γ′ corresponds to the values in (Table 2) by artificially fixingK = 2 in

this table. Except for model[p̃k δj γj] the maximum number of free parameters is
equal tomax(4, d + 2). Thus, a sufficient condition of inter-group identifiability
is that2d > max(4, d + 2). Sinced > 2 usually for binary data, all models are
identifiable except the model[p̃k δj γj] since the number of free parameters is2d.
Although this model is non-identifiable, it can nevertheless be used by bearing in
mind that a label switching may occur fromP to P̃ .

Remark Only a single switch between 2 classes ((k1, k2) of P becomes
(k2, k1) of P̃ ) may occur with the model[p̃k δj γj ]. Indeed in case of a switch
between more than 2 classes, for instances(k1, k2, k3) of P become(k2, k3, k1) of
P̃ or (k1, k2, k3, k4) of P becomes(k2, k1, k4, k3) of P̃ , the number of equations
reaches at least3d for 2d free parameters: The model[p̃k δj γj] is then identifiable.

Example with model [p̃k δk γk] for inter-group identifiability. In this situa-
tion Φ

(k1,k2)
δ,γ,λ,λ′ = [MN ] is a (2d × 4)-matrix formed by two matrix blocksM =

(Mls)1≤s≤2
1≤l≤2d

andN = (Nls)1≤s≤2
1≤l≤2d

defined by

{

Mls =
(

1
δksl

Φ−1(α̃ksl) − λl
γksl

δksl

)

1I{1+(s−1)d≤l≤sd}

Nls = λ′
l−(s−1)d1I{1+(s−1)d≤l≤sd}

andu
(k1,k2)
δ′,γ′ = (δ′k1

, δ′k2
, γ′

k1
, γ′

k2
). Refer to Appendix B for a developed version of

Φ
(k1,k2)
δ,γ,λ,λ′ .

The reader can easily convince himself that the2d lines are generally linearly
independent in practice. For instance, the simulation involved in the robustness
study (Section 5) consider this model and none identifiability problem is encoun-
tered (the classification error rates are always strictly lower than50% and thus
none label switching has been obtained).
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4 Parameter estimation

In this section, only the situation where proportions are unknown is presented, the
contrary case being immediate.

4.1 The three estimation steps

Generalized discriminant analysis needs three estimationsteps. The first step con-
sists in estimating parameterspk and αkj (1 ≤ k ≤ K and 1 ≤ j ≤ d) of
populationP from the training sampleS. SinceS is a labelled sample, the max-
imum likelihood estimate is simply given by (Everitt [1984], Celeux and Govaert
[1991]):

p̂k =
1

n

n∑

i=1

zik and α̂kj =
1

n

n∑

i=1

xijzik.

The second step consists in estimating parametersp̃k andα̃kj (1 ≤ k ≤ K and
1 ≤ j ≤ d) of the Bernoulli mixture by usinĝpk, α̂kj (1 ≤ k ≤ K and1 ≤ j ≤ d)
and θ̂. For estimating̃αkj, the parametersδkj , γkj andλj of the link betweenP
andP̃ are to be estimated, and then an estimate ofα̃kj is deduced by Equation (7)
by plug-in. This step is described below.
Finally, the third step consists in estimating the group membership of the individ-
uals from the test samplẽS, by maximuma posteriori.

4.2 Estimation of the link parameters

For the second step above, maximum likelihood estimation can be efficiently
based on the EM algorithm (Dempster et al. [1977]). The likelihood is given
by:

L(θ) =

ñ∏

i=1

K∑

k=1

p̃k

d∏

j=1

α̃
x̃ij

kj (1 − α̃kj)
1−x̃ij .

The completed log-likelihood is given by:

lc(θ; z̃1, . . . , z̃ñ) =
ñ∑

i=1

K∑

k=1

z̃ik log
(

p̃k

d∏

j=1

α̃
x̃ij

kj (1 − α̃kj)
(1−x̃ij)

)

.
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The E step From a current valueθ(q) of the parameterθ, the E step of the
EM algorithm consists in computing the conditional expectation of the completed
log-likelihood:

Q(θ; θ(q)) = Eθ(q) [lc(θ; Z̃1, . . . , Z̃ñ)|x̃1, . . . , x̃ñ]

=

ñ∑

i=1

K∑

k=1

t
(q)
ik

{

log(p̃k) +

d∑

j=1

log
(

α̃kj
x̃ij(1 − α̃kj)

1−x̃ij

)}

where

t
(q)
ik = p(Z̃ik = 1|x̃1, . . . , x̃ñ; θ(q)) =

p̃
(q)
k

d∏

j=1

(α̃
(q)
kj )

x̃ij

(1 − α̃
(q)
kj )(1−x̃ij)

K∑

κ=1

p̃(q)
κ

d∏

j=1

(α̃
(q)
κj )

x̃ij

(1 − α̃
(q)
κj )(1−x̃ij)

is the conditional probability that the individuali belongs to the groupk.

The M step The M step of the EM algorithm consists in choosing the value
θ(q+1) which maximizes the conditional expectationQ computed at the E step:

θ(q+1) = argmax
θ∈Θ

Q(θ; θ(q)) (16)

whereΘ is a parameter space depending on the model at hand. The M stepis
described for each component ofθ = {p̃k, δkj, λj, γkj}.
For proportions, the maximum is:

p̃
(q+1)
k =

1

ñ

ñ∑

i=1

t
(q)
ik .

The parametersδkj andγkj are never considered because the full generalized dis-
criminant analysis model is overparameterized. Thus, onlythe constrained models
are to be estimated. For this, it is proved in Appendix C thatQ is a strictly concave
function ofδk, δj , δ, γk, γj andγ. Thus, the maximisation ofQ(θ; θ(q)) is com-
puted by an alternated iterative algorithm which consists in a succession, parame-
ter component per parameter component, of simplex algorithms if the optimisation
is unconstrained (γk, γj ∈ R). If the optimisation is constrained (δk, δj > 0), the
same algorithm is used but if the optimisation conduces to a negative result, the
value 0 is retained (in this case the EM algorithm is used on its generalized form:
GEM, Dempster et al. [1977]). The starting point of the alternated algorithm is
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θ(q), and this one of the EM algorithmθ(0) is the point which correpond toP = P̃ .
For the discrete parametersλj , if the dimensiond is not too high, the maximiza-
tion is carried out by computingQ(θ; θ(q)) for all possible values of these discrete
parameters. For high dimension, a relaxation method can be used, which con-
sists to assume thatλj is not a binary parameter in{−1, 1} but a continuous one
in [−1, 1], namedλ∗

j (see Wolsey [1998] for instance). Optimization is thus per-
formed on this continuous parameter, with the previous alternated algorithm since
Q is a strictly concave function ofλj (Appendix C), and the solutionλ∗(q+1)

j is then

discretized to obtain a binary solutionλ(q+1)
j as follows: λ(q+1)

j = sgn(λ∗(q+1)
j ),

where sgn denotes the sign function. This relaxation methodis not used in the
experiments of this paper but see Jacques [2005] for some examples of use.

5 Robustness study

Generalized discriminant analysis for binary data essentially relies on three kinds
of assumptions:

1. Assumption on the binary data: Inside a population (P or P̃ ) the binary
variables are conditionally independent;

2. Assumption on the link between binary and continuous variables inside a
population (P or P̃ ): The binary variables arise from the discretization of a
multivariate Gaussian distribution preserving the conditional independence
for binary variables;

3. Assumption on the link between continuous variables of both populations
P andP̃ : They are exactly the assumption of generalized discriminant anal-
ysis for Gaussian data.

Only the second assumption is in the depth of this work, the two other ones arising
from a context different from generalized discriminant analysis for binary data. In
Assumption 2, continuous variables preserving conditional independence for bi-
nary variables (inside a population) seems weak since it is similar to this one of
Assumption 1; The robustness against this hypothesis will be nevertheless illus-
trated by both the practical robustness study (Section 5.2)and also by the first
biological application (Section 6.1). Finally, the main assumption of the present
work is that binary variables arise from the discretizationof Gaussian variables.
In this section, we first prove that the Gaussian hypothesis can be weakened into a
new assumption and, then, some experiments illustrate and evaluate the robustness
of the methodology when this weakened assumption is itself violated.
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5.1 Theoretical robustness study for the Gaussian assumption

Under the hypothesis that the link between the latent variables of both populations
P andP̃ is linear, the assumption of normality of the latent variablesY1j|Z1k=1

and

Ỹ1j|Z̃1k=1
is in fact not necessary, and sufficient conditions are the following:

{
FY1j|Z1k=1

(sj) = Φ(
sj−µkj

σkj
)

FY1j|Z1k=1
(

sj−bkj

akj
) = Φ(

sj−akjµkj−bkj

akjσkj
),

(17)

whereFY1j|Z1k=1
denotes the conditional cumulative density function of variable

Y1j|Z1k=1
andµkj, σkj its mean and its standard deviation respectively.

Effectively, by using these two relationships, it is possible to write:

αkj = p(X1j|Z1k=1
= 1) =

{
1 − FY1j|Z1k=1

(sj) if λj = 1

FY1j|Z1k=1
(sj) if λj = −1

= 1 − Φ
(
λj

sj − µkj

σkj

)

and also

α̃kj = p(X̃1j|Z1k=1
= 1) =

{
1 − FỸ1j|Z1k=1

(sj) if λj = 1

FỸ1j|Z1k=1
(sj) if λj = −1

=

{
1 − FY1j|Z1k=1

(
sj−bkj

akj
) if λj = 1

FY1j|Z1k=1
(

sj−bkj

akj
) if λj = −1

= 1 − Φ
(
λj

sj − akjµkj − bkj

akjσkj

)
.

The values ofαkj andα̃kj are the same than in the situation whereY1j|Z1k=1
and

Ỹ1j|Z̃1k=1
were Gaussian, and consequently Relationship (7) is still right.

5.2 Practical robustness study for both Gaussian and condi-
tional independence assumptions

To illustrate the robustness against both Condition (17) and conditional indepen-
dence for binary variables after discretization, let consider the following example:
For all 1 ≤ j ≤ 5, X1j|Z1k=1

(respectivelyX̃1j|Z̃1k=1
) is the binary discretization

(with the thresholdsj = s) of Y1j|Z1k=1
(resp. Ỹ1j|Z̃1k=1

), whereY1j|Z1k=1
(resp.

Ỹ1j|Z̃1k=1
) is a mixture of two GaussiansπN (µk1, σk1

2) + πN (µ
k1

, σk1
2) (resp.

π̃N (µ̃k1, σ̃
2
k1) + π̃N (µ̃

k1
, σ̃2

k1)) for all 1 ≤ k ≤ 2 (π + π = 1 andπ̃ + π̃ = 1).

The mixture density distribution ofY1j|Z1k=1
andỸ1j|Z̃1k=1

(for fixed j andk), and
the Gaussian corresponding density (with the same moments thanY1j|Z1k=1

and

Ỹ1j|Z̃1k=1
) are presented in (Figure 1).
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Table 1: Generalized discriminant analysis models.
γkj

0 γ γk γj

δ k
j

1 [1 0] [1 γ] [1 γk] [1 γj]
δ [δ 0] [δ γ] [δ γk] [δ γj]
δk [δk 0] [δk γ] [δk γk] [δk γj ]
δj [δj 0] [δj γ] [δj γk] [δj γj ]

Table 2: Number of continuous parameters (param.) to be estimated for the con-
strained models.
model [pk 1 0] [pk 1 γ] [pk 1 γk] [pk 1 γj] [pk δ 0] [pk δ γ] [pk δ γk] [pk δ γj]
param. 0 1 K d 1 2 K + 1 d + 1
model [pk δk 0] [pk δk γ] [pk δk γk] [pk δk γj] [pk δj 0] [pk δj γ] [pk δj γk] [pk δj γj]
param. K K + 1 2K K + d d d + 1 K + d 2d

4 6 8 10 12 14 16 18 20 22
0

0.05

0.1

0.15

0.2

0.25

(s−b
kj

)/a
kj

       s

 

 
Preal densi ty

PGaussi an densi ty

P̃ real densi ty

P̃ Gaussi an densi ty

Figure 1: Density distribution ofY1j|Z1k=1
andỸ1j|Z̃1k=1

for the robustness study.
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The values of the discretization threshold, of the transformation parameters
betweenP and P̃ (akj and bkj) and of the first and of the second moments of
Y1j|Z1k=1

and Ỹ1j|Z̃1k=1
(µkj, σkj

2, µ̃kj and σ̃2
kj) are arbitrary chosen:s = 13;

akj = 1.2 andbkj = 1 for 1 ≤ k ≤ 2 and1 ≤ j ≤ 5; (µ1j, µ2j) = (10, 13) and
(σ1j , σ2j) = (1.8, 1.7) for 1 ≤ j ≤ 5.
Now, let choose the parameters of the mixture density ofY

j

|Zk=1
with respect to

the following constraints, for0 ≤ ǫ ≤ 1 :
{

FY1j|Z1k=1
(sj) = Φ(

sj−µkj

σkj
) + (1 − Φ(

sj−µkj

σkj
)) × ǫ

FY1j|Z1k=1
(

sj−bkj

akj
) = Φ(

sj−akjµkj−bkj

akjσkj
) + (1 − Φ(

sj−akjµkj−bkj

akjσkj
)) × ǫ.

(18)

Whenǫ = 0, these constraints correspond to (17), and the greater isǫ, the less (17)
are respected. (Figure 2) illustrates the cumulative density function of the latent
variables for different values ofǫ.

The sample size is set to 70, the experiments are repeated 20 times and the
mean error rate is presented on (Figure 3) for different strategies: Generalized
discriminant analysis (GDA) with model[p̃k δk γk], standard discriminant analysis
and clustering. Moreover, the optimal error rate is also given. GDA outperforms
usual methods whenǫ is moderate (ǫ < 0.22), and for higherǫ, the assumed
model of generalized discriminant analysis is too incorrect and then the clustering
becomes better.

6 Comparison of methods on biological data

6.1 Discretized continuous data

The first motivations for which generalized discriminant analysis was developed
are biological applications (Biernacki et al. [2002], Van Franeker and Ter Brack
[1993]), in which the aim was to predict sex of birds from biometrical variables.
Very powerful results have been obtained with multinormal assumptions.
The species of birds considered in the present application is Cory’s Shearwater
Calanectris diomedea(Thibault et al. [1997]). Two subspecies can be identi-
fied: borealiswhich lives in the Atlantic islands (the Azores, Canaries, etc.) and
diomedeawhich lives in the Mediterranean islands (Balearics, Corsica, etc.).
A sample ofBorealis(n = 206, 45% females) was measured using skins in several
National Museums. Five morphological variables were measured: Culmen (bill
length), tarsus, wings and tail lengths, and culmen depth. Similarly, a sample of
diomedea(n = 38, 58% females) was measured using the same set of variables.
In this example, two groups are present, males and females, and all the birds are
of known sex (from dissection). (Figure 4) illustrates differences between the two
subspeciesborealisanddiomedea, for two biometrical variables.
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Figure 2: Cumulative density function of the latent variables for different values
of ǫ.
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Figure 3: Classification error rate for usual discriminant analysis, generalized dis-
criminant analysis (GDA) and clustering compared to the optimal error rate for
different values ofǫ.
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To provide an application of the present work, the continuous biometrical vari-
ables are discretized into binary data. As it can be shown on (Figure 4), discretiza-
tion must be carried out carefully, and particularly for thechoice of the discretiza-
tion threshold. Effectively, if this threshold is fixed at the mean of the biometrical
variables for one subspecies, all the values for the other subspecies will be on
the same side of this discretization threshold. Consequently, the threshold is cho-
sen such that there is a maximum of individuals in each side ofthe discretization
threshold. (Table 3) presents values of retained discretization thresholds for the
five biometrical variables and (Table 4) displays frequencyof each couple (sub-
species, sex) for two binarized biometrical variables.

The subspeciesborealis is selected as the training population and the sub-
speciesdiomedeaas the test population. The 32 generalized discriminant analy-
sis models, standard discriminant analysis ([pk 1 0]) and clustering are applied on
these data. The classification error rate and the value of theBIC criterion are given
in (Table 5).

If the results are compared according to the error rate, generalized discrimi-
nant analysis with the model[pk δj γj] is the best method, with error15.78%. This
error is lower than that obtained by standard discriminant analysis (42.1%) and by
clustering (23.68%). By using the BIC criterion, which leads to select the model
[p̃k δ γ], the error rate (21.05%) is still the best with generalized discriminant anal-
ysis.
This application illustrates the interest of generalized discriminant analysis with
respect to standard discriminant analysis or clustering. Effectively, by adapting
the classification rule issued from the training populationto the test population,
generalized discrimination analysis gives lower classification error rates than by
applying directly the rule issued from the training population (standard discrimi-
nant analysis), or by omitting the training population and applying directly clus-
tering on the test population.
It is interesting to remark that the assumption which supposes that binary data
are issued from the discretization of Gaussian variables (biometrical variables) is
relatively realistic in this application. Nevertheless, there exists a strong corre-
lation between the five biometrical variables, which violates the assumption that
discretized variables are independent.

6.2 Real binary data

The second application considers sea birds from the speciespuffins(Bretagnolle(2006),
personnal communication). Two groups of subspecies are considered: The first
one is composed of subspecies living in Pacific Islands –subalaris(Galapagos
Island),polynesial, dichrous(Enderbury and Palau Islands) andgunax– and the
second one is composed of subspecies living in Atlantic Islands –boydi (Cap
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Figure 4: Wings and tarsus lengths fordiomedeaandborealis.

Table 3: Chosen discretization thresholds for the five biometrical variables for the
two subspeciesdiomedeaandborealis.

culmen depth culmen tarsus wing length tail length
discret. threshold (mm) 14.35 51.50 54.45 342.50 28.40

Table 4: Binary wings and tarsus lengths fordiomedeaandborealis.
wings

0 1
borealis diomedea borealis diomedea

ta
rs

u
s 0
male 108 6 2 3

female 76 1 4 1

1
male 3 3 0 4

female 11 1 2 19
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Verde Islands). The difference between populations is herethe geographical range
(Pacificvs. Atlantic Islands). A sample of Pacific birds (n = 171) was measured
using skins in several National Museums. Four variables aremesured on these
birds: Coller, stripe and piping (absence or presence for these three variables)
and under-caudal (self couloured or not). Similarly, a sample of Atlantic birds
(n = 19) was measured using the same set of variables. Like in the previous ex-
ample, two groups are present (males and females) and all thebirds are of known
sex. Pacific birds are selected as the training population and Atlantic ones as the
test population. According to the biologist Vincent Bretagnolle (CEBC-CNRS),
the morphological variables which are used in this application are not very dis-
criminative, and then one can not expect better than an erroraround40 − 45%.
The 32 generalized discriminant analysis models – among which discriminant
analysis ([pk 1 0]) – are applied on these data, and the results are presented in(Ta-
ble 6). Clustering is also applied, and the obtained error rate is49.05%.

As in the previous study, generalized discriminant analysis is more efficient
than standard discriminant analysis and clustering to classify birds according to
their sex, and moreover the BIC criterion leads to choose themodel with the small-
est error rate. The relatively poor classification results (the minimal error rate is
43%) confirm the assumption of the biologist.

7 Conclusion

Generalized discriminant analysis extends standard discriminant analysis by al-
lowing training and test samples to arise from different butstochastically linked
populations. Our contribution consists to adapt precursorworks in a multinormal
context to the case of binary data.
Applications in a biological context illustrates this work. A classification of birds
according to their sex is provided by using generalized discriminant analysis, and
this classification is better than those obtained by discriminant analysis or by clus-
tering.
Perspectives for this work are numerous. Firstly, the parameters of both popula-
tionsP andP̃ are estimated successively:αkj andpk are estimated in a first step
and after̃αkj andp̃k are deduced from these estimation and from those of the link
parameters. It should be very (computationally) usefull toconsider a joint estima-
tion of this four parameters.
Secondly, the link between the two populations was defined byusing Gaussian cu-
mulative density function. Although it seemed initially difficult to find this link, a
simple link involving the probit function was obtained. It was not easy to imagine
it, but it is meaningful afterwards. It would be interestingto try other types of
cumulative density functions; Obviously theoretical reasons will have to be devel-
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Table 5: Classification error rates (%) and value of the BIC criterion for test pop-
ulationdiomedeawith training populationborealis.
model [pk 1 0] [pk 1 γ] [pk 1 γk] [pk 1 γj] [pk δ 0] [pk δ γ] [pk δ γk] [pk δ γj]
error 42.1 23.68 15.78 18.42 57.89 23.68 15.78 18.42
BIC 648 216 218 225 263 214 218 214
model [pk δk 0] [pk δk γ] [pk δk γk] [pk δk γj] [pk δj 0] [pk δj γ] [pk δj γk] [pk δj γj]
error 57.89 15.78 18.42 18.42 57.89 18.42 18.4215.78
BIC 270 1219 216 220 281 214 220 228
model [p̃k 1 0] [p̃k 1 γ] [p̃k 1 γk] [p̃k 1 γj] [p̃k δ 0] [p̃k δ γ] [p̃k δ γk] [p̃k δ γj]
error 42.1 26.31 23.68 21.05 42.1 21.05 23.68 21.05
BIC 595 215 215 226 267 213 215 215
model [p̃k δk 0] [p̃k δk γ] [p̃k δk γk] [p̃k δk γj] [p̃k δj 0] [p̃k δj γ] [p̃k δj γk] [p̃k δj γj]
error 42.1 23.68 21.05 21.05 42.1 21.05 21.05 23.68
BIC 274 217 217 222 285 215 222 225

Table 6: Classification error rates (%) and value of the BIC criterion for test pop-
ulation of Atlantic birds with training on Pacific birds population.
model [pk 1 0] [pk 1 γ] [pk 1 γk] [pk 1 γj] [pk δ 0] [pk δ γ] [pk δ γk] [pk δ γj]
error 50.94 43.39 45.28 43.39 50.94 43.39 45.28 45.28
BIC 212 209 216 224 212 209 216 224
model [pk δk 0] [pk δk γ] [pk δk γk] [pk δk γj] [pk δj 0] [pk δj γ] [pk δj γk] [pk δj γj]
error 45.28 45.28 52.83 45.28 45.28 52.83 50.94 50.94
BIC 210 210 215 226 225 224 227 239
model [p̃k 1 0] [p̃k 1 γ] [p̃k 1 γk] [p̃k 1 γj] [p̃k δ 0] [p̃k δ γ] [p̃k δ γk] [p̃k δ γj]
error 45.28 50.94 50.94 45.28 45.28 50.94 50.94 45.28
BIC 213 213 220 228 213 213 220 228
model [p̃k δk 0] [p̃k δk γ] [p̃k δk γk] [p̃k δk γj] [p̃k δj 0] [p̃k δj γ] [p̃k δj γk] [p̃k δj γj]
error 45.28 45.28 47.16 45.28 45.28 52.83 45.28 52.83
BIC 214 213 213 229 228 227 224 243
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oped and practical tests will have to be carried out.
Thirdly, with this contribution generalized discriminantanalysis is now developed
for continuous data and for binary data. To allow to analyse alarge number of
practical cases, it is important to study the case of categorical variables (i.e. much
than two modalities), and thereafter the case of mixed variables (binary, categor-
ical and continuous together). Everitt’s works (Everitt [1988]), which defined a
classification algorithm for mixed variables, can be helpful for this topics.
Finally, it would be also interesting to extend other classical discriminant method
like non-parametric discrimination or semi-parametric discrimination. See Bier-
nacki and Beninel [2005] for logistic regression.
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A Proof of the relation between test and training
populations

From (6) it follows thatỸ1j|Z̃1k=1
is Gaussian with meañµkj = akjµkj + bkj and

with standard deviatioñσkj = |akj|σkj. However, this transformation is non-
identifiable: There exists more than one couple(Ak, bk) which satisfies Relation-
ship (6). To solve this problem, we assume then than all theakj are non negative
(akj ≥ 0).
It is possible to derived from Equation (5):

λj

sj

σkj

= −Φ−1(αkj) + λj

µkj

σkj

,

and then, using expressions ofµ̃kj andσ̃kj just given above:

α̃kj = 1 − Φ

(

λj

sj − µ̃kj

σ̃kj

)

= 1 − Φ

(
1

akj

λjsj

σkj

− λj

akjµkj + bkj

akjσkj

)

(19)

= Φ

(
Φ−1(αkj)

akj

+ λj

akjµkj + bkj − µkj

akjσkj

)

. (20)

Alternatively, it is also possible to write from (5) again:

λj

µkj

σkj

= Φ−1(αkj) + λj

sj

σkj

,

and thus, following the same process than in (19),

α̃kj = 1 − Φ

(

λj

sj − µ̃kj

σ̃kj

)

= 1 − Φ

(

−λj

µkj

σkj

+ λj

sj − bkj

akjσkj

)

(21)

= Φ

(

Φ−1(αkj) + λj

akjsj + bkj − sj

akjσkj

)

. (22)

Of course, Equations (19) and (21) are equivalent but the first one will be retained
since Parametrization (19) will be more convenient for proposing later numer-
ous parsimonious models of constraints on the link. Consequently, the following
relationship betweenαkj andα̃kj is obtained:

α̃kj = Φ
(

δkj Φ−1(αkj) + λjγkj

)

,

whereδkj ∈ R
+ \ {0}, λj ∈ {−1, 1} andγkj ∈ R.
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B Developed version of the linear system matrices
for intra-group and inter-group identifiability ex-
ample

The linear system matricesΦλ are for the intra-group identifiability example:

Φλ =



















Φ−1(α11) 0 . . . 0 λ1 0 . . . 0
...

...
Φ−1(α1d) 0 . . . 0 λ1 0 . . . 0

0 . . . 0 Φ−1(αk1) 0 . . . 0 0 . . . 0 λ1 0 . . . 0
...

...
0 . . . 0 Φ−1(αkd) 0 . . . 0 0 . . . 0 λd 0 . . . 0
0 . . . 0 Φ−1(αK1) 0 . . . 0 λ1

...
...

0 . . . 0 Φ−1(αKd) 0 . . . 0 λd



















and for the inter-group identifiability example:

Φ
(k1,k2)
δ,γ,λ,λ′ =














1
δk11

Φ−1(α̃k11) − λ1
γk11

δk11
0 λ′

1 0
...

1
δk1d

Φ−1(α̃k1d) − λd
γk1d

δk1d
0 λ′

d 0

0 1
δk21

Φ−1(α̃k21) − λ1
γk21

δk21
0 λ′

1

...
0 1

δk2d
Φ−1(α̃k2d) − λd

γk2d

δk2d
0 λ′

d














C Proof of the concavity of the functionQ(θ, θ(q))

The aim of this appendix is to prove thatQ(θ, θ(q)) is a strictly concave function
of γk, γj andγ, and also ofδk, δj , δ andλj. The fundamental key of the proof is
to study first concavity ofQ(θ, θ(q)) for γkj.
Let Q(γkj) be the functionQ(θ, θ(q)) with parameters̃pk, δkj, λj andθ(q) fixed,
and let prove thatQ(γkj) is strictly concave:

Q(γkj) =
ñ∑

i=1

K∑

k=1

tik

{

log(p̃k) +
d∑

j=1

x̃ij log
(

Φ(ζkj)
)

+
d∑

j=1

(1 − x̃ij) log
(

1 − Φ(ζkj)
)}
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with ζkj = δkjΦ
−1(αkj) + λjγkj.

The derivative of the functionQ(γkj) is:

∂Q(γkj)

∂γkj

=

ñ∑

i=1

K∑

k=1

tik

d∑

j=1

{

x̃ijλj

φ(ζkj)

Φ(ζkj)
+ (1 − x̃ij)λj

−φ(ζkj)

1 − Φ(ζkj)

}

,

whereφ is the probability density function ofN (0, 1).
Using that∂φ(bx+a)

∂x
= −b(bx + a)φ(bx + a) with a, b ∈ R, the second derivative

is:

∂2Q(γkj)

∂γ2
kj

=

ñ∑

i=1

K∑

k=1

tik

d∑

j=1

λj

{

x̃ij
−λjζkjφ(ζkj)Φ(ζkj) − λjφ(ζkj)

2

[Φ(ζkj)]2

+(1 − x̃ij)
λjζkjφ(ζkj)(1 − Φ(ζkj)) − λjφ(ζkj)

2

[1 − Φ(ζkj)]2

}

,

that can be rewritten:

∂2Q(γkj)

∂γ2
kj

= −
ñ∑

i=1

K∑

k=1

tik

d∑

j=1

λ2
jφ(ζkj)

{ x̃ij

[Φ(ζkj)]2
(

g1(ζkj)
︷ ︸︸ ︷

ζkjΦ(ζkj) + φ(ζkj))

+
(1 − x̃ij)

[1 − Φ(ζkj)]2
(

g2(ζkj)
︷ ︸︸ ︷

ζkj(φ(ζkj) − 1) + φ(ζkj))
}

. (23)

To prove thatQ is strictly concave, it is sufficient to prove that both functionsg1

andg2 are strictly positive:

• for all x ∈ R : g1(x) = xΦ(x) + φ(x) > 0, because lim
x→−∞

g1(x) = 0 and

g1 is strictly increasing sinceg′
1(x) = Φ(x) + xφ(x) − xφ(x) = Φ(x) > 0,

• for all x ∈ R : g2(x) = xΦ(x) − x + φ(x) > 0, because lim
x→+∞

g2(x) = 0

andg2 is strictly decreasing sinceg′
2(x) = Φ(x) − 1 + xφ(x) − xφ(x) =

Φ(x) − 1 < 0.

Thus ∂2Q(γkj)

∂γ2
kj

< 0 andQ(γkj) is strictly concave. �

If Q is no longer function ofγkj but now of γk (respectively ofγj, of γ) the
expression of the second derivative is the same than (23) by removing the sum on
j (resp. onk, on(k, j)), and thusQ is still strictly concave.
Let consider now the functionQ(δkj) with the above convention (p̃k, γkj, λj and
θ(q) fixed). Same type of calculus leads to:

∂2Q(δkj)

∂δ2
kj

= −
ñ∑

i=1

K∑

k=1

tik

d∑

j=1

(

Φ−1(αkj)
)2

φ(ζkj)
{ x̃ij

[Φ(ζkj)]2
g1(ζkj) +

(1 − x̃ij)

[1 − Φ(ζkj)]2
g2(ζkj)

}

,
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and thusQ(δkj) is strictly concave. By using the above arguments, it arisesim-
mediately thatQ(δk), Q(δj), Q(δ) are also strictly concave. �

Let finally consider the functionQ(λj). The second derivative is:

∂2Q(λj)

∂λ2
j

= −
ñ∑

i=1

K∑

k=1

tik

d∑

j=1

γ2
kjφ(ζkj)

{ x̃ij

[Φ(ζkj)]2
g1(ζkj) +

(1 − x̃ij)

[1 − Φ(ζkj)]2
g2(ζkj)

}

,

andQ(λj) is strictly concave. �

26


