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when training and test populations differ

J. Jacqué$and C. Biernacki
fLaboratoire Paul Painlevé UMR CNRS 8524, Université Lille |

Abstract

Standard discriminant analysis supposes that both threrigeggample and the test sample are
derived from the same population. When these samples aosegdopulations differing from
their descriptive parameters, a generalization of diso@mt analysis consists in adapting the
classification rule related to the training population tother rule related to the test population,
by estimating a link map between both populations. This pageends an existing work in
the multinormal context to the case of binary data. In ordesdlve the problem of defining
a link map between the two binary populations, it is assurhatithe binary data result from
the discretization of latent Gaussian data. An estimati@thiod and a robustness study are
presented, and two applications in a biological conteusthate this work.

1 Introduction

Consider a first (training) sample of individuals descriltigdexplanatory variables, for which a
partition in groups or classes is known. Consider also a raapte of individuals (test sample),
drawn from the same population of the training sample. isoant analysis consists in estimating
an allocation rule from the training sample in order to digssdividuals of the test sample (see
McLachlan [1992] for a survey).

Since works of Fisher [1936], who introduced a linear disaniant rule between two groups, nu-
merous evolutions have been proposed. All of them concermé#ture of the discriminant rule:
Parametric quadratic rule (see for example Tomassone[@B&8B]), semi parametric rule (as logis-
tic discrimination, Anderson [1972]) or non parametricer(fFix and Hodges [1951], Friedman and
Stuetzle [1981], Hand [1982], Silverman [1986]).

An alternative approach, introduced by Van Franeker anBfack [1993] and developed further
by Biernacki et al. [2002], considers the case in which thimtng sample does not necessarily arise
from the same population as the one of the test sample. Rieretal. define several models of
generalized discriminant analysis a multinormal context, and conduct experiments for lgatal
data consisting of birds from the same species, but witlefit geographical origins. In many
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domains (insurance, medicine, biologyg) a large number of applications deals with binary data
as well. The goal of the present paper is to extend the genedaliscriminant analysis of Biernacki
et al. [2002] to the case of binary data.

The paper is organized as follows. The next section preskatdata and the latent class model
for both training and test populations. Section 3 makes fiseraption that these binary data are
discretized latent continuous variables in which the oid&rmation is lost. This hypothesis is
the key to establish a general stochastic link map betwestwb populations, from which many
pertinent parsimonious sub-models can be obtained. Inddettestimation is performed based on
the maximum likelihood principle using the EM algorithm. €y a robustness study for the Gaus-
sian assumption is carried out in Section 5 involving bo#otietical and experimental (simulated
data) arguments. In Section 6, two applications in a bi@algiontext illustrate realistic situations
where the proposed generalized discriminant analysiseoiaipns standard discriminant analysis
and clustering. Finally, the last section concludes thigepdy discussing possible extensions of
the present work.

2 The data and the latent class model

The data consist in two samples: The first sanfpléabelled and drawn from the training popula-
tion P, and the second sampfe unlabelled and drawn from the test populati®nA fundamental
assumption of the present work is that populatiérand P may be different.

The training samplé is composed of. pairs(x;,z), . . ., (x,, z,), Wherex; is the binary explana-
tory vector for theith object withx; = (z;1,...,z)" € {0,1}¢ and wherez; = (21, .. ., zix)? iS
the group membership with), being equal to 1 if théth object belongs to thkth group and being
equal to O otherwiseé = 1,...,n,k=1,..., K). The number of binary explanatory variables and
the number of groups are respectively denoted layd K. Each pair(x;, z;) is assumed to be an
independent realization of the random ved®r, Z,) with distribution:

- B(oy;) forallj=1,....,d and Z;~M(1,p1,...,pk), Q)
whereB(ay;) is the Bernoulli distribution of parametes,; (0 < ay; < 1), andM(1,p1, ..., pk)
defines the one order multinomial distribution of paranmster. . ., px (0 < p. < 1, Z,lepk =1).
Moreover, using the latent class model assumption of camdit independence of the explanatory
variables (Celeux and Govaert [1991], Everitt [1984]), phebability function ofX; conditionally
to the group membership is:

d

fk»(lﬂll, e ,xld) = H O{ijlj(l — Oékj)l_xlj. (2)

j=1

This is one of the most popular generative method for disoatmg categorical data since it is
straightforward to implement and it is often efficient (see ihstance experimental comparisons
with alternative methods, not necessarily generative, thhChap. 9 or als@).

Similarly, the test sampl§ is composed of: pairs(x,z,), ..., (Xs, Z), where thel explanatory
variables are the same as in the training sample, but wherg, tre unknown. These pairs are



assumed to be independent realization&6f, Z,) with distribution:

le‘zmzl ~ B(ay;) forallj=1,...,d and Z; ~M(1,pi,...,0x). ©)

The explanatory variableiflj, forj =1,...,d, are also assumed to be conditionally independent.
Basically, the distribution ofX,, Z,) differs from this one of X;, Z,) only by the values of the
parametersy,; andpy,.

Our goal is to estimate the unknown labgls. . ., z; by using information from both training and
test samples. The challenge resides in finding a link mapé®rivthe population® and P.

Remarks

e In fact, since both labelled and unlabelled data are useetheg in the inference process,
our problem is related to the so-called semi-superviserhileg purpose. Obviously, the
originality of our work is that the data sets do not necefsarise from the same population.

e The use of the terminology “test” for the sampl€and the populatiot®) is abusive because
this sample is used to determine the discrimination ruleveltbeless, this terminology is
adopted in order to facilitate the link with the standardcdimination methods. Moreover,
it appears to be a usual notation in the semi-supervisedifitagion community (see for
instance?, Chap. 1).

3 Relationship between test and training populations

3.1 Formalizing the link between populations

In a multinormal context, a linear stochastic relationsbéiweenP and P is not only justified
(under very few assumptions that will be recalled later)absid intuitive (Biernacki et al. [2002]). In
the binary context, since such an intuitive relationshgnsg more difficult to exhibit, an additional
assumption is stated: The binary variables are supposesbtit from the discretization of some
latent Gaussian variables. For instance, if a binary viimsba product purchased by a customer, it
is assumed that the customer gives a score to the produdiugsdk only if this score is greater than
a given threshold. This assumption is not new in statises for example Thurstone [1927], who
used this idea in his comparative judgment model to chootedas two stimuli.? also modelled
multivariate ordered categorical variables as a latentinarinal distribution involving a possibly
full correlation matrix (se€ for a more recent reference). Moreover, Everitt [1988] psgad a
classification algorithm for binary, categorical and contius data.

Thus, the explanatory variable’élj‘zlkz1 having a Bernoulli distributior3(«y;) are assumed to
arise from the discretization of latent continuous vaeabh; , _, in the following manner:

0 if )‘j)/lj‘z < A8
. fry kzl I3 1 fr—
Xl]\zlk:1 { 1 if )\j}/lj‘zikZI > >\j8j for J 17 ] da (4)

wheres; € R is the discretization threshold, and € {—1,1} is introduced to avoid choosing to
which value ofXy; , _ ,0or1, corresponds a positive valuedgf, _,, and then to avoid binary
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variables to inherit from the natural order induced by amnbius variables.

Moreover, the joint distribution 015(1%&:1 = (Yllwzlk:v e ,Yld‘zlk:l)T is assumed to be mul-
tivariate normal, with marginal distribution¥ (s, 07;), such the obtained discretized variables
XU‘ZM . (7 =1,...,d) are independent in order to retrieve the conditional ilete}ence assump-
tion on the blnary varlables It should be noted that cooddl independence of the latent Gaussian
vanablesYlj‘Z . U =1,...,d)is a sufficient assumption for conditional independencthetbi-
nary variables. However thls assumption may not be negessa

From (1) and (4) the following relationship betweeg, A;, 1,; andoy; can be derived:

oy =p(Xy,, =1 =1-0(\> . Hh) ()
kj

where® is the (0, 1) cumulative density function.
As for the variableX,;, the binary variablef(lj is also assumed to arise from the discretization
of a latent Gaussian varlab}e] with distribution (i, ak,]) The equations are the same as (4)
and (5), by changingy; into é&;, p; into fi; andoy; into ;. The thresholds; are naturally
supposed to be equal t9 (5; = s;) since, with the previous example, it is equivalent to assum
that customers of both populations buy the product if theescogreater than the same threshold.
In the same spirii\j is supposed to be equal 1g, so the rule of purchase — lower or higher than the
threshold — is the same for both populations.
In a Gaussian setting, Biernacki et al. [2002] showed thaothly possible link map between the
latent continuous varlabfézfl‘z1 of P and Y1 i of P is linear when the two following rea-

sonable hypotheses are satisfied: (i) The transformatitmilelﬂaaﬂ1D and P is C' and (ii) the jth
componenﬁq]‘ of Y1 - is only related to theth componenﬁq]‘z . of Yl‘Zlk:I. More
precisely, this relatlonshlp Is expressed by

?1‘Zlk:1 ~ AYy, _, + by, (6)

whereA;, is a diagonal matrix oR?*? containing the elements,; andb, is a vector ofR? contain-
ing the elements;;; (1 <k < K,1<j <d).

By using (6) and (5) the following relationship between tlaegmetersy;; anda,; can be obtained
(see details in Appendix A):

Qpj = (I)<5kj O ayy) + Aj'ij)a (7)

whered,; € RT\ {0}, A\; € {—1,1} andy;; € R. Note that this relationship corresponds to a linear
link between therobit functions of bothy;; anda,,;. Conditionally to the fact thaty; are known
(they will be estimated in practice), estimation of ki€ continuous parameteds,; is thus obtained
from the estimated parameters of the link betw&eand P (plug-in method) 3y, v, and);. Note
that the choice of the discretization thresholgss not important. However, estimating the number
of parameters for the link map 29 d and one thus obtain that the model is overparameterized. Thi
fact should not be surprising since the underlying Gaussiagel is by far more complex (in terms
of the number of parameters) than the Bernoulli model. Herereed to reduce the number of free
continuous parameters in (7), and one way to do this is toge@gub-models defineth imposing
natural additional constraints on the transformation keetboth population® and P.
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3.2 Models of constraints on the stochastic link map

The parameterg,; (1 < £ < K andl < j < d) will be successively constrained to be equal to
(denoted byt), to be class- and dimension-independétto be only class-dependent.) or only
dimension-dependent,). In the same wayy,,; can be constrained to be equaloy (constant
w.r.t. k£ andj), v, (constant w.r.t.j) or v, (constant w.r.t.k). Thus, 16 models can be defined
and indexed using the followingd-hocnotation: [1 0] meansy,; = 1 and~; = 0 (it corresponds
to the usual discriminant analysis modeb), v;] meansy,; = 0, and~,; = v; (1 < k < K and

1 <j<d),etc

For these 16 models, an additional assumption on the graygmgrons is taken into account: Either
the proportions of are constrained to be equal to thosefgfor they have to be estimated. In the
following, [px. 1 0] denotes the modél 0] with equal proportions wheres, 1 0] denotes this model
with free proportions. The number of constrained modelbus tgrowing to 32. Table 1 gives the
number of (continuous) parameters to be estimated for timeskels. If the mixing proportions are
different from P to P, K — 1 must be added to these values.

Table 1: Number of continuous parameters (param.) to beattd for the constrained models.
model [py10] [pe19] [prlw] [pel7] [ped0] [pedr]  [pedwe] [prdl

param. O 1 K d 1 2 K+1 d+1
model  [p 0k 0] [prox Y] [Pk Ok Vil [Pk Ok V5] [Pk ;0] [P 659 [pr 65 vk [Pr 65 ;]
param. K K+1 2K K+d d d+1 K+d 2d

Finally, we chose to use the BIC criterioBgyesian Information CriteriorSchwarz [1978]) for
automatic selection among the 32 generalized discrimimaordels. However, other criteria such
AIC (An Information Criterion ?) could be used as well. BIC is defined by:

BIC = —2I(0) + v log(#),
where@ = (jy, 0r;, Aj, ;) for 1 < k < K and1 < j < d, [(8) is the maximum log-likelihood
corresponding to the estimatiéhof 8, andv is the number of free continuous parameters associ-
ated to the given model. The model leading to the smallestMBlGe is then selected.

Before estimating the parametby the maximum likelihood method, we need to discuss identifi
ability of each parametrization.

3.3 Model identifiability

Some of the constrained models previously defined can bedemtifiable. It is necessary to clarify
these identifiability problems, which arise at two leveldertifiability of the model parameters
whenoy; is transformed intay,;, and identifiability of the transformation which ensureatt;;
can be only transformed int®;; and not intoa,; (with " # k). We call respectively thenmtra-
groupandinter-groupidentifiability.

The reader can find theoretical and experimental discusdiont these two kinds of identifiability
in Appendix B. The conclusion of this discussion is identifidy will occur in practical situations.
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4 Parameter estimation

In this section, only the situation where proportions ar&nawn is presented, otherwise it is
straightforward.

4.1 The three estimation steps

Generalized discriminant analysis needs three estimateps. The first step consists in estimating
parameterg, andoy; (1 < k < K andl < j < d) from population” based on training sampfe
SinceS is a labelled sample, the maximum likelihood estimate igp$mgiven by (Everitt [1984],
Celeux and Govaert [1991]):

n

1 ) 1
Pk = — Z Zik and Qpj = — sz‘jzz‘k-
n n =

i=1

The second step consists in estimating paramegigenda;; (1 < £ < K andl < j < d) of
populationP by usingpy, dx; (1 < k < K and1l < j < d) and@. Thus, for estimatingy;, the
parameters,;, 7.; and\; of the link betweerP and P have to be estimated, and then an estimate
of &;; is deduced by plug-in inside Equation (7). This step is desdrbelow.

Finally, the third step consists in estimating group mershigrof individuals from the test sample
S, by maximum a posteriori

4.2 Estimation of the link parameters

For the second step above, maximum likelihood estimationbm efficiently based on the EM
algorithm (Dempster et al. [1977]). The likelihood is giveyn

The E step From a current valu®@'? of the paramete®, the E step of the EM algorithm
consists in computing the conditional expectation of thamgleted log-likelihood:

0(0;09) = Ey0[l(0;Z,...,Z:)|%1,. .. %]

_ Xﬁ: ZK: tEZ){ log(p) + Z log <6zkj Tij (1 — @kj)l—a”cij> }

i=1 k=1 j=1



where
d I
~(q H akj J ]gj))(l—xij)
7j=1
K
Zp

9 = p(Zyp = 1|1, . .., %7;09) = .
is the conditional probability for the individuako belong to the group.

aczj £J)>(1 Fij)

7=1

The M step The M step of the EM algorithm consists in choosing the vaife! which
maximizes the conditional expectatighcomputed at the E step:
6" = argmax Q(6;0'9) (8)
6cO
where© is a parameter space depending on the model at hand. The Nsstepr described for
each component & = {py, ok, Aj, Vis}-
For proportions, the maximum is:

Bt i Z (9.

The parameters;,; and~,; are never considered because the full generalized dis@amhanalysis
model is overparameterized. Thus, only the constraineceis@ie to be estimated. In this context,
itis proved in Appendix C tha@ is a strictly concave function o¥;, J,, d, &, 7; and~. Thus, the
maximisation ofQ(6; 0(‘1)) is computed by an alternated iterative algorithm which ia$n a suc-
cession, componentwise, of simplex algorithms if the ojat@tion is unconstrainedy(, v, € R). If

the optimization is constrained,( J, > 0), the same algorithm is used but if the optimization leads
to a negative result, the value O is retained (in this cas&Maealgorithm is used on its generalized
form: GEM, Dempster et al. [1977]). The starting point of #iternating algorithm i®@ and this
one of the EM algorithmd® | is the point which corresponds fo= P.

For the discrete parameteks, if the dimensiond is sufficiently low, the maximization is carried
out by computingQ(8; 9(‘1)) for all 2¢ possible values for these discrete parameters. Since com-
putational limits are quickly reached, a relaxation metbad be used, which consists in assuming
that\; is not a binary parameter if-1, 1} but a continuous one i1, 1], named\; (see Wolsey
[1998] for instance). Optimization is thus performed orsttontinuous parameter, with the previ-
ous alternated algorithm sin&is a strictly concave function of; (Appendix C), and the solution
;@ is then discretized to obtain a binary solutigfi*” as follows:\ """ = sgr{x’“*"), where
sgn denotes the sign function. This relaxed approach isseat im the experiments of this paper but
see Jacques [2005] for some examples of use.

Remark: Here, the estimation dfpx, ax;) andd is performed in a sequential fashion. This proce-
dure enjoys the advantage to be algorithmically straighiéod unlike the procedure involving the
full likelihood function of all parameters. Moreover, expeents below indicate good behaviour of
this strategy. However, since full likelihood estimates expected to have less bias, this new way
could be explored in future works (see Section 7).

3
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5 Robustness study to the Gaussian assumption

In this section, we first prove that the Gaussian hypotheside weakened into a new assumption
and, then, some experiments illustrate and evaluate thestodss of the methodology when this
weakened assumption is itself violated.

5.1 Theoretical robustness study

Under the hypothesis that the link between the latent veesadif both populationg andP is linear,
the assumption of normality of the latent variable%ml and YU‘Z - is in fact not necessary,
- -

and sufficient conditions are the following:

— s b
v, ) =) fory = s; andy = 2 (9)
N Zy =1 O-k_] ak_]
whereFy, iz denotes the conditional cumulative density function ofakale Yy; , _, andyu;,

ok its meankand standard deviation respectively. Note thergiffce between initial assumptlon in
Subsection 3.1: This equality was stated foralalues inR, whereas it is now stated for only two
specific values of.

However itis straightforward to verify that Equations (Bpg11) remain valid in this context. Since
they are the key for establishing Relationship (7), thitelas still right.

5.2 Practical robustness study

Toillustrate the robustness against Condition (9) itse$fatibed in the previous subsection, consider
the following example: Forall < ;7 < 5andl < k < 2, le\zl,,l (respectiverle‘Z kﬂ) is the
- .
binary discretization (with the threshodd = s) of Yiji, o (resp.Ylj‘Zlk:l), whose distribution is
a mixture of two Gaussians. )
The mixture density distribution o]'“lj‘zlk:1 and Ylj‘z . (for fixed j and k), and the Gaussian

corresponding density (with the same momenﬁ;’@%k:1 andfflj‘z. k:l) are given in (Figure 1).

The values of the discretization threshold, of the tramsfdion parameters betweeh and
P (ax; andby;) and of the first and second moments}fﬁ‘Zlk:1 (ftrj a,ij) are arbitrary chosen:
s = 13; ap; = 1.2 andb; = 1forl < k < 2andl < j < 5; (1, 12;) = (10,13) and
(015,09j) = (1.8,1.7) for1 < j < 5.
Now, let choose (by numerical optimization) the parametétbe mixture density offlj‘zkzl with
respect to the following constraints, for< e < 1:

{ Fyy, () = @(51) 4 (1 @) x ¢

i—bg i Qi b —Dp i —brs
FYlj\Z _1(%@7;7) = Q)(%) + (1 - (I)(Sjizk;ﬁjj ’”)) X E.

(10)

Whene = 0, these constraints correspond to (9) and then satisfy gwengstions of Generalized
Discriminant Analysis (GDA), and the greateresthe less (9) is respected. (Figure 2) illustrates
the cumulative density function of the latent variablesdifferent values ot.

8



0.25

= = =Preal density
Kah T P Gussi an dersi ty
;l v -
02 1 \ = P real density
VRS 5 . )
" e \‘ '+ P Caussian density
0.151
011
0.05
0 - L L L L L - L
4 6 8 10 12 14 16 18 20 22

(s—bkj)/akj s

Figure 1: Density distribution ofy; , _, andfflj‘z. ., for the robustness study.
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Figure 2: Cumulative density function of the latent varesblor different values of.

The sample size is set to 50, the experiments are repeatath@ and the mean error rate,
estimated on “out-of-sample” data, is presented on (Fi@dr®r different strategies: GDA with
model [py 0y, &), Standard discriminant analysis and clustering. Moredberoptimal error rate is
also given. GDA outperforms usual methods whes moderated < 0.22), and for highek, the
assumed model of GDA is too incorrect and then clusteringimes better.
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Figure 3: Classification error rate for usual discriminamdlgisis, generalized discriminant analysis
(GDA) and clustering compared to the optimal error rate fliecent values ot.

6 Comparison of methods on biological data

6.1 Discretized continuous data

The first motivations for which GDA was developed are biotagiapplications (Biernacki et al.
[2002], Van Franeker and Ter Brack [1993]), in which the aimswo predict sex of birds from
biometrical variables. Very powerful results have beeramtgd with multinormal assumptions.

The species of birds considered in the present applicaiGoiy’s Shearwatefalanectris diomedea
(Thibault et al. [1997]). Two subspecies can be identifiedrealiswhich lives in the Atlantic is-
lands (the Azores, Canariesc) anddiomedeavhich lives in the Mediterranean islands (Balearics,
Corsicasetc).

A sample ofBorealis(n = 206, 45% females) was measured using skins in several National Mu-
seums. Five morphological variables were measured: Culim#rength), tarsus, wings and tail
lengths, and culmen depth. Similarly, a sampl@ioimededn = 38, 58% females) was measured
using the same set of variables. In this example, two grouppesent, males and females, and
all the birds are of known sex (from dissection). (Figurellisirates differences between the two
subspecieborealisanddiomedeafor two biometrical variables.

To provide an application of the present work, the contirsubiometrical variables are dis-
cretized into binary data. As it can be shown on (Figure 43cmditization must be carried out
carefully, especially concerning the choice of the diszation threshold. Indeed, if this threshold
equals the mean of the biometrical variables for one sulspdor instance, then all the values
for the other subspecies will be on the same side of this eligation threshold. Consequently,
conditionally to each biometrical variables, the thredhislchosen such that there is (roughly) a
maximum of individuals of each population on each side ofdiseretization threshold.

The subspeciesorealisis selected as the training population and the subspdaesedeaas the

10
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Figure 4: Wings and tarsus lengths thomedeandborealis

test population. The 32 GDA models, including standardrdigoant analysigp;, 1 0], and clus-
tering are applied on these data. The classification erterarad the value of the BIC criterion are
given in Table 2.

Table 2: Classification error rate%) and value of the BIC criterion for test populatidiomedea

with training populatiorborealis
model [py10] [pr179] [pe1%] [pe17] [Pk00] [p0n]  [pedv] [pkdy]
error 42.1 23.68 1578 1842 57.89 23.68 1578 18.42
BIC 648 216 218 225 263 214 218 214
model  [px 6 0] [px 0k Y] [pr 0k V&l [Pr Ok 5] [Pk 65 01 [pr ;7] [px 65 k] [pr 05 7]
error 5789 1578 18.42 1842 57.89 18.42 18.425.78
BIC 270 1219 216 220 281 214 220 228
model  [px10] [px19] [pelv] [Pelv] [Pk60] [Prd]  [Pedvi] [P dy]
error 42.1 26.31 23.68 21.05 42.1 21.05 23.68 21.05
BIC 595 215 215 226 267 213 215 215
model [P 6, 0 [Br 6k ] [Dr Ok Vil [Pr 0k 5] [P ;0] [P 65 7]  [Br 05 v [Br 65 7]
error 42.1 23.68 21.05 21.05 42.1 21.05 21.05 23.68
BIC 274 217 217 222 285 215 222 225

If the results are compared according to the error rate, GRA tire modelp;. 4, ;] is the best
method, with erroi 5.78%. This error is lower than the one obtained by standard aigoent anal-
ysis ¢2.1%) or by clustering £3.68%). By using the BIC criterion, which leads to select the model
[Dr 0 7], the error rateq1.05%) is still better than usual discriminating method.

This application illustrates the interest of GDA with respt standard discriminant analysis or
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clustering. Indeed, by adapting the classification rulevedrfrom the training population to the
test population, GDA gives lower classification error rdates by applying directly the rule derived
from the training population (standard discriminant asedy, or by omitting the training population
and applying directly clustering on the test population.

It is worth pointing out that the assumption for binary daiebe derived from the discretization
of Gaussian variables (biometrical variables) is reldyivealistic in this application. Nevertheless,
there exists a strong correlation between the five bionatvigriables, which violates the assump-
tion that discretized variables are independent.

Remark Although the “test sample” is used for estimating the disanant rule through thenla-
belleddata ofS and is used also for estimating the error rate but this orrceitfh thdabelleddata
of S, this estimated error rate is usually not an optimistic mea®f the classification method’s
performance. This fact is well-known in the semi-supemisetting ¢, Subsection 21.1.2). In ad-
dition, we have also verified this claim with our biologicaitd by performing a hold-out procedure
(results not reported here).

6.2 Real binary data

The second application considers sea birds from the sppaféas(?). Two groups of subspecies
are considered: The first one is composed of subspecieg IiviRacific Islands -subalaris(Gala-
pagos Island)polynesiaj dichrous(Enderbury and Palau Islands) agnghax— and the second one is
composed of subspecies living in Atlantic Islandseydi(Cap Verde Islands). Here, the difference
between populations is the geographical range (Pagsfi@tlantic Islands). A sample of Pacific
birds (» = 171) was measured using skins in several National Museums. \Foiables are mea-
sured on these birds: Coller, stripe and piping (absenceesepce for these three variables) and
under-caudal (self couloured or not). Similarly, a samplattantic birds (» = 19) was measured
using the same set of variables. Like in the previous exantwle groups are present (males and
females) and the sex of all the birds is known. Pacific birdsciwosen as the training population
and Atlantic ones as the test population. Choosing Atldnitits as the test population corresponds
to a realistic situation because it could be hazardous tfomera clustering process on a sample of
such a small size. This is a typical situation where our nahagy could be expected to provide a
parsimonious and meaningful alternative. According toltimbogist Vincent Bretagnolle, the mor-
phological variables which are used in this applicationrerevery discriminative, and then one can
not expect that the error rate will be better thiéin— 45%.

The 32 GDA models, among which standard discriminant arslys1 0], are applied on these data
and the results are presented in Table 3. Clustering is @igled, and the obtained error rate is
49.05%.

As in the previous study, GDA is more efficient than standasdréminant analysis50.94%)
and clustering49.05%) to classify birds according to their sex. Moreover the Biifetion leads to
choose the model with the smallest error rate. The relgtpebr classification results (the minimal
error rate ist3%) confirm the assumption of the biologist.
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Table 3: Classification error rateg) and value of the BIC criterion for test population of Atlent

birds with training on Pacific birds population.
model  [p;10] [px17] [pe 1kl [pel7] [pxd0] [pedy] [pkdyil [Pkl
error 50.94 43.39 4528 43.39 50.94 4339 4528 4528
BIC 212 209 216 224 212 209 216 224
model  [px 6 0] [px 0k V] [P 0k V&l [Pr Ok 5] [Pk 65 01 [pr ;7] [pr 65 k] [pr 05 v]
error 4528 4528 52.83 4528 4528 52.83 50.94 50.94
BIC 210 210 215 226 225 224 227 239
model  [p,10]  [px17] [Pe 1yl [Pelv] [Bu00] [Pedy] [Prdyil [Prdy]
error 4528 50.94 5094 4528 4528 50.94 50.94 45.28
BIC 213 213 220 228 213 213 220 228
model [Py 6, O] [Pr 6k v] [Dr O Vil [Pr Ok 5] [P ;0] [Dr 6571 [Pr 05 v [Pk 65 7]
error 4528 4528 47.16 4528 45.28 52.83 4528 52.83
BIC 214 213 213 229 228 227 224 243

7 Conclusion

Generalized discriminant analysis extends standardidisw@nt analysis by allowing training and
test samples to arise from different but stochasticallgdthpopulations. Our contribution consists
in extending previous original work, derived in a multin@oontext, to the case of binary data.
Applications to a biological problem illustrate the powéronr methodology. A classification of
birds according to their sex is provided by using generdldiscriminant analysis, and this classi-
fication is better than those obtained by standard discentianalysis or by clustering.
Perspectives for this work are numerous. Firstly, the patars of both population® and P are
estimated successivelyy,; andp, are estimated in a first step and they andp, are deduced
from these estimations and from those of all parametersolilsl be very (computationally) useful
to consider a joint estimation of this four parameters. Irtipalar, ? extended the earlier work of
Biernacki et al. [2002] to the full likelihood estimation parameters in the multinormal situation. It
appears that error rates obtained by sequential estimdteygoint estimate are quite similar when
the learning sample is large (situation of the current pap@ut, when the learning sample has a
small sample size, joint estimation could significantly noye the error rate. We could expect the
same behaviour for our current model but this assumptiodsieebe confirmed by a future specific
study.

Secondly, the link between both populations was defined byguSaussian cumulative density
function. Although it seemed initially difficult to find thisnk, a simple link involving the probit
function was obtained. It was not easy to imagine it, but msaningful afterwards. It would be
interesting to try other types of cumulative density fuans; Obviously theoretical reasons will
have to be developed and practical tests will have to beechatuit.

Thirdly, with this contribution generalized discriminaartalysis is now developed for continuous
data and for binary data. To allow to analyse a large numberradtical cases, it is important
to study the case of categorical variables.(more than two modalities), and thereafter the case
of mixed variables (binary, categorical and continuoustbgr). Everitt's works (Everitt [1988]),
which defined a classification algorithm for mixed variablzm be helpful for this topics.
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Finally, it would be also interesting to extend other cleakiliscriminant method like non-parametric
discrimination or semi-parametric discrimination. SeerBacki and Beninel [2005] for logistic re-
gression.
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A Proof of the relation between test and training populatiors

From (6) it follows thatfflj‘zlkzl is Gaussian with meap;; = ay;ur; + br; and with standard
deviationgy; = |ax;|ox;. However, this transformation is clearly non-identifiablehere exists
more than one couple4,, by) which satisfies Relationship (6). To solve this problemiladia,;
are assumed to be non negativg; (> 0).

It is possible to derived from Equation (5):

Nt =~ agy) + A
Okj Okj
and then, using expressions/gf; anday; just given above:

~ J
Okj Qkj Okj Ak O kj

- <‘I>_1(akj) o Bt Oy — Mkj) _ (11)

akj aij'kj
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Alternatively, it is also possible to write from (5) again:

Mg 1 Sj
A= = 0 ay) + N ==
Jo'kj ( k]) Jo'kj

and thus, following the same process as in (11),

[ b
R N A L X (R Y I P AL
Okj Okj A0 kj

_ CD((I) (akj)+A&’”8j+b’”_sj). (12)

QO kj

Of course, Equations (11) and (12) are equivalent but theofirs will be retained since Parametriza-
tion (11) will be more convenient for proposing later numerarsimonious models of constraints
on the link between” and P. Consequently, the following relationship betweey and &y; is
obtained:

Qpj = q)(%' ™ (auy) + >\ﬂkj>a

whered,; € RT\ {0}, \; € {—1,1} and~; € R.

B Model identifiability

B.1 Intra-group identifiability

Firstly, the identifiability of the couplé);, ;) in different constrained model situations is reaching
as follows:

e Models involvingy;; = 0 or ,; = 7;: By setting for instance,, = +1 (j =1, ..., d),
e Models involvingy,; = v orv;; = 7. By setting for instance,; = +1.

By this way, the produck;v;; is allways identifiable and obviously all these constraamts,; have
no impact on the estimation of the producty;;, as the reader can easily convince himself.
Secondly, the identifiability of the couple of parametéys, ;;) conditionally to)\; is discussed.
Equation (7) leads to

(b_l(dkj) = 6I<:j (I)_I(Oékj) + )\j'ykj (13)

which can be expressed as the following linear system

P =P, x Us,

whered = (&~ 1(ay,),..., 0 Y (axj), ..., 2 " (axa))” € RE? and®, andus,, are respectively a
matrix and a vector, with dimension depending on the modékad, representing the values of
d~!(ay;) and); for @,, and the values af,; and~,,; for u;.,.

Identifiability is obtained if and only if the matris, is of full rank. It is easily noticed (see the
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example below) thab, is not of full rank only for very particular values of;; (typically c; = 3

for somek, j for instance). Moreover these theoretical non-identiéabtuations lead seldom to
practical non-identifiable situations since an estimajgiis used instead of the unknown true value
a;. To be definitively convinced of this fact, the reader caretakook at the robustness study
(Section 5) where simulations involve a theoretically ndentifiable model (alby;; = %) but where
practical identifiability is observed.

Example with model [p;, J. vx] for intra-group identifiability  In this situation®, = [M|N]is a
(Kd x 2K)-matrix formed by two block matriced/ = (M)1<k<x @ndN = (Nj)1<r<x defined

1<I<SKd 1<I<SKd
by
P 1(0&11) 0 0 )\1 0 0
> (ag) O 0 A O 0
0 0 dYap) 0 . 0 0 0 A O 0
Py = :
0 0 & aw) 0 . 0 0 0 A O 0
0 0 <I>_1(aK1) 0 0 )\1
0 0 <I>_1(aKd) 0 0 )\d

®, is not of full rank min(Kd, 2K)) if and only if

e Possibility 1: There exists € {1,..., K} such thaty,; =3 forall j € {1,...,d},

e Possibility 2: There existgy, ...,k € {1,..., K}, ki, ..., k, being all different, withr
{1,..., K} satisfyingd(K — 7) < 2K, such that forallj,;" € {1,...,d}, forallk €
{k)l, Ceey kT}, )\j/@_l(akj) = )xjfb_l(ozkj/).

B.2 Inter-group identifiability

This non-identifiability problem means that one group of gugulation P can be transformed
into more than one group of the populati&h It cannot happen if the group proportiopsin P
are all different (it is likely in practice) and if simultaoesly all the constrained models are with
fixed proportions between populations (models. . |). But if these proportions conditions are not
verified, the non-identifiability problem is the followingror fixedk; andk, (k1, ks € {1, ..., K},

ki # ko) and for fixedj (j € {1,...,d}) there exists two sets of parametéds, ;, \;, Vi,;) #
(01,51 Aj> Ty ;) Which transform respectivelyy, ; into ay,; and intody, ;. In fact, if the groupk; of

P is transformed into the group, of P (instead of the group; of P) then necessarily the group

of P is not transformed into the group of P, but into a grougks + k- of P; The simplest solution

17



is ks = k; butitis not certain ifK” > 2.
Thus, the identifiability problem can be rewritten equiveille There exist3:, # k; andks # ko
such that, for any and(dx,;, Aj, Vk15), (Oksj» Ajs Thej) SUCh that

O (g, ) = Oryy D7 (hys) + Ay (14)
D (Ayj) = Okyj D (o) + XjVhas (15)
there exists0y, ;, A%, Vi, ;) 7 (Okijs Ajs Yhus) @NA (01,55 Aj, Vi) 7 (Okajs Ajy Yaag) SUCH that
(b_l(dkw) 5llclj (aklj) )\j’yk’l‘] (16)
(I) l(ak?)]) 6k2] (I) l(akﬁ) + A]ngj (17)

It follows from (14) and (16)

5
5klj ¢ ( k’l]) )\J }/kl] 5k1] + )\]’Yklj (18)
k1j k1j

O~ (agy;) =
and similarly from (15) and (17)

5k VE
ot (aksj) 2 - ( km) >‘] 2 5221 + )‘
5k2] 5 kaoj

Equations (18) and (19) lead to the following linear system

(19)

J kQJ

) = O < wy (20)
where®*2%3) — (& (ay,1), ..., P (Grga)s D HApy1)s - - -, D (Apya))’ € R andcpgff;,’ffg, and

ug,l,” are respectively a matrix and a vector, with dimension ddpgnon the model at hand,

representing values @ " (G, ;), ' (Qkyj)s Okijis Okogr Vhrjs Vhag Ajr A TOF <I>5’21 fi, and values of

/ / / / (k1,k2)
Oyjs Ok Vhyjo Vhoy TOT Uy

Conditionally to the values of’, the problem is identifiable if no solution exists to Syst&®)(or,

in other words, if the number of linearly independent |Iﬂé31>§c1 fi, is no less than the number

of free parameters imj,**). The number of lines of{" 1), is equal to2d and in most cases

of interest these lines are independent for any vanesSee for instance the following example

with the modelp;, 6, v for a discussion on this subject. The number of free paramefm;;f”)

corresponds to the values in Table 1 by artificially fixikg= 2 in this table. Except for model
1D 9; v;] the maximum number of free parameters is equahtei(4, d + 2). Thus, a sufficient
condition of inter-group identifiability i2d > max(4,d + 2). Sinced > 2 usually for binary data,
all models are identifiable except the mod@ld, v;] since the number of free parameterids
Although this model is non-identifiable, it can neverthslbe used by bearing in mind that a label
switching may occur fron® to P.

Remark Only a single switch between 2 classég, (k») of P becomesk,, k;) of P) may occur
with the model[p,, J; v;]. Indeed in case of a switch between more than 2 classes, danices
(k1, ko, ks) of P becomes(ky, ks, k1) of P or (ky, ko, ks, ks) of P becomesky, ki, ky, ks) of P,
the number of equations reaches at leiasfor 2d free parameters: The modgi, J; ;] is then
identifiable.
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Example with model [py, d; ~x] for inter-group identifiability.  In this S|tuat|0n<1>gk71 vy = [M|N]
is a(2d x 4)-matrix formed by two matrix block8/ = (Ms)1<s<2 andN = (le)1<s<2 defined by

1<i<2d 1<i<2d

1 1/~ . Vkq1l /
—5k11q) (akll) )\1 Skt 0 ‘ )\1 0

— )\, kad /
Uik 5k1dq> (akld) )\d5k1d 0 § Aa 0
AN T 1 —-1(~ kol /
3,752, 0 @@ (ak21) )\1 Tkal | )\1
1 —1(x ’Yk d l
0 W(I) (ade) —2< ‘ 0 )\

od

The reader can easily convince himself that2Hhdines are generally linearly independent in prac-
tice. For instance, the simulation involved in the robustngtudy (Section 5) considers this model
and none identifiability problem is encountered (the cfasgion error rates are always strictly
lower than50% and thus none label switching has been obtained).

C Proof of the concavity of the functionQ(0, )

The aim of this appendix is to prove th@to, 0(‘1)) is a strictly concave function of;, v, andy, and
also ofdy, d;, 6 and\,;. The fundamental key of the proof is to study first concavityds, 8@)
for ;.

Let O(v;) be the function®(6, 8'?) with parameterg, 6;, \; and8'? fixed, and let prove that
Q(vx;) is strictly concave:

d

Q) Zztzk{logpk Zwog( (G)) + D01 37) log (1 @(Giy)) b

i=1 k=1 j=1

with ij = (Sk] (Oék]) + )\J’ykj
The derivative of the functio®(~;;) is:

), OCks) . —&(Ckj)
0% ZztlkZ{ Lij J@(C )+(1 i ))‘Jl_ (ij)}

=1 k=1 j=1

where¢ is the probability density function o¥/(0, 1).

Using that??%t%) — _p(be + a)¢(ba + a) with a,b € R, the second derivative is:

d

’Ykg Z thk Z v { = XChi @ (Cr) P (Chy) — Ay (Gry)?

222 @Gy )2
NG d(Ci) (1 = @(Cj)) — Xjd(Crj)?
HO =) S g -
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that can be rewritten:

91(Ckj)

n K d
TO0) _ S5 > Moo a1 [2”)] (G ®(Ciy) + 0(Cry)

87@ i=1k=1 j=1

92(Crj)
5 (G (0(Chy) = 1) + 8(Gi)) - (21)

(1 — i)
[1— @(¢kj)]?

To prove thatQ is strictly concave, it is sufficient to prove that both fupnos g; andg, are strictly
positive:

+

e Forallz € R : gi(x) = 2®(z) + ¢(x) > 0, because lim ¢;(z) = 0 andg, is strictly

r——0Q

increasing since; (z) = ®(z) + z¢(z) — z¢(z) = ¢(x) > 0,
) =

e Forallx € R: gy(x) = 2®P(z) — x + ¢(x) > 0, because lirf g2(x) = 0 andgs is strictly

O(z) — 1+ a¢(x) —zp(x) = P(z) —1 <0,

Thus £ 201) Q(”’“) < 0 andQ(~y;) is strictly concave.

If Qis no Ionger function ofy;; but now of~;, (respectively ofy;, of ) the expression of the second
derivative is the same as (21) by removing the sum @resp. onk, on (k, j)), and thusQ is still
strictly concave.

Consider now the functio@(dy,) with the above conventionf, vi;, A, and@'? fixed). Same type
of calculus leads to:

Q(dr;) _ Lij (1 — ;)
o Z_;;mZ( Oékj)) ¢(§k]){mgl(@g) mm(%)}

decreasing sincé,(z)

and thusQ(dy;) is strictly concave. By using the above arguments, it aiisesediately thaQ(oy,),
Q(0,), Q(0) are also strictly concave.
Consider finally the functio®(;). The second derivative is:

QA (1 —ay)
8>\2 ;;tmzm <k] { o(C, >]291(Ck3) mw(%)},

andQ();) is strictly concave.

20



