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FERMIONS AND DISCRETE SYMMETRIES IN QUANTUM FIELD THEORY.
I. GENERALITIES & THE PROPAGATOR FOR ONE FLAVOR.

Q. Duret! 2 & B. Machet? 3

Abstract: Starting from Wigner's symmetry representation theorem,give a general account of dis-
crete symmetrie®, C, T and their products, focusing on fermions in Quantum Fieldori. We deal in
full generality with unitary and antiunitary operators gng a special emphasis on the linearity and uni-
tarity of charge conjugation. We provide the rules of transfation of Weyl spinors, both at the classical
level (grassmanian functions) and quantum level (opesatiMaking use of Wightman's definition of in-
variance, we outline ambiguities linked to the notion ofslaal fermionic Lagrangian. We then present
the general constraints cast on the fermionic propagatasrfe flavor byP, C, T and their products; we
show that propagating a Majorana fermion is incompatiblia wie breaking of botld’ andC'P.
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1 Introduction

Fermions are usually treated, in most aspects of their phenology, as classical, though anticommuting,
objects. They are generally endowed with a mass matrix thdog coupled system’ this can only be a
linear approximation in the vicinity of one among the phgsjaoles of their full (matricial) propagatd}[1]
[B]. In this perspective, the study of neutral kaofjs [1], amore specially of the role held, there, by
discrete symmetrie®, C', T' and their products, has shown that subtle differences doetween the
“classical” treatment obtained from a Lagrangian and a nmaasix, and the full quantum treatment
dealing with their propagator. Using a classical approxiomafor fermions isa priori still more subject
to caution since, in particular, their anticommutationfig@antum origin. This is why, after the worK [1],
we decided to perform a not less exhaustive study of couplenibnic systems in Quantum Field Theory,
dealing especially with the propagator approach. Tred@ngions on a rigorous ground is all the more
important as the very nature, Dirac or Majorana, of neugriigostill unknown, and that all theoretical
results used up to now, concerning specially flavor mixiety, on a classical Lagrangian (mass matrix).

The second and third parts of this work are dedicated to gés&tements concerning the discrete sym-
metries parityP, charge conjugatiol’, time reversall’, and their products. It does not pretend to be
original, but makes a coherent synthesis of results sealttierthe literature, and which sometimes con-
tradict each other. Starting from Wigner’s representati@orem [[B] and Wightman’s point of view for
symmetry transformation$][4], we give the general rulesarigformations of operators and of their her-
mitian conjugates by any unitary or antiunitary transfaiiora We then specialize to transforming Weyl
spinors byP, C, T and their products, first when they are considered at theickldevel (grassma-
nian functions), then at the quantum level (anticommutipgrators). We put a special emphasis on the
properties of unitarity and linearity of the charge contima operator, which is sometimes erroneously
considered to be antilinear.

The fourth part deals with the concept of invariance of amibeory, still essentially following Wightman
[Al]. By taking the simple example of fermionic mass termgébiand Majorana), we exhibit ambiguities
and inconsistencies that arise in the transformations tdssical Lagrangian by antiunitary transforma-
tions. This motivates, like for neutral kaorj$ [7], the prgat@r approach, which is the only safe way of
deducing unambiguously the constraints cast by symmaetnstormations on a Quantum Field Theory
2

The fifth and last part of this work is dedicated to the propagaf a single fermion (one flavor) and its
antiparticle, from which it cannot be separated, in Quankieldd Theory. We derive in full generality
all constraints cast on it by, C', T', PC', PC'T. We show in particular that an observed fermion can be
Majorana only ifC' andC' P are both unbroken.

This study is largely unfinished since the case of severabffaef fermions is not investigated here.
This necessary extension, which will give access to thenéisséssue of flavor mixing, in connection
with discrete symmetries, is currently under investigatiwe recall that results concerning mixing at the
quantum level have already been obtained, by less genehalitpies, in[[6] and[]7]).

2 Generalities

In this paper we shall note equivalently < —i(5%)* = (£9)¢ = —i(n®)* = C.£* = —i(y%)*, where
£ is a Weyl spinor (see Appendjx A.1).

The corresponding fermionic field operators will be put istiare brackets, for examgk], [¢2]Y, the
last being the transformed by the transformationFormally [¢¢]V = (£2)V.

The transition amplitude between two fermionic states teee: y | ¢ >; this defines a scalar product
and the corresponding nora+ | ¢ > is real positive. The scalar product satisfies

<Yl x>T=<x|¢>; 1)

Both quarks and leptons form coupled systems through thgsHigctor.
2and more generally its Green functions, from which the Sematn be in principle reconstructeﬂ [4].




we consider furthermore[{[5]) that representations of thia&aré group satisfy

< x >T=<T | X > 2)

2.0.1 The symmetry representation theorem of Wigner[]3]

A symmetry transformation is defined as a transformatiornerstates (ray representatiots)— ¥’ that
preserve transition probabilities

| <0G > P =] < Wy [ P2 > [P 3)

The so-called “symmetry representation theorem” statemy symmetry transformation can be repre-
sented on the Hilbert space of physical states by an opetla#biis either linear and unitary, or antilinear
and antiunitary.

Since we have to deal with unitary as well as antiunitary afpes, it is important to state their general
properties and how they operate on fermionic field operatérsinitary operatoZ/ and an antiunitary
operatorA satisfy respectively

Vi, x <UY|Ux>=<y|x> <AY|Ax>=<x|¢>=<y|x>". (4)

Both preserve the probability transitionc ¢ | x > |> = | < Uy |Ux > > = | < Ay | Ax > |2

2.0.2 Antiunitarity and antilinearity
An antilinear operator is an operator that complex conjgany c-number on its right
A antilinear < A(c|¢y >)=c" Ay >. (5)

An antiunitary operator is also antilinear. Let us indeedsider the antiunitary operatot.
AP | A Ax >=< AP | ANy >=< A |y >= N < x| >= N <AY | A| x >
shows that4 is antilinear.

2.0.3 Unitarity and linearity

In the same way, one shows that: a unitary operator is linear.

2.0.4 Symmetry transformations: Wightman'’s point of view

Wightm:im [4] essentially deals with vacuum expectatiomealof strings of field operators. The trans-
formedO of an operato© is defined through the transformation that changes the gtati® ¢

<9|lO|p>=<¢|0|¢> (6)

One has accordingly:
* for a unitary transformatiod/ R
o=u-tou, (7)

3For fermionic scalar products, we refer the reade[lto [8]-
“We refer the reader ttﬂ[Q] for a careful demonstration of théorem.




* for a antiunitary transformatiopd ® ©

O (AT0A)T

= ATOT(AHT = ATOTA. 9)
This is the demonstration.
* For I unitary (U = 1 = UTU):
<UP | O |Ux >=<y |[UTOU | x >=< |[UTTOU | x >, q.e.d.

* For A antiunitary:
- first, we demonstrate the important relation

V(b x) <AY | AOA [Ax>=<x|0"|¢ >. (10)

Indeed:

<AY | AOA™ | Ax >=< AY | AO | x >=< Ay | A(Ox) >@<0XW>:<X\OH¢>;
- one has then, in particuldr

<AP| O Ay >=< AY | AATTON A | Ax >=< x | (A0 | >, (12)

which yields the desired result for = y 8.

According to [P), an extra hermitian conjugation occurshia transformation of an operator by an anti-
unitary transformatiof.

2.0.5 General constraints

<&]OTJ<;3>@<¢\(’/)\T\¢>evaluatesalsoa<sé]OHqB>:<qB\O[é>*@<¢]@\¢>*
=< ¢ | (0O)| ¢ >, such that, comparing the two expressions one gets

ot = (0), (13)

which is a constraint that must be satisfied by any opef@tivansformed by unitary as well as antiunitary
symmetry transformations[ (13) can easily be checked @pli [:/] being the field operator associated
with the grassmanian functian, one has:

* for a unitary transformatioiy:

o & g [wHu,
o Bt g gyt e gty 14)

The last equality in[[g) comes from the property, demonstrdty Weinberg |]9], that an antiunitary operator must also
satisfy the relatiopd A" = 1 = A" A (see Appendik]B). So, in particular, one Ha$ )T A~ = 1= (4 )T = A
*Because of[{9), fo© = 0,0:... 0,

[010:...0,]° = (AT'010:...0,A4) = (AT OLAAT O2AA7! . AAT 0,.A)
= (A0, (AT04) (A0 4)]
(0,7 [02]°]01]%; 8)

antiunitarity implies that the order of operators has towapped when calculating the transformed of a string of dpesa
"When thein andout states are different, one can write accordingly

<SAY O Ax >=<x|O |y >=<x|(AT'OA" | ¢ > 11)

Thein andout states have to be swapped in the expressions on the r.lsarjrenthat all terms ir‘ml) are linear ih and
antilinear iny.

®0ne cannot useIEM) to transforn x | (A~'OA)T | ¢ > into < ¢ | A'OA | x becaused ™' O A acts linearly and
should thus this considered as a unitary operator.

°See [1, eq.(1-30).



* for a antiunitary transformatiot:

=S
[Efl=s

(A )" A)F = AT [y] A,
(AT [u]T AT = AT [y] A. (15)

Since[y)] and [¢] are respectively associated with the grassmanian furscticand«*, [@3) also casts
constraints on the transformation of grassmanian funstion

U = ()", (16)

3 Discrete symmetries

3.1 Parity transformations

We adopt the conventioR? = —1 [[L4]. Then the transformation of spinors are

—i&o (=12, 1). (a7)

The parity transformed of the complex conjugates are defftf@das the complex conjugates of the parity
transformed

P.(§%)" = (P.£); (18)
this ensures in particular that the constraift$ (13) aiildlssatisfied. It yields
Q\* (= * = k[ = P Q0 * —
(€70 5 ~ilna) (=) ()" (@0) = ~i(E) (=7,1)
* (= P Gy = A\ (= * -
(ga) (mat) - 7’(77 ) (_xat) ) (77 ) (.f,t) - Z(fa) (_xat) (19)
For Dirac bi-spinors (see Appendi} A), one gets
Papp =Uptpp, Up = in°, UL = —Up = Up',Up = =1, ULUp = 1. (20)
3.1.1 Parity transformation on fermionic field operators
Going to field operators, one usép (7), for unitary operators
[€*)" = P[P (21)
to get
PIENE P = ing(=T,t) , P~ lna(Z,t)P = i€ (=1,1),
Pl (Z,t)P = —in®(—%,t) , P gY@ t)P = —ifo(—7,1),
PHENN &P = —i(na) (=7, 1) . P~ (na) (@ )P = —i(¢)T(—7,1),
pt EQ)T('ﬁ t)P = i(na)T(_fv t) ) Pil(na)T(fv t)P = 2(§G)T(_f7 t)v
(22)
which satisfies the constrairft {13). The following constréien arises
(P12 pP? = —¢°. (23)

indeed: (P~1)2¢p? — p-1(p-igep)p & piy plincar; pa, p @ o

Taking the hermitian conjugate of the first equation of thet fine in (22) and comparing it with the first
equation of the third line, it is also immediate to check faPT)O(PPT)~! = 0, O = ¢* ... which
is correct forP unitary or antiunitary.



3.2 Charge Conjugation as a linear (unitary) operator

C' is the operation which transforms a patrticle into its antipke, andvice versa without changing its
spin and momentum (see for examglg [11] p.17); it satigfiés= 1 [[L]]

A Dirac fermion and its charge conjugate transform alfkd] frid satisfy the same equation; the charge
conjugate satisfies

Capp = Ve (24)
whereV is a unitary operator
Ve =72 (Vo)lVe = 1= (Vo) (25)
this action on Dirac fermions is generally taken as the défimiof C'. Equivalently
Cpp = Ucp,  Uc = Ve =%, UUc =1 = —(Uc)*. (26)
Naivelyconsidering[(24) (as often done) entails
C.(Mp) = A"C.(¢p), (27)

which leads to consider that acts antilinearly onyp. We show below, after eq[ (31), that this is a
mistake and that’ should act linearly, otherwisBC'T becomes linear and unitary, which is wrong.

In terms of Weyl fermions (see Appendix A), one has

o fe %3 c'uB * g2 % a *
T N IR N e 0 Y T I () QS
0 & Gap €™ 02 565" 0
(28

and, so

gOé g _7’77&* ) 770'4 g _7’627
&0 S —iny S —ie (29)

The transformation of complex conjugates fields resuliftee constraint[(16), which imposes

€y St (my)*giﬁa,
) Sing , () Siee. (30)

It is now easy to show that (recall th(a[pzJ = —1 from (26))

C?% =1, C unitary and linear. (31)

One gets thenC.C.£% = C.(—i(n%)*) " (—i)C.(n%)* & £, which entails, as neede@? = 1.

If (16) is satisfied (that is, accordingly, if (30) is true &iger with [2P)), but if we take antilinear
(thus antiunitary), by operating a second time witron the I.h.s. of[(39) o (30), one finds that it can
only satisfyC? = —1 instead ofC? = 1. The commutation and anticommutation relations with other
symmetry transformation® and7 are also changet?, which swaps in particular the sign 6PCT)?.
Furthermore, sinc& is antilinear andP is linear, this make®CT linear, thus unitary, which is wrong.
(L8) is thus only compatible with unitarity and linearity 0.

If ([[G) is not satisfied, that is, if the signs ¢T]30) are sweghpone can keep? = 1 at the price of taking

C antilinear. Then it can only be non-unitary, which is in catfivith all assertions. Also, unless we
abandon the natural correspondence- [¢/],1* < [¢]' between fields and operator§,](13) cannot be

with our conventions, we hav@ P = PC, (PC)? = —1, and(PCT)? = 1.



satisfied either, which creates a problem with Wightmanfind®on (@) of the transformed of an operator
by a symmetry transformation (in the sense of Wigner).

So, despiteC’ complex conjugates a Dirac spinor, it should act linediyy = X C.yp. ([@4) and its
consequencd (R7) should not be considered as the basitoeudefiningC' transformation; they should
be supplemented by the condition of unitarity (hence liit@arThis brings no trouble with the property
that a fermion and its charge conjugate transform alike afigfg the same equatiof ]10]. Indeedyif,

is a Dirac fermion )\ satisfies the same Dirac equation since the latter is limear if 1/ transforms
alike by Lorentz and satisfies the same Dirac equation, toth k)¢ and \*y)* also do. Linearity or
antilinearity is not fixed by the two conditions “transfommialike by Lorentz” and “satisfying the same
equation”, such that this property must be determined bgrathterial?® .

See also append[X D, where a careful analysis is done of thadipthat accompany the usepimatrices
in the expression of the discrete transformatiéhs” andT'.

3.2.1 Charge conjugation on field operators

The transition from[(39) and (BO) for grassmanian functitmthe transformations for field operators is
done according td7) fanitary operators, through the correspondebiae « U/~ [)] . One gets

Ct) ’
D
§a),
(E%). (32)
Hermitian conjugating the first equation of the first line B8) immediately shows its compatibility with
the first equation of the third ling> (¢*)T(C~1)t = in® = C~1(¢)TC = (¢2)T = cCi(e)T(Cc—HiCc,
which entailsCCT = +1 which is correct forC' unitary (or antiunitary). We would find an inconsistency
if the sign of the last four equations was swapped.

—15a0— —i(n™)" , CnaC = —i(¢
C7l6.C =—i(na)t , C” 177C“C —i(¢

i(n%) . C'(na)'C =i

C N &)C=ins) , CTHmM)IC =i(¢

SinceC is linear, one immediately gets

(CcHoc?=clcrtoc)c=0,0=¢"... (33)

3.3 PC transformation

Combining [1J), [(29) and (B0), and using, when needed, tigatity ofC, one gets

ga(:t)};.c—v) a(_f7t) ) §q(f7t) —>Pg§a (_fvt)v
na(,t) = 0™ (=2,t) , n*(=T,t) = —na(=7,1), (34)
and
(€ (F1) 5 Ga(—F1) , (Ca)'(@1) = —€(=7,1),
w/= o PC 4, - ank /= 4\ PC S
(7704) (wvt) -1 (_wvt) ) (77 ) (.%',t) - _nd(_wvt)' (35)
One easily checks thaf(C)? = —
Like for charge conjugation, one has
PC.(£%)* = (PC£™)". (36)

Hin [@] (p. 85),C is considered to be antilinear. IE[lS] itis instead statm(p.70) that’ is unitary and linear even though
it takesy into ¢*. We agree with@?,].



For a Dirac fermion, one has

&\ po [ & o™ (i0®)ap€™ [ (a)° oo &
= L= = =i = iy :

g n’* 97 (—i0®) g1} (") g

(37)
equivalently
T =T * *
PCAp = Vpcp =UpVep = Upcyp™ = UpUcy™. (38)
a +£(—i)(nP)*
Majorana fermions (see subsectior] 3/6) = < andyi, = (=0)0r) have PC
+(—i)&5 ik

parity 4i 12,

3.4 Time reversal

The time reversee x(t') | v(t) > T of a transition matrix element x(t') | ¥(t) >,t < t' is defined
by < x(t) | ¥(t') >*=< (') | x(t) >,t > t’; the complex conjugation is made necessary byt and
the fact thain states must occur at a time smaller tloan states; the arrow of time is not modified when
one defines the time-reversed of a transition matrix element

The operatofl’ is accordingly antiunitary, hence antilinear:
<TA|TB >=< B | A >= T antiunitary, (39)

In Quantum Mechanics, time reversal must change grassmémiations into their complex conjugate
(see for example the argumentation concerning Schroedingmguation in[[1]1]). According tdJ10], the
grassmanian functionsansform by time inversion according to

N . —T
Yp(,t) 5 Tp(T,t) = Vepp (T, 1) ;
Ve =iy, Vive=1=V¢, Vl=vp =V, (40)

which shows thaf is antilinear when it acts on grassmanian functions. Sogldinyp andvyp satisfy
time reversed equations. One also defines

Ur = Vi = i’y = U, UL = Up = U UNUr = U2 = 1. (41)

Twp = Ur¢p = iv*7'¥p. (42)
This yields for Weyl fermions

(
i} (. ~1). (43)

6 (Z, —1). (44)

One has
T? =1, CT = -TC, PT =TP (45)

2For example PC. & &) in? & _
(77@')0 Zfﬁ (77[;)0




3.4.1 Time reversal on fermionic field operators

The transition to field operators is done according[{o (9)afotiunitary transformations, through the
correspondenceAq)’ «— A~[1].A, which involves an extra hermitian conjugation with reggeche
transformations of grassmanian functior{$ ([4], eq.(1:30)

T @ NT = ila(@ —t) , T 'na(@ )T = —in® (&, —1),
T, (2, )T = —it®(Z, —t) , T 'n™& )T = ing(Z, —t),
T_l(ga)f(fv t)T - _i(fa)f(fv _t) ’ T_l(ga)T(fv t)T - i(ga)T(fv _t)7
Tﬁl(nd)T(fv t)T = i(nd)T(fv _t) ’ Tﬁl(nd)T(fv t)T = _i(nd)T(fv _t)' (46)

SinceT is antilinear, one finds immediately that, thoufjh = 1, one must have

(Tfl)Q OT2 :Tfl(Tfl OT)T: _070 :Ea (47)

3.5 PCT transformation

Combining the previous results, using the linearity&ndC, one getdor the grassmanian functioris

() S (—x) , nale) TS —ina(—a),
talz) TS ita(—2) , nt(2) TS —int(—a),
vp(x) i (—x), (48)

where the overall sign depends on the order in which the tgrsract; here they are supposed to act in
the order: firstl', thenC and lastP. When acting on bispinors, one h@§" = —T'C and PT = TP 4,

So, using als@ P = PC, one get PCT)(PCT) = (PCT)(P(-)TC) = (PCT)(-TPC). T? = 1,

C? =1, P? = —1 (our choice) and°C = CP entail

(PCT)? = 1. (49)

Note that, bothC' andT" introducing complex conjugation, the latter finally diseps andPCT intro-
duces no complex conjugation for the grassmanian functibhis is why one has

PCT4p(z) = Uetpp(—1), (50)

Ue = UpUcUr = —/"7'7*7* = i, UeUl =1=-U8, U, =-Ue. (51)
For the complex conjugate fields, the constrdinf (16) gives

()" (@) o i€ (=a) s ()" (@) i) (),
()" (@) "= —ilea) (=a) @) (@) = i) (),
b =i, (52)
such that (this only occurs fd? and PCT)
PCT.(£%)" = (POT.L")" & Ua(€%)" = (€))% = (Uet™)" = ((€1)°)" (53)

SinceP andC are unitary and” antiunitary, PCT is antiunitary, thusntilinear. So, despite no complex
conjugation is involved® . \¢® = \*0.£~ 15,

BExamples:

PCT.£* = PC.(T.£%) = PC.(—i€l) = P.(=i)C.£5 = (—i)P.C.E5 = (—i)P.ing = Pna = i€%;
PCT.(£%)" = PC.(T.(£%)")) = PC.(i€a) = PiC.la = iP.(—1)(na)” = P.(na)* = —i(£Y)".
14wWe disagree Witl’hO] who states tHatand P anticommute.

5This is to be put in correspondence with which islinear despite complex conjugation is involved.



3.5.1 PCT operation on fermionic field operators

Since® is antiunitary, one has, according fb (9)

07 '¢*(2)0 = —i(¢M)(-x) , ©

0 'na(2)0 =i(na)f(-z) . ©7'n%(x
O (M) ()0 =it (—x) , O (&)! _

B na(—z) ., 07 (M) (2)0 = —in®(—a). (54)

and, using the antilinearity @&, one gets

O H20e*=0010)e=-00=¢... (55)

3.6 Majorana fermions

A Majorana fermion is a bi-spinor which is@ eigenstate (it is a special kind of Dirac fermion with half
as many degrees of freedom); sir¢é = 1, the only two possible eigenvalues @re= +1 andC = —1;
thus, a Majorana fermions must satisfy (Se¢ (28)) one ofitepbssible Majorana conditions

¥ =™ = £ &t = (=) Sy = £(—0)E;
* —zf; = inﬁ-, which is the same condition as above;

SO,
Vi = ‘ , = ,g = j : (56)
+(—i)&) +(—i)gape* +02 6

the + sign in the lower spinor corresponds@= +1 and the— sign toC' = —1 16,
The Majorana conditions linking andr are

C==+1 . - C==+1
e O (i) () ey O

+(—1)(€p)"; (57)
using formuleg(39,30) for the charge conjugates of Weyl fensy they also write

e =T a0,y = 2y (58)

A Majorana bi-spinor can accordingly also be writtén

(=) ()"
Xar = : (60)
3
®Remark Arguing that (—i)(£3)*) transforms like a right fermion, we can call, = (—i)(§s)"), and the Majorana

ga

fermionyy, rewritesy}, =
“s

) . If we then calculate its charge conjugate according to tiedard ruIes@Q), one gets

S0 AT «@
—1\w
o A ( ) ) = ( ¢ , which shows that it is indeed@ = +1 eigenstate. The argumentation becomes
~i(ga)” ~i(€a)"
trivial if one uses for Majorana fermions the same formuladiearge conjugation as the one at the extreme rigth (28) fo

Dirac fermions(+ar)® = v (¢ar)*, (xar)® = v*(xar)*.
"The Majorana spinorg, andy:, can also be written

et —i \CP
1/’1%1 = ( :t(—i)g(ﬁo‘)cp ) ) Xi[ = ( = L(nﬁ) ) ; (59)
B8

they involve one Weyl spinor and it P conjugate (see subsecti3.3).



which is identical toys, by the relations[(§7). By charge conjugation, usipd (29), & iUy &
_X]Td'
A so-called Majorana mass term writes

CBardnr = O = £ [(6%)(a)” + €ab®] = Hi[(€a)T(67)" + £at”]
or Yuu = L Y 0m = Fi[(6Y)(Ca)” + Eal?] = Fi[(—Ea) (€Y) + €Y. (61)
Along the same lines, Majorana kinetic terms writg/v* b, ¢¥ar OF PYary"y° puoar; they rewrite in
terms of Weyl spinors (using (162))

Tt = i, [ © P 0y,
0 (p° + p.7)
= () (" = §.7)E° + (£ (—i)(&)*) (0" + 5.5) (£ (—i)€5)

—

= (£ (0" = 7.0)E” + La(’ + 5.3)ES, (62)

and

= (£ (" — p.5)E" — &P + 5.7)ES. (63)

A Dirac fermion can always be written as the sum of two Majarsiuithe first hag’ = +1 and the second

ey [ ) ot §—iln™) ), [ i) ) |
ng )L\ —igs 4y €5+

While a Dirac fermiont its charge conjugate is always a Majorana fermiéh=t +1), any Majorana
fermion (.e. a general bi-spinor which is @ eigenstate) cannot be uniquely written as the sum of a
given Dirac fermiont its charge conjugate; suppose indeed thata +1 Majorana fermion is written

. : : . . 0« £ —i(n)* :

like the sum of a Dirac fermion + its charge conjuggte = ; since the
i

two corresponding equations are not independérand n cannot be fixed, but only the combination

% —i(nY)* ~ £ — in®; so, while a Majorana fermion can indeed always be writtethassum of a

Dirac fermion + its charge conjugate, this decompositionasunique; infinitely many different Dirac

fermions can be used for this purpose.

A Majorana fermion can always be written as the sum of a lefbfen + its charge conjugate, or the sum
of a right fermion= its charge conjugate. Let us demonstrate the first case singe the second goes
exactly along the same lines.

Vi = ( goﬁ )(EQ)+< O, )¢Li72¢f¢Li(¢L)C,
+(=1)&5 0 +(=1)&5

a 5
Y = (5 )1+7 Yp. (64)

0 2

We recall that Majorana fermions ha@&” parity = +i (see subsectidn 3.3); they aretC P eigenstates
(a~° matrix comes into play in the definition 6t P parity).
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4 Invariance

4.1 Wightman’s point of view [H4]

The invariance of a “theory” is expressed by the invariarfdtb@vacuum a}nd the invariance of alpoint
functions; O is then a product of fields at different space-time points(@nbeing the transformed @)

10>=10>,<0][0]0>=<0]O]0>. (65)
x in the case of a unitary transformatiof

sym

<0]0[0>"L'<0|OV|0>" " oV |0V |0V >, 0V =u~tou; (66)

taking the example of parity and@® = ¢; (z1)p2(z2) . . . ¢n(xy,), ONE has
OF = P7YOP = ¢1(t1, —Z1)pa(ta, —T2) . . . & (tn, —Fp), SUch that parity invariance writes

<0 ’ ¢1(.%'1)¢2(.%’2) . (bn(xn) ‘ 0>=<0 ‘ ¢1(t1, —fl)(bg(tg, —fg) . ¢n(tn, —fn) ’ 0>. (67)

x in the case of a antiunitary transformatiah

<0]O]0> £ <0]04|0>=<0"]| 00" >;
o4 = (A'oA)T =
<0]O0[0> £ =<0 (A0A)T|0>=<0]| ATOA|0 >*;
(68)
taking the example o® = PCT, with O = ¢1(z1)d2(x2) . .. ¢z, ), ONE has
0° = (07100)" = (071¢,0)...(071920)1(0719,0)T = ¢ ... ¢T¢7.
For fermions [#]
¢(2)° = +o(~z) = (07'6(2)0)", (69)
such thatPC'T invariance expresses as (of course the sign is unique andhepsecisely determined)
< 0] gr(1)da(x2) .. dnlzn) | 0> "E' £ <0 gn(—2n)... d2(—22)¢1(—71) [0 >

=+ < 0| d1(=z1)do(—m2) ... ¢ (—xn) | 0>7
=+ <0](071¢1(21)0)(O Lo (22)0) ... (07 p,(2,)0) | 0 >* .
(70)

Itis enough to change, — —x; and to read all Green functions from right to left insteadeafding them
from left to right (like Pauli).

For a general antiunitary transformatigh the last line of [8) expressing the invariance also residse
the vacuum is supposed to be invariantdby' as well as byA:

<0]0O]0>=<0|00>
=< A0 | (ATOAT A >=< A0 (AT0A) | A0 > =< A0 | A7 HO0) >
(71)

requesting that, forany, < ¢ | O | ¢ >=< ¢ | (A0 A)" | > would be much stronger a condition.

Wightman's expression of the invariance is weaker thanestijug® = O, since it occurs only for VEV's
and not when sandwiched between any state

11



4.2 The condition® = ®

It is often used to express the invariance of a theory witlgfaagian or) Hamiltonia® by the transfor-
mation under consideration.

* For unitary transformations, this condition is equivalém
O=U"'oU < [U,0] =0, (72)

* For antiunitary transformations it yields (we use the mdp that, for unitary as well as for antiunitary
operatorg/—! = U and A~! = AT, see footnot§] 5 and Appendi B)

O=(A10A)T = ATTOTA = A0 = OTA. (73)

Note that this is similar (apart from the excharge— ©~1) to the condition proposed ifi [L4] (p.322) as
the “C' PT” theorem for any Lagrangian densify(z) considered as a hermitiaperator

OL(z)0 ! = LT(—a). (74)

So, that the Hamiltonian commutes with the symmetry tramsé&bion can eventually be accepted when
this transformation is unitary (and we have already meetiohat this statement is stronger that Wight-
man’s expression for invariance); however, when the t@nsdtion is antiunitary, one must be more
careful.

Requesting that the transformed states should satisfyahm fquations as the original ones is only
true for unitary transformations. It is not in the case ofiaritary operations likel" (or PCT) since a
time reversed fermion does not satisfy the same equatioheasriginal fermion but the time-reversed
eqguation.

4.3 Hamiltonian. Lagrangian.
4.3.1 The case of a unitary transformation

e Invariance of the Hamiltonian

In Quantum Mechanics, a system is said to be invariant bytamyriransformatiord/ if the transformed
of the eigenstates of the Hamiltoni&h have the same energies as the original states

Hi = By and HU.4p = EU; (75)

sincel{ is unitary, it is in particular linear, such tha&i/.«) = U.Evy = U.H1p; this is why the invariance
of the theory is commonly expressed by

H=U"'HU < [U,H] =0. (76)

Defining, according to Wightman, the transformiéf the HamiltonianH by A = U/~ HU, we see the
the invariance conditior] (J6) also rewrités= H. No special condition of reality is required fér.

e Invariance of the Lagrangian

The Lagrangian approach is often more convenient in Quafietd Theory; it determines the (classical)
equations of motion, and also the perturbative expansion.

The Lagrangian densit{(x) is written< ¥(z) | L(z) | ¥(z) >, whereL is an operator an@(x) is a
“vector” of different fields.

A reasonable definition for the invariance of the theory #ttthe transformety ¥ of ¥ satisfies the same
equation asl; since£(x) andeL(x) will provide the same (classical) dynamics, one expredsiss t
invariance by

<UY(x) | L(z) |UV(2) >= e < U(z) | L(z) | U(z) >= “L(x). (77)

12



Due to the unitarity of/, this is equivalent tec ¥ (z) | U L(z)U | ¥(z) >= €' < ¥(x) | L(x) | ¥(z) >
or, owing to the fact tha¥’ can be anything,

LU = ¢ UL. (78)

If one applies this rule to a mass term, and consider the rsaaka() as an operator, the unitarity.6en-
tails that a scalar as well as the associated operator sk@myldinchanged. This leaves only the possibility
a = 0. The condition[(78) reduces accordingly to the vanishinthefcommutatofL,2/]. Wightman's
definition (§) of the transformefi = 2/~ L/ of the operatoi, makes this condition equivalent fo= L.

No condition of reality (hermiticity) is required ah.

4.3.2 The case of antiunitary transformations

The situation is more tricky, since, in particular, the esatransformed by a antiunitary transformation
(for exampleT’) do not satisfy the same classical equations as the origiatds (in the case @f, they
satisfy the time-reversed equations).

This why it is more convenient to work with each bilinear gnetsin the Lagrangian or Hamiltonian, which
we write for example< ¢ | O | x >. ¢,£ can be fermions or boson®) a scalar, a derivative operator

.... Taking the example aPCT), this bilinear transforms intec ©¢ | O | Ox >(B)< x| 0| ¢ >=

<x|(©7toe)| ¢ >.

Application: Dirac and Majorana mass terms

e Problems with a classical fermionic Lagrangian

In view of all possible terms compatible with Lorentz inearce, we work in a basis which can accom-
modate, for example, both a Dirac fermion and its antipiatidccordingly, For a single Dirac fermion
(and its antiparticle), we introduce the 4-vector of Weyhfeons

£ 38 £
n Bye _i(nB)* s
1/} _ L _ (§ ) — (77 )* Lm:\ejntz n 7 (79)
nR (n3)¢ _2(57) &
Uk Uk Uh
where"”<"* means “transforms like (by Lorentz)”

Let us study the transform BYC'T of a Dirac-type mass term p&®* (z)ns () =< £%(x) | mp | na(z) >
and of a Majorana-type mass termn £ (z)(ns)¢(z) =< £¥(x) | mar | (na)¢(x) >.

* mp andm; we first consider as operators sandwiched between fermgpagsmanian functions. The
two mass terms transform respectively iRt®&* (z) | mp | Ona(x) >and< O (z) | mas | ©(na)¢(x) >.
We now use[(12), which transforms these two expressionsdinig | m$ | £ > and< ()¢ | m§, | €& >.
Since® is antilinear,0 'm0 = m* = m® = (67'mO)" = m. So the two mass terms transform re-
spectively intomp < ng | ¢ >= mpni&® andmy < 18 | €4 >= ma(n5)*€“. Notice thatn’: ™

is (using anticommutation)—) the complex conjugate @*n, and like wise, thatn$)*¢“ is (—) the
complex conjugate of**n¢.

The Lagrangian density also a priori involves Dirac and Maja mass termspn:® and s (ng)* €,
such thatPCT invariance requiresp = up andmy; = s 2.

18)f the Lagrangian (Hamiltonian) is furthermore real, it sbmatch its complex conjugate (see Apperﬁix C). The c.c. of
the Dirac mass terms are’ £2n% + whna ™ 0™ _minie® — whe™* ne and the c.c. of the Majorana mass term are
Mg (ME)" + par(n§)E ETT —miy (ng) € — ui €T (n5)- Using (29) to replaceys by (—i)¢s, the reality of the
Lagrangian is seen to requirep = —up andmar = —piy-

So, combining the two, we see that a real &d7" invariant (classical) Lagrangian should satisty, = up imaginary
andmas = pnm imaginary.
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* If we instead consider thati¢*y Fer m(©¢*)Ox we obtain, using[(48)($2), that the Dirac mass

term transforms intong(—i£“*)(—ins), that is, it changes sign b?CT. The Majorana mass term
transforms intamay (—i€*)O(—igs) "= mar(—iE)(+1)0&; = (—i€)(+i)(—iks) = —iEE,
that is, unlike the Dirac mass term, the Majorana mass temes dot change sign. This alternative would
in particular exclude the simultaneous presence of Dirat Majorana mass terms (necessary for the
see-saw mechanism).

* Conclusion: antiunitary transformations of a classieahfiionic Lagrangian are ambiguous and can lead

to contradictory statements. Defining a classical ferntiduiaigrangian is most probably itself problematic
19

e Quantum (operator) Lagrangian

Dirac and Majorana mass terms write respectiVe' [m p][na] and[£2]T [mas][ng] @) [mar](—i)[€a]T

Using (8), one get§i¢®]"[mp][na])® = [n4]°[mp]®([€*]")® = [4]°[mp]®([€*]°)" = —z[na][ma](—i)[fa]*,
such that, using the anticommutation of fermionic opegttite Dirac mass term transforms ®yinto
itself.

As far as the Majorana mass term is concerned, it transfortag[¢ ] [m/] [77 ]) [%]) [mar]®([€2]1)® =
(—il€a]")®mar]® ([€%]7)°. One uses agaifi|(8) to evaludteil¢]")® = ([€a]7)°(— ) = (=)&) (—1) =
—[€,]t. So, finally, the Majorana mass term transforms inf@,] s (—)[€2]T 2™ —i[e)tmas[alT,

that is, like the Dirac mass term, into itself.
The same conclusions are obtained in the propagator fagmali

5 The fermionic propagator and discrete symmetries (1 flavoyr

The fermionic propagatoA(z) is a matrix with a Lorentz tensorial structure, the matrigneénts of
which are the vacuum expectation valuegeproducts of two fermionic operators:

To(z)x(y) = 0(z" — ) (x)x(y) — 0(y° — 2°)x () (x); (80)

the Lorentz indices of the two operators yield the tensatiaicture of the matrix elements.

If, for example, one works in the fermionic basig, 12, 1¥3,14), and if o, 5. .. denote their Lorentz
indices, the propagator isdax 4 matrix A(x) such that

AR (@) =< v [A@)| v >=< 0[T()*(5) W) (=3)]0>. (81)
Supposing
< | >= 6,07, (82)

we shall also use the notation,
Ax) = Z\wz > A () < |

<y |
<4y |
<f |
<y |

= (198> 195> [ug> |ug> )AY@ : (83)

since one indeed finds ¢ |A(z)| ¢f >= A%B(SU)-

19_et us also mention the arbitrariness that results fromragith a mass matrix any vanishing anticommutator.
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In the basis[(79) in which we are working, the fermionic prgguar is a4 x 4 matrix which involves the
following types of7 products:

x mass-like propagators:

<0[7¢%(x)(1g)"(—2)] 0 > and< 0|7 (£*)“(z) (1))
<07 (6)*(=)((6")9)F(=2)| 0 > and< 0 | T s () (¢")1
< O[T (@) ((ny)) (=) 0 >, < 0 |T(£%)(x)(n)" ()| 0 > (Majorana-like),
<07 (16)°(2)(E7) (=) 0 >, < 0[Tna(2)((€7)°)T(—2)| 0 > (Majorana-like);
x kinetic-like propagators:
<0[7¢(@)(¢”) (~2)| 0 > and< 0 [T (£*)(z)((€")") (=)
<07 (16)*(2)((15)°) (—2)| 0 > and< 0 [T () (ng)" (—2)
< 0|7¢Y(x)((€P))(—x)| 0 > and< 0 |7 (€%)¢(x)(£°)T(—=)| 0 > (non-diagonal),
< 0|7 (na)(z)(nz)"(—=2)| 0 > and< 0 |74 (x)((15)°)(—=)| 0 > (non-diagonal).

—x)| 0 > (Dirac-like),

(
(—x)| 0 > (Dirac-like),

x)| 0 > (diagonal),
x)| 0 > (diagonal),

Any propagator is a non-local functional of two fields, whate evaluated at two different space-time
points; a consequence is that, unlike for the Lagrangiari¢ciwis a local functional of the fields, one
cannot implement constraints coming from the anticomnuanatf fermions. Likewise, a propagator has
no hermiticity (or reality) property, and no correspondicanstraint exist® . So, the only constraints
that can be cast on the propagator come from discrete symsatrd their combinations?, C P, PCT.
The mass eigenstates, which are determined from the primpaagy@ accordingly expected to be less
constrained than the eigenstates of any quadratic Lagrafyi

5.1 PCT constraints

All demonstrations proceed along the following steps.

Suppose that we want to deduP€'T constraints fok 0 |7 4(x)x'(—z)| 0 >. The information that we
have from [B}) is: there exist andw such that)(z) = O¢'(—2)07 1, xT(—2) = Ow(z)0~! 22 the

vacuum is supposed to be invariarit >= | © 0 >, and® is antiunitary, which entail§ (LG . We have
accordingly

<0 ljw(x)XT(—x)\ 0>=<0|70¢'(—2)0 'O w(x)0~ 10 >
meartance ol the L @ ) |TOGH ()0 1O w(2)0 1O 0 >=< O 0 [TO (—z)w(2)0~1|© 0 >
B 0 )t (2)0(—) — 0(-1)6(—)t )] 0 5= — < 0 [To(—a)t (@)] 0 >,

5.1.1 Constraints on mass-like terms

x Majorana — like <0 |T£a(:6)((nﬁ-)c)f(—x)| 0> = <0|7&%—=)(( ﬁ)C)T(ac)| 0>
— <0 [T ((ny)") (x)€(
* Magjorana — like < 0|7 (na)*(2)(€")(=2)| 0> = <0|T(na)°(~ l“)(gﬁ)T((ﬂ?N 0>

= — <0|T() (2)(na) (—2)[ 0 >
* Majorana — like <0 |T(£a)c(x)(n6-)T(—x)| 0> = <O0[T(")(—z)(ng W) 0>

= —<0|7( %)T(w) §*) (=)0 >
« Majorana — like <0 |Tna(z)((€°)9)(=2)|0> = < 0|Tna(—z)((7))(x)] 0 >

= —<0|T((E)) (z)na(—2) 0 >;

200nly the spectral function has positivity properties.

Zland any mass matrix, which can only be eventually introduneallinear approximation to the inverse propagator in the
vicinity of one of its poles|]2].

22For example, from[(§4), one gets = O(—i(¢*)Ho .

2@, though antiunitary, does not act on théunctions of theZ -product because they are real.
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* Dirac —like <0 |T£a(x)(nB)T(—x)| 0> = <0 |T£O‘(—:c)(77ﬁ~)T(x)| 0>
— <0[T(ny) ()¢ (~2)| 0 >
* Dirac — like <0 |Tna(z)(€9)(=2)|0> = < 0|Tna(—2)(E%) (z)| 0 >
=~ <OITE) (@na(~0)] 0 >
« Dirac — like < 0|T(£%)%(2)((n))"(=2)[ 0> = <0|T(£")*(~2)((n5))" ()] 0 >
= — <0|T((n3)") (2)(€") (~2)| 0 >
« Dirac —like < 0|T(1a)*(2)((€7)9) (=2)] 0> = < O[T (na)°(~2)((€"))" (2)] 0 >
= — <0IT((")) () (ma)(~)| 0 >

We give the demonstration of the first (Majorana-like) lirigRsd).

<0]7€*(@)((ny)) (—2)| 0 >=< 0]T€*(2)i€p(~2)| 0 >=i < 0 |TE*(2)&p(—2)] 0 >

=i < 0|TO(=i(6) (—2))01O(=i()) ()0~} 0 >

invariance oithe vacuum i< 00 ’T@(—Z(SQ)T)(—x)@il@(—l(gﬁ)T)(.%’)@il‘ 00 >

=1 <00|TO(=i(¢"))(~a)(~i(&)N)(x)0~" 1 ©0 >

=—i< 00|70 (~2)(&) (z)07 00 >

Y < 0 10(1)€s(2) (€)(—2)| 0 > +i < 0 0(~1)€*(—2)€s(x)| 0>

= +i < 0[T¢*(—2)&s(x)| 0 >=< 0T (—2)((n)") ()| 0 > .

All these propagators are accordingly left invaridhby the 4-inversion: — —z, or, in Fourier space,
they are invariant whep,, — —p,,.

5.1.2 Constraints on kinetic-like terms

s« Diagonal <0 |T€*(z)(E)(—z)|0> = — < 0T (—z)(E®)(x)] 0>
= <OIT(E) (@) (=) 0 >;
* Diagonal < 0T (%) ()((€7)) (=) 0> = —<0[T(E")(=2)((€")) (x)| 0 >
= <OIT () (@)(€")(—x)| 0 >;
* Diagonal < 0|7 (na)"()((nz))'(=2)| 0> = = <0[T (1a)°(=2)((n3)*) (x)] 0 >
= <0[T((n3)) " (x)(na)*(=2)] 0 >;
* Diagonal <0 |Tna(z)(ny)'(—2)| 0> = — <0|Tns(—=)(ny)" () 0>
= <0[T () (@)ma(—2) 0 >;

* Non — diagonal <0 |T¢*(2)((€7)) (—2)[0> = — < 0|T¢*(—2)((¢7))(2)] 0>
<O|T((€7)) (2)6* (—=

(
)
+ Non — diagonal <0 |T(£*)(2)(")N(=2)[0> = —<0 |T<£“>C( ><sﬁ>*)<:c>|0 >

+ Non — diagonal < 0 |T (15)"(«)(n)" (=2)| 0 > - <0 IT(na) (—2)(ny)"(x)| 0 >

%This is not much information, but it is correct. Considerded the usual Feynman propagator in Fourier space for a Dirac
fermion with massn

/ d4xe”””<0|7'<£ )u)((esﬁ)* <n5>*)<x>w°|0>—p;f:£1—p21m2< " p‘”“); (@5)

Na puo” m
it yields in particular (the,” in (B5) makesy!, ; appear)
. M
/d4xe””” <0|TE% (z)nz(—x)] 0 >= ?,a,ﬂ =1,2. (86)

PCT invariance tells us that, in a Dirac mass-like propagal@pt’ term is not present, and the remaining term is diagonal in
a, 3; and, indeedy, ; vanishes’a, 3 = 1, 2, while the term proportional ter is diagonal inx, 3.
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<0 [T () @) ()] 0 >
* Non — diagonal <0 ]Tnd(x)((nﬁ-)c)T(—m)] 0> = —<0 !Tna(—w)((ng)c)f(w)! 0>
< 01T ()" (@ma(~2)] 0>
(87)

In Fourier space, all these propagators must accordingtddenp,,. We check like above on the Dirac

propagator that it is indeed the case. One gets for exampe{tin (B3) now makes;/g’ 542 appear)

pu'YZﬁw + Mdagt2
D2

/ dhze™ < 0 |Te(2)(€%) (~2)] 0 >= =12, (89)

—m?2

in which only the terms linear ip, are present, which are indeed oddyip as predicted byPCT
invariance.

Note thatPCT invariance does not forbid non-diagonal kinetic-like @gators.

5.1.3 Simple assumptions and consequences

PCT symmetry constrains, in Fourier space, all mass-like pyafms to bep-even and all kinetic-like
propagators to bg-odd; the former can only writg(p®)d,s and the lattey(p*)p,.o’, 5 OF h(p?)puo7 ap.

This is what we will suppose hereafter, and consider, in iEogpace, a propagator

8 = (16> 1Er> 1r> m>)
<a1<p2> m(ﬁ)) _ (mmp?) 1 (p?) ) <&f|
Puotag ) 50{6

bi(p?) Bi(p?) m1(p?)  mpi(p?

(mm(pz) mz(pQ)) )506 (ﬁQ(pQ) ba(p?) )pw“ag < (1g)° |

p2(p?)  mpa(p? az(p?) s (p?)

(89)

This ansatz enables to get explicit constraints on theggator. It is motivated by the fact that, classically,
the (quadratic) Lagrangian, which is the inverse propaghas this same Lorentz structure

Ki(p)a ‘ M, 6,
o 1(P-)ap 10ag (90)
Ms dap ‘ Ks(py)ap

An important property is that it automatically satisfies th€'T" constraints [(§4)[(87). For mass-like
propagators, which are invariant by the 4-inversion- —z it is a triviality; for kinetic like propagators,
the “—” signs which occur in the r.h.s.’s of (87) are canceled bydihe which comes from the differential
operatorp,, acting on(—xz) instead ofz. We consider accordingly thet {89) expresses the invegiarfic
the propagator byPCT.

From now onwards we shall always use the fofr (89) for the gyaor, considering therefore that it is
PCT invariant. It includes sixteen complex parameters. We s&# how individual discrete symmetries
and their products reduce this number.

5.2 Charge conjugate fields

By using the definitions of charge conjugate fields

& = g7& = —iog by = —iog, (=) (1)) = =05 (1)),
ng = gaen’ =ioksn =ioks(—)((€)) = ads((€))". (91)
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one can bring additional constraints to the ones obtaineu fxpressing the invariance by a discrete
symmetry likePC'T'. We first give the example of a Dirac-like propagator:

.1.
< 0|7 (@) () (—)] 0 >=< 0 |T (=)o, ((n))! (2) (35((£)*) (~2)) | 0 >
= 02,0235 < 0 |T((03)°)(2) (€2)*(=2)| 0 >= (JasT3y — dasdsy) < 0T (1))} (@)(%)(~)] 0 >=
— <OIT(E) (=) (()) (@)] 0 > +dap < 0 [T(€) (=) (1)) ()] 0 >.
The r.h.s. of the correspondingCT constraint in the first line of[(B4) writes the same but for the
exchanger — (—z). If we now use the ansatg {89) which implemeR§T invariance, one gets

111(p%)003 = — (076,65 — 60805, )1 ()05, = Sapma (p?), (92)
equivalently
mi(p?) = 1 (p?). (93)
Likewise, one getsns (p?) = pa(p?).
For Majorana-like propagator, using the definitiopg (91¢iwdrge conjugate fields, one gets
<07 @)y (=) 0> = <0[Tn)N@)E(—2) |0 > —dag < 0| T(5)N(2)€" (=) |0 >
= — <0 T (~2) () (@) | 0> +dap < 0| TE () (1) (2) | 0 >,

(94)
while, with the same procedure, its transformedty7T in the r.h.s. of [84) becomes
— <O T @) (=2) [0> = = < 0| TEX@)WF) (~2) +dap < 0] TE @)()!(2) [ 0>
(95)

One only gets tautologies such that no additional congteaiges.

We implement the same procedure for kinetic-like termsgf@mple< 0 [7¢%(z)(¢%)t(—2)| 0 >=<
0[7(¢%) (@)% (—2)| 0 >. Using&® = —a7,((n3))" and(§7)" = o5(n;) and [8D), one gets

a1 (P )ppoPas = —(05y806 — 0apdsy) B2(P*)Dp0" s,

) (pQ)(puauaB — dappulroy) 4

—Ba(p®) (Puot o — Sap(2p0 + 0 x p))

—B2(p”) (—pooag + P-Fap)

62 (p2 )pumaﬁ ) (96)

which entails

ai(p®) = Ba(p®). (97)
Likewise, one getsvs(p?) = B1(p?), and, for the non-diagonal kinetic-like propagatods(p?) =
az2(p?), b1 (p?) = b2 (p?).
So, after making use of the definition of charge conjugateigiB9) expressing thBCT invariance of
the propagator rewrites

a(p?) u(p?) - mr1(p?)  pa(p?) < &P
Puotap 5&,(3

v(p?)  B(?) pi(P?)  mpi(p?) < (€P)e |

<mm<p2> u2<p2>)) s <a<p2> o) )pwaﬁ < (m5)°

u(p®) Bp?) <

(98)

PCT symmetry has finally reduced the total number of arbitramycfions necessary to describe one
flavor of fermions from sixteen to ten.
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5.3 C constraints

C'is a unitary operator and we may use direcfly] (32) in the esgiom of the propagator. This is an
example of demonstration, in which we suppose that the vadaunvariant byC'

<0]7¢%(2)(ny) (~2)| 0 >=< CO|TC(=i(n*)")(2)C~'C(i&p)(—2)C~ CO >
=< C0|TC(n")N)(2)&s(~2)C~HC 0 >=< 0 |TCTC(n*)")(2)&s(~2)C~'C| 0 >
=< 0]T(n")")(2)&s(~2)] 0 >=< 0T ((£*)) (2)((ng)*) (=) 0 > .

By using [8p) expressin@C'T' invariance, one gets accordingly

Acirer®) = (1> [ > (0> [na> )

(Mﬁ)dﬁ))pwﬁ <Mﬂ>u@%)5ﬁ <&

a?) o) )" wr?) o) < (€

B*) b(p?) . < (1)
Puo=ap

b(p*) BKP?) <1y |

(99)

All 2 x 2 submatrices are in particular symmetric.

Combining now [(98) and[(99), & + PCT invariant propagator, after using the definition of charge
conjugate fields, can finally be reduced to

Acrrer® = (16> [€)F> () > |ma> )
ap?) alp®) | p(?*)  n(p?) <&
Puotags dag
a(p?) o(p?) u(®?) p(p?) < (&%)
a(p?) mp*) » a(p?) a(p®) Pt < (1) |
m(p?)  o(p?) a(p®) a(p?) <1y |

in which the number of arbitrary functions has now been reduo six.

5.4 P constraints

In momentum space, the parity transformeghpf* = (poo® + 5.5) is (poo® — p.3) = puo™.

Using (22) and the assumptioh(89) expressit@T invariance, and supposing the vacuum invariant by
parity, one gets

Apypor(p) = <\§a> (€@

|
(Mﬁ)aﬁ))pwﬁ (Mﬁ>u@%)5ﬁ <¢
) B0 | m?) o(p?) < (P)e |
a(p®) m(p?) B*) b(p?) < (3)° |
Sa ata
(u(pZ) p(p?) ) ’ a(p®) a(p?) )pu ’ <15 |
(101)

A P+ C + PCT invariant propagator writes
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Apicyper(p) =

( p(p?)  w(p?) ) 5
o8
n(*)  p(p?)

a(p?)  a(p?) }
o) a@) |

< &P

< (&)

|
(mg)° |
<
(102)

The expressions above can be further reduced by using thetidefiof charge conjugate fields, which
leads to [9B) as the expressionff'T invariance. So doing, & + PCT invariant propagator writes

Apsrer) = (16> [(€F> (> Ins> )

a(p®) a(p®) -’
bp?) a@?) )

( p(p?)  u(p?) )5
o
u(p*) o(p?)

(dﬁ>u<%)5 (
op
n(®?)  p(p?)

)
?)

a(p?)  b(p? -
a(p?) a(p proen

and one finds again the expressipn [102) fét & C + PCT invariant propagator.

5.5 CP constraints

Using (34), [8P), and supposing the vacuum invarian€tdy, one gets

Acpiper(p) = ( [§4 > [ (€Y)°> [ (na)° >

( a(p?) u(p?) )p 0
o) B |

‘77@>>

mr(p?)
m(p?)

n(p?)

( mz(p?) ) 5
o
m(p®)  mg(p?)

( a(p®) u(p?) )p o
o) B )

<&
< (€7)°|
< (ng)° |
<y

)

(103)

<&

< (")
< (ng)° |

<
(104)

It can be further constrained by using the definition of chargnjugate fields which makes tiiCT

constraint be[(38), to

Acriror®) = (e> [(€)F> ) > > )
(Oé(pQ) u(p?) 5T (mL(pQ) 1(p?) )5
a) 86 )T\ e meet |
(mmﬂ up))%ﬁ (“W>“W>)mwm
n(P?*)  mg(p?) u(p?) B(p?)

One then gets 4 symmetricx 2 sub-blocks.
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5.6 Eigenstates of &€ + PC'T invariant propagator

We do not consider an¥C'T violation, because, if this occurred, the very foundatioh®cal Quantum
Field Theory would be undermined, and the meaning of ourlosians itself could thus strongly be cast
in doubt.

We look here for the eigenstates of the: 4 matrix in (100)
a(p?)  a(p?) - p(®) n(p?) ) I
a?) o) ) k) p?)
o(p?) mp’) |\ , a(p?) a(p?) 2B
me?) o) aw?) aG?) )"

: A o m a a . .
The three symmetric matric , and can be simultaneously diago-
uwop m o a o

nalized by a unitary matrik/ according to

Acyper(p®) = (106)

v LT T (107)
= —=€ .
\/5 ei@ eiiﬂo
We can choose the patrticular case
N S (108)
=Upg=—F .
V21 1
Call the initial basis
<& ) _ <& <(ma)| | _ [ <—il€)"|
< nr ‘ = - . 5 < nr ’ - = s
< (€7)° | < —i(n°)| <y <y
(109)
one has
(1ev> 1> T[> > )=(In> [na> ) (110)
Define the new basis by
<NL|:UJ<TLL| , <NR|:US<TLR|,
‘NL>:U0’7”LL> s ’NR>:U0’7”LR>. (111)

One has explicitly

<NL’ =

-

<g -\ 1 [ <errey
<—g =i ) V2 <—grgeyel )

21



—q i . : )¢
gl - (< i(6a) w) 1 <<na+<na> ) 112)

V2 < i)+ | < s — ()" |

S

and one can write

<Np|= <X |, ,< Ng|= < (=)0 : (113)
< (=) (W) <wg|

In this new basis, the propagator writes (using (frffm(108)y/, = 1)

A(,“—f—PC’T(pQ) :< |NL > |NR> )

a(p®) + a(p?) p
a(p?) = a(p?) fufan

a(p?) +m(p?) 5 a(p?) + a(p?) _ < Ng |
af p;ﬂ“aﬁ
a(p?) —m(p?) a(p?) — a(p?)
(114)
Remember thatu >< v | corresponds, in our notation, to a propagatad |7 u(z)vf(—z)| 0 >.
One introduces the Majorana fermions (see subseEtipn 3.6)
X ( X ) 1 ( £+ () ) 1 ( £ — i) )
D)0 ) VI et ma)) ) V2 £ - i)
gt _ [ FEDEOTY 1 [ CEHE)) | [ i)
N w VI -y VI i)
(115)
5.6.1 Kinetic-like propagators
They can be rewritten
[ e <0ITE@O (=) 0> = (@) + al)puots
/d4wei”z <07 (xa) (@)xs(=2)| 0> = (a(p?) + a(p*))puoFas,
/d4xeipx <0 \T(wd)T(x)wB(—x)\ 0> = (a(p?) — a(pz))puagﬁ,
/ dze®” < 0|Tws(2)(wy) (~2)[ 0> = (a(p?) — a(p?))pucTas, (116)
5.6.2 Mass-like propagators
They write
[ e <0ITx @ing (0] 0> = daplpls?) + ),
/d4:veip$ <OT (=) (xa) (@) () (=2)[ 0> = bap(a(p®) +m(p®)),
[ e <0IT (@ @ @) (00> = Guslol?) - )
/d‘lwei”’E <0 \de(x)iwﬁ(—x)\ 0> = 6Sap(a(p®) —m(p?)). (117)
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5.6.3 Conclusion

When C and PCT invariance holds, the fermion propagator decomposes h@@topagators for the
Majorana fermionsX and( ([lI%) (note that we have introduced below the “bar” fieldsdad of the'
fields, thus a® matrix)

P*) +a@*)puotas  (0(p?) +m(p?))das
(00?) = s (@l?) = alr?)pprl ) |
(a(p?) — ( Neucas  (@(p?) —m(p®))dag

/ d4xeipm<0ifxﬁa<m>%<x>0>(<(p(p2)+u( PN <“<P2>+a<p2>>puozﬂ),

/d4azew <0 |TQMa( )Qf]ﬁw(—xﬂ 0>= (

(118)
([L18) also writes
1 . —
3 /d‘*xem (< 017 X}70(@)X375(—2)| 0>+ <0 yTQj\;a(x)ngw z)| 0 >>
| p0P)eas  alp®)puchs
a(P*)puoPap  o(p*)dap
1 A —
5 [ dtaer (<0 1T X @ X -2)|0 > - < 0 [T03;, ()5 (-)] 0 >)
| #0*ap alp®)Puohs
a(p?)puofas  m(p?)dag
(119)

So, whenC + PCT invariance is realized, the most general fermion propagatequivalent to two
Majorana propagators

The determinant of\(p?) ([L14) is the products of the determinants of the matricebém.h.s. of[(118);
so, the poles of the two Majorana propagators[in](118) a@dtes ofA(p?), and the physical states
(eigenstates of the propagator at its poles) are the MademmionsX and(.

5.7 Conditions for propagating Majorana eigenstates
5.7.1 General conditions for diagonalizing aC' PT invariant propagator

We consider the most genet8CT invariant propagatof (98).

We are only concerned here with neutral fermions, for whielgohalizing eacl2 x 2 sub-matrix of the
propagator is meaningful: for charged fermions, this would in the same state fermions of different
charges, which is impossible as soon as we assume thaietdwrge is conserved.

The two diagona® x 2 sub-blocks involve differential operators, with one ddtés one undotted spinor
index, factorized by simple functions of space-time. Wd wsilppose that, inside each of these sub-
blocks, the four differential operators are identical,bsti@t their elements only differ by the functions of
space-time. When we speak about diagonalizing these msittltis concerns accordingly the space-time
functions; then the differential operators follow natiyal

The mass-like sub-blocks are diagonal in spinor indicesimrave only functions of space-time.

The propagatoP writes

K M <n
P=(ln> |np>)|— . ehy (120)
Mo Ky <nR|
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K4, K5, M7 and M, havea priori no special properties, are not hermitian nor symmetric.
There always exidl/; andUs,, which have no reason to be unitary, such that

Ul_lKlUl = A diagonal, U2_1K2U2 = As diagonal, (121)

such that the propagator rewrites

Ay ‘ U MU, Ut <np |
P = <|nL>U1 |TLR>U2) 1
Uy ' MyUy ‘ Ay U, ' <ng|
Ay ‘ Uy MUy < N |
= ( | mL > | mR > > )
U;lMQUl ‘ AQ < NR ’
with <NL\:Uf1<nL\,<NR]:U§1<nR\,]‘ﬁL>:\nL>U1,\‘ﬁR>:\nR>U2.
(122)
We look for M7 and M.
The propagator can be diagonalized
UflMlUg = D1 diagonal, U;lMgUl = Dy diagonal. (123)
That[D;, D2] = 0 entails in particular
Uy ' M MUy = Dy Dy diagonal = DaDy = Uy ' My My Us, (124)

which coincides with the commutation 8f; and M> only whenU; = Us.
Since[Al,Dng] =0= [AQ,DlDQ], one also getyfl[Kl,Mle]Ul =0= U;l[KQ,MQMl]UQ,
which entails

[K1, M1 M) =0 = [Ko, My My]. (125)
({23), (12B), (124) and (1p5) are the conditions that K-, M; and M, must satisfy for the propagator
to be diagonalizable; they are must less stringent thandhmarwtation of the four of them.
In practice: One supposes thalt/; and M- fulfill condition (I23). To determind/; and Us, one
can accordingly use indifferently (321) dr (124); diagonalizesK; or M;M,, U, diagonalizesK,
or My M. Supposing that[(124) is satisfied/; M> and of My M, are constrained to have the same
eigenvalues, which may give additional restrictionsidnand Ms.
OncelU; andU; are determined, call

My = U MU, My = Uy ' MoUs. (126)

([24) entails that, in particulatM; and M, must commute. Sinc&; diagonalizesi; M, and U
diagonalizesV, M, M1 M5 and My M, are diagonal.

a b
Write M; = and My = P ; by direct inspection, one finds that the two products

c 0 T S

0 —b

MMy and Mo M are diagonal either iM and M, are diagonal, or ifMy = ¢ , that

—C a
is, is proportional to/\/ll‘l; in this last caseM My = My M is proportional to the unit matrix, which
means that the eigenvalues/af, M- are all identical (and so are the eigenvalued6fiV,).
We are looking for more: the conditions that must satisfy and M5 for M; and M5 to be separately
diagonal. We attempt to find them by putting the additionatrietion that the eigenstates are Majorana
fermions.
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5.7.2 Condition for propagating Majorana fermions

A necessary (but not sufficient) condition for the propagatstates to be Majorana is that, by some
change of basis, the propagator can be cast in the form

ax(p?) B
( b1 (p?) )pu "

m1(p?) u
p1(p?)

Anraj(p?) =

mo(p?)
O
( p2(p?) ) ’

(127)

a2(P2) o7 5 ,
ba(p?) e

with four diagonal2 x 2 sub-blocks. Indeed, on can then decompose the propagabotwio 4 x 4

. [ oar My b1 , ,
propagators (in a shortened notatidn) and , and the Majorana fermions (see
mo a9 2 b2

subsectior] 3]6) are eventually respectively composed titirst components of;, andny, and with

the second components of the same set. So, in particuldr kiadtic-like and mass-like terms, should

be diagonalizable simultaneous. We note
dy 0
, Do = . (128)
0 09

a b di O
Ut = o =", b= ™
c d r s 0 &

One has
<Ny |= a<§°‘!+b<(—i)(77°.‘)*! 7
c <& +d<(=i)(n%)" |
< Np|= p< (=& | +q<nal ,
< (=D& |+ 5 <na |
9 >= ad = ( 416>~ (<)) > =€ > +al (<)) > ).
| Mg S y— ( s| (=9)& > —rlna > —q| (=9)&, > +pl na > ) ;

(129)

Nip(x)

Npg(z)
identified with that of a Majorana fermion and its antifermighat is, itself) . [129) yields in particular
the four mass-like propagators

)
and the question is whether the propagatdy | 7 ( ( Nr(—z) Ngp(—2) ) | 0 > can be

<O]T<d§“+zc )(m <2p &5+ q"(n) )( 2)| 0 >= (ad — be)dy (2)3ag, ()

<O]’T< be® —ia(n® T) x)(zr s+ s"(ng) T) z)| 0 >= (ad — bc)o1(x)dap, (b)

<O]T< is(& —ma> 36)( (€T +ib*y ) (ps — qr)da(x)dap, (c)
( ( (-

<0/ (ig(¢ +pna) 2) (&) +id'n’) (<2)| 0 >= (ps — ar)a(a)das, ()
(130)

x)| 0 >=

which must be the only four non vanishing such propagatmseﬂflMle and U;leUl must be
diagonal. We have to identify them with typical mass-likejbdtana propagators. For that purpose, we

ZImposing commutation relations betweenalk 2 sub-blocks of the propagator is excessive.
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(63
have a priori to introduce two Majorana fermion§:, = ¢ , associated, together with
£(—1)(Ca)”
Xﬁ
its antifermion, to( Ny, Ng), andYJ\jﬂE = , associated, together with its antifermion, to
(=) (xp)"

(M, MNr). An X — Y propagator® reads (we go to the “bar” fields, which introduces an exttathis
has in particular for consequence that “mass-like” profganow appear on the diagonal)

< O[T ¢ () (+i)xp(—2)| 0 > <0[T¢* (@) (") (=) 0 >

<017 (C) (@)xs(=2)| 0> < O[T (Fi)(Ca) (=) (x") (~2)] 0 >

(131)
The four lines of[(130) correspond to two mass-like- Y propagators only if one can associate them into
two pairs, such that each pair has the same structure asatpengil terms of (131). There are accordingly
two possibilities: pairing (a) with (c) and (b) with (d), a)(with (d) and (b) with (c).

x The first possibilityrequires £ and) are proportionality constantp)= iAa*, g = iAb*,r = —ikc*, s =
—ikd*, such that
. Aa*  A\b*
U, ' =i . (132)
—kc*  —kd*

x The second possibilityequiresp = ipc*, q = ipd*,r = ifa*, s = i6b* such that

< 0|T X1 () Vs (~2)] 0 >= (

¢t pd*
U, =i pe P . (133)
fa*  Ob*

From now onwards, we furthermore request that a single Majarfermion propagatei the sense that
only 7-products of the type< 0 | 7X*(z)X.(—x) | 0 > occur, which associatgs\;, >= | X* >
and< Ngi | =< X |. The only possibility is that the coefficients pf\;, > and| Nr > in ({29)
be proportional, and so be the ones|dfr; > and| N;, > (the two sets of conditions are the same);
this gives the supplementary conditiorsgnd 3 are two other proportionality constanis)= iod*,q =
—ioc*, r = —iyb*, s = iya*, such that

4 od* —oc*
Uyl =i . (134)
b e
* First possibility (U, * is given by [13P) above).
Compatibility between[(132) anfl (134) requirks= B — ¢ = £ = w* such that we end up with

s =

a wa w* Aa® dw*a*
Ut = Cust = P ) - . (135)
—wd d —w*s s rw*d*  —krd*

We look for PC'T invariant M, = mii(@) () and M, = miz(@)  pa() (see
pi(z)  mpi(z) p2(z)  mpa(z)

(©8)) and their diagonalization according fo (123) dnd j188U; andU, given by [13p) and satisfying

@

Bwe allow X # Y'; later we shall be more restrictive and requ&st= Y, which better corresponds to the intuitive picture
of propagating a definite Majorana fermion.

26



. : L o a u a v
The equationd (1P1) of diagonalization for the kinetieltermsk; = andK; =
v 3 u f
(see [9B)) yield, for the vanishing of the non-diagonal ®rthe conditions
u—wiv = wla-p),
v—wu = wla-p),
v—w?u = w(a-p),
u—w? = w(a-P). (136)
Likewise, the diagonalization equatioris (123) for the rikssterms yield
w'mpy —wmpr = pi(l—|wl?),
wmpr —w'mpr = (1 - |wl?),
w'mpy —wmpy = p2(l —|wl?),
wmpy —w'mpy = pa(l — |w]?). (A37)

First, we eliminate the trivial case = 1 which brings back to & invariant propagator.

. . . . 1— 2
Subtrf;lctlng the first or the last two equations[of {136) \@eld= v. One then gets — 3 = U= =
ul==, such that, must be real.

Subtracting the first two equations ¢f (137) also shows cthamust be real as soon as one supposes

;nm + ml;fl #do-w:)l(ih v(\j/e do. TgenI oPe gets— ‘jlmm =% = mLQ"?mR Gathering the results
rom [L36) an eads accordingly to
«Q (a - ﬁ) 1 - 2
Ki = u w —w = Ko,
(O[ - ﬁ) 1 U.)2 ﬁ
w
u mri (mr1—mp1) T2
1 = w )
(mry —mr1)y 2 mp1
w
mr2 (mr2 —mp2)——
M, = w = ] (138)
(M2 —mp2)7— 2 mp1

and we shall hereafter write = tan. The four real symmetric matrices; = K, M1, My can be
simultaneously diagonalized by the same rotation madtri¥) of anglev. After diagonalization, the
propagator writes

04 Hi+
o_ M- UT < nr, ’
A = (]nL>U ‘TLR>U) T )
P+ oy U" <ng|
o 0_
with bp=t(asprd=sh = (s + i g & L2 T MRL2 Y (g 5g,
+ 5 c0s 20 ) H1,2,+ 5 L1,2 R1,2 cos 20

To propagate a Majorana fermion, the conditjon, = s should furthermore be fulfilled. This re-
quires, for arbitrary?, mpr; = mgo, mp1 = mrs (@and thusu; = us). This corresponds to a propagator
(before diagonalization)

a wu mr
u f W mpg <ng | U L
A=(Ing> |np>) g = (140)
mr a u <ng| L R
womp | u o B



that is, aC' P invariant propagator (seg (305)) (tliginvariant case corresponds do= 1 (see [100)),
which has been treated previously). The propagating Magfarmion are

cos V&Y — sin I (—i(n*)*) sin 9€* + cos ﬂ(—i(ng)*
Yy = andyx; = )
cos U(—i(&,)*) — sinvny sin¥(—i(&4)*) + cos ¥y,

* Second possibilitfU, ! is given by [I3B) above). Equating (3:34), (133) and the esgioa forU, ! in
[@28), one getg/p = d*/c* = —c*/d*, s/r = b*/a* = —a*/b*, which givesd = +ic,b = +ia and

thus
a Tia c*  Fipc*
Uit = B 7. (141)
c ic +iva*®  ~va*

The diagonalization equationls (123) for the mass-like $eyiald, for the vanishing of the non-diagonal
terms, the conditions

mr1 = —MR1,
mrz = —MR. (142)

The equations] (121) of diagonalization for the kinetielierms yield the conditions

ut+v = ila—p),
ut+v = Zi(f—a), (143)

which requirev = —u, 8 = a.
So, the kinetic and mass-like propagators write

K = , Ky =

m m
My = 1 M1 , M,y = 2 K2 ' (144)
H1 —ma Mo —Mm2

K, and K5, which commute, can be diagonalized simultaneously by glesimatrix U. The condi-
tions (12b)[K1, M1 Ms]) = 0 = [Ka, Mo M| requiremy /mo = u1/pe, such thatMy = xM;. Since
U, = U = U,, the diagonalization equations (123) for the mass-likeppgators rewritéd/ ' MU =
D, U~ 'M,U = x Dy, such that the set of four matricés , K>, M;, M, must commute, which requires
u = 0. The kinetic-like propagators are thus “standard®, proportional to the unit matrix. Before
diagonalization, the propagator writes

« m1 M1
o pr o —my <ng |
A = (’TLL> nR>) ) (145)
xXmi X1 ! <npg |
Xp1  —Xmy «Q
and, after diagonalization,
a Iz
@ — U Ul <np |
A = (|nL>U |nR>U> )
X1 « Ul <np|
—XH o
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with = /m? + u?. (146)

It can propagate Majorana fermions onlyyf = 1, such thatM; = M,. Then, [14p) is a special
kind of PC invariant propagator (seg (305)), which becorgesvariant only whenn; = 0. The two

_ _ cos V€ — sin ¥ (—i(n®)*)
Majorana fermions have masseg /. They arepy, = andyy =
cos U(—i(&,)*) — sindns
sin 9€* + cos ﬁ(—i(ng)*

sin9(—i(&)*) + cos Iy

, With tan 29 = pq /my.

5.7.3 Conclusion

For one flavor, a necessary condition for the propagatinmifar to be Majorana is eith&r' invariance
(which corresponds to = 1) or C'P invariance?’. Reciprocally, the fermion cannot be Majorana (it can
only be Dirac) ifC andC' P are brokerf® 2°,

6 General conclusion

We have gone in this work along the first steps towards theggatoer approach to coupled fermions
in Quantum Field Theory. We first recalled basic principleancerning in particular discrete transfor-
mations, unitary and antiunitary. After showing on a simgkample how ambiguities appear in the
classical treatment of a fermionic Lagrangian, we invegéd the most general fermionic propagator for
one fermion flavor. It is itself a coupled particle-antifiget system, since the most general couplings
between Weyl fermions authorized by Lorentz invariancevadl such a situation. We have been in par-
ticular able to show that, while the most general- C' PT invariant propagator propagates, as expected,
Majorana fermions, a necessary condition for such fermtor@opagate is not’ + C' PT invariance,

but (CPT invariance being always assumed) tiiatand PC are not both broken({ or C P must be
unbroken).

We hope to report soon on the case of several flavors and tiréirgn

Acknowledgmentsonversations with V.A. Novikov and M.I. Vysotsky areafiadly acknowledged.

2’Majorana fermions havé'P parity = +i (see subsectio@.G). The twe-ir°) factors cancel in th@ -product of the
propagator and finally make @ P invariant.
Elzgln the real world with three generationk,; decays unambiguously show that bétrandC' P are broken (see for example
(L.

ZMajorana fermions being special types of Dirac fermions,dbmmon statement that, in the presence of the most general
Dirac + Majorana mass terms, the mass eigenstates are Maj(sae for examplﬂlls]) always seemed to us slightly ilali
The conclusion that we draw in the propagator approach i€ matisfying: one propagates special types of fermions when
some symmetries{ or C'P) are unbroken; in the opposite case, that is in the most gknase, one instead propagates the
most general fermions which are Dirac fermions.

29



A Notations. Spinors

A.1  Weyl spinors

We adopt the notations df [L0], with undotted and dotteddesli

Undotted spinors, contravariagt or covarianté, can be also called left spinors. Dotted spinors, co-
variantn, or contravariant)® can then be identified as right spinors. They are 2-comperearhplex
spinors. The 2-valued spinor indices are not explicitlytien.

By an arbitrary transformation of the proper Lorentz group

ad — By =1, (147)
they transform by
e = agl+pe,
& = et +68%
o= ey (148)

To raise or lower spinor indices, one has to use the metri/gp, C)

0 1 L s 0 —1 Ly
Gop = =io,3 9% = = —i(0%)ap, (149)
-1 0 1 0

and the same for dotted indices. Tdematrix will always be represented with indices down.
ba = gapt’ = io0pt” 0 = ¥y = —io? ;. (150)
One has
£.0 = &%y = E1¢% — €2¢Y = —£,¢% invariant. (151)
By definition,ns ~ £,* (transforms as);
e ~ (9ap€”)* = gap(€°)* = iolz"" : (152)

a right-handed Weyl spinor and the complex conjugate oftehl@fided Weyl spinor transform alike by
Lorentz; likewise, a left-handed spinor transforms like tomplex conjugate of a right-handed spinor.
A Dirac (bi-)spinor is
504
§p = . (153)
Ne

A.2 Pauli and Dirac matrices

Since we work with Weyl fermions, we naturally choose the Wepgresentation.
Pauli matrices:



~ matrices

0 0 1 0 1 0 0 0
00|01 A 0 —o' 0 1
70 = A= 5 =iyl = , (155)
1 0 0 0 ot 0 0 0 -1
01 0 0 0 0 0 -1
and one notes
0 - 0 ot 0
=07 =~ ], (156)
0 o+
with
ot = (UO’ ), oft = (O-Oa —d), 7= (0-1, 0-2’ 03)' (157)
(72)T = 72, (7‘;’)T = vz, (711’2’3)T = 1—371’2’;”, )
(V) =10 ="y = () = =,
(70)2 — 1, (75 2 — 1’ ,}/172,3 2 — _1’
PO = 1,745 (45) = 1,4123(4 123y = 1. (158)
One has ‘ o -
(0")? =1 = (6", {0", 07} = 20Y. (159)
One has the relation
03500y = 087005 — Gy, (160)
and the following one is very useful
o0io? = — (o)), 0%0%? = 0¥ = d%0t0? = (60, —5") = on". (161)
As far as kinetic terms are concerned,
a* 0 P’ —p.é 0
Yy = (7°)*pu ] = (162)
0 oF 0 P’ +p.d

B The adjoint of an antilinear operator

Following Weinberg [[9], let us show that the adjoint of anilémar operator (se¢](5) for the definition)
A cannot be defined by, Ay | x >=< | AT | x > 30. Indeed, suppose that we can take the usual
definition above, and let be a c-number; using the antilinearity @f one gets< A(cy) | x >=<
H(AY) | x >=c < (AY) | x >=c <y | AT | x > islinear iny.

But one has alsac A(cyp) | x >=< (c) | AT | x >=< ¢ | AT | x >=c* < | AT | x > is
antilinear iny, which is incompatible with the result above. So, the tworegpions cannot be identical
and< Ay | x >#< | AT | x >.

Weinberg ([P] p.51) defines the adjoint By

<Y | AT | x>=<v | AT x >=< AY | x >*=< x| AV >=< x| A| ¢ > (164)

30This changes nothing to our demonstrations.
130 defined, taking) = Y, the adjoint satisfiesc ¢ | A | ¢ >=< v | A" | ¢ >. This entails in particular that, for a
antiunitary operator

<P | AT > E<Y [ Al >, (163)

unless what happens for antiunitary operators (othenhisertatrix element v | A | ¢» > of any antiunitary operator could
only be real, which is nonsense).
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Then, even for an antilinear and antiunitary operator orseha

ATA=1. (165)
Indeed,< ¢ | ATA| x >=< v | AT | Ax >(’< Ax | Ay >=< Ay | App > |y >
By a similar argument, and becaugdé is also antiunitary, one shows that one can also ke = 1.
So, both linear unitary/ and antilinear antiunitaryl operators satisfy

Ut =1=u'u, AAT=1=AA (166)

C Classical versus quantum Lagrangian; complex versus heritian con-
jugation

In most literature, a fermionic Lagrangian (specially feutrinos), is completed by its complex conju-
gate. This is because, at the classical level, a Lagrangiarscalar and the fields in there are classical
fields, not operators.

However, when fields are quantized, they become operatordpss the Lagrangian which is a sum
of (local) products of fields, such that, in this case, the glem conjugate should be replaced by the
hermitian conjugate.

Consider for example two Dirac fermions = ( . ) andvy = ( 4 ); a typical mass term in a
Mg “s

classical Lagrangian readgyr = (£%)*ws = £%wg = —waé® = w4, Where we have supposed that

¢ andw anticommute; its complex conjugate reads thigpyr)* = wé, = (W9)*E,.

If we now consider operato(§zvr) = [£¥]T[wa] = [xz]T[¢r], and its hermitian conjugatefis,]T[¢%] =

[wk][€%]. Since([XL]T[wR])T = [¢g][xz], it only ‘coincides” with the classical complex conjugateve

adopt the convention

Vo = (@7)¢s, (167)
where one has raised the index.oéind lowered the one @f We will hereafter adop{(167).

D On the use of effective expressions for thé”, C and T' operators when
acting on a Dirac fermion

In the body of this paper we have chosen to work with fundaaidhieyl fermions¢® andr,. In order to
determine the action on these of the discrete symmejgsandT’, we began by expressing their action
on Dirac fermions in terms of matrices, and, then, deduced from the obtained rules a$foemation
the ones for each component.

However, one must be very cautious with respect to the esjore®f the action o, C andT in terms

of Dirac gamma matrices; this notation indeed easily indus® confusion and error, as we show below.
It can be specially misleading when calculating the actibvaoious products of these three symmetries.
Only a very careful use of this notation can prevent one going astray. This is why, in mdatng
the symmetry operators, we take as a general principle itlgtuse their action on Weyl fermions,
associated with the knowledge of their linearity/antiéirigy.

Since, nevertheless, using the Dirac formalism is very comiamong physicists, we also give in the
following the correct rules for manipulating, in this larage, discrete transformations and their various
products.

%2This is in contradiction with[[1].
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Let K be a transformation having the following expression on a®fermiony : K - = Ugyp™),
where Uy is a matrix which is in general unitary. In the case of the usw@sformationsP, C and

T, Ux may be expressed in terms ofmatrices. One must keep in mind that this does not provide a
complete characterization of the corresponding transdtion, but only an effective one that must be
handled with extreme care. It can indeed be be misleadirag;iaty if one relies on “intuition” to infer
from this expression the linearity or antilinearity of tmartsformation under consideration.

The linear/antilinear character of a transformation cante deduced from the form it takes when acting
on a Dirac fermion, and one must refrain from doing such aerefice which is in particular wrong for
C andT.

Indeed,P -4 = iv%) andP islinear; C -1 = v?y* andC islinear; T -1 = iy3~y%* andT is antilinear,
PCT - = —4%y14243¢ and PCT is antilinear.

To illustrate this, let us investigate thraepriori possible ways of computing the action BT, and
compare them with the correct result, obtained by applyingctly to Weyl fermions the three transfor-
mations successively (taking into account the lineanitijfaearity properties of operators):

* the crudest way consists in basically multiplying ttig’s, without taking into account any action on a
spinor (hence neglecting any consideration concerningpteaconjugation);

* the second on€gJ}0], that we call “Landau” uses as a rule theposition of the symmetry actions on a
Dirac spinor;

* eventually, the third one consists of acting with each aparonly on the fermion field itseland mak-
ing careful use of linearity/antilinearity to pass througk possible other terms that occur on the left of
1. This last method, as we will see by going back to the transition resulting for each component of
1, is the only correct one.

e crude :PCT = UpUcUr = (i7")y2(iy31) = =99 4243,
e Landau :PCT+ = P(C(T%)) = i (v (i34 ¢*)*) = 199'7%73¢, hencePCT = 0414243

e cautious :

v D T =iyl
C . * . * . % . * .
— O (i) = i’y O p = i’y (C - 9)" =i’y (77) ¢ = —iny %y
P . . . .
— P (—i’yI?Y) = =iy 12 P = =iy P (i009) = P00 = 409142,

Similarly,
e crude :(PCT)? = (—"919*9%) (="17*+3) = —.
e Landau :(PCT)?)) = PCT(PCTv) = (7°9M243) (10914243 )eh = —ab.
e cautious :

(PCT)? -4 =

1
[
20
o O

The “cautious” method is the only one which agrees with thigatly inferred from the work on Weyl
fermions. Nevertheless, itis to be noted that we obtain dnect sign forPC'T" (though not fof PC'T')?)

by the crude calculation. So in order to discriminate withaoy ambiguity between the three ways of
manipulating the symmetry operators when acting on a Digamibn,i.e. to avoid (or minimize) any
risk of accidental agreement due to cancellation of twoakiss, we computed systematically the other
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products (of two operators) that we can form, and compargdbelts with the reliable ones obtained

directly on the Weyl fermions. The results are summarizddvbe

TP TC CP

Crude (trivial product ot/’s) = —(nM)* | €= —na | €2 — —(&)*
na — (£a)* na — & | na — —(n%)*

PT =TP CT=TC PC=CP

Landau (composition) £ — (n%)* §% — na §* — (&a)”

Na — —(&)* | na — =€~ | na— (%)

PT =-TP CT=TC PC=CP

Cautious (our way of computing) €% — (n)* | €% — —nd | €Y — (E,)*
Ne — —(&a)* | Ma — & na — (n*)*

PT =TP CT=-TC PC=CP

Right result (directly from Weyl fermions) &% — (n®)* | €* — —n& | €% — (&4)%
N — —(§a)* | Na — &~ ne — (n%)*

PT=TP CT=-TC PC=CP

Moreover, our way of computing ensures tfi&t = 1, in agreement with the result from Weyl spinors,
—1. Indeed,T? - ¢y =

while one encounters problems with the Landau method wigiald to7™

T-(i3y1p*) = i3y Tp* = —iy3y Y (T)* = —iy3yt(—i)y3y1y = ¢, while Landau’s prescription

leads toI” - ¢ = iy*y! (iv* ' ¢*)* = iy (=i)7* 7' = Py e =~
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