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Abstract

The Support Vector Machine (SVM) is an ac-

knowledged powerful tool for building classi-

fiers, but it lacks flexibility, in the sense that the

kernel is chosen prior to learning. Multiple Ker-

nel Learning (MKL) enables to learn the ker-

nel, from an ensemble of basis kernels, whose

combination is optimized in the learning process.

Here, we propose Composite Kernel Learning

to address the situation where distinct compo-

nents give rise to a group structure among ker-

nels. Our formulation of the learning problem

encompasses several setups, putting more or less

emphasis on the group structure. We characterize

the convexity of the learning problem, and pro-

vide a general wrapper algorithm for computing

solutions. Finally, we illustrate the behavior of

our method on multi-channel data where groups

correpond to channels.

1. Motivation

Kernel methods have been extensively used in learning

problems (Schölkopf & Smola, 2001). In these models,

the observations are implicitly mapped in a feature space

via a mapping Φ : X → H, where H is a Reproduc-

ing Kernel Hilbert Space (RKHS) with reproducing kernel

K : X × X → R.

We address the problem of learning the kernel in Support

Vector Machines (SVM) and related methods. Indeed, the

kernel is crucial in many respects, and its relevance is es-

sential to the success of kernel methods. Formally, the pri-

mary role of K is to define the evaluation functional in H:

∀f ∈ H, f(x) = 〈f, K(x, ·)〉H , but K also defines (i) H
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itself, since ∀f ∈ H, f(x) =
∑∞

i=1 αiK(xi,x) ; (ii) a

metric, and hence a smoothness functional in H: ‖f‖2
H =

∑∞
i=1

∑∞
j=1 αiαiK(xi,xj) ; (iii) a distance between ob-

servations: ‖Φ(x) − Φ(x′)‖2 = K(x,x) + K(x′,x′) −
2K(x,x′) .

In this paper, we devise Composite Kernel Learning

(CKL), a framework where the kernel is learned in a way to

favor the selection of variables or groups of variables. Sec-

tion 2 motivates our approach while briefly reviewing the

different means proposed to extend kernel methods beyond

the predefined kernel setup. We then follow in Section 3 by

considering some recent developments in variable selection

that are relevant for our aims. Section 4 describes the CKL

framework; the optimization algorithm is provided in Sec-

tion 5, and experiments are reported in Section 6.

2. Flexible Kernel Methods

From now on, we restrict our discussion to classification,

where, from a learning set S = {(xi, yi)}
n
i=1 of pairs of

observations and label (xi, yi), one aims at building a de-

cision rule that predicts the class label y of any observa-

tion x. We furthermore focus on the binary case, where

(xi, yi) ∈ X × {±1}. However, it should be kept in mind

that most of our observations carry on to other settings,

such as multiclass classification, clustering or regression

with kernel methods.

2.1. Support Vector Machines

A SVM builds the decision rule sign (f⋆(x) + b⋆), where

f⋆ and b⋆ are defined as the solution of















min
f,b,ξ

1
2‖f‖

2
H + C

n
∑

i=1

ξi

s. t. yi

(

f(xi) + b
)

≥ 1 − ξi 1 ≤ i ≤ n
ξi ≥ 0 1 ≤ i ≤ n .

(1)

The regularization parameter C is the only adjustable pa-

rameter in this procedure. This is usually not flexible
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enough to provide good results when the kernel is chosen

prior to seeing data. Hence, most applications of SVM in-

corporate a mechanism for learning the kernel.

2.2. Learning the Kernel

Cross-validation is the most rudimentary, but also the most

common way to learn the kernel. It consists in (i) defin-

ing a family of kernels (e.g. Gaussian), indexed by one

or more parameters (e.g. bandwidth), the so-called ker-

nel hyper-parameters, (ii) running the SVM algorithm on

each hyper-parameter setting, and (iii) finally choosing the

hyper-parameter minimizing a cross-validation score.

A thorough discussion of the pros and cons of cross-

validation is out of the scope of this paper, but it is clear

that this approach is inherently limited to one or two hyper-

parameters and few trial values. This observation led to

several proposals allowing for more flexibility.

2.2.1. FILTERS, WRAPPERS & EMBEDDED METHODS

Learning the kernel amounts to learn the feature mapping.

It should thus be of no surprise that the approaches inves-

tigated bear some similarities with the ones developed for

variable selection, where one encounters filters, wrappers

and embedded methods (Guyon & Elisseeff, 2003). Some

general frameworks do not belong to a single category but

the distinction is appropriate in most cases.

In filter approaches, the kernel is adjusted before build-

ing the SVM, with no explicit relationship to the objective

value of Problem (1). For example, the kernel target align-

ment of Cristianini et al. (2002) adapts the kernel to the

available data without training any classifier.

In wrapper algorithms, the SVM solver is the inner loop of

two nested optimizers, whose outer loop is dedicated to ad-

just the kernel. This tuning may be guided by various gen-

eralization bounds (Cristianini et al., 1999; Weston et al.,

2001; Chapelle et al., 2002).

Kernel learning can also be embedded in Problem (1), with

the SVM objective value minimized jointly with respect

to the SVM parameters and the kernel hyper-parameters

(Grandvalet & Canu, 2003). Our approach, which belongs

to this family of methods, is based on the Multiple Kernel

Learning (MKL) framework (Lanckriet et al., 2004).

2.2.2. MULTIPLE KERNEL LEARNING

MKL is a joint optimization problem of the coefficients of

the SVM classifier and a convex combination of kernels

that defines the actual SVM kernel

K(x,x′) =

M
∑

m=1

σmKm(x,x′) , (2)

where each kernel Km is associated to a RKHS Hm whose

elements will be denoted fm, and {σm}M
m=1 are coeffi-

cients to be learned under the convex combination con-

straints

M
∑

m=1

σm = 1 , σm ≥ 0 , 1 ≤ m ≤ M . (3)

Bach et al. (2004) proposed the following formulation of

MKL 1:


















min
f1,...,fM ,

b,ξ

1
2

(
∑

m
‖fm‖Hm

)2
+ C

∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n ,

(4)

whose solution leads to a decision rule of the form

sign (
∑

m f⋆
m(x) + b⋆). This expression of the learning

problem is remarkable in that it only deviates slightly from

the original SVM problem (1). The squared RKHS norm

in H is simply replaced by a mixed-norm, with the stan-

dard RKHS norm within each feature space Hm, and an

ℓ1 norm in R
M on the vector built by concatenating these

norms. This ℓ1 norm encourages sparse solutions, that is,

solutions where some functions fm have zero norm. In this

respect, the MKL problem may be seen as the kernelization

of the group-LASSO (Yuan & Lin, 2006).

2.2.3. COMPOSITE KERNEL LEARNING

When the individual kernels Km represent a series, such

as Gaussian kernels with different scale parameters, MKL

may be used as an alternative to cross-validation. When the

input data originates from M differents sources, and that

each kernel is affiliated to one input variable, MKL can be

used to select relevant input variables.

However, MKL is not meant to address problems where

several kernels pertain to one input variable. In this situ-

ation, the sparseness mechanism of MKL does not favor

solutions discarding all the kernels computed from an ir-

relevant input. Although most of the related coefficients

should vanish in combination (2), spurious correlation may

cause irrelevant input variables to participate to the solu-

tion.

The flat combination of kernels in MKL does not include a

mechanism to cluster the kernels related to one input vari-

able. In order to favor the selection of kernels within prede-

fined groups, one has to define a group structure among ker-

nels, which will guide the selection process through a struc-

tured kernel combination. This type of hierarchy among

1To lighten notations, the range of indexes is often omitted in
summations, in which case: indexes i and j refer to examples and
go from 1 to n; index m refers to kernels and goes from 1 to M ;
index ℓ refers to groups of kernels and goes from 1 to L.



Composite Kernel Learning

variables has been investigated in linear models (Szafran-

ski et al., 2008; Zhao et al., to appear). We briefly recapitu-

late the general framework in the following section, before

discussing its adaptation to kernel learning in Section 4.

3. Grouped and Hierarchical Selection

The introduction of ℓ1 penalties, with the seminal paper of

Tibshirani (1996) on the LASSO, gave rise to many im-

portant theoretical and practical advances in the statistics

and machine learning fields. As stated in Section 2.2.2,

MKL itself belongs to the series of algorithms affiliated to

the LASSO, through its relationship with group-LASSO. In

this lineage, Zhao et al. (to appear) defined the very general

Composite Absolute Penalties (CAP) family.

3.1. Composite Absolute Penalties

Consider a linear model with M parameters, β =
(β1, . . . , βM )t, and let I = {1, . . . ,M} be a set of index

on these parameters. A group structure on the parameters

is defined by a series of L subsets {Gℓ}
L
ℓ=1, where Gℓ ⊆ I .

Additionally, let {γℓ}
L
ℓ=0 be L+1 norm parameters. Then,

the member of the CAP family for the chosen groups and

norm parameters is

Ω =
∑

ℓ

(

∑

m∈Gℓ

|βm|γℓ

)γ0/γℓ

. (5)

Mixed-norms correspond to groups defined as a partition

of the set of variables. A CAP may also rely on nested

groups, G1 ⊂ G2 ⊂ . . . ⊂ GL, and γ0 = 1, in which

case it favors what Zhao et al. call hierarchical selection,

that is, the selection of groups of variables in the predefined

order {I \ GL}, {GL \ GL−1}, . . . , {G2 \ G1}, G1. This

example is provided here to stress that Zhao et al.’s notion

of hierarchy differs from the one that follows.

3.2. Hierarchical Penalization

Hierarchical penalization uses shrinking coefficients to

transform a ridge-like penalty into a sparse penalizer

(Szafranski et al., 2008). The model parameterized by β

is fitted by minimizing a differentiable loss function J(·),
subject to a ridge penalty with adaptive coefficients that en-

courages sparseness among and within groups:



















min
β,σ1,σ2

J(β) + λ
∑

ℓ

∑

m∈Gℓ

β2

m√
σ1,ℓ σ2,m

s. t.
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 1 ≤ ℓ ≤ L
∑

m
σ2,m = 1 , σ2,m ≥ 0 1 ≤ m ≤ M .

(6)

The Lagrange parameter λ controls the amount of shrink-

age, and dℓ is the size of group ℓ. The constraints expressed

on the two last lines encourage sparseness in σ1,ℓ and σ2,m,

which induces sparseness in βm.

Here, the groups Gℓ form a partition of I , and the hierar-

chy refers to the tree-structure of the shrinking coefficients:

σ2,m shrinks parameter βm, while σ1,ℓ shrinks the parame-

ters for group Gℓ. In the words of Zhao et al., the objective

here is grouped variable selection.

The minimizer of Problem (6) is the minimizer of

min
β

J(β) + λ

(

∑

ℓ

d
1/4
ℓ

(

∑

m∈Gℓ

|βm|4/3
)3/4

)2

,

which is essentially a CAP estimate, where parameter dℓ

only accounts for the group sizes (Szafranski et al., 2008).

The inner ℓ4/3 norm and the outer ℓ1 norm form a mixed-

norm penalty that will be denoted ℓ(4/3,1). The overall pe-

nalizer favors sparse solutions at the group level, with few

leading coefficients within the selected groups.

4. From Multiple to Composite Kernels

MKL has been formalized as a quadratically constrained

program by Lanckriet et al. (2004), then as a second-order

cone program by Bach et al. (2004). More recently, other

formulations led to wrapper algorithms, where the opti-

mization with respect to kernel hyper-parameters is still

based on the SVM objective value, but is performed in an

outer loop that wraps a standard SVM solver. The outer

loop is cutting planes for Sonnenburg et al. (2006), and gra-

dient descent for Rakotomamonjy et al. (2007). Wrapper

algorithms have appealing features: (i) they benefit from

the developments of solvers specifically tailored for the

SVM problem in the inner loop; (ii) they allow to address

large-scale problems; (iii) they are multipurpose, since the

SVM inner loop may be replaced by another algorithm with

little or no adjustments.

We chose to build on gradient-based MKL. First, it has

been shown to be more efficient than the SILP approach

of Sonnenburg et al. (2006), thanks to the stability of the

updates performed in the outer loop, which induces good

initializations for the inner loop solver (Rakotomamonjy

et al., 2007). Second, and even more important for our pur-

pose, gradient-based MKL is amenable to the extension to

groups of kernels, thanks to the formulation of hierarchical

penalization of Section 3.2.

4.1. Variational Multiple Kernel Learning

Problem (4) is not differentiable at ‖fm‖Hm
= 0, a diffi-

culty that causes a considerable algorithmic burden. The

MKL formulation of Rakotomamonjy et al. (2007) can

be viewed as a variational form of Problem (4), where M
new variables σ1, . . . , σM are introduced in order to avoid
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these differentiability issues. The resulting problem, which

is equivalent to Problem (4), is stated as:































min
f1,...,fM ,

b,ξ,σ

1
2

∑

m

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n
∑

m
σm = 1 , σm ≥ 0 1 ≤ m ≤ M .

(7)

Here and in what follows, u/v is defined by continuation at

zero as u/0 = ∞ if u 6= 0 and 0/0 = 0.

The constraints expressed on the last line encourage sparse-

ness in σm, which induces sparseness in fm. As already

mentioned in Section 2.2.2, the sparseness applies at the

kernel level, ignoring the group structure. The latter is

taken into account in the formulation proposed in the fol-

lowing section.

4.2. Variational Composite Kernel Learning

Here, we build on the variational form of the composite

absolute penalties presented in Section 3.2 to take into ac-

count the group structure. Hierarchical penalization can

deal with kernel methods if the ridge penalties are replaced

by RKHS norms. We first generalize Problem (6) to obtain

smooth variational formulations for arbritrary mixed-norm

penalties, so that to address a wide variety of problems in-

cluding MKL:











































min
f1,...,fM ,

b,ξ,σ1,σ2

1
2

∑

ℓ

σ−p
1,ℓ

∑

m∈Gℓ

σ−q
2,m‖fm‖2

Hm
+ C

∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 1 ≤ ℓ ≤ L
∑

m
σ2,m = 1 , σ2,m ≥ 0 1 ≤ m ≤ M,

(8)

where p and q are exponents to be set according to the prob-

lem at hand.

This formulation, which is difficult to optimize, is simpli-

fied by replacing the two shrinking coefficients σ1 and σ2

by σ, defined by σm = σp
1,ℓσ

q
2,m. In a first step, we con-

sider the change of variable that maps σ2 to σ. When

q 6= 0, this mapping is one-to-one provided σ1,ℓ 6= 0. Fur-

thermore, if σ⋆
1,ℓ and σ⋆

2,m denote the optimal σ1,ℓ and σ2,m

values for Problem (8), we have that σ⋆
1,ℓ = 0 ⇒ σ⋆

2,m = 0,

hence Problem (8) is equivalent to























































min
f1,...,fM ,

b,ξ,σ1,σ

1
2

∑

m

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n
∑

ℓ

dℓ σ1,ℓ = 1 , σ1,ℓ ≥ 0 1 ≤ ℓ ≤ L

∑

ℓ

σ
−p/q
1,ℓ

∑

m∈Gℓ

σ
1/q
m ≤ 1

σm ≥ 0 1 ≤ m ≤ M .

(9)

The new problem is simplified further by showing that σ1

can be dropped out from the optimization process, leading

to the following formulation of Composite Kernel Learning

(CKL):















































min
f1,...,fM ,

b,ξ,σ

1
2

∑

m

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n

∑

ℓ

(

dp
ℓ

(

∑

m∈Gℓ

σ
1/q
m

)q
)1/(p+q)

≤ 1

σm ≥ 0 1 ≤ m ≤ M ,

(10)

Before considering particular settings of interest, we state

below two helpful propositions. The first one gives a more

interpretable formulation of Problem (10); the second one

presents the conditions for convexity of formulation (10),

that will guaranty the convergence towards the global min-

imum for the algorithm described in Section 5.

Proposition 1. CAP Formulation: Problem (10) is equiv-

alent to the following MKL problem with a CAP-like

penalty on the RKHS norms:























min
f1,...,fM ,

b,ξ

1
2

(

∑

ℓ

dγ∗

ℓ

(
∑

m∈Gℓ

‖fm‖γ
Hm

)γ0/γ
)2/γ0

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi 1 ≤ i ≤ n

ξi ≥ 0 1 ≤ i ≤ n,

(11)

with γ = 2
q+1 , γ0 = 2

p+q+1 and γ∗ = 1 − γ0

γ .

Sketch of proof. Let L be the Lagrangian of problem (10).

The optimality conditions for σm are obtained from the first

order optimality conditions for σm ( ∂L
∂σm

= 0):

σm =
(

∑

ℓ

dγ∗

ℓ s
γ0/γ
ℓ

)(γ0−2)/γ0

d−γ∗

ℓ sγ∗

ℓ ‖fm‖2−γ
Hm

, (12)

where sℓ =
∑

m∈Gℓ

‖fm‖γ
Hm

. Plugging this expression in

Problem (10) yields the claimed result.
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Note that the outer exponent 2
γ0

only influences the strength

of the penalty, not its type. Hence, the penalty in the ob-

jective function (11) differs from (5) in the RKHS norms

‖ · ‖Hm
and in the parameters dℓ that accommodate for

group sizes.

Proposition 2. Conditions for Convexity: Problem (10) is

convex if and only if 0 ≤ q ≤ 1 and 0 ≤ p + q ≤ 1.

Proof. A problem minimizing a convex criterion on a con-

vex set is convex. The objective function of Problem (10)

is convex (Boyd & Vandenberghe, 2004, p. 89). The first,

second and fourth constraints define convex sets, and the

third one also provided (i)
(

∑

m∈Gℓ
σ

1/q
m

)q

is a norm, that

is 0 ≤ q ≤ 1, and (ii)
∑

ℓ t
1/(p+q)
ℓ is convex in tℓ, that is

0 ≤ p + q ≤ 1.

Within the values of p and q ensuring convexity, we pick

the following particular cases of interest:

• p = 0, q = 1 yields a LASSO type penalty on the

RKHS norms. It results in the generalization of the

group-LASSO known as MKL, as formulated in (4);

• p = 1, q = 0 yields a group-LASSO type penalty on

the RKHS norms. It results in another MKL, with L
effective kernels Kℓ, defined as Kℓ =

∑

m∈Gℓ

Km;

• p = q = 1
2 yields a hierarchical-penalization type

penalty on the RKHS norms. It is a true CKL, where

there are M effective kernels, and where the penalty

favors sparse solutions at the group level, with few

leading kernels within the selected groups.

Hence, when p goes from zero to one, with q = 1 − p, the

penalty gives more and more emphasis to the group struc-

ture. For most applications where convexity is a key issue,

we recommend the balanced setup p = q = 1
2 .

Note however that convex penalties restrict the sparseness

of the solution to either the group level or the kernel level.

In Section 6, we will illustrate that giving up convexity may

turn out to be an interesting option when considering inter-

pretability issues.

5. Algorithm

Our approach to solve Problem (10) draws on the MKL

algorithm of Rakotomamonjy et al. (2007). We use the

wrapper scheme described below, where the outer loop is

carried out by a projected gradient descent update.

5.1. A Gradient-Based Wrapper

The wrapper scheme considers the following constrained

optimization problem:



















min
σ

J(σ)

s. t.
∑

ℓ

(

dp
ℓ

(

∑

m
σ

1/q
m

)q
)1/(p+q)

≤ 1

σm ≥ 0, 1 ≤ m ≤ M ,

where J(σ) is defined as the objective value of



















min
f1,...,fM ,

b,ξ

1
2

∑

ℓ

∑

m∈Gℓ

1
σm

‖fm‖2
Hm

+ C
∑

i

ξi

s. t. yi

(
∑

m
fm(xi) + b

)

≥ 1 − ξi , 1 ≤ i ≤ n

ξi ≥ 0 , 1 ≤ i ≤ n .

(13)

The global optimization problem consists thus of two

nested problems. In the inner loop, the criterion is opti-

mized with respect to f1, . . . , fM , b and ξ, considering that

the coefficients σ are fixed. In the outer loop, σ is updated

to decrease the criterion, with fm, b and ξ being fixed.

Equation (12) may be used to update σ in closed form.

However, this approach lacks convergence guarantees and

may lead to numerical problems, in particular when some

elements of σ approach zero. Hence, following Rakotoma-

monjy et al. (2007), we use that the objective function

J(σ) is actually an optimal SVM objective value to update

σ by an efficient projected gradient descent scheme.

5.2. Computing the Gradient

The dual formulation offers a convenient means to compute

the gradient ∇J(σ). The derivation of the Lagrangian of

Problem (13), which is omitted here for brevity, shows that

its dual formulation is identical to the one of a standard

SVM using the aggregated kernel Kσ defined in Equa-

tion (2). Hence, the dual problem takes the usual form















max
α

− 1
2

∑

i,j

αiαjyiyjKσ(xi,xj) +
∑

i

αi

s. t.
∑

i

αiyi = 0

C ≥ αi ≥ 0 1 ≤ i ≤ n ,

(14)

which can be solved by any SVM solver.

As J(σ) is defined as the optimal objective value of the

convex Problem (13) for which strong duality applies,

J(σ) is also the dual objective value:

J(σ) = −
1

2

∑

i,j

α⋆
i α

⋆
jyiyjKσ(xi,xj) +

∑

i

α⋆
i , (15)

where α⋆ solves Problem (14).
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The existence and computation of the derivatives of J(·)
follow from general results on optimal values, such as The-

orem 4.1 of Bonnans and Shapiro (1998), which, in a nut-

shell states that the differentiability of J(σ) is ensured by

the unicity of α⋆, and by the differentiability of (15). 2 Fur-

thermore, the derivatives of J(σ) can be computed as if

α⋆ were not to depend on σ. Thus, the gradient ∇J(σ) is

simply

∂J

∂σm
= −

1

2

∑

i,j

α⋆
i α

⋆
jyiyj

∑

ℓ

∑

m∈Gℓ

Km(xi,xj) .

5.3. CKL Algorithm

Now, we have all the ingredients to adapt the machinery

developed for MKL by Rakotomamonjy et al. (2007). Ac-

cording to the process described in Section 5.1, we propose

Algorithm 1.

Algorithm 1 Composite Kernel Learning

initialize σ

solve the SVM problem → J(σ)
repeat

compute direction d = −∇J(σ)
repeat

compute d′, the projection of d onto the tangent of

the surface of the admissible set

compute the smallest step that nullifies a compo-

nent of σ

S =
{

j : d′j < 0 and σj 6= 0
}

ν = min
j∈S

−
σj

d′j
k = arg min

j∈S
−

σj

d′j
dk = 0

σ† = σ + ν d′

project σ† onto the surface of the admissible set

solve the SVM problem → J(σ†)
if J(σ†) < J(σ) then σ = σ†

until J(σ†) ≥ J(σ)
compute ν⋆ = arg minν J(σ + ν d)
σ = σ + ν⋆ d

until convergence

The stopping criterion for assessing the convergence of the

outer loop can be based on standard criteria for gradient-

based algorithms or on the duality gap. In the following

experiments, it is based on the stability of σ and J(σ).

6. Channel Selection for BCI

This experiment deals with single trial classification of

EEG signals coming from Brain-Computer Interface (BCI).

Depending on each BCI paradigm, these EEG signals are

2The unicity of α⋆ is ensured provided that the Gram matrix
built from kernel Kσ is positive-definite. To enforce this property,
a small ridge may be added to the diagonal.

recorded from specific electrode positions. However, as

stated by Schröder et al. (2005), automated channel se-

lection should be performed for each single subject since

it leads to better performances or a substantial reduction

of the number of useful channels. Reducing the number of

channels involved in the decision function is of primary im-

portance for BCI real-life applications, since it makes the

acquisition system easier to use and to set-up.

We use here the dataset from the BCI 2003 competition for

the task of interfacing the P300 Speller (Blankertz et al.,

2004). The dataset consists in 7560 EEG signals paired

with positive or negative stimuli responses. The signal, pro-

cessed as in (Rakotomamonjy et al., 2005), leads to 7560
examples of dimension 896 (14 time frames for each of the

64 channels).

The experimental protocol is then the following: we have

randomly picked 567 training examples from the datasets

and used the remaining as testing examples. For each pa-

rameter, C has been selected by retaining a small part of

the training set as a validation set, for selecting the param-

eter which the highest AUC. This overall procedure has

been repeated 10 times. Using a small part of the exam-

ples for training can be justified by the use of ensemble of

SVMs (that we do not consider here) on a latter stage of

the EEG classification procedure (Rakotomamonjy et al.,

2005), and the AUC performance measure is justified by

how the EEG recognition is transformed into selected char-

acter in the P300.

The 896 features extracted from the EEG signals are not

tranformed before classification: we do not use any kernel-

ization. However, to unify the presentation, we will refer to

these features as linear kernels. Hence, in this application

where the kernels related to a given channel form a group

of kernels, we have to learn M = 896 coefficients σm, di-

vided into L = 64 groups.

CKL is well-suited to the classification objectives, since

we aim at classifying the EEG trials with as few channels

as possible. Furthermore, it is also likely that some time

frames are irrelevant, so that variable selection may be car-

ried out within each channel. To reach a sparse solution at

the channel and the time frame levels, we test a non-convex

parametrization of CKL that encourages sparseness within

and between groups.

In the following, CKL1/2 stands for a convex version of

our algorithm, with p = q = 1/2 (a ℓ(4/3,1) mixed-

norm), CKL1 is a non-convex version, with p = q = 1
(a ℓ(1,2/3) (pseudo) mixed-norm). Note that MKL is also

implemented by our algorithm, with p = 0 and q = 1.

Table 1 summarizes the average performance of SVM,

MKL, and CKL, that is, for 4 different penalization terms:

quadratic penalization for the classical SVM (which is
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trained with the mean of 896 kernels), ℓ1 norm for MKL,

and mixed-norms for the two versions of CKL: CKL1/2

and CKL1. The number of channels and kernels selected

by these algorithms is also reported.

Table 1. Average Results for SVMs with 4 different penalization

terms on the BCI datasets.

Algorithms AUC # Channels # Kernels

SVM 83.87 ± 0.8 64 896

MKL 85.43 ± 0.9 62.2 ± 1 255.8 ± 15

CKL1/2 85.49 ± 1.1 62.9 ± 1 835.7 ± 25

CKL1 84.15 ± 0.8 24.0 ± 4 60.9 ± 10

The prediction performances of the 4 algorithms are simi-

lar, with a slight advantage for sparse methods. CKL1/2 is

much less sparse than MKL, which itself keeps about four

times as much kernels compared to CKL1. In the number

of groups, MKL and CKL1/2 behave similarly, with only

one or two channels removed. CKL1 is much sparser and

removes about two thirds of the channels.

Figure 6 represents the median relevance of the electrodes

over the 10 experiments. It displays which electrodes have

been selected by the different kernel learning methods. For

one experiment, the relevance for channel ℓ is computed

by the relative contribution of group ℓ to the norm of the

solution, that is

1

Z

∑

m∈Gℓ

1

σ⋆
m

‖f⋆
m‖2

Hm
,

where Z is a normalization factor that sets the sum of rele-

vances to one.

The results for CKL1 are particularly neat, with high rel-

evances for the electrodes in the areas of the visual cortex

(especially the lateral electrodes PO7 and PO8), and the pri-

mary motor and Somatosensory cortex (C• and CPZ). The

scalp maps for MKL and CKL1/2 are very similar and show

the importance of the same regions. In addition they also

highlight numerous frontal electrodes that are not likely to

be relevant for the BCI P300 Speller paradigm.

7. Conclusion and Further Works

This paper is at the crossroad of kernel learning and vari-

able selection. From the former viewpoint, we extended the

multiple kernel learning problem to take into account the

group structure among kernels. From the latter viewpoint,

we generalized the hierarchical penalization framework to

kernel classifiers by considering penalties in RKHS instead

of parametric function spaces.

As a side contribution, we also provide a smooth variational

formulation for arbritrary mixed-norm penalties, enabling

to tackle a wide variety of problems. This formulation is

not restricted to convex mixed-norm, a property that turns

out to be of interest for reaching sparser, hence more inter-

pretable solutions.

Our approach is embedded, in the sense that the kernel

hyper-parameters are optimized jointly with the parame-

ters of classifier to minimize the soft-margin criterion. It is

however implemented by a simple wrapper algorithm, for

which the inner and the outer subproblems have the same

objective function, and where the inner loop is a standard

SVM problem.

In particular, this implementation allows to use available

solvers for kernel machines in the inner loop. Hence, al-

though this paper considered binary classification prob-

lems, our approach can be readily extended to other learn-

ing problems, such as multiclass classification, clustering,

regression or ranking.
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Figure 1. Electrode median relevance for MKL (left), CKL1/2 (center) and CKL1 (right). The darker the color, the higher the relevance.

Electrodes in white with a black circle are discarded (the relevance is exactly zero). The arrow represents the frontal direction.
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