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Abstract: A biomolecular sensor consisting of a thin metallic grating 
deposited on a glass prism is studied in the formalism of poles and zeros of 
the scattering matrix. Surface plasmon resonance is used to increase the 
sensitivity of the device with respect to a variation of the refractive index of 
the substrate. It is shown that a direct coupling between counter propagating 
surface plasmons using double-harmonic Fourier gratings leads to an 
enhancement of the sensitivity. The result of the stronger coupling is the 
transfer of the working point from the lower to the upper edge of the band 
gap in the dispersion diagram. 
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1. Introduction 

The technique of surface plasmon resonance has found wide use in recent years in biosensing 
applications, with the principal configuration employing a prism in the frustrated or attenuated 
total reflection configuration associated with the name of Kretschmann [1]. Another 
convenient method for exciting surface plasmons for use in sensing is to employ surface relief 
gratings, which since the early years of the last century have been known to exhibit diffraction 
anomalies [2] sensitive to surface conditions on the grating. The connection between Wood 
anomalies and surface plasmons was established decisively by Cowan and Arakawa [3], and 
since then the plasmon effect on gratings has been used both as a sensitive test of the accuracy 
of diffraction grating theories [4,5] and in sensing applications [6-8]. 

A recent study [9] has shown that by placing a sinusoidal profile grating in silver of 
appropriate period and depth on the rear face of a substrate used in the Kretschmann 
configuration, the surface plasmon resonance (SPR) sensitivity may be enhanced by a factor 
of six when compared with an uncorrugated surface. Here we will analyze this result in terms 
of the poles of the scattering matrix associated with surface plasmons, and the associated 
zeros, and will explain the enhanced sensitivity of the optimal configuration in terms of the 
relative trajectory of poles and zeros as a function of grating depth. (For a review of the 
connection between anomalies, poles, zeros and surface modes, see the chapter by D. Maystre 
[10]). We will go further by considering the enlarged parameter space arising when instead of 
a simple sinusoidal grating we consider a grating whose profile is composed of two Fourier 
harmonics. We will show that such compound profile gratings can provide a further sixty 
percent increase in plasmon resonance sensitivity above that provided by the sinusoidal 
profile, and that this heightened sensitivity is achieved because the operating point of the 
sensor moves from the lower frequency edge of a minigap between two plasmon dispersion 
curves to the upper frequency edge. 

It should be stressed that gratings with profiles composed of superposed Fourier 
harmonics can be created by established interference techniques [11]. Although their 
fabrication offers an additional degree of complexity, they do offer the advantages of 
relatively large area grating format, possibility of mosaic gratings on a single substrate and 
precision replication through several generations from a single master in common with 
sinusoidal and ruled gratings. These advantages mean that such interference gratings are not 
incompatible with fabrication of relatively low-cost, high sensitivity surface plasmon sensors. 

In the next section, we consider the case of a sinusoidal grating used as an SPR sensor, 
and show how the optimization of its sensitivity may be achieved simply by regarding the 
behaviour of the trajectories of the zeros and poles of the scattering matrix. We use this 
insight in Section 3, where we study the case of a Fourier grating with two superposed surface 
modulations. We show that this design yields a 60% enhancement in sensitivity compared 
with the sinusoidal case, and further that the reflectance minimum now is a single feature 
rather than a double dip, a simplifying feature for automated SPR analysis. In Section 4 we 
give dispersion diagrams, which show that the improved sensitivity of the Fourier grating is 
the result of the operating point moving from the lower frequency side of a photonic minigap 
to the upper, flatter side. Section 5 contains our concluding remarks. 

 

2. Single harmonic Fourier grating 

The periodic metallic film under study is depicted in Fig.1. Substrate is air (refractive index 
n1=1), superstrate is glass (n3=1.5). The thickness of the metallic layer is taken equal to 40 
nm. It is illuminated from the glass by a plane wave in Transverse Magnetic polarization 
(TM), with angle of incidence θ. In this way, it is possible to excite from the 0th order a 
surface plasmon resonance at the water-metal interface when the condition αi ≡  n3 sinθ = 

 is satisfied, where  is the normalized propagating constant of the surface 
plasmon. This surface plasmon will propagate in the Ox direction. It is possible to excite 
simultaneously from the -1st order a surface plasmon propagating along the both metallic 

spp1-2α spp1-2α



interfaces in the –Ox direction when the two equalities: n3 sinθ − λ/d =  and 

 are satisfied. These surface plasmons propagate on the lower and 

upper metallic interfaces respectively. The surface plasmon α

spp1-2−α

3n sin / dθ − λ = spp3-2−α

spp3-2 propagating on the interface 
between prism and metal will not be modified by a slight variation of the refractive index n1 
of the water and is not of interest in this study. 
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Fig. 1. Periodically corrugated prism of refractive index n3 = 1.5 coated by a 
metallic layer of thickness t (t=40 nm) and refractive index equal to 0.1 + i 5.85, 
corresponding to silver at a wavelength of 850 nm. Grooves have a sinusoidal 
geometry with height h1 and period d. The substrate is made of water with 
refractive index n1 = 1.33 or 1.34. 

 
The diffraction problem is numerically solved by the use of the profile transformation 

method due to Chandezon et al. [12, 13]. The scattering matrix S is defined as S(α) I = D, 
where I and D represent column vectors made of the Fourier components of the x and z 
components of the incident (I) and diffracted (D) electric and magnetic fields. The complex 
solutions αp denoting poles are the solutions of the homogeneous problem:  

 
S-1(αp) D = 0,     (1) 

 
whereas αz represents a zero of the 0th reflected order: 
 

S0,0(αz) = 0.      (2)  
The complex propagation constant of a surface plasmon αspp satisfies eq. (1) and is 

identified with αp. When considering perfectly conducting metals, αz = αp
* [10], where the 

asterisk stands for the complex conjugate. With finite conductivity metals, it has been shown 
that the trajectory of the zero when varying the groove depth is almost symmetric to that of 
the pole with respect to the unperturbed trajectory (that of a perfectly conducting grating) 
[10]. The real part of the zero indicates a minimum of the reflected efficiency when varying 
the x component of the incident wavevector αi = n3 sinθ. If the imaginary part of the zero is 
zero, then the reflected efficiency will be equal to zero.  

We study the poles αp corresponding to the two counter propagating surface plasmons at 
the water-metal interface as a function of h1 for the refractive indices n1 = 1.33 and 1.34 (water 
and water infused with a biomolecule). The two counter propagating surface plasmons excited 
by the 0th and the –1st orders present two different values of αp, in full and dashed lines in 
Fig. 2, since two different equations must be satisfied, respectively: 

α p – λ /d = −αspp1-2      (3) 
and 



 α p = αspp1-2       (4).  
The surface plasmon excited by the –1st order propagates along the –Ox direction has a 
negative imaginary part (the full line in Fig. 2). In order to distinguish in another way the two 
surface plasmons in Fig. 2, we note that when the groove depth increases, the propagation of 
the surface plasmon is perturbed, as it  radiates more strongly in the prism. As a consequence, 
the real part of αspp1-2 increases. α p must be decreased to fulfill eq.(3) and must be increased 
to fulfill eq. (4). As a result, the full lines and dashed lines in Fig. 2 that represent respectively 
the propagation constant of the surface plasmons excited by the –1st and the 0th orders 
approach each other when increasing the groove depth. 
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Fig. 2. Real (a) and imaginary parts (b) of the poles satisfying eq.(1) as a function 
of h1, for two refractive indices of the substrate 1.33 (blue) and 1.34 (red). 
Dashed line: surface plasmon excited by the 0th order, full line surface plasmon 
excited by the –1st order. 

 
The zeros corresponding to the poles in Fig. 2 are displayed in Fig. 3. It can be observed 

that by contrast with what happens with the poles, the imaginary part of the zero can vanish 
(see the dashed line in Fig. 3b), which will correspond to a zero of the reflectivity of the 
device [10]. Excitation of a surface plasmon by the 0th order is responsible for the full 
absorption of incident light by the grating [14, 15].  
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Fig. 3. Similar to Fig. 2 with the zeros satisfying eq.(2). 



Now, we are interested in the increase of the sensitivity of the surface plasmons with the 
change of the refractive index n1 of the substrate. The difference between real parts in Fig. 3a 
has to be maximized, while the imaginary part of αz has to be minimized. When increasing h1, 
the coupling between the two counter propagating surface plasmons increases. As a result, the 
constants of propagation tend toward the same value, with an increase of the imaginary part. 
The maximum of the shift between red and blue curves will occur when the real part of 
surface plasmon for n1 = 1.34 stops to increase further when increasing h1, in other words 
when the imaginary part becomes important for n1 = 1.34 and still negligible for n1=1.33, 
which happens around h1 = 20 nm. Figure 4 shows the difference between the blue and red 
dashed lines of Fig. 3a as a function of h1, together with the imaginary parts of αz. The 
sensitivity of the propagating constant of the surface plasmon with the refractive index n1 is 
maximal for h1 = 0.019 µm. However, the imaginary part of αz with n1 = 1.34 is too high so 
that the minimum of reflectivity will not be pronounced, and the width at mid-height will be 
too large. As a consequence, h1 = 0.017 µm is preferable for the plot of the reflectivity as a 
function of the angle of incidence (Fig. 5). The two minima of reflectivity obtained with 
n1=1.33 and 1.34 are separated by ∆θ = 6.25° (using the leftmost dip for n = 1.33 and the 
rightmost dip for n = 1.34).  
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Fig. 4. Difference between the real parts of the zeros with refractive index of 1.34 
and 1.33 as a function of h1 (full black curve with the right scale) with imaginary 
parts of the zeros associated with the surface plasmon excited by the 0th order 
(dashed lines with the left scale). 
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Fig. 5.Reflected efficiency as a function of the angle of incidence θ, with 
h1=0.017 µm. 

 



3. Double Fourier harmonic grating  

In the aim of improving the coupling between the two counter propagating surface plasmons, a 
second periodic modulation is added (Fig. 6), with a groove height h2. The profile represents a 

function with equation: 1 2

2 4
h sin( x) h sin( x )

d d
π π

+ + ϕ . 

d

h 1h 2

θ

n = 0 .1 + i5 .8 5

n = 1 .5

n = 1 .3 3

t

 
Fig. 6. Same as Fig. 1 with a second periodical modulation of height h2. 
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Fig. 7. Real (a) and imaginary parts (b) of the zeros satisfying eq.(2) as a function 
of h1, for two refractive index of the substrate 1.33 (blue) and 1.34 (red). Dashed 
line: surface plasmon excited by the 0th order, full line surface plasmon excited 
by the –1st order. t=40 nm and ϕ=π/2. 

 
A full numerical optimization as a function of d, t, ϕ, h1 and h2 has been computed in 

order to obtain the largest variation of the absorption as a function of θ associated with a very 
low reflectivity, close to zero. As a result of this, the values h1 = 35 nm, h2 = 59 nm, t = 40 nm 
and ϕ = π/2 have been selected. In order to understand why the second modulation permits an 
enhanced SPR sensitivity, the poles are plotted as a function of the groove depth h defined by 
the groove geometry (Fig. 6):  

 
2 4

h sin( x) sin( x )
d d

59
35 2

π π π
+⎛

⎜
⎝ ⎠

− ⎞
⎟ .   (5) 

 
For shallow grooves (h < 25 nm), the trajectory of the poles in the complex plane as a 

function of h is similar to that obtained with the single Fourier harmonic grating. The 
sensitivity is maximum around h = 15 nm (first double arrow in Fig. 7a). The imaginary parts 
are maximal in magnitude when the real parts cross, due to the strong coupling of the two 
counter propagating surface plasmons. This region is known as a band gap occurring at the 
borders of the Brillouin zone, as discussed in the next section. Further increase of the groove 
depth causes  the propagation constant of the surface plasmon excited by the 0th order to 
become higher than that of the plasmon excited by the –1st order, which decreases their 
coupling and subsequently permits us to decrease the imaginary part of the propagation 
constant of the surface plasmons (Fig. 7b) and to significantly increase the separation between 



the real parts (right-side double arrow in Fig. 7a). The sensitivity of the propagation constant 
of surface plasmons with respect to n1 is then at a maximum. 
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Fig. 8. Real (a) and imaginary parts (b) of the zeros satisfying eq.(2) as a function 
of h, for two refractive indices of the substrate: 1.33 (blue) and 1.34 (red). Zeros 
are associated with the surface plasmon excited by the 0th order. t=40 nm and 
ϕ=π/2. 

 
The trajectory of the zero associated with the pole plotted in Fig. 7 (dashed line) is 

displayed in Fig. 8. The zero associated with the other surface plasmon will present too large 
an imaginary part and will not contribute to the full absorption of incident light. It confirms 
the explanation given with the poles: when h=35 nm, the sensitivity of the real part to n1 is 
maximal and imaginary parts are minimized. As a consequence, in the plot of the reflectivity 
of the device as a function of the angle of incidence with h=35 nm (Fig. 9), the minima are 
well pronounced and very close to zero, and they are very well separated, with a variation of 
∆θ=10 degrees with ∆n = 0.01.  
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Fig. 9.Reflected efficiency as a function of the angle of incidence θ. h1=35 nm, 
h2=59 nm, t=40 nm, ϕ=π/2. 

 

4. Dispersion diagrams 

In order to better understand the difference between the single- and the double-harmonic 
gratings, in this section we present the ω-k diagrams, which show the formation of an ω-gap 
and its link with the poles of the scattering matrix, discussed in the previous sections. Figure 
10a presents the map of the intensity of the 0th reflected order as a function of and ω/c (in 
µm

xk
-1) for the single-harmonic grating with h1 = 20 nm (h2 = 0), with c standing for the speed 

of light in vacuum. One can observe the existence of an ω-gap between 7.3 and 7.8 µm-1. For 
simplicity, we have neglected the dispersion of the media. The values of the intensity for 

an be larger than unity, because this region corresponds to angles of incidence 
larger than 90°, taking into account that the refractive index of the cladding is equal to 1.5. 
The working wavelength has been fixed in the previous sections to 0.85 µm, and is presented 

xk 1.5 /> ω  c c



by the horizontal dashed purple line. It lies at the lower boundary of the forbidden gap that is 
formed due to the interaction between the plasmons, propagating in the opposite direction on 
the substrate-metal interface. The real parts of their constants of propagation are superposed 
on the figure (blue thick lines). The corresponding imaginary parts are presented in Fig. 10b. 
When the real parts of the constants of propagation approach each other (when increasing ω), 
the interaction leads to a sharp increase of the imaginary part, leading to a formation of the 
band gap. Further increase of ω leads to a separation of the propagation constants, a decrease 
of the imaginary part, and a creation of the upper propagation region. 

The increase of the imaginary parts at around 7.3 µm-1 is accompanied by a slight 
curvature of the real parts and is due to the interaction between the plasmon surface waves 
propagating on the upper and lower surfaces of the metallic layer. 
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Fig. 10. (a) Colour map dependence of the intensity of the 0th reflected order of a 
single-harmonic grating with h1 = 20 nm (h2 = 0). Thick blue lines, real part of 
the constant of propagation of the plasmon surface waves excited on the 
substrate-metal layer interface. Purple line, working point at λ = 0.85 µm. (b) 
Imaginary parts of the surface waves propagation constants as a function of ω/c. 

 
Figure 11 represents results similar to Fig. 10, but for the grating having two Fourier 

harmonics. There are several important differences. First, the second Fourier harmonic, which 
is responsible for the direct coupling between the two counter-propagating surface waves 
leads to a significant lowering of the boundaries of the forbidden zone, which extends in this 
case from 6.8 to 7.3 µm-1 in ω/c. Second, the imaginary parts of the propagation constants are 
larger than in the single-harmonic case. As a result, the working point is shifted from the 
lower to the upper boundary of the forbidden gap. As observed in Fig. 11a, the upper 
boundary is flatter than the lower one, so that one can expect stronger sensitivity with respect 
to the substrate refractive index, which is the case, as shown previously. 
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Fig. 11. Same as in Fig. 10, but for a double-harmonic grating with h1 = 35 nm, h2 = 59 nm, and ϕ 
= π/2. 

 

5. Conclusion 

We have shown that the optimization of sensitivity of grating SPR sensors can be carried out 
on the basis of an understanding of the trajectories of zeros and poles of the scattering matrix. 
We have also shown that the use of gratings having two Fourier components can yield 
significantly improved sensitivity over the simple sinusoidal profile. In addition to increasing 
sensitivity, the reflectance curves can be optimized to have a single dip rather than the double-
dip curve for the optimal sinusoid. Such simpler reflectance curves would be more amenable 
to an automated SPR analysis in large scale screening procedures for a range of biomolecules. 

The sinusoidal and composite sinusoidal profiles investigated here are of the type 
amenable to holographic interference production. We plan to extend our investigations to step 
profiles, of the type more readily produced by lithographic or ion beam techniques. 
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