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Error calculus and regularity of Poisson functionals:

the lent particle method.

Nicolas BOULEAU∗

–

Abstract

We propose a new method to apply the Lipschitz functional calculus of local Dirichlet
forms to Poisson random measures.

Résumé

Calcul d’erreur et régularité des fonctionnelles de Poisson : la méthode de

la particule prêtée. Nous proposons une nouvelle méthode pour appliquer le calcul
fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson.

1 Notation and basic formulae.

Let us consider a local Dirichlet structure with carré du champ (X,X , ν,d, γ) where
(X,X , ν) is a σ-finite measured space called bottom-space. Singletons are in X and ν is
diffuse, d is the domain of the Dirichlet form ǫ[u] = 1/2

∫
γ[u]dν. We denote (a,D(a))

the generator in L2(ν) (cf. [3]).
A random Poisson measure associated to (X,X , ν) is denoted N . Ω is the configuration

space of countable sums of Dirac masses on X and A is the σ-field generated by N , of law
P on Ω. The space (Ω,A, P) is called the up-space. We write N(f) for

∫
fdN . If p ∈ [1,∞[

the set {eiN(f) : f real, f ∈ L1 ∩ L2(ν)} is total in Lp
C
(Ω,A, P). We put Ñ = N − ν. The

relation E(Ñf)2 =
∫

f 2dν extends and gives sense to Ñ(f), f ∈ L2(ν). The Laplace
functional and the differential calculus with γ yield

∀f ∈ d, ∀h ∈ D(a) E[eiÑ(f)(Ñ(a[h]) +
i

2
N(γ[f, h])] = 0.(1)

2 Product, particle by particle, of a Poisson random

measure by a probability measure.

Given a probability space (R,R, ρ), let us consider a Poisson random measure N ⊙ ρ
on (X × R,X × R) with intensity ν × ρ such that for f ∈ L1(ν) and g ∈ L1(ρ) if

∗Ecole des Ponts, Paris-Est, ParisTech. email: bouleau@enpc.fr

1



N(f) =
∑

f(xn) then (N ⊙ ρ)(fg) =
∑

f(xn)g(rn) where the rn’s are i.i.d. independent
of N with law ρ. Calling (Ω̂, Â, P̂) the product of all the factors (R,R, ρ) involved in the
construction of N ⊙ρ, we obtain the following properties : For an A×X ×R-measurable
and positive function F , Ê

∫
F (ω, x, r)N ⊙ ρ(dxdr) =

∫
F dρ dN P-a.s.

Let us denote by PN the measure P(dω)Nω(dx) on (Ω × X,A×X ). We have

Lemma 2.1 Let F be A× X ×R-measurable, F ∈ L2(PN × ρ) and such that∫
F (ω, x, r) ρ(dr) = 0 PN -a.s., then

∫
F d(N⊙ρ) is well defined, belongs to L2(P×P̂)

and

Ê(

∫
F d(N ⊙ ρ))2 =

∫
F 2 dN dρ P-a.s.(2)

The argument consists in considering Fn satisfying
E

∫
F 2

n dνdρ < +∞ and E
∫

(
∫
|Fn| dν)2dρ < +∞ and then using the relation

Ê(
∫

Fn d(N ⊙ ρ))2 = (
∫

FndρdN)2 −
∫

(
∫

Fndρ)2dN +
∫

F 2
ndρdN P-a.s.

3 Construction by Friedrichs’ method and expression

of the gradient.

a) We suppose the space by d of the bottom structure is separable, then a gradient exists
(cf. [3] Chap. V, p.225 et seq.). We denote it ♭ and choose it with values in the space
L2(R,R, ρ). Thus, for u ∈ d we have u♭ ∈ L2(ν × ρ), γ[u] =

∫
(u♭)2dρ and ♭ satisfies the

chain rule. We suppose in addition, what is always possible, that ♭ takes its values in the
subspace orthogonal to the constant 1, i.e.

∀u ∈ d

∫
u♭ dρ = 0 ν-a.s.(3)

This hypothesis is important here as in many applications (cf. [2] Chap V §4.6). We
suppose also, but this is not essential (cf. [3] p44) 1 ∈ dloc γ[1] = 0 so that 1♭ = 0.

b) We define a pre-domain D0 dense in L2
C
(P) by

D0 = {

m∑
p=1

λpe
iÑ(fp); m ∈ N

∗, λp ∈ C, fp ∈ D(a) ∩ L1(ν)}.

c) We introduce the creation operator inspired from quantum mechanics (see [7], [8],
[9], [1], [5],[6] and [10] among others) defined as follows

ε+
x (ω) equals ω if x ∈ supp(ω), and equals ω + εx if x /∈ supp(ω)(4)

so that
ε+

x (ω) = ω Nω-a.e. x and ε+
x (ω) = ω + εx ν-a.e. x(5)

This map is measurable and the Laplace functional shows that for an A×X -measurable
H ≥ 0,

E

∫
ε+H dν = E

∫
H dN.(6)
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Let us remark also that by (5), for F ∈ L2(PN × ρ)∫
ε+F d(N ⊙ ρ) =

∫
Fd(N ⊙ ρ) P × P̂-a.s.(7)

d) We defined a gradient ♯ for the up-structure on D0 by putting for F ∈ D0

F ♯ =

∫
(ε+F )♭ d(N ⊙ ρ)(8)

this definition being justified by the fact that for P-a.e. ω the map y 7→ F (ε+
y (ω))−F (ω)

is in d, ε+F belongs to L∞(P)⊗ d algebraic tensor product, and (ε+F − F )♭ = (ε+F )♭ ∈
L2(PN × ρ).

For F, G ∈ D0 of the form

F =
∑

p

λpe
iÑ(fp) = Φ(Ñ(f1), . . . , Ñ(fm)) G =

∑
q

µqe
iÑ(gq) = Ψ(Ñ(g1), . . . , Ñ(gn))

we compute using (2), (3) and (7) (in the spirit of prop. 1 of [9] or lemma 1.2 of [6])

Ê[F ♯G♯] =
∑
p,q

λpµqe
iÑ(fp)−iÑ(gq)γ[fp, gq](9)

and we have

Proposition 3.1 If we put A0[F ] =
∑

p λpe
iÑ(fp)(iÑ(a[fp]) −

1
2
N(γ[fp])) it comes

E[A0[F ]G] = −
1

2
E

∑
p,q

Φ′
pΨ

′
qN(γ[fp, gq]).(10)

In order to show that A0[F ] does not depend on the form of F , by (10) it is enough to
show that the expression

∑
p,q Φ′

pΨ
′
qN(γ[fp, gq]) depends only on F and G. But this comes

from (9) since F ♯ and G♯ depend only on F and G.
By this proposition, A0 is symmetric on D0, negative, and the argument of Friedrichs

applies (cf [3] p4), A0 extends uniquely to a selfadjoint operator (A,D(A)) which defines
a closed positive (hermitian) quadratic form E [F ] = −E[A[F ]F ]. By (10) contractions
operate and (cf. [3]) E is a Dirichlet form which is local with carré du champ denoted Γ
and the up-structure obtained (Ω,A, P, D, Γ) satisfies

∀f ∈ d, Ñ(f) ∈ D and Γ[Ñ(f)] = N(γ[f ])(11)

The operator ♯ extends to a gradient for Γ as a closed operator from L2(P) into L2(P ×
P̂) with domain D which satisfies the chain rule and may be computed on functionals
Φ(Ñ(f1), . . . , Ñ(fm)), Φ Lipschitz and C1 and their limits in D (as done in [4]).

Formula (8) for ♯ can be extended from D0 to D. Let us introduce the space D closure
of D0 ⊗ d for the norm

‖H‖D = (E

∫
γ[H(ω, .)](x) N(dx))1/2 + E

∫
|H(ω, x)|ξ(x) N(dx)

where ξ > 0 is a fixed function such that N(ξ) ∈ L2(P).
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Theorem 3.1 The formula F ♯ =
∫

(ε+F )♭ d(N ⊙ ρ) decomposes as follows

F ∈ D
ε+

7−→ ε+F ∈ D
♭

7−→ (ε+F )♭ ∈ L2
0(PN × ρ)

d(N⊙ρ)
7−→ F ♯ ∈ L2(P × P̂)

where each operator is continuous on the range of the preceding one, L2
0(PN × ρ) denoting

the closed subspace of L2(PN × ρ) of ρ-centered elements, and we have

Γ[F ] = Ê|F ♯|2 =

∫
γ[ε+F ] dN.(12)

4 The lent particle method.

Let us consider, for instance, a real process Yt with independent increments and Lévy
measure σ integrating x2, Yt being supposed centered without Gaussian part. We assume
that σ has an l.s.c. density so that a local Dirichlet structure may be constructed on
R\{0} with carré du champ γ[f ] = x2f ′2(x). If N is the random Poisson measure with
intensity dt × σ we have

∫ t

0
h(s) dYs =

∫
1[0,t](s)h(s)xÑ(dsdx) and the choice done for γ

gives Γ[
∫ t

0
h(s)dYs] =

∫ t

0
h2(s)d[Y, Y ]s for h ∈ L2

loc(dt). In order to study the regularity of

the random variable V =
∫ t

0
ϕ(Ys−)dYs where ϕ is Lipschitz and C1, we have two ways:

a) We may represent the gradient ♯ as Y ♯
t = B[Y,Y ]t where B is a standard auxil-

iary independent Brownian motion. Then by the chain rule V ♯ =
∫ t

0
ϕ′(Ys−)(Ys−)♯dYs +∫ t

0
ϕ(Ys−)dB[Y ]s now, using (Ys−)♯ = (Y ♯

s )−, a classical but rather tedious stochastic com-
putation yields

Γ[V ] = Ê[V ♯2] =
∑

α≤t ∆Y 2
α (

∫ t

]α
ϕ′(Ys−)dYs + ϕ(Yα−))2.(13)

Since V has real values the energy image density property holds, and V has a density as
soon as Γ[V ] is strictly positive a.s. what may be discussed using the relation (13).

b) Another more direct way consists in applying the theorem. For this we define ♭ by

choosing η such that
∫ 1

0
η(r)dr = 0 and

∫ 1

0
η2(r)dr = 1 and putting f ♭ = xf ′(x)η(r).

1o. First step. We add a particle (α, x) i.e. a jump to Y at time α with size x what
gives
ε+V − V = ϕ(Yα−)x +

∫ t

]α
(ϕ(Ys− + x) − ϕ(Ys−))dYs

2o. V ♭ = 0 since V does not depend on x, and
(ε+V )♭ = (ϕ(Yα−)x +

∫ t

]α
ϕ′(Ys− + x)xdYs)η(r) because x♭ = xη(r).

3o. We compute γ[ε+V ] =
∫

(ε+V )♭2dr = (ϕ(Yα−)x +
∫ t

]α
ϕ′(Ys− + x)xdYs)

2

4o. We take back the particle we gave, because in order to compute
∫

γ[ε+V ]dN the
integral in N confuses ε+ω and ω.

That gives
∫

γ[ε+V ]dN =
∫

(ϕ(Yα−) +
∫ t

]α
ϕ′(Ys−)dYs)

2x2 N(dαdx) and (13).

We remark that both operators F 7→ ε+F , F 7→ (ε+F )♭ are non-local, but instead
F 7→

∫
(ε+F )♭ d(N ⊙ ρ) and F 7→

∫
γ[ε+F ] dN are local : taking back the lent particle

gives the locality.
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