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Abstract—This paper investigates the closed-loop properties of
multivariable (MIMO1) linear systems where the sensed infor-
mation is centralized and coded on the basis of a ∆-modulation
algorithm often used for minimizing the numbers of transmitted
bits. In particular we propose a new centralized vector coding
algorithm that allows us to extend our previous results in [4] to
any type of linear multivariable systems. In addition, we provide
an estimation of the stability attraction domain, and we give some
simulation results validating the proposed approach.

Index Terms—Delta modulation, Networked controlled sys-
tems, NCS, quantized systems.

I. INTRODUCTION

THis paper deals with the stabilization problem of a linear

multivariable system through a communication network

where information is transmitted via a particular coding al-

gorithm. Coding algorithms seeking to transmit a minimum

number of information bits are appealing in wireless networks

since they allows a substantial channel bandwidth reduction.

Many of such types of control architecture using that type of

codes have been studied in the past. See [9], [5], [11], [12],

[14], [10], [7], [1], [15] among others.

Delta modulation (∆-M ) is one alternative to minimize the

numbers of bits to be coded. The reason is that innovation

increments (with a granularity depending on a quantization

factor ∆) are coded rather than the absolute value of the

signal. Recent works in [4] have re-adapted the standard form

of the delta modulation structure to their use in a feedback

setup. One advantage of this type of strategy is that the

coding algorithm can be built in a methodological and simple

manner. A limitation is that re-synchronization may be needed,

if the signal track is lost. Inspired by this approach several

variants of [4] have been studied: asynchronous entropy coding

[2], energy-aware coding [3], adaptive delta modulation [6],

and gain scheduling multi-bit coding [8]. Except for the

trivial case of diagonalizable multivariable system that can be

reformulated as a set of n-scalar ones, all these works deal

exclusively with scalar system.

In this paper, we present a generalization of the delta-

modulation coding presented in [4], to MIMO systems. In

particular we introduce a vector coding structure for multivari-

able centralized linear systems. The notion of centralization

1MIMO : Multiple Input Multiple Output.

refers here to the fact that both the encoder-decoder and the

control law use the full available information from all sensors.

The idea is shown in Fig. 1, where we can see that all

the sensed system outputs are collected in a central point,

then transformed into a different coordinate-basis (using the

transform matrix T k) before they are coded using a vector-

coding algorithm. At the receiver side, it is similarly assumed

that the transmitted information arrives to a central receiver,

then decoded, and finally the control is computed using this

centralized information. It is worth to notice that decentralized

case is clearly much more constrained, even in absence of

a coding process. A recent work [13] dealing with the case

of decentralized multi-controller stability over communication

channel illustrates well the fundamental difficulties, and pro-

vides an interesting preview on how to handle these problems

when information is not centralized.
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Fig. 1. NCS System with γ representing conversion from ˆ̃z to codeword.

The paper is organized as follows. After formalizing the

problem in section II, we introduce in section III the general

vector coding algorithm that can be adapted for all different

forms of Jordan blocks resulting from the change of coordinate

basis. Then, vector coding is performed in the transform do-

main. Vector coding here refers to the fact that a specific code-

word is assigned for specific combinations between states.

These are new information that are not present in standard

scalar coding as they result from the combination of individual

signals. Closed-loop stability properties resulting from this

approach are also exposed here. Section V characterizes the

attraction set associated to the previous local stability condi-

tions. This allows a finer estimation of quantization values to



be used in the coding process. Finally simulation results are

shown in section VI.

II. PROBLEM FORMULATION AND ASSUMPTIONS

The problem considered here is the stabilization of a

multivariable system in which sensor signals are centralized,

and then transmitted through a digital communication link

to the controller. At the controller side, the information is

received in a unique point, and then decoding process provides

the system n-dimensional estimated state, to be used for

feedback. The coding design aims to achieve stability with a

minimal information rate, thanks to a judicious coding strategy

selection during the quantization step.

Let us assume the following:

• the coding process is centralized : a single encoder can

be used to encode all the sensed states of the system,

• the encoded information is transmitted through a noise-

less perfect transmission channel. Hence possible im-

pairments (delay, errors) due to the transmission are not

considered,

• information flow is unidirectional; the information is only

transmitted from the encoder to the decoder,

• the encoder and decoder clocks are assumed to be syn-

chronized, and samples are assumed to occur at each Ts.

The following notations will be used:

• n is the state dimension that corresponds to the number

of sensors,

• m is the number of control inputs,

• xk = [x1
k, . . . , xn

k ]T ∈ R(n×1) is the n-dimensional

sensed state vector at instant kTs (each xi
k corresponds

to the i − th sensor) ;

• uk = [u1
k, . . . , um

k ]T ∈ R(m×1), is m-dimensional control

input vector at instant kTs.

The discretized system is described by:

xk+1 = Axk + Buk (1)

where A ∈ R(n×n), and B ∈ R(n×m). Moreover, the control

law is given by

uk = −Kx̂k (2)

with K ∈ R(m×n) such that the eigenvalues of A−BK are

strictly lower in magnitude than 1. x̂k is an estimation of xk,

and x̃k denotes the estimation error :

x̃k = xk − x̂k, (3)

and, more generally, for a given signal sk, ŝk represent an

estimated value of sk and s̃k represent the error sk − ŝk.

Without loss of generality, we suppose that system (1) is

already expressed in its Jordan’s form, such that A is of the

form,

A =




Jλ1

0 0

0 Jλl
0

0 0 Jλγ



 (4)

where we assume that there are α Jordan’s blocks, of dimen-

sion µl × µl, with multi-valued real eigenvalue, and γ − α

Jordan’s blocks, of dimension 2µl × 2µl, with multi-valued

complex conjugated eigenvalues.

For the multi-valued real eigenvalue case, the Jλl
, for 1 6

l 6 α, are of the form,

Jλl
=





λl 1 0
0 λl 1

0 λl 1
0 λl



 (5)

and, for the multi-valued complex conjugated eigenvalues, the

Jλl
, are, for all α + 1 6 l 6 γ, of the form,

Jλl
=





|λl|R(θl) I2 0
0 |λl|R(θl) I2

0 |λl|R(θl) I2

0 |λl|R(θl)





(6)

where λl = |λl|(cos(θl) + j sin(θl)) describes the complex

eigenvalues, with magnitude |λl|, and angle θl. R(θl) is the

rotation matrix associated to the polar form adopted above,

i.e.

R(θl) =

(
cos(θl) sin(θl)
− sin(θl) cos(θl)

)
(7)

Remark 1: It is worthwhile underlining the fact that µl

is not necessarily the multiplicity order of λl since the

eigenvalues λl are not necessarily different from each other.

Nevertheless, we have µ1 + . . . + µγ = n, n being the size of

A.

The case where A is diagonal (µl = 1), with real-valued

eigenvalues has been treated in [4]. In this paper we extend

these results to the general case of multiple-valued, real and

complex eigenvalues, with µl possibly different from 1.

III. MULTIVARIABLE ∆-MODULATION CODING STRATEGY

In this section, we present the multivariable coding strategy.

This strategy is inspired from the ∆-modulation algorithm

studied previously in [4] for the one-dimensional case. The

n-dimensional case considered here does not result from the

simple extension of the one-dimensional case, but requires a

new vector coding strategy, and a particular change of coor-

dinates (matrix Tk) for the multi-valued complex conjugated

eigenvalue case. The role of the rotation matrix Tk is to

align the direction of the eigenvector (signal oscillation) to

the vector quantizer block.

A. Principle of multivariable coding and decoding process

Figure 1 shows the architecture of the proposed differential

coding algorithm. It is composed of three main components:

• The vector quantizer block transforms the error z̃k, into

a finite codeword set, which is latter transformed into bits

and sent through the communication channel,

• The predictor, that transforms back the codeword into a

system state prediction x̂k

• The rotation matrix Tk transforms the estimation error

x̃k between the signal xk and its estimated (reconstructed)

value x̂k into a new set of coordinates z̃k, i.e.

z̃k = T−1
k x̃k (8)



As shown in the Figure 1, the encoding algorithm has the

3 components described above, while the decoding algorithm

is just the predictor whose inputs are the received information

codewords at the decoding side.

Each of these components are explained in detail next.

1) vector quantizer: it maps the transformed vector z̃k

into the quantized vector ˆ̃zk. The multi-level quantizer is

constructed as follows:

• we consider Mi (odd or even) subdivisions for each z̃i

with respective quantization step ∆i. The partition is

centered at the origin,

• This partition generates an hypercube of dimension n
with a total of nC =

∏i=n
i=1 Mi quantized volumes (see

example in Figure 2),

• To each quantized volume is associated a value for the

quantized vector ˆ̃zk (see example in the Table I).

The formula used to compute ˆ̃zk is the following:

If Mi is odd, then ˆ̃zi
k is given as:

ˆ̃zi
k =






(Mi − 1)∆i/2 if C1

N∆i if C2

−(Mi − 1)∆i/2 if C3

where the conditions Ci are:

C1 : z̃i
k > (Mi − 1)∆i/2

C2 : z̃i
k ∈ [(N − 1/2)∆i, (N + 1/2)∆i],

(N ∈ {−(Mi − 1)/2, . . . , (Mi − 1)/2})
C3 : z̃i

k < −(Mi − 1)∆i/2

If Mi is even, then ˆ̃zi
k is given as:

ˆ̃zi
k =






Mi/2∆i if C1

(N + 1/2)∆i if C2

−Mi/2∆i if C3

where the conditions Ci are:

C1 : z̃i
k > (Mi − 1)/2∆i

C2 : z̃i
k ∈ [N∆i, (N + 1)∆i],

(N ∈ {−(Mi − 1)/2, . . . , (Mi − 1)/2})
C3 : z̃i

k < −(Mi − 1)∆i/2

Remark 2: Before transmission, note that quantizer vector
ˆ̃zi
k is associated to a codeword of dimension nC that can be

coded directly into R = ⌈log2(nC)⌉ bits, where ⌈.⌉ denotes

the ceil function.

2) Predictor: The estimation of the signal x̂k is computed

thanks to a model-based predictor:

x̂k+1 = (A − BK)x̂k + Aˆ̃xk

= (A − BK)x̂k + AT k
ˆ̃zk

(9)

where the last expression results from the use of the inverse

transformation matrix, i.e.

x̃k = T kz̃k (10)

Due to the particular nature of this transformation (rotation

matrix) its inverse always exists. Thus, using equations (8),

(10) and (9), we get :

z̃k+1 = T−1
k+1AT k(z̃k − ˆ̃zk) (11)

Note that, as this predictor is used at both the encoder and the

decoder side, their respective initial conditions x̂0 and ˆ̃z0 are

assumed to be the same.

3) Transformation matrix T k: The selection of this matrix

for the general case is quite involved. In what follows we

present two examples: one with a trivial choice of T k = I , and

an other where its choice depends on the eigenvalues position

in the complex plane. The general case will be treated in detail

in section IV.

B. Example 1: two-dimensional system with a real eigenvalue

Consider a system of the form (1), with

A =

(
λ 1
0 λ

)

and some B such that (A, B) is controllable. Then, as the

system does not contains oscillatory modes, we can take T k =
I2, where In denotes the n-entry identity matrix, which leads,

with x̃k = z̃k, to

z̃k+1 =

(
λ 1
0 λ

)
(z̃k − ˆ̃zk)

∆1

∆2

z̃
1

z̃
2

d2

d1

Ωext

Ωint

1

234

5

6 7 8

9

Fig. 2. Evolution of z̃k where z̃0 begins in Ωext = {[−1.5∆1, 1.5∆1] ×
[−1.5∆2, 1.5∆2]} and z̃k ∈ Ωint = {[−d1, d1] × [−d2, d2]} and the dots
delimit the nine subdivisions of the space.

Let us choose Mi = 3 subdivisions per signal, with a

different step for each one; a quantization step of ∆1 > 0 for

z̃1
k, and ∆2 > 0 for z̃2

k. This partition is shown in Figure 2,

and the associated coding strategy in Table III-B

Now if we assume that |λ| < 3, and that the quantization

steps are chosen such that

∆2 < ∆1(3 − |λ|) (12)

then it is easy to show that if the error signal z̃0 is initiated

inside the centered rectangle set Ωext, then the evolution of



k = 0

Ωext(1)

k = 1k = 1

Ωext(2)

Ωint(2)

Tk = I

θ = Π/4 Ωext(2)

Ωint

wasted space

Tk = R(θ)

a ) b ) c )

Fig. 3. Evolution of z̃k , in the first figure, we choose that z̃k ∈ Ωext(1) and in the second figure we see that z̃k+1 ∈ Ωint and we see that if we code the

signal z̃k+1 we loose some space and, to ensure that Ωint ⊂ Ωext, the maximal possible eigenvalue is |λ| < 3/
√

2. The third figure shows a forced rotation
of the coder which permits to have better performances

TABLE I
CODING STRUCTURE RELATED TO FIGURE 2

Bits Codeword Value of ˆ̃zk

0000 1 (∆1, 0)
0001 2 (∆1, ∆2)
0010 3 (0, ∆2)
0011 4 (−∆1, ∆2)
0100 5 (−∆1, 0)
0101 6 (−∆1,−∆2)
0110 7 (0,−∆2)
0111 8 (∆1,−∆2)
1000 9 (0, 0)

z̃k will enter (in one step) inside the set Ωint as defined in

Figure 2.

To see that, note that if z̃k ∈ Ωext, then we have |z̃i
k −

ˆ̃zi
k| 6

∆i

2 , ∀i ∈ {1, 2}. Now, from error equation in z̃k, we have that

|z̃1
k+1| < |λ|∆1

2 + ∆2

2 = d1, and that |z̃2
k+1| < |λ|∆2

2 = d2.

This defines the set Ωint. From here it is obviously needed that

Ωint ⊂ Ωext, which lead to the condition (12).

C. Example 2: two-dimensional system with complex conju-

gate eigenvalues

Consider a system of the form (1), with

A = |λ|R(π/4)

with R(π/4) is defined in (7), and B such that the pair (A, B)
is controllable. Suppose that we take T k = I2 , which gives

x̃k = z̃k and from (3) we get

z̃k+1 = |λ|R(π/4)(z̃k − ˆ̃zk)

As in the former example, let us choose Mi = 3 subdivisions

per signal, with a quantization step ∆1 > 0 for z̃1
k, and ∆2 > 0

for z̃2
k.

We suppose that the initial condition at k = 0 z̃0 ∈ Ωext

defined in the Figure 3 a), thus at k = 1 we obtain z̃1 ∈ Ωint

(Figure 3 b)). It can be proved following similar steps as in

Example 1 that Ωext is an invariant set if |λ| < M1√
2

with ∆1 =
∆2. This condition is more conservative than the one obtained

in Example III-B, where we only require that |λ| < M1. It

is also possible to retrieve the same result by redefining the

transform matrix T k as shown below

Let us choose T k such that

T k = R(kπ/4)

Then z̃k = R(−kπ/4)x̃k with R(π/4)−1 = R(−π/4).
Equation (3) becomes

z̃k+1 = R(−(k + 1)π/4)|λ|R(π/4)R(−kπ/4)−1(z̃k − ˆ̃zk)

= |λ|R(−(k + 1)π/4)R(π/4)R(kπ/4)(z̃k − ˆ̃zk)

= |λ|I2(z̃k − ˆ̃zk)

Hence, we obtain a fully decoupled system and it is straight

forward to show that if z̃0 begins in the set Ωext, it is necessary

that Ωint ⊂ Ωext to ensure that Ωext is an invariant set, this

condition leads to |λ| < 3 and a independent choice of ∆1 and

∆2. In this case, we see that we can find the same properties

as in the real eigenvalues system. The generalization of this

result needs an other transformation.

IV. CONSTRUCTION OF THE TRANSFORM MATRIX T k :

GENERAL CASE

Consider a system of the form (1), with A defined in (4)

and B such that (A, B) is controllable. The error equation:

x̃k+1 = A(x̃k − ˆ̃xk)



As we have assumed that A is a block diagonal matrix, the

associated stability properties can be analyzed separately for

Jλl
. In the following paragraph, we will first deal with the

case of real eigenvalues 1 6 l 6 α and latter we will focus

on the complex conjugate case α + 1 6 l 6 γ.

To simplify the notation, we only note x̃k instead of x̃k(l) ∈
Rµl , Jλ = Jλl

and µ = µl.

A. Case of multiple-valued real eigenvalues

Lemma 1: Case of multiple real eigenvalues. Assuming that
ˆ̃zk is computed thanks to the quantization procedure given in

section III-A1, and suppose that

z̃0 ∈ Ωext = {z̃ ∈ R
µ : |z̃i| 6 Mi

∆i

2
, 1 6 i 6 µ}

and the quantization steps satisfy the equations

|λ| +
∆i+1

∆i

6 Mi, 1 6 i 6 µ − 1 (13)

Then

i) Ωext is an invariant set

ii) z̃k ∈ Ωint, ∀k > 1 where

Ωint = {z̃ ∈ R
µ : |z̃i| 6 |λ|∆i/2 + ∆i+1/2

∀i : 1 6 i 6 µ − 1 and |z̃µ| 6 λ∆µ/2}

Proof: According to (5):

z̃i
k+1 = λ(z̃i

k − ˆ̃zi
k) + (z̃i+1

k − ˆ̃zi+1
k ) (14)

z̃µ
k+1 = λ(z̃µ

k − ˆ̃zµ
k ) (15)

Given that ˆ̃zi+1
k is quantized by the procedure given in section

III-A1, we have |z̃i+1
k − ˆ̃zi+1

k | 6 ∆i+1

2 . Then using (13), for

1 6 l 6 µ − 1, we get

|z̃i
k+1| 6 |λ||z̃i

k − ˆ̃zi
k| + |z̃i+1

k − ˆ̃zi+1
k | 6 |λ|

∆i

2
+

∆i+1

2

6 Mi

∆i

2
(16)

Finally, (13) implies that |λ| < Mi, so that

|z̃µ
k+1| 6 Mi

∆µ

2
(17)

B. Case of complex conjugate eigenvalues.

We now consider the case where λ ∈ C for α + 1 6 l 6 γ.

So, let us introduce the matrices W (θ) and Q(θ) defined

by

W (θ) =

(
R(θ) 0

0 R(θ)

)
(18)

Q(θ) =

(
R(−θ) 0

0 R(−µθ)

)
. (19)

It can be shown after a few calculations that

Q−1(θ)W−1((k + 1)θ)JλW (kθ)Q(θ)

=





|λ|I2 I2 0 0
0 |λ|I2 I2 0
...

. . . |λ|I2 0
. . . 0 |λ|I2




=̂J̌λ

Let us choose T k = W (kθ)Q(θ). Then, as in the case of

real-valued eigenvalues, we have

z̃k+1 = J̌λ(z̃k − ˆ̃zk) (20)

and J̌λ is a block diagonal matrix, so that we can consider

separately each block again.

Then, considering separately even indices and odd indices,

we exactly recover the results of the case of real-valued

eigenvalues. Indeed, if we denote z̃e
k = [z̃2

k, z̃4
k, . . . , z̃2µ

k ] and

z̃o
k = [z̃1

k, z̃3
k, . . . , z̃2µ−1

k ], we have

z̃e
k+1 =





|λ| 1 0
0 |λ| 1

0 |λ| 1
0 |λ|



 (z̃e
k − ˆ̃ze

k) (21)

z̃o
k+1 =





|λ| 1 0
0 |λ| 1

0 |λ| 1
0 |λ|



 (z̃o
k − ˆ̃zo

k) (22)

Lemma 2: Case of multiple complex eigenvalues. Assuming

that ˆ̃zk is computed thanks to the quantization procedure given

in section III-A1, and suppose that

z̃0 ∈ Ωext = {z̃ ∈ R
2µ : |z̃i| 6 Mi

∆i

2
}

|λ| + ∆i+2/∆i 6 Mi, ∀i : 1 6 i 6 2µ − 2 (23)

Then we ensure that

i) Ωext is an invariant set

ii) z̃k ∈ Ωint, ∀k > 1 where

Ωint = {z̃ ∈ R
2µ : |z̃i| 6 |λ|∆i/2 + ∆i+2/2

1 6 i 6 2µ − 2 and else |z̃i| 6 |λ|∆i/2}

Proof: The proof is identical to the one derived for

the demonstration of Lemma 1 in the case of real-valued

eigenvalues.

C. General case: combined real and complex eigenvalues

Theorem 1: Suppose the system (2)

xk+1 = Axk + Buk

with the pair (A, B) controllable.

And a channel rate R bounded by

n∏

l=1,|λl|>1

⌈|λl|⌉ < 2R

Then, the coding structure that ensure that xk is bounded,

is realized with the Delta-modulation coding explained in

section III where z̃k = T−1
k x̃k with T k defined as

Tk =





Iµ1
0 0 0...

0 Iµα 0 0...
0 0... W ι(kθι)Qι(kθι) 0
0 0... 0 Wγ(kθγ)Qγ(θγ)



 (24)



with α + 1 = ι.
Then z̃k+1 = J̆(z̃k − ˆ̃zk) and where A = T k+1J̆T−1

k

J̆ =





J1 0 . . . 0
... Jα . . . 0
... 0 J̌ ι 0
0 . . . 0 J̌µ





with the properties for Mi and ∆i given in lemma 1 for real

eigenvalues and lemma 2 for complex eigenvalues.

Proof: For each signal with instable open loop, one of the

condition is |λl| < Mi, it is sufficient that ⌈|λl|⌉ < Mi with

R = log2

∏n
i=1 Mi. If we multiply for all the coefficients, the

result becomes
n∏

l=1,|λl|>1

⌈|λl|⌉ < 2R

Using the previous lemmas, we ensure that x̃ is bounded.

xk+1 = (A − BK)xk + Ax̃k

With the following system where A−BK has its eigenvalues

strictly inferior than 1, the authors of [4] have shown that the

cascade system ensures that xk is bounded.

V. DOMAIN OF ATTRACTION AND NEW TUNING POLICIES

FOR ∆i

The aim of this section is twofold. First assuming the use

of the tuning rule (13), we provide a less conservative method

to estimate the attraction domain (named B ⊃ Ωext). Second,

assuming the same attraction domain Ωext, we provide a new

tuning rule for the ∆i that,compared to previous rule given in

(13), results in smaller values for ∆i. As a consequence, the

system precision can be improved. Specific simulation results

concerning this last case, will be presented at the end of the

paper.

A. Characterization of B

Let assume that the ∆i are tuned following the rule in (13),

and denote B the new estimation of the attraction domain with

Ωext ⊂ B ⊂ R
n. Let B be defined as the compositions of the

sub-sets Bλl
,

B = Bλ1
× ... × Bλw

(25)

where the Bλl
describes the attraction domain for the l-th

Jordan’s block, J̌λl
, under consideration,

z̃k+1 =




|λl| 1 0
0 |λl| 1
0 0 |λl|





︸ ︷︷ ︸
J̌λl

(z̃k − ˆ̃zk)

This decomposition simplifies the analysis by looking at each

block separately instead of considering the whole system

together. Therefore, we only need to focus on a single block

Bλl
, and repeat the same analysis for other block when needed.

Inspired by the Jordan block structure, assume in turn

that Bλl
= Hλl,1 × ... × Hλl,µl

where each subset, Hλl,1,

correspond to a domain associated to each of the Jordan block

components. For simplicity reasons, we omit the subindex λl

in the sequel. Hence, we simply note B = H1 × ... ×Hµl
.

Theorem 2: Assume that ˆ̃zk is computed thanks to the

quantization procedure given in section III-A1, and that ∆i

are tuned following the rule in (13), and suppose that

z̃0 ∈ B = {z̃ ∈ R
µ : |z̃i| 6 γi}

with, for 1 6 i 6 µ − 1,

γi = min
(
(M − 1)∆i/2 + εi

max, (|λ||ˆ̃zi
k
| − εi+1

max )/(|λ| − 1)
)

εi+1
max 6 min

(
(M − |λ|)∆i/2, (M − 1 − |λ|)∆i/2 + εi

max

)

then:

i) B is an invariant set, i.e. z̃k ∈ B ∀k > 0.

ii) ∃k1 > 0, such that, z̃k ∈ Ωint, ∀k > k1. where Ωint is the

same set as defined in Lemma 1-ii).

Proof: Details of the proof are given in Appendix.

Note that this analysis allows us to obtain a bigger attraction

domain than the one obtained in section IV. To see this, note

that εi
max > ∆i/2, which implies that γi > M∆i/2, and

therefore we have that

B ⊃ Ωext

B. Tuning policies for ∆i

Assume now that the attraction domain Ω̄ext, is given by

Ω̄ext = {z̃ ∈ R
µ : |z̃i| 6 δi, 1 6 i 6 µ}

where δi are arbitrary values specified by the user. Note

that the specification above imposes, in the previous tuning

method, that Mi
∆i

2 = δi, whereas theorem 3 below will show

that the new values ∆̄i < ∆i = 2δi

Mi
leading to a smaller

convergence set Ω̄int ⊂ Ωint, where Ωint is the same set as

defined in Lemma 1-ii).
Theorem 3: Suppose that z̃0 ∈ Ω̄ext, and let the following

rule to be applied to select the coding levels,for 1 6 i 6 µ−1,

∆̄i = 2
|λ| − 1

|λ|(M − 1)
δi + 2

δi+1 − (M − 1)∆̄i+1/2

|λ|(M − 1)

∆̄µ = δµ(2(|λ| − 1))/|λ|

Then:

i) Ω̄ext is an invariant set, and

ii) ∃k1 > 0, such that, z̃k ∈ Ω̄int, ∀k > k1, where Ω̄int ⊂ Ωint

is given as:

Ω̄int =

{
z̃ ∈ R

µ :

{
|z̃i| 6 |λ|∆̄i/2 + ∆̄i+1/2 1 6 i 6 µ − 1
|z̃µ| 6 |λ|∆̄µ/2 i = µ

}

Proof: Property i) can be shown following the same proof

as in part i) of Theorem 2, given in the Appendix. For the

Property ii) the convergence of z̃k towards the set Ω̄int in finite

time also follows the same lines as the proof of Theorem 2

and is omitted here.

Finally the fact that Ω̄int ⊂ Ωint follows by first observing

that both sets Ω̄int, and Ωint have the same upper bound

structure, and hence it is sufficient to prove that ∆̄i < ∆i.



This last inequality follows from inspection comparing the

definition of the ∆̄i given in the theorem with the ones

resulting from the imposed constraints to the previous tuning

method, i.e. ∆i = 2δi

Mi
.

VI. SIMULATION RESULTS

The aim of this section, is to compare by simulations, the

precision improvements that the second tuning method derived

in previous section can provide. For this, we consider a second

order system, already in it Jordan form:

A =

(
1.1 1
0 1.1

)
, B =

(
0.2
0.3

)

The controller is designed on the basis of a full static state

feedback with the desired closed-loop eigenvalues located at

(0.5, 0.6). The control objective is to regulate the output states

to a fix value; xref
1 = 1, xref

2 = 1. The desired attraction domain

for the estimation error is specified as (δ1, δ2) = (0.62, 0.52),
and the initial error state are taken inside Ω̄ext; x0 = (0.6, 0.5),
and x̂0 = (0, 0). We choose 2 word-code by signal namely 2
bits per unit of sampling time; M1 = M2 = 2.

Under this conditions on the quantization step ∆i are

computed according to the conditions given in theorem 1;

∆1 = 0, 62 and ∆2 = 0, 52. The ∆̄i are now computed

following the procedure in Section V; ∆̄1 = 0, 35 and

∆̄2 = 0, 057.
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Fig. 4. Time-evolution of the closed-loop state x2
k

(upper) and x1
k

(lower)
using two different tuning methods discussed in this paper. The impact of
quantization on the first state is less effective than on the second state.

Figure 4 shows the time-evolution of the resulting closed-

loop signals (coding including). In both runs, the initial condi-

tion are the same, and as it was expected the second methods

provides smaller values for the coding gains, resulting in a

better signal reconstruction quality, and hence better regulation

precision.

VII. CONCLUSION

In this paper, we have investigated the closed-loop proper-

ties of multivariable (MIMO) linear systems where the sensed

information is centralized and coded on the basis of a ∆-

modulation algorithm intended to be used for minimizing the

number of transmitted bits.

In particular we had proposed a new centralized vector

coding algorithm that allows us to extend our previous results

in [4] to linear multivariable systems of arbitrarily dimension

and arbitrarily structure (any canonical form with arbitrarily

eigenvalues). The key feature allowing this results was based

on the idea of performing the differential coding in a time-

varying rotation coordinates associated to the well known

canonical Jordan forms.

We have also shown that this fixed-gain simple and me-

thodic coding strategy results in a ultimately uniformly (local)

stability. We have also provided an estimation of the attraction

domain, and a new method to tune the coding gains, resulting

in closed-loop precision improvements. Simulation results

have also been presented validating the proposed approach.

Future extensions of this work envision to devise adaptation

rules for the coding gains, in order to generalize these results

to global stability with an arbitrarily small convergence set

precision.
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APPENDIX

The principle of this demonstration is based on a cascade

argument. We assure that z̃1
k remains in H1 under conditions

on z̃2
k and so on. In section IV, we have studied the comport-

ment of z̃k in Ωext. Here we only interest us in the case where

z̃k is outside Ωext, so we specify all the demonstration on the

last quantization namely |ˆ̃zi
k| = (M − 1)∆i/2.

A. Determination of H1 = Hλ,1

Here we determine conditions on z̃1
k and z̃2

k which per-

mits to assure that the upper bound of H1 is bigger than

(or equal to) M∆1/2. We characterize the maximal value

ε2
max = maxk∈N(|z̃2

k −
ˆ̃z2
k|), which yet permits that z̃1

k remains

in H1. To this purpose, let us introduce the function V 1
k = |z̃1

k|
and its rate ∆V 1

k = |z̃1
k+1| − |z̃1

k|

∆V 1
k 6 |λ||z̃1

k − ˆ̃z1
k| − |z̃1

k| + ε2
max , ψ1(z̃

1
k, ε2

max)

∆V 1
k 6

{
(|λl| − 1)|z̃1

k| − |λ|ˆ̃z1
k + ε2

max if |z̃1
k| > |ˆ̃z1

k|

−(|λ| + 1)|z̃1
k| + |λ||ˆ̃z1

k| + ε2
max if |z̃1

k| 6 |ˆ̃z1
k|

where |ˆ̃z1
k| = (M − 1)∆1/2.

There exists a set where ψ1 is negative if α1,1 < α2,1

with α1,1 = (|λ||ˆ̃z1
k| + ε2

max)/(|λ| + 1) and α2,1 = (|λ||ˆ̃z1
k| −

ε2
max)/(|λ| − 1). In the following analysis, we use a more

restrictive condition to characterize H1. The function ψ1

is positive for (M − 2)∆1/2 6 |z̃1
k| 6 α1,1, negative if

α1,1 6 |z̃1
k| 6 α2,1 and positive for |z̃1

k| > α2,1. On this

part, we interest ourselves in the zone where the rate of the

function is positive and then negative. We search to find the

maximal value of ϕ(z̃1
k, ε2

max) with |z̃1
k| ∈ [(M−2)∆1/2, α1,1].

In this purpose, let us introduce ϕµ

|z̃1
k+1| 6 |λ||z̃1

k − ˆ̃z1
k| + ε2

max , ϕ1(z̃
1
k, εmax)

|z̃1
k+1| 6

{
|λ|(|z̃1

k| − |ˆ̃zk|) + ε2
max if |z̃1

k| > |ˆ̃z1
k|

|λ|(|ˆ̃z1
k| − |z̃1

k|) + ε2
max if |z̃1

k| 6 |ˆ̃z1
k|

This function is piecewise described on each interval of

step ∆1/2 and we easily obtain that the function ϕ1 is totally

increasing (decreasing) on each sector, hence the maximal

values are at each extremity. So the value is |λ|∆1/2 + ε2
max

or α1. Since |λ| > 1, we have α1 < |λ|∆1/2 + ε2
max, thus the

maximal value is |λ|∆1/2 + ε2
max. To ensure that z̃1

k remains

bounded, when the rate ∆V 1
k is positive, the maximal value of

z̃1 takes at time k + 1 has to be lower than α2. So we obtain:

ε2
max 6 (M − |λ|)∆1/2

Moreover, if we fix the worst case for the size of H1 namely

ε2
max = ((M − |λ|)∆1/2 we have γ1 = M∆1/2. This choice

permits a bigger size for H2 due to the inequality between the

two quantization steps in (13), we have ε2
max > ∆2/2, so we

lose in conservatism and we obtained |z̃2
k − ˆ̃z2

k| 6 ε2
max. Here

we conclude that

H1 = {z̃1
k : |z̃1

k| 6 γ1}

B. Determination of Hi = Hλ,i 1 < i < µ

The analysis on Hi is almost the same as the analysis on H1

except that another constraint is imposed ∀k k > 0 |z̃i
k| 6

|ˆ̃zi
k| + εi

max and we obtain:

εi+1
max 6 min((M − |λ|)∆i/2, (M − 1 − |λ|)∆i/2 + εi

max)

With γi = min((M − 1)∆i/2 + εi
max, α2,i), we can conclude

that γi > M∆i/2 and we have

Hi = {z̃i
k : |z̃i

k| < γi}

C. Determination of Hµ = Hλ,µ

We have determined conditions that z̃µ
k needs to fill in order

to characterize Hµ−1. Let us introduce the function V µ
k = |z̃µ

k |
and its rate ∇V µ

k = |z̃µ
k+1|− |z̃µ

k | to analyze the invariance set

Hµ.

∆V µ
k 6 |λ||z̃µ

k − ˆ̃zµ
k | − |z̃µ

k | , ψµ(z̃µ
k )

∆V µ
k 6

{
(|λl| − 1)|z̃µ

k | − |λl|ˆ̃z
µ
k if |z̃µ

k | > |ˆ̃zµ
k |

−(|λ| + 1)|z̃µ
k | + |λ||ˆ̃zµ

k | if |z̃µ
k | 6 |ˆ̃zµ

k |

where |ˆ̃zµ
k | = (M − 1)/2∆µ. There exists a set where ψµ

is negative if α1,µ < α2,µ with α1,µ = (|λ||ˆ̃zµ
k |)/(|λ| + 1)

and α2,µ = (|λ||ˆ̃zµ
k |)/(|λ| − 1). In the following, we obtain

a restrictive condition. If that zone exists, we must interest

ourselves in the zone |z̃µ
k | ∈ [(M − 2)/2∆1, α1,µ] where the

rate is positive. To understand its impact let us introduce ϕµ.

|z̃µ
k+1| 6 |λ||z̃µ

k − ˆ̃zµ
k | , ϕµ(z̃µ

k )

|z̃µ
k+1| 6

{
|λ|(|z̃µ

k | − |ˆ̃zµ
k |) if |z̃µ

k | > |ˆ̃zµ
k |

|λ|(|ˆ̃zµ
k | − |z̃µ

k |) if |z̃µ
k | 6 |ˆ̃zµ

k |

With the analysis of ϕµ we can show that on the zone where

∆V µ
k is positive, we ensure that the worst case of z̃µ

k+1 is

inferior than min(εµ
max,

|λ|(M−1)
2(|λ|−1) )∆µ. So we obtain that γµ =

min(εµ
max, |λ|(M − 1)∆µ/(2(|λ| − 1))). We conclude that

Hµl
= {z̃µ : |z̃µ

k | < γµ}

D. Convergence to Ωint

Now, we obtain for |z̃µ| < γµ that its rate function is

negative on [M∆µ/2, γµ], so we can ensure that there exists

a kµ such that |z̃µ
kµ
| < M∆µ/2 and |z̃µ

kµ+1| 6 |λ|∆µ/2.

For i from µ − 1 to 1, we can ensure that the rate function

∆V i
k is negative in [M∆i/2, γi] after the time ki+1. Hence

we ensure that there exists a ki such that |z̃i
ki
| < M∆i/2 that

implies that |z̃i
ki+1| 6 |λ|∆i/2 + ∆i+1/2. To conclude, we

find a new attraction domain B less conservative than Ωext.

Moreover ∃k1 : ∀k > k1 + 1 z̃k ∈ Ωint.


