
HAL Id: hal-00315932
https://hal.science/hal-00315932

Submitted on 1 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulations between triangular and hexagonal
number-conserving cellular automata

Katsunobu Imai, Bruno Martin

To cite this version:
Katsunobu Imai, Bruno Martin. Simulations between triangular and hexagonal number-conserving
cellular automata. International Workshop on Natural Computing, Sep 2008, Yokohama, Japan.
�hal-00315932�

https://hal.science/hal-00315932
https://hal.archives-ouvertes.fr


Simulations between triangular and hexagonal

number-conserving cellular automata

Katsunobu Imai†‡ and Bruno Martin‡

†Graduate School of Engineering, Hiroshima University, Japan.
‡I3S, CNRS, University of Nice-Sophia Antipolis, France.
imai@iec.hiroshima-u.ac.jp,bruno.martin@unice.fr

Abstract. A number-conserving cellular automaton is a cellular au-
tomaton whose states are integers and whose transition function keeps
the sum of all cells constant throughout its evolution. It can be seen as a
kind of modelization of the physical conservation laws of mass or energy.
In this paper, we first propose a necessary condition for triangular and
hexagonal cellular automata to be number-conserving. The local transi-
tion function is expressed by the sum of arity two functions which can
be regarded as ’flows’ of numbers. The sufficiency is obtained through
general results on number-conserving cellular automata. Then, using the
previous flow functions, we can construct effective number-conserving
simulations between hexagonal cellular automata and triangular cellular
automata.
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1 Introduction

A number-conserving cellular automaton (NCCA) is a cellular automaton (CA)
such that all states of the cells are represented by integers and the sum of the
numbers (states) of all cells of a global configuration is preserved throughout
the computation. It can be thought as a kind of model of physical phenomena
as, for example, fluid dynamics and highway traffic flow [7] and constitutes an
alternative to differential equations.

There is a huge literature published in the domain which witnesses the great
interest in number-conserving cellular automata which gathers together physi-
cians, computer scientists and mathematicians. Actually, this particular model
of CA applies to phenomena governed by conservation laws of mass or energy.

Boccara et al. [1] studied number conservation of one-dimensional CAs on
circular configurations. Durand et al. [2,3] considered the two-dimensional case
and the relations between several boundary conditions. These results are very
useful for deciding whether a given CA is number-conserving but do not help
much for the design of NCCAs with complex transition rules.

As for the rectangular von Neumann neighborhood case [5,8], several nec-
essary and sufficient conditions to be number-conserving are shown. According
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to these conditions, the local function of a rotation-symmetric NCCA is ex-
pressed by the sum of arity two functions as in [4]. Designing the functions, we
constructed several NCCAs including a 14-state logically universal NCCA with
rotation-symmetry [8], always with square neighborhoods.

In this paper, we show specific necessary conditions for triangular and hexag-
onal CAs to be number-conserving. Under some symmetry assuptions (rotation
symmetry for the triangular case and permutation symmetry for the hexagonal
one), we show that the local transition function can be decomposed into the sum
of several flow functions, that is, functions only depending upon two variables.
These flow functions are later used to design respective simulations between
hexagonal cellular automata and triangular cellular automata if we assume both
cellular automata to be permutation-symmetric.

This paper is organized as follows; section 2 recalls the classical definitions
that will be used; section 3 exhibits the necessary conditions for triangular and
hexagonal CAs to be number-conserving. And, finally, in section 4, we present
number-conserving simulations between hexagonal cellular automata and trian-
gular cellular automata under the permutation symmetry assumption.

2 Definitions

Definition 1. A deterministic two-dimensional radius one cellular automaton
is a 5-tuple defined by A = (Z2, n,Q, f, q), where Z is the set of all integers,
n ∈ {3, 4, 6} is the number of neighbor cells (which implies a corresponding
neighbor vector set, which is a finite and ordered set of distinct vectors from
Z

2: {−→v0 , . . . ,−→vn}), Q is a non-empty finite set of internal states of each cell,
f : Qn → Q is a mapping called the local transition function and q ∈ Q is a
quiescent state that satisfies f(q, · · · , q) = q.

A configuration over Q is a mapping α : Z
2 → Q. The set of all configurations

over Q is denoted by Conf(Q), i.e., Conf(Q) = {α|α : Z
2 → Q}. The function

F : Conf(Q) → Conf(Q) is defined as follows and is called the global function ofA
induced by f : ∀α ∈ Conf(Q), ∀−→v ∈ Z

2, F (α)(−→v ) = f(α(−→v +−→v0), . . . , α(−→v +−→vn)).
From now on, we will denote −→v by (x, y).

Let us denote by CF the set of finite configurations i.e. which have a fi-
nite number of non-quiescent states. A cellular automaton A is finite number-
conserving (FNC) when it satisfies

∀α ∈ CF ,
∑

(x,y)∈Z2

{F (α)(x, y) − α(x, y)} = 0.

And, according to [3], A is FNC if and only if it is number-conserving.
Next we define some symmetry conditions of common use (eg. see [5]).

Definition 2. CA A is rotation-symmetric if its local function f satisfies:

∀g, si ∈ Q (1 ≤ i ≤ n), f(g, s1, · · · , sn) = f(g, s2, · · · , sn, s1),
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and A is permutation-symmetric if its local function f satisfies:

∀g, si ∈ Q (i ≤ 1 ≤ n), ∀π ∈ Sn, f(g, s1, · · · , sn) = f(g, sπ(1), · · · , sπ(n)),

where Sn denotes the permutation group with n elements.

2.1 Simulation

Below, we propose the definition of a step by step simulation between two CAs.
It expresses that if a CA A simulates each step of CA B in τ units of time, there
must exist effective applications between the corresponding configurations [6]:

Definition 3. Let ConfA and ConfB be the two sets of CA configurations of
(resp.) A and B. We say that A simulates each step of B in time τ (and we

note B
τ
≺ A) if there exists a constant τ ∈ N and two recursive functions κ :

ConfB → ConfA and ρ : ConfA → ConfB such that κ ◦ ρ = Id and for all
c, c′ ∈ ConfB, there exists c′′ ∈ ConfA such that if c′ = FB(c), c′′ = F τ

A(κ(c))
with ρ(c′′) = c′, where FM denotes the global transition of CA M and F t

M the
t-th iterate of a global transition of CA M .

Depending upon the value of τ , we say that the simulation is elementary if
τ = 1 and simple if τ = O(1).

3 Von Neumann neighborhood number-conserving CA

Durand et al. [2] proved a general necessary and sufficient condition for a NCCA
with n ×m neighbors to be number-conserving. With this condition, any local
function can be decomposed into the summation of the local function in which
several arguments are fixed to zero (which is a quiescent state). The drawback
of this general statement is that it does not explicitely represent neither the
movement of the numbers nor symmetries. In the sequel, we show novel neces-
sary conditions for NCCA in different lattices structures, namely triangular and
hexagonal. The case of the square grid was already considered in [8], where a
necessary and sufficient condition for a von Neumann neighborhood CA to be
number-conserving was shown.

3.1 Triangular number-conserving cellular automata

Theorem 1. A deterministic two-dimensional rotation-symmetric triangular
CA A = (Z2, 3, Q, t, q) is number-conserving iff t satisfies

∃ϕ : Q2 → Z, ∀g, a, b, c ∈ Q,

t(g, a, b, c) = g + ϕ(g, a) + ϕ(g, b) + ϕ(g, c)

ϕ(g, a) = −ϕ(a, g).

with ϕ(g, a) = t(g, a, q, q) − t(g, q, q, q) − t(q, g, q, q) + q.
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g

b

c a

Fig. 1. A configuration in the triangular case.

Proof. Let δ(g, a, b, c) ≡ t(a, g, q, q) + t(b, g, q, q) + t(c, g, q, q) + t(g, a, b, c) +
2t(q, a, q, q) + 2t(q, b, q, q) + 2t(q, c, q, q) − a − b − c − g − 6q. With respect to
the configuration of Fig.1, only shadowed cells change their states in the next
step. Then for any g, a, b, c in Q, δ(g, a, b, c) = 0 is necessary to preserve number
conservation. Let’s consider the following equation.

δ(g, a, b, c) − δ(g, a, q, q) − δ(g, q, b, q) − δ(g, q, q, c) + 3δ(g, q, q, q) = 0

To satisfy the number-conservation, it is also necessary. Finally, the following
condition is necessary by expanding the equation.

t(g, a, b, c) = g+3q+t(g, a, q, q)+t(g, q, b, q)+t(g, q, q, c)−3t(g, q, q, q)−3t(q, g, q, q)

Let ϕ(g, a) ≡ t(g, a, q, q) − t(g, q, q, q) − t(q, g, q, q) + q, then ϕ(g, a) + ϕ(a, g) =
2q− t(q, g, q, q)− t(q, a, q, q)− t(g, q, q, q)− t(a, q, q, q)+ t(g, a, q, q)+ t(a, g, q, q) =
t(g, a, q, q) − t(g, q, q, q) − t(a, q, q, q) = 0.

We use Durand et al. result [3] for proving the sufficiency. ⊓⊔

Remark 1. The condition also holds in the case of permutation-symmetry.

3.2 Hexagonal number-conserving cellular automata

Theorem 2. A deterministic two-dimensional permutation-symmetric hexago-
nal CA, H = (Z2, 6, Q, δ, q) is number-conserving iff its local transition function
δ satisfies:

∃ψ : Q2 → Z, ∀g, a, b, c, d, e, f, g ∈ Q,
δ(g, a, b, c, d, e, f) = g + ψ(g, a) + ψ(g, b) + ψ(g, c) + ψ(g, d) + ψ(g, e) + ψ(g, f),

with ψ(g, x) = δ(g, x, q, q, q, q, q) − δ(g, q, q, q, q, q, q) − δ(q, g, q, q, q, q, q) + q.
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Fig. 2. A configuration in the hexagonal case.

Proof. We show that the condition is necessary. Let us assume that H is FNC;
then according to Fig. 2,

g + a+ b + c+ d+ f + 12q = δ(g, a, b, c, d, e, f)+
δ(a, b, f, g, q, q, q) + δ(b, a, c, g, q, q, q) + δ(c, b, d, g, q, q, q)+
δ(d, c, e, g, q, q, q) + δ(e, d, f, g, q, q, q) + δ(f, a, e, g, q, q, q)+
δ(q, a, q, q, q, q, q) + δ(q, b, q, q, q, q, q) + δ(q, c, q, q, q, q, q)+
δ(q, d, q, q, q, q, q) + δ(q, e, q, q, q, q, q) + δ(q, a, q, q, q, q, q)+
δ(q, a, b, q, q, q, q) + δ(q, b, c, q, q, q, q) + δ(q, c, d, q, q, q, q)+
δ(q, d, e, q, q, q, q) + δ(q, e, f, q, q, q, q) + δ(q, f, a, q, q, q, q)+

(1)

The local function δ(g, a, b, c, d, e, f) which satisfies equation (1) only depends
upon terms of four non-quiescent variables. The idea is to decrease this number
of variables down to two, to finally get the binary ψ function. We first prove
Lemma 1 which allows to decrease the number of variables in δ.

Lemma 1. In the case of permutation-symmetry, the following equation holds
for a hexagonal CA, H = (Z2, 6, Q, δ, q): ∀g, x, u, z ∈ Q,

δ(g, x, y, z, q, q, q) = g + x+ y + z + 12q − δ(x, g, q, q, q, q, q) − δ(q, x, y, g, q, q, q)
−δ(y, g, q, q, q, q, q)− δ(q, y, z, g, q, q, q)− δ(z, g, q, q, q, q, q) − δ(q, x, z, g, q, q, q)
−3δ(q, x, q, q, q, q, q) − 3δ(q, y, q, q, q, q, q) − 3δ(q, z, q, q, q, q, q)

Proof. Cancelling variables b, d and f by assigning them to the quiescent state
q in equation (1) gives, because H is permutation-symmetric:

g + a+ c+ e+ 12q = δ(g, a, c, e, q, q, q) + δ(a, g, q, q, q, q, q) + δ(q, a, c, g, q, q, q)+
δ(c, g, q, q, q, q, q) + δ(q, c, e, g, q, q, q) + δ(e, g, q, q, q, q, q) + δ(q, a, e, g, q, q, q)+
3δ(q, a, q, q, q, q, q) + 3δ(q, c, q, q, q, q, q) + 3δ(q, e, q, q, q, q, q)

⊓⊔

Lemma 2. In the case of permutation-symmetry, the following equation holds
for a hexagonal CA, H = (Z2, 6, Q, δ, q): ∀x, y ∈ Q,

δ(q, x, y, q, q, q, q) = 11q + x+ y
−5δ(q, x, q, q, q, q, q) − 5δ(q, y, q, q, q, q, q)
−δ(x, q, q, q, q, q, q) − δ(y, q, q, q, q, q, q)
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Proof. Lemma 2 is proved by setting g, b, c, e and f to q in equation (1). ⊓⊔

Lemma 3. In the case of permutation-symmetry, the following equation holds
for a hexagonal CA, H = (Z2, 6, Q, δ, q): ∀x, y ∈ Q,

8q + x+ y = 3δ(q, x, q, q, q, q, q) + 3δ(q, y, q, q, q, q, q)
+δ(q, x, y, q, q, q, q) + δ(q, y, x, q, q, q, q)
+δ(x, y, q, q, q, q, q) + δ(y, x, q, q, q, q, q).

Proof. Lemma 3 is proved by replacing g, c, d and e by q in equation (1). ⊓⊔

Lemma 4. In the case of permutation-symmetry, the following equation holds
for a hexagonal CA, H = (Z2, 6, Q, δ, q): ∀x, y ∈ Q,

x = −6q + 6δ(q, x, q, q, q, q, q) + δ(x, q, q, q, q, q, q).

The proof of Lemma 4 is straightforward.

We now prove Theorem 2. We first make a repeated use of Lemma 1 by sus-
tracting it from equation (1) with suitable variables substitutions and we obtain
equation (2) which only depends upon terms in two non-quiescent variables.

5(a + b + c + d + e + f) + 7g + 174q+
δ(a, b, q, q, q, q, q) + δ(a, f, q, q, q, q, q) + δ(b, a, q, q, q, q, q) + δ(b, c, q, q, q, q, q)+
δ(c, b, q, q, q, q, q) + δ(c, d, q, q, q, q, q) + δ(d, c, q, q, q, q, q) + δ(d, e, q, q, q, q, q)+
δ(e, d, q, q, q, q, q) + δ(e, f, q, q, q, q, q) + δ(f, a, q, q, q, q, q) + δ(f, e, q, q, q, q, q)+
δ(g, a, q, q, q, q, q) + δ(g, b, q, q, q, q, q) + δ(g, c, q, q, q, q, q) + δ(g, d, q, q, q, q, q)+
δ(g, e, q, q, q, q, q) + δ(g, f, q, q, q, q, q) = δ(g, a, b, c, d, e, f) + 12δ(g, q, q, q, q, q, q)+
16(δ(q, a, q, q, q, q, q) + δ(q, b, q, q, q, q, q) + δ(q, c, q, q, q, q, q) + δ(q, d, q, q, q, q, q)+
δ(q, e, q, q, q, q, q) + δ(q, f, q, q, q, q, q)) + 18δ(q, g, q, q, q, q, q) + 2δ(q, a, f, q, q, q, q)+
2δ(q, a, g, q, q, q, q) + 2δ(q, b, a, q, q, q, q) + 2δ(q, b, g, q, q, q, q) + 2δ(q, c, b, q, q, q, q)+
2δ(q, c, g, q, q, q, q) + 2δ(q, d, c, q, q, q, q) + 2δ(q, d, g, q, q, q, q) + 2δ(q, e, d, q, q, q, q)+
2δ(q, e, g, q, q, q, q) + 2δ(q, f, e, q, q, q, q) + 2δ(q, f, g, q, q, q, q) + 2δ(q, g, a, q, q, q, q)+
2δ(q, g, b, q, q, q, q) + 2δ(q, g, c, q, q, q, q) + 2δ(q, g, d, q, q, q, q) + 2δ(q, g, e, q, q, q, q)+
2δ(q, g, f, q, q, q, q) + 3(δ(q, a, b, q, q, q, q) + δ(q, b, c, q, q, q, q) + δ(q, c, d, q, q, q, q)+
δ(q, d, e, q, q, q, q) + δ(q, e, f, q, q, q, q) + δ(q, f, a, q, q, q, q)) + 7(δ(a, q, q, q, q, q, q)+
δ(b, q, q, q, q, q, q) + δ(c, q, q, q, q, q, q) + δ(d, q, q, q, q, q, q) + δ(e, q, q, q, q, q, q)+
δ(f, q, q, q, q, q, q)) + δ(q, a, c, q, q, q, q) + δ(q, a, e, q, q, q, q) + δ(q, b, d, q, q, q, q)+
δ(q, b, f, q, q, q, q) + δ(q, c, e, q, q, q, q) + δ(q, d, f, q, q, q, q).

(2)

We observe that we have two kinds of terms in equation (2):

– δ(q, x, y, q, q, q, q);

– δ(x, y, q, q, q, q, q).
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The former will be changed by the repeated use of Lemma 2 and the latter by
the repeated use of Lemma 3. This yields to equation (3).

13a+ 13b+ 13c+ 13d+ 13e+ 13f + 17g + 570q + δ(g, a, b, c, d, e, f) =
13δ(a, q, q, q, q, q, q) + 13δ(b, q, q, q, q, q, q) + 13δ(c, q, q, q, q, q, q)+
13δ(d, q, q, q, q, q, q) + 13δ(e, q, q, q, q, q, q) + 13δ(f, q, q, q, q, q, q)+
δ(g, a, q, q, q, q, q) + δ(g, b, q, q, q, q, q) + δ(g, c, q, q, q, q, q)+
δ(g, d, q, q, q, q, q) + δ(g, e, q, q, q, q, q) + δ(g, f, q, q, q, q, q)+
78δ(q, c, q, q, q, q, q) + 78δ(q, e, q, q, q, q, q) + 78δ(q, b, q, q, q, q, q)+
78δ(q, f, q, q, q, q, q) + 78δ(q, a, q, q, q, q, q) + 78δ(q, d, q, q, q, q, q)+
12δ(g, q, q, q, q, q, q).

(3)

The sum of the neighbors 13(a+ b + c+ d+ e+ f) is removed by the repeated
application of Lemma 4. Every time we use Lemma 4, we also cancel terms of
the form 78δ(q, x, q, q, q, q, q) + 13δ(x, q, q, q, q, q, q) in the rhs of equation 3. All
remaining terms in the rhs of equation 3 are like δ(g, x, q, q, q, q, q).

We use Durand et al. result [3] for proving the sufficiency. This proves The-
orem 2. ⊓⊔

All above computations were made using computer algebra systems and the
spreadsheets can be obtained from the authors.

4 Simulations between hexagonal and triangular NCCAs

In this section, we propose effective mutual simulations between triangular and
hexagonal permutation-symmetric NCCAs.

4.1 Elementary simulation of a triangular NCCA by a hexagonal

NCCA

Proposition 1. For any triangular permutation-symmetric NCCA T , there is

a hexagonal permutation-symmetric NCCA H such that T
1
≺ H and whose tran-

sition function is surjective.

Proof. Let T = (Z2, 3, QT , tT , q) be a triangular permutation-symmetric NCCA
with flow function ϕ.

We construct H = (Z2, 6, QH, tH, q
′) a permutation-symmetric hexagonal

NCCA by designing its flow function ψ.
Let q′ /∈ QT and QH = QT ∪ {q′}; the flow function ψ corresponding to tH

contains the following values:

For each x, y ∈ QT , assign ψ(x, y) = ϕ(x, y),

For each x ∈ QT , assign , ψ(x, q′) = 0.

Given an initial configuration of T (see Fig. 3), let the initial configuration
of H be as depicted in Fig. 5. From the process of H, it is clear that the cells
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with value q′ don’t have any effect and the other non-quiescent cells simulate T .
Applying the algorithm in [5], it is possible to add extra-states produced by tH
to QH and make the local function tH to be surjective. ⊓⊔

c-2,3 c-1,3 c0,3 c1,3 c2,3
c-2,2 c-1,2 c0,2 c1,2 c2,2

c-1,0 c0,0 c1,0 c2,0 c3,0

c-1,-2 c0,-2 c1,-2 c2,-2 c3,-2
c-1,-1 c0,-1 c1,-1 c2,-1 c3,-1

c-2,1 c-1,1 c0,1 c1,1 c2,1
••• •••

•
•
•

•
•
•

Fig. 3. An initial configuration of triangular CA T .
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1,3

c
2,3

c
-2,2
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c
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c
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c
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0,0

c
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c
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c
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-1,-2

c
0,-2

c
1,-2

c
2,-2

c
3,-2

c
-1,-1

c
0,-1

c
1,-1

c
2,-1

c
3,-1

c
-2,1

c
-1,1

c
0,1

c
1,1

c
2,1

••• •••

•
•
•

•
•
•

Fig. 4. An initial configuration of hexagonal CA H.

4.2 Simple simulation of a hexagonal NCCA by a triangular NCCA

Proposition 2. For any hexagonal permutation-symmetric NCCA H, there is

a triangular permutation-symmetric NCCA T such that H
2
≺ T and whose tran-

sition function is surjective.

Proof. Let H = (Z2, 6, QH, tH, q) be a hexagonal permutation-symmetric
NCCA. We assume that Q = {s0, s1, · · · , sm−1} and its flow function is ψ and
H has an initial configuration as pictured in Fig. 5.

Without loss of generality, we can assume 0 < min(si) < max(sj) < M for
a constant M , because non-positive numbers in QH can be erased by adding a
constant value to every state numbers and by changing the arguments of the
rules.
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c-2,2 c-1,2 c0,2 c1,2 c2,2 c3,2

c-2,1 c-1,1 c0,1 c1,1 c2,1 c3,1 c4,1

c-1,0 c0,0 c1,0 c2,0 c3,0 c4,0

c-1,-1 c0,-1 c1,-1 c2,-1 c3,-1 c4,-1 c5,-1

c0,-2 c1,-2 c2,-2 c3,-2 c4,-2 c5,-2

••• •••

•
•
•

•
•
•

Fig. 5. An initial configuration of hexagonal CA H.

We construct T = (Z2, 3, QT , tT , 0) a permutation-symmetric triangular
NCCA by designing its flow function ϕ.

First we assign numbers corresponding to each state in QH. Let pi =
2⌈lg M⌉+i(i = 0, · · · ,m− 1).

The flow function ϕ of tT contains the following values:
For each si ∈ QH, assign

ϕ(0, si) = pi.

For each combination of sj , sk ∈ QH,

ϕ(−3pi, pi + pj + pk) = pi + ψ(si, sj) + ψ(si, sk).

All other values of ϕ are 0. The local function tT can also be extended to be
surjective.

The initial configuration of T is chosen as in Fig. 6.
We briefly explain how the rules work. In the first step, each nonzero state ‘x’

in Fig. 6 moves three values px to the neighboring zero cells; after this, the zero
cells contain the value px+py+pz related to the three neighboring cells ‘x’,‘y’,‘z’.
In the second step, the cell on which we focus (was ‘x’) knows the values of two
neighboring cells of H by the neighboring cell which value is px + py + pz and
can move the values of ψ(sx, sy) + ψ(sx, sz). ⊓⊔

5 Conclusion

In this paper, we have designed flow functions for number-conserving triangular
and hexagonal cellular automata under the permutation-symmetry condition.
This was also generalized to the rotation-symmetry for triangular NCCA. A
simulation between triangular and hexagonal NCCA, and conversely, were also
proposed.
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c-2,2 c-1,2 c0,2 c1,2 c2,2 c3,2

c-2,1 c-1,1 c0,1 c1,1 c2,1 c3,1 c4,1

c-1,0 c0,0 c1,0 c2,0 c3,0 c4,0

c-1,-1 c0,-1 c1,-1 c2,-1 c3,-1 c4,-1 c5,-1

c0,-2 c1,-2 c2,-2 c3,-2 c4,-2 c5,-2

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

••• •••

•
•
•

•
•
•

Fig. 6. An initial configuration of triangular CA T .

This work can be extended in several ways. First, we’d like to know if the
flow function we proposed in the permutation-symmetry hexagonal case also
holds in the rotation-symmetric case. Then, we aim to go on in the number-
conserving simulation of different neighborhoods like simulating a von Neumann
neighborhood in a square lattice by a triangular NCCA.

Finally, it might be possible to generalize these results to the case of number-
conserving cellular automata on Cayley graphs and to find flow functions in
several cases and number-conserving simulations as well.

Acknowledgments. This work was done while K. Imai was visiting I3S labo-
ratory thanks to a grant from the french CNRS institution.

References
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