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We present a method of control of chaos in area-preserving maps. This
method gives an explicit expression of a control term which is added to a
given area-preserving map. The resulting controlled map which is a small and
suitable modification of the original map, is again area-preserving and has an
invariant curve whose equation is explicitly known.

1. Introduction

Chaotic transport arises naturally in Hamiltonian systems with mixed

phase space. Achieving the control of these systems by restoring local con-

served quantities is a long standing and crucial problem in many branches

of physics (in particular, in plasma physics and fluid dynamics). A method

for controlling continuous Hamiltonian flows has been developed based on

the following idea: to find a small control term f for the perturbed Hamil-

tonian H = H0 + V (where H0 is integrable), in order to have a more

regular dynamics for the controlled Hamiltonian Hc = H0 + V + f . Two

approaches have been developed : A global control aims at making the

controlled Hamiltonian Hc integrable; A local control restores a particular

invariant torus (local integrability). Both approaches give a control term of

order ‖V ‖2.
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Let us stress that this method of control differs from other methods

by the fact that the controlled dynamics is Hamiltonian : This makes it

relevant to the control of inherently Hamiltonian systems such as beams of

charged test particles in electrostatic waves, two-dimensional Euler flows or

the geometry of magnetic field lines.

These two control methods have been developed for continuous time

flows.1,2 In Ref.,3 the global control for symplectic maps has been proposed.

In this article, we explicit the local control method for symplectic maps.

In Sec. 2, we derive the expression of the control term for area-preserving

maps generated by a generating function in mixed coordinates. In Sec. 3,

we apply the local control of area-preserving maps to two examples : the

standard map and the tokamap.

2. Derivation of the control term

We consider two-dimensional symplectic maps (A, ϕ) 7→ (A′, ϕ′) = F (A, ϕ)

on the cylinder R×T which are ε-close to integrability.4 In this section, our

aim is to find a small control term f such that the controlled symplectic map

F + f has an invariant curve. We consider area-preserving maps obtained

from a generating function of the form

S(A′, ϕ) = A′ϕ + H(A′) + εV (A′, ϕ).

The map reads

A = A′ + ε∂ϕV (A′, ϕ),

ϕ′ = ϕ + H ′(A′) + ε∂AV (A′, ϕ).

Here ∂AV (A′, ϕ) denotes the partial derivative of V with respect to the

action (first variable) and ∂ϕV (A′, ϕ) denotes the partial derivative of V

with respect to the angle (second variable).

We expand the map around a given value of the action denoted K. The

generating function after the translation is :

S̃(A′, ϕ) = A′ϕ + H(K + A′) + εV (K + A′, ϕ).

We rewrite the generating function as :

S̃(A′, ϕ) = A′ϕ + ωA′ + εv(ϕ) + w(A′, ϕ), (1)

where

ω = H ′(K), (2)

v(ϕ) = V (K, ϕ), (3)

w(A′, ϕ) = H(K + A′) − H(K) − ωA′ + εV (K + A′, ϕ) − εV (K, ϕ).(4)
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We notice that w(0, ϕ) = 0 for all ϕ ∈ T. Without loss of generality,

we assume that
∫ 2π

0
v(ϕ)dϕ = 0. Our aim is to modify the generating

function with a control term f of order ε2 such that the controlled map has

an invariant curve around A′ = 0. We consider the controlled generating

function

Sc(A
′, ϕ) = A′ϕ + ωA′ + εv(ϕ) + w(A′, ϕ) + f(ϕ),

where we notice that the control term f we construct does only depend on

the angle ϕ. The controlled map is given by

A = A′ + εv′(ϕ) + ∂ϕw(A′, ϕ) + f ′(ϕ), (5)

ϕ′ = ϕ + ω + ∂Aw(A′, ϕ). (6)

We perform a change of coordinates generated by

X(A0, ϕ) = A0ϕ + εχ(ϕ),

which maps (A, ϕ) into (A0, ϕ0), and (A′, ϕ′) into (A′

0, ϕ
′

0). The mapping

becomes

A0 = A′

0 + ε (χ′(ϕ′

0) − χ′(ϕ0) + v′(ϕ0)) + ∂ϕw (A′

0 + εχ′(ϕ′

0), ϕ0) + f ′(ϕ0),

ϕ′

0 = ϕ0 + ω + ∂Aw (A′

0 + εχ′(ϕ′

0), ϕ0) . (7)

We choose the function χ such that

χ(ϕ + ω) − χ(ϕ) = −v(ϕ).

By expanding v in Fourier series, i.e. v(ϕ) =
∑

k∈Z
vkeikϕ, this reads

χ(ϕ) =
∑

k s.t. ωk/∈2πZ

vk

1 − eiωk
eikϕ.

The control term is constructed such that the mapping in the new coordi-

nated has A0 = 0 as an invariant curve. In order to do this, we define the

function Φ implicitly by

Φ(ϕ) = ϕ + ω + ∂Aw (εχ′(Φ(ϕ)), ϕ) .

The angle Φ(ϕ) is obtained when A′

0 = 0 in Eq. (7) The expression of the

control term is such that

f ′(ϕ) = εχ′(ϕ + ω) − εχ′(Φ(ϕ)) − ∂ϕw(εχ′(Φ(ϕ)), ϕ). (8)

¿From the expression of w given by Eq. (4), it is straightforward to check

that if A′ is of order ε then ∂ϕw = εV (K + A′, ϕ) − εV (K, ϕ) is of order

ε2. Since Φ(ϕ) − (ϕ + ω) is of order ε (again if A′ is of order ε) then

εχ′(Φ(ϕ)) − εχ′(ϕ + ω) is of order ε2. Thus, f ′ is of order ε2.
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The controlled mapping becomes

A0 = A′

0 + ε (χ′(ϕ′

0) − χ′(Φ(ϕ0))) + ∂ϕw (A′

0 + εχ′(ϕ′

0), ϕ0) −

∂ϕw (εχ′(Φ(ϕ0)), ϕ0) , (9)

ϕ′

0 = ϕ0 + ω + ∂Aw (A′

0 + εχ′(ϕ′

0), ϕ0) . (10)

It is straightforward to see from Eq. (9) that if A′

0 = 0 then ϕ′

0 = Φ(ϕ0)

by definition of Φ and hence A0 = 0 . Since we assume that the mapping

is invertible, the curve A0 = 0 is preserved by iteration of the map. Conse-

quently, the controlled map (5)-(6) has the invariant curve with equation

A = εχ′(ϕ). (11)

Next, we derive an approximate control term by only keeping the order

ε2. The expansion of f ′ gives the expression of fmix,2 :

fmix,2 = −
ε2

2
H ′′(K) (χ′(ϕ + ω))

2
− ε2∂AV (K, ϕ)χ′(ϕ + ω). (12)

Remark 1: If we assume that w is only a function of the actions, the

control term f is

f(ϕ) = χ(ϕ+ω)−χ(Φ(ϕ))+χ′(Φ(ϕ))w′(εχ′(Φ(ϕ)))−w(εχ′(Φ(ϕ))), (13)

where Φ is defined implicitly by Φ(ϕ) = ϕ + ω + w′(εχ′(Φ(ϕ))).

Remark 2: If the time step of the map is equal to τ , i.e., if we consider

controlled maps generated by

Sc(A
′, ϕ) = A′ϕ + τωA′ + τεv(ϕ) + τw(A′, ϕ) + τf(ϕ),

the generating function is given by

χ(ϕ + τω) − χ(ϕ) = −τv(ϕ).

We define the operator

Hτ =
1 − e−τω∂ϕ

τ
,

and Γτ as the pseudo-inverse of Hτ given from H2
τΓτ = Hτ . The projector

Rτ is defined accordingly. Hence the solution for χ is

χ = (1 − Γτ −Rτ )v. (14)

The control term is

f ′(ϕ) = τ−1ε (χ′(ϕ + τω) − χ′(Φτ (ϕ))) − ∂ϕw(εχ′(Φτ (ϕ)), ϕ),
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where Φτ (ϕ) = ϕ + τω + τ∂Aw(εχ′(Φτ (ϕ)), ϕ). We expand the expression

of the control term and we neglect the order τ :

f ′(ϕ) = −εχ′′(ϕ)∂Aw(εχ′(ϕ), ϕ) − ∂ϕw(εχ′(ϕ), ϕ) + O(τ).

Since ωχ′ = −v, we have

f(ϕ) = −w(−εΓ0v
′, ϕ) + O(τ),

where Γ0 is the pseudo-inverse of ω∂ϕ. This expression of the control term

corresponds to the one obtained by the local control of Hamiltonian flows

in Ref.2

3. Numerical examples

3.1. Application to the standard map

The standard map S is

A′ = A + ε sin ϕ,

ϕ′ = ϕ + A′ mod 2π.

After a translation of the action A by ω, the map becomes

A′ = A + ε sinϕ,

ϕ′ = ϕ + ω + A′ mod 2π.

A phase portrait of this map for ε = 1.5 is given in Fig. 1. There are no

Kolmogorov-Arnold-Moser (KAM) tori (acting as barriers in phase space)

at this value of ε (and higher). The critical value of the parameter ε for

which all KAM tori are broken is εstd ≈ 0.9716.

The standard map is obtained from the generating function in mixed

coordinates

S(A′, ϕ) = A′ϕ + ωA +
A′2

2
+ ε cosϕ,

i.e. v(ϕ) = cosϕ and w(A) = A2/2. The generating function χ given by

Eq. (14) is thus

χ(ϕ) = −
sin(ϕ − ω/2)

2 sin(ω/2)
.

The control term given by Eq. (13) is

f(ϕ) = χ(ϕ + ω) − χ(Φ(ϕ)) +
1

2
(χ′(Φ(ϕ)))

2
, (15)
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Fig. 1. Phase portrait of the standard map S for ε = 1.5.
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Fig. 2. Phase portrait of the controlled standard map Smix with the control term (15)
for ε = 1.5 and ω = π. The bold curve is the invariant curve created by the control term.

where Φ(ϕ) = ϕ + ω + εχ′(Φ(ϕ)). We notice that the equation for Φ is

invertible for ε ≤ 2 sin(ω/2).

The dominant control term is given by

fmix,2(ϕ) = −ε2 cos2(ϕ + ω/2)

8 sin2(ω/2)
, (16)

and the resulting map Smix,2 generates the phase portrait displayed on
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Fig. 3.
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Fig. 3. Phase portrait of the controlled standard map Smix,2 with the control term (16)
for ε = 1.2.

3.2. Application to the tokamap

The tokamap5 has been proposed as a model map for toroidal chaotic mag-

netic fields. It describes the motion of field lines on the poloidal section in

the toroidal geometry. This symplectic map (A, ϕ) 7→ (A′, ϕ′), where A is

the toroidal flux and ϕ is the poloidal angle, is generated by the function

S(A′, ϕ) = A′ϕ + H(A′) − ε
A′

A′ + 1
cosϕ.

It reads

A = A′ + ε
A′

A′ + 1
sinϕ,

ϕ′ = ϕ +
1

q(A′)
−

ε

(A′ + 1)2
cosϕ,

where q(A) = 1/H ′(A) is called the q-profile. In our computation, we choose

H ′(A) = 1/q(A) = π(2−A)(2−2A+A2)/2 and ε = 9/(4π). A phase portrait

of this map is shown in Fig. 4.

We select a given value K of the action A for the localization. The

tokamap is then generated by a function S of the form given by Eq. (1)
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Fig. 4. Phase portrait of the tokamap for ε = 9/(4π).

with

v(ϕ) = −
K

K + 1
cosϕ,

w(A, ϕ) = H(K + A) − H(K) − ωA − ε

(

K + A

K + A + 1
−

K

K + 1

)

cosϕ.

The generating function is given by Eq. (14) :

χ(ϕ) =
K

2(K + 1)

sin(ϕ − ω/2)

sin(ω/2)
.

The expression of fmix,2 is given by Eq. (12) :

fmix,2 =
ε2K

2(K + 1)2
cos(ϕ + ω/2)

sin(ω/2)

[

cosϕ

K + 1
− KH ′′(K)

cos(ϕ + ω/2)

sin(ω/2)

]

.

For K = 1/2 the controlled tokamap is

A = A′ + ε
A′

1 + A′
sin ϕ −

ε2

9

[

2

3

sin(2ϕ + α)

sinα
+

11π

64

2ϕ + 2α

sin2 α

]

, (17)

ϕ′ = ϕ +
1

q(A′)
−

ε

(1 + A′)2
cosϕ, (18)

where α = 11π/32 We notice that this control term is the same as the

one obtained by performing the global control and then by expanding the

control term around a given value of the action. The main advantage here

is that the whole series of the control term can be computed which was not

the case with the global control.
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Fig. 5. Phase portrait of the controlled tokamap (17)-(18) for ε = 9/(4π).
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