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The purpose of this article is to provide a new starting control test of a new server in a queue. This control is based on Φ-divergence.

Introduction

Let us consider a queue. Let us assume that its arrival process distribution abides by the stochastic model M = {P λ ; λ ∈ Λ} -where Λ is an open of R. Let λ 0 be the true parameter. We suppose also that we have one server and that the service process distribution is independent from P λ 0 . Now, let us assume that another server must start. The purpose of the present article will be to produce, in real time, a Φ-divergence-based test to verify that this start has indeed occurred. In the first part of this article, we will provide an estimator λn of λ 0 and we will prove there is uniform convergence of f λn to f λ 0 where, more generally, f λ is the density of the probability P λ ∈ M. Then, we will carry out a test on λ 0 and conclude our theory. Finally, we will perform a simulation. All reminders and proofs can be found in annex.

Convergences

Based on works [START_REF] Broniatowski | Estimation of the Kullback-Leibler divergence[END_REF] and [START_REF] Broniatowski | Dual representation of φ-divergences and applications[END_REF], we derive estimators of λ 0 . Then, after introducing certain notations, we will produce almost sure uniform convergences of these expressions.

Writing the estimators

We consider an identifiable parametric model {P λ ; λ ∈ Λ} defined on some measurable space (X, B) and Λ is an open of R. We assume for all λ in Λ, P λ has a density f λ with respect to some dominating σ-finite measure. From an i.i.d. sample T 1 , T 2 ,...,T n with distribution P λ 0 , we aim at estimating λ 0 , the true value of the parameter. Now, let us introduce the concept of Φ-divergence. Let ϕ be a strictly convex function defined by ϕ : R + → R + , and such that ϕ(1) = 0. We define a Φ-divergence of P from Q -where P and Q are two probability distributions over a space Ω such that Q is absolutely continuous with respect to P -by

Φ(Q, P) = ϕ( dQ dP )dP.
Moreover, let ϕ * be a function defined by, ∀t ∈ R, ϕ

* (t) = tϕ -1 (t) -ϕ(ϕ -1 (t))
, where ϕ is the derivate function of ϕ, ϕ -1 the reciprocal function of ϕ and let F be the class of function defined by

F = {x → ϕ ( f α f λ ); λ ∈ R + }, then [1]
and [START_REF] Broniatowski | Dual representation of φ-divergences and applications[END_REF] show that the estimator of Φ(P α , P λ 0 ) -that we will call Φ(α, λ 0 )-is :

Φn (α, λ) = sup λ∈Λ { ϕ ( f α f λ ) dP α - ϕ * (ϕ ( f α f λ )) dP n },
where P n is the empirical measure of (T n ) and thus the minimum Φ-divergence estimate of λ 0 is λn = arg inf α∈Λ Φn (α, λ).

Convergence studies

Let us consider

Λ α = {λ ∈ Λ | ϕ * (ϕ ( f α f λ )) dP λ 0 < ∞}, M(λ, α, x) = ϕ ( f α f λ )dP α -ϕ * (ϕ ( f α f λ )), P n M(λ, α) = ϕ ( f α f λ )dP α -ϕ * (ϕ ( f α f λ ))dP n , PM(λ, α) = ϕ ( f α f λ )dP α -ϕ * (ϕ ( f α f λ )
)dP, ĉn (α) = arg sup λ∈Λ P n M(λ, α), cn (α) = arg sup λ∈Λ α P n M(λ, α), γn = arg inf α∈Λ sup λ∈Λ P n M(λ, α) and γn = arg inf α∈Λ sup λ∈Λ α P n M(λ, α). We remark that λn is a M-estimator for λ 0 and its rate of convergence is consequently in O P (m -1/2 ). However, Van der Vaart, in chapter V of his work [START_REF] Van Der Vaart | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF], thoroughly studies M-estimators and formulates hypotheses that we will use here in our context and for all set λ 0 : (H1) : sup

α∈Λ; λ∈Λ α |P n M(λ, α) -PM(λ, α)| → 0 a.s. (respectively in probability) (H2) : For all ε > 0, there is η > 0, such that f or all λ ∈ Λ α veri f ying λ -λ 0 ≥ ε, we have PM(λ, α) -η > PM(λ 0 , α), with α ∈ Λ. (H3) : ∃Z < 0, n 0 > 0 such that (n ≥ n 0 ⇒ sup α∈Λ sup λ∈{Λ α } c P n M(λ 0 , α) < Z) (H4) : T here is a neighbourhood o f λ 0 , V, and a positive f unction H, such that, f or all λ ∈ V we have |M(λ, λ 0 , x)| ≤ H(x) (P -p.s.) with PH < ∞, (H5) : T here is a neighbourhood V o f λ 0 , such that f or all ε, there is a η such that f or all λ ∈ V and α ∈ Λ, veri f ying α -λ 0 ≥ ε, we have PM(λ, λ 0 ) < PM(λ, α) -η.
According to Broniatowski, we can thus say that:

Proposition 1. : Assuming conditions (H1) to (H5) hold, we have (1) sup α∈Λ ĉn (α) -λ 0 tends to 0 a.s. (respectively in probability)

(2) γn tends to λ 0 a.s. (respectively in probability).

Finally, if n is the number of vectors of the sample, we then have Theorem 1. :

We have uniformly almost everywhere the following convergence: f λn → f λ 0 , when n → ∞.

Test

Taking note of section 1, let us consider T Φ n the function defined by

T Φ n (α, λ 0 ) = 2n ϕ (1) Φn (α, λ 0 ), where Φn (α, λ) = sup α∈Λ { ϕ ( f λ f α ) dP λ -ϕ * ( f λ f α ) dP n }.
The articles [START_REF] Pardo | Statistical inference based on divergence measures[END_REF] and [START_REF] Zografos | φ-divergence statistics: sampling properties and multinomial goodness of fit and divergence tests[END_REF] show that this function converges towards a χ 2 random variable if α = λ 0 . Hence, since ϕ is a positive function, we can write a rupture detection test for any (T n ) parameter, i.e. H0 : λ = λ 0 versus H1 : λ λ 0 , through the function T Φ n (α, λ 0 ), i.e. by the critical region R Φ = { 2n ϕ (1) Φn (α 0 , λ 0 ) > q 1-ε }, where q 1-ε is the quantile, of level 1 -ε, of a χ 2 distribution and where, under (H0), α 0 is the unique element such that Φ(α 0 , λ 0 ) = 0 according to proposition 2 (see page 5).

Finally, if (H0) is not acceptable, we can conclude that the second server has indeed started.

Simulation

In this section, we take a real point process (see definition page 4) as the arrival process. First, we simulate a point process such that its parameter λ 0 is equal to 1000 and we will estimate λ 0 . Second, we will change the parameter and we will observe when the rupture can be detected. 

Critics of the simulation :

We note that as the approximations accumulate and according to the power of the calculators used, we might obtain results above or below the value of the thresholds of the different tests. Moreover, in the case where λ 0 is unknown, we will never be sure to have reached the minimum of the Φ-divergence: we have indeed used the simulated annealing method to solve our optimisation problem, and therefore it is only when the number of random jumps tends in theory towards infinity that the probability to get the minimum tends to 1. We note finally that no theory on the optimal number of jumps to implement does exist, as this number depends on the specificities of each particular problem.

Conclusion :

The present article demonstrates that our Φ-divergence method constitutes a good way of controling concerning the starting off a new server in a queue. Indeed, the convergence results and simulations we carried out, convincingly fulfilled our expectations.

Annex A -Reminders

In this section, we briefly recall the concepts that we need in this article :

A.1. Process with Independent and Stationary Increments (P.I.S .I.), Point Process and Queueing Theory:

Let us introduce a generalization of the Bernouilli process defined on N onto R + . Let us then consider the notion of process with independent and stationary increments. Definition 1. Let {X t ; t ∈ R + } be a process with real values. This process is called a process with independent and stationary increments (P.I.S .I.), if 1/ The applications t → X t are right-continuous on R + , 2/ For all s, t ≤ 0, X t -X s is independent from σ(X r ; r ≥ s), 3/ For all s, t ≤ 0, X t+s -X s has the same law as X t -X 0 and 4/ We have X 0 = 0. Then, we have Definition 2. We define a point process on R + as the sequence of random variable (T i ) such that 0 ≤ T 1 < T 2 < ...., T i ∈ R + and T n → ∞ a.s.. The countable process -associated with this point process -is the sequence

(N t ) such that N t = Σ ∞ k=1 1 [0,t] (T k ) t ∈ R + . and
Theorem 2. Let (T i ) be a point process such that its associated countable process is a P.I.S .I.. Thus, the random variables T 1 , T 2 -T 1 , T 3 -T 2 , .... are mutually independent and have the same exponential distribution with λ > 0 parameters. Moreover, for all t ≤ 0, N t is a Poisson random variable with parameter λt.

Finally, [START_REF] Gross | Fundamentals of Queueing Theory[END_REF], [START_REF] Lazowska | Quantitative System Performance: Computer System Analysis Using Queueing Network Models[END_REF] and [START_REF] Zukerman | Introduction to Queueing Theory and Stochastic Teletraffic Models[END_REF] provide us with an introduction to the queueing theory. Let us just recall what is needed in our here. Definition 3. The three most important characteristics of a queueing system can be found below below:

1/ Arrival Process (τ n ) n :
Refers to the sequence of random variables describing customer arrivals in the system. It is interesting to note that, if there are no information on (τ n ) n , we can assume that the process (T n) n , where T n = τ n+1 -τ n , is a point process.

2/ Service Process :

Refers to the sequence of random variables describing time devoted to customer service in the system. We often suppose that this ditribution is independent from the distribution of (T n ) n .

3/ Number of Servers :

Number of servers available to service the customers. This number is not necessary finite.

A.2. Φ-Divergences

Let ϕ be a strictly convex function defined by ϕ : R + → R + , and such that ϕ(1) = 0.

Definition 4. We define Φ-divergence of P from Q -where P and Q are two probability distributions over a space Ω such that Q is absolutely continuous with respect to P -by

Φ(Q, P) = ϕ( dQ dP )dP.
It will be noted that this expression also holds if P and Q are both dominated by the same probability.

The most used distances (Kullback, Hellinger or χ 2 ) belong to the Cressie-Read family (see [START_REF] Cressie | Multinomial goodness-of-fit tests[END_REF], [START_REF] Csiszár | On topology properties of f -divergences[END_REF] and the book [START_REF] Friedrich | Convex statistical distances[END_REF]). They are defined by a specific ϕ. Indeed, -with the relative entropy, we associate ϕ(x) = xln(x) -x + 1 -with the Hellinger distance, we associate ϕ(x) = 2( √ x -1) 2

-with the χ 2 distance, we associate ϕ(x) = 1 2 (x -1) 2 -more generally, with power divergences, we associate ϕ(x) = x γ -γx+γ-1 γ(γ-1) , where γ ∈ R \ (0, 1) -and, finally, with the L 1 norm, which is also a divergence, we associate ϕ(x) = |x -1|. Finally, we have Proposition 2. A fundamental property of Φ-divergences is the fact that there is a unique case of nullity. We have Φ(P, Q) = 0 ⇔ P = Q.

Annex B -PROOFS

Proof of proposition 1 : Given that X n → X (a.s.) if ∀ε > 0, P(lim sup{|X n -X| > ε}) = 0, we prove proposition 1: Proof : Since cn (α) = arg sup λ∈Λ α P n M(λ, α), we have P n M(c n (α), α) ≥ P n M(λ 0 , α). And through condition (H1), we get P n M(c n (α), α) ≥ P n M(λ 0 , α) ≥ PM(λ 0 , α) -o P n [START_REF] Broniatowski | Estimation of the Kullback-Leibler divergence[END_REF], where o P n [START_REF] Broniatowski | Estimation of the Kullback-Leibler divergence[END_REF] does not depend on α. Thus, we get: PM(λ 0 , α) -P n M(c n (α), α) ≤ P n M(c n (α), α) -PM(c n (α), α) + o P n (1) ≤ sup α∈Λ; λ∈Λ α |P n M(λ, α) -PM(λ, α)| → 0 a.s. ( * ). Let ε > 0 be such that sup α∈Λ cn (α) -λ 0 > ε. We notice that if such ε had failed to exist, the result would be obvious. Therefore, for this ε, there is a n ∈ Λ such that cn (a n ) -λ 0 > ε, which implies thanks to (H2) that there exists a η such that PM(c n (a n ), a n ) -PM(λ 0 , a n ) > η. Thus, we can write :

P(sup a∈R d cn (α) -λ 0 > ε) ≤ P(PM(c n (a n ), a n ) -PM(λ 0 , a n ) > η)
→ 0 by (*). Moreover, (H1) and (H3) imply that ĉn (α) = cn (α) for all α ∈ Λ and for n big enough. This results in sup α∈Λ ĉn (α) -λ 0 → 0 a.s., which concludes our demonstration of the first part of the proposition. For the second part, we remark that (H1) and (H3) also imply that γn = γn for all α ∈ Λ. This explains why it is sufficient to demonstrate the result for γn only. Based on the first part of the demonstration and on condition (H4), we can write:

P n M(c n (γ n ), γn ) ≥ P n M(c n (λ 0 ), λ 0 ) ≥ PM(c n (γ n ), λ 0 ) -o P n (1), which implies: PM(c n (γ n ), λ 0 ) -PM(c n (γ n ), γn ) ≤ P n M(c n (γ n ), γn ) -PM(c n (γ n ), γn ) + o P n (1)
≤ sup a∈Λ; b∈Λ λ |P n M(λ, α) -PM(λ, α)| → 0 a.s. ( * * ). Based on the first part of this demonstration and on (H5), we infer the existence of η such that : P( γn -λ 0 ≥ ε) ≤ P(PM(c n (γ n ), λ 0 ) -PM(c n (γ n ), γn )) → 0 a.s. by ( * * ), which concludes our demonstration.
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Proof of theorem 1 : Let F λ be the cumulative distribution function of a probability which belongs to our parametric model M and let ψ λ be a complex function defined by

ψ λ (u, v) = F λ (Re(u + iv)) + iF λ (Re(v + iu))
, for all u and v in R.

First, according to proposal (9.1) page 216 of the book [START_REF] Dieudonné | Calcul infinitésimal[END_REF], "Any defined and continuously differentiable, in an open set D ⊂ C, complex function is analytical in D" we can therefore say that ψ λ (u, v) is an analytic function, because x → f λ (x) is a continuous function.

Given the corollary of Dini's second theorem -according to which "A sequence of cumulative distribution functions which simply converges on R towards a continuous cumulative distribution function F on R, uniformly converges towards F on R" -we deduct that, for all sequence (λ n ) converging towards λ, ψ λ n uniformly converges toward ψ λ .

Finally, the Weierstrass theorem, (see proposal (10.1) page 220 of [START_REF] Dieudonné | Calcul infinitésimal[END_REF]), states that "Let ( f n ) be a sequence of analytic function in an open set D ⊂ C, and let us suppose that for every closed disc ∆ included in D, the sequence ( f n (z)) uniformly converges in ∆ toward a limit f (z). Hence f is an analytic function in D, and for all k ≥ 1, the sequence of derivative functions ( f (k) n (z)) uniformly converges in ∆ towards ( f (k) (z))." Applying the above reasoning to ψ λ , we derive for k = 1, that all sequence ψ λ,n uniformly converge towards ψ λ , for all λ n tending to λ. We can therefore conclude.