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Abstract

This paper shows that a well-known algorithm proposed to compute the canonical
polygonal schema of a surface can be transferred onto a 2-dimensional generalized
map. We show that transformation rules on polygonal schemata can be achieved in
O(1) with generalized maps, which can help optimizing existing algorithms.
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1 Introduction

The comparison of two topological surfaces! is a frequent question that may
be solved by computing the canonical polygonal schema associated to each
surface. In [3], authors propose an algorithm which computes this topological
invariant by using particular transformation rules.

This paper shows that these transformations can be defined on a 2D gener-
alized map encoding a surface. Firstly, we exhibit the links between polygonal

* Paper published in Proceedings of International Conference on Topological & Ge-
ometric Graph Theory, Electronic Notes in Discrete Mathematics vol. 31, pp.
287-292, 2008. Thanks to Elsevier. The original publication is available at
http://dx.doi.org/10.1016/].endm.2008.06.058

1 By surface, me mean compact connected 2-manifold orientable or not.



schemata and generalized maps. Then we show how the elementary cut-and-
paste operations are related to edge shifting operations. We finally propose
O(1) algorithms to perform the high-level transforms proposed in [3], which
proves that the algorithm of [3| can be transferred onto generalized maps.

2 Links Between Polygonal Schemata and Generalized
Maps

A connected surface S can be represented by a polygon P, called polygo-
nal schema |[1], containing an even number of oriented edges. These edges
are paired up, such that the topological space obtained after identification
of paired edges is homeomorphic to S. Such a polygon can be conveniently
represented by a word W, which is constructed by going along the boundary
of the polygon, and adding a letter per edge. Two edges have the same letter
if they have to be identified. This letter is written under an horizontal bar
if the orientation of the edge is opposite to the direction of motion along the
boundary (e.g. a and @). Several polygons equivalently represent a same sur-
face, but all can be simplified into the canonical polygonal schema form that
is unique and fully characterizes the topology of the surface.

A generalized map [2] is a combinatorial structure used to represent space
subdivisions of any dimension. We focus here on closed connected 2D gener-
alized maps (or 2G-maps). Intuitively such a 2G-map is constructed by de-
compositions and splits of a surface into faces, edges and vertices. The basic
element of a 2G-map is called a dart. Each dart is incident to a vertex, an edge
and a face. Darts are glued together with three involutions a4, € {0, 1,2},
to keep the structure of the subdivision: «aq (resp. aj, az) connects two ver-
tices (resp. edges, faces) incident to a same edge and face (resp. vertex and
face, vertex and edge) (Fig. 1A). We denote «;;(d) for a;(a;(d)), and call
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Fig. 1. (A) A 2G-map with labeled darts: «ag is represented by small grey segments,
aq by black dots and ao connects two darts with the same label. (B) Equivalent
2G-map where edge a has been removed. One associated word is W = dbcdcb.
(C) The corresponding operation to construct the polygonal schema is simply the
glue of the 2 edges labeled a.



1-sew(dy, dy) the operation that links darts d; and ds by «;.

Darts of a closed connected 2G-map are labeled in the following way. Let-
ter a is given to an arbitrary dart d, and is also associated to das. Letter @
is associated to dagy and to dasag. The edge associated to d is hence repre-
sented by the letter a (indeed, each edge of the 2G-map is made of 4 darts,
{d, dag, dagy, dasan} where d is one dart incident to this edge). Each dart is
processed in the same way until all edges are labeled with different letters
(Fig. 1A).

A polygonal schema can be constructed from this labeled 2G-map by sim-
plifying it into a 2G-map containing only one polygonal face. This is simply
achieved by removing each degree two edge (Fig. 1B). This operation is similar
to the glue of two pieces of a polygonal schema (Fig. 1C).

The word representing the surface is computed as follows. Arbitrarily take
a dart d and begin the word with its associated letter, then add the letter of
the dart dapay (which is the first dart encountered on the next edge). Go on
adding letters in the same way until the first dart is found again. Note that
the orientation of the edges of the polygon is straightforwardly obtained.

3 Basic Transformations

There are two “basic” transformations, dangling edge removal and edge shift-
ing, which correspond to transforms A and B of [3].

Transform A. If the word is like aaX, then edge a is a dangling edge
which can be removed to obtain word X (see Fig. 2).
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Fig. 2. Transform A. (A) A 2G-map with a dangling edge a (B) 2G-map after the
removal of a. (C) Corresponding operation on the polygonal schema.

The edge shifting operation, S,(a), pushes an edge of a 2G-map, «a, along
the direction of one of its neighbor edge, b. It does not depend on the ori-
entability of edge a. However, both cases involve different modifications on
the associated polygonal schema.

Transform B;. If edge a is orientable (see Fig. 3), the corresponding word
is aXabY (with eventually X or Y empty). After Sy(a), this word becomes



baXaY: the letter after @ is put before a. The edge can also be shifted along
the second direction, and roles of a, @, b and b can be exchanged. This gives
8 possible transformations for the orientable case.
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Fig. 3. Transform B;. (A) A 2G-map where edge a (which is orientable) will be
shifted along edge b. (B) Corresponding polygonal schema. (C) and (D) first step:
a new edge is added, ¢, which cuts the face. (E) and (F) second step: edge a is
removed, in two steps in the polygonal schema, and edge c is re-labeled in a.

Transform Bs. If edge a is non-orientable (see Fig. 4), the corresponding
word is aXabY (with eventually X or Y empty). After Sy(a), this word
becomes abXaY: the letter after the second @ is put after the first a and
negated. The edge can also be shifted along the second direction, and we can
exchange the role of both a. This gives 4 possible transformations for the
non-orientable case.

Fig. 4. Transform Bs. (A) A 2G-map where edge a (which is non-orientable) will be
shifted along edge b. (B),(C), (D), (E) and (F) have the same caption as in Fig. 3.



4 High-level Transformations

Several edge shifting operations can be combined in order to obtain the three
other transformation rules given in [3]. However, by using such a technique,
the complexity of each transformation C and D is in O(n), with n the number
of edges of the polygon. For each transformation, we design an optimized
operation that modifies directly the given 2G-map into its final form in O(1).
Transform C. Starting from a word aXaY = aXay,ys...yi, where a is a
non-orientable edge, we shift edge a several times to obtain word ayy, ... 73 y1 Xa
also denoted by aY —1Xa.

Optimized Transform C is given in Algo. 1. The transformation of Y into
Y1 is achieved here in O(1).
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Fig. 5. Optimized Transform C. (A) 2G-map corresponding to aXaY . (B) 2G-map
obtained after applying Algo. 1 which corresponds to aaY ~1X.

Transform D. Starting from a word aXbY@UbV, where a and b are orientable
edges, we shift edge b to obtain word abY@UbX V. Then we shift edge b obtain
word abaUYbX V. Finally, we shift edge a to obtain word UY ababXV which
is equal to ababXVUY.

Algo 2: Transform D(a,b)
1-sew(ay(dy),01(dy)); N - . -
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Fig. 6. Optimized Transform D. (A) 2G-map corresponding to ELXbYEUEV.
(B) 2G-map obtained after applying Algo. 2 which corresponds to ababXVUY .



Optimized Transform D is given in Algo. 2.

Transform E. Starting from a word ababccX, we shift edge ¢ to obtain word
abcbacX . Then we shift edge a to obtain word aabebcX. Finally we shift edge
b to obtain word aabbecX ~ aabbceX

Optimized Transform E is given in Algo. 3.

Algo 3: Transform E(a,b,c)

1-sew(ap(dy),2(dy));

1-sew (oo (dy),dp);
(
(

1-sew (o (dp),2(dy));
1-sew(apz(dp),d.);

Fig. 7. Optimized Transform E. (A) 2G-map corresponding to ababccX . (B) 2G-map
obtained after applying Algo. 3 which corresponds to aabbccX .

5 Conclusion

This paper highlights the links between polygonal schemata and generalized
maps. The canonical polygonal schema can now be directly computed from a
2G-map, by simply adapting the algorithm described in [3].

The main advantage of our method is that transformations modify the
original subdivision and not only a word representing it. It is thus possible
to manage additional information carried by the 2G-map like geometry, e.g.
to compute the geometry of generators. Other future works will focus on
improving this algorithm according to the specificities of generalized maps.
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