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1 INTRODUCTION

The simulation of the motion of interacting particles is a deceivingly simple, yet power-

ful and natural method for exploring and animating flows in physical systems as diverse

as planetary dark accretion and sea waves, unsteady aerodynamics and nanofluidics.

Particle methods have been advocated for efficient simulations of multiphysics phe-

nomena in complex deforming computational domains in several fields of science rang-

ing from astrophysics to solid mechanics (see [63, 54] and references therein). In com-

puter graphics, particle systems were introduced with the pioneering work of Reeves [74]

and have continued over the years to be the backbone of several impressive anima-

tions [42, 88, 87, 73, 71, 81]. In the CFD community, particle methods were the first

techniques to ever be used for the numerical simulation of fluids, starting with the pio-

neering calculations by hand of the evolution of a vortex sheet by Rosenhead [76] and

continuing with the works of Chorin [16] and Leonard [52]. In Direct Numerical Sim-

ulations of compressible and incompressible flows it has been shown that caution must

be exercised when using a grid free method [35] and that regularization of the particle

locations is necessary in order for the method to converge [47] to the solution of the

equations that have been discretized. At the same time in graphics the loss of accuracy

of the method in terms of incompressibility [29, 28, 10] and conservation of geometrical

constraints [25] may affect the visual realism of the flow.

Particles can be viewed as objects carrying a physical property of the flow, that is be-

ing simulated through the solution of Ordinary Differential Equations (ODE) that deter-

mine the trajectories and the evolution of the properties carried by the particles. Particle

methods amount to the solution of a system of ODEs :

dxp

dt
= up(xp, t) =

N∑

q=1

K (xp,xq;wp,wq) (1)

dwp

dt
=

N∑

q=1

F (xp,xq;wp,wq) (2)

where xp,up denote the locations and velocities of the N particles, wp denote parti-

cle properties (such as density, temperature, velocity, vorticity) and K,F represent the

dynamics of the simulated flow. Particle simulations are well suited to a Lagrangian for-

mulation of the continuum equations, as in the vorticity-velocity or the velocity-pressure

formulation of the Navier-Stokes equations, resulting respectively in techniques such as

Vortex Methods and Smooth Particle Hydrodynamics. Particle methods such as Vor-

tex Methods (VMs) and Smooth Particle Hydrodynamics (SPH) present an adaptive,

efficient, stable and accurate computational method for simulating continuum flow phe-

nomena and for capturing interfaces. At the same time, particle methods encounter dif-

ficulties in the accurate treatment of boundary conditions, while their adaptivity is often

associated with severe particle distortion that may introduce spurious scales.

We wish to note that particle formulations of fluid mechanics phenomena can be ex-

tended also in the mesoscale and the nanoscale regimes with techniques such as Molec-

ular Dynamics (MD) and Dissipative Particle Dynamics (DPD) inherently linked to the

discrete representation of the underlying physics. In fact particle methods enable a uni-

fying formulation that can enable systematic and robust multiscale flow simulations as
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Figure 1: Particle Systems in Computer Graphics : Explosion on a planet [74](left),

Artificial plant growth [42](middle), Vortex field [87](right).

well as simulations continuum and discrete systems [48] Indeed a remarkable feature of

particle methods is that their computational structure involves a large number of com-

mon abstractions that help in their computational implementation, while at the same

time particle methods are distinguished by the fact that they are inherently linked to the

physics of the systems that they simulate.

Returning to the realm of continuum flows, particle methods, applied to the solu-

tion of convection-dominated problems in the context of Vortex Methods and Smooth

Particle Hydrodynamics, enjoy an automatic adaptivity of the computational domain as

dictated by the convective map. The field quantities can always be reconstructed by a

linear superposition of the individual fields carried by the particles. In smooth parti-

cle methods - as opposed to point particle methods - each particle is associated with a

smooth core function, or ‘blob’ enabling the smooth representation of the field quan-

tities and efficient discretizations of the governing equations. The Lagrangian form of

particle methods avoids the explicit discretization of the convective term in the govern-

ing transport equations and the associated stability constraints. The particle positions

are modified according to the local flow map, making the method self-adaptive. This

adaptation however comes at the expense of the regularity of the particle distribution as

particles move in order to adapt to the gradients of the flow field. Particle regularity can

be enforced by remeshing the particle locations on a regular grid as it is discussed in this

session.

A key message of this class, is that once the smooth particles cease to overlap the

vortex methods do not solve the equations they have discretized. In order to maintain

the accuracy of the method we introduce a mesh that helps the regularization of the

particle locations as discussed in the following. This may seem at first as introduc-

ing additional dissipation to the method and limiting its capability to handle complex

geometries. We will demonstrate that the dissipation introduced by remeshing can be

controlled and reduced below other discretization errors and in addition it enables the

formulation of a consistent multiresolution particle framework. Furthermore we demon-

strate that remeshing, allows the effective handling of complex geometries. We discuss

penalisation and immersed boundary techniques which along with body-fitted particle

systems present an arrays of effective ways for resolving boundaries in particle systems.

In this class we emphasize the immersed boundary approach to model flows in complex

geometries. Boundary conditions are indeed recognized as a source of technical diffi-

culties for particle methods. This is a field where ad-hoc solutions or recipes are often

used leading to algorithms that are very sensitive to a number of parameters. Immersed

boundary methods can be derived from straightforward numerical approximations and
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Figure 2: Particle Systems in CFD: Hand Calculations of a vortex sheet [77](left), flow

past a circular cylinder [16](middle), Vortex lines in a 3D boundary layer [52](right).

lead to relatively simple algorithms. They also offer enough flexibility to adress fluid-

structure interaction systems and multiphase fluids.

The course notes are structured as follows : In Section 2 we provide an overview of

Particle Methods with an emphasis on their use for Flow Simulations. In Section 3

we introduce the remeshed particle methods. We discuss in section 4 how remeshing

not only does not hinder the adaptivity of the method but enables multiresolution parti-

cle methods. In Section 5 we discuss the use of particle methods for multiphysics and

in complex geometries. We conclude in Section 6 with the implementation of particle

methods on GPUs demonstrating the possibility of translating the present framework

into real time simulations.
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2 PARTICLE METHODS AND FLOW SIMULATIONS

The flows we describe in this class can be effectively cast in the following form:

∂u

∂t
+ div (Uu) = F (u,∇u, · · · ) (3)

where u is a scalar flow property (e.g density) or a vector (e.g. momentum) advected by

the velocity vector field U. Equation (3) is an advection equation in conservation form

in the sense that it if F = 0 and no flow comes form the boundaries of the computational

box, the scalar property is conserved as :

d

dt

∫
u dx = 0.

We note that the right hand side F can take various forms involving derivatives of u and

depends on the physics of the flow systems that is being simulated. An example for F is

the diffusion term (F (u,∇u, · · · ) = ∇2u). The velocity vector field (U) can itself be a

function of u, which leads to nonlinear transport equations. A number of examples of

different F,U,u are given in the following sections.

For simplicity, we first consider the case F ≡ 0. The conservative form of the model can

be translated in a Lagrangian framework by sampling the mass of u on individual points,

or point particles whose locations can be defined with the help of Diract δ-functions.

Hence when u is initialized on a set of point particles it maintains this descriptions, with

particle locations obtained by following the trajectories of the flow:

u(x, t) =
∑

αpδ(x− xp(t)) (4)

where
dxp

dt
= U(xp, t). (5)

In practice this system of differential equation is solved by a time-discretization method

(sometimes called in this context a ”particle pusher”).

2.1 Smooth Particles for Simulations of Continuum Systems

The point particle approximations have useful computational features as they provide

an exact representation of convection effects, a feature that has been extensively used

in the computer animations of fluids (for example in : [29, 10]). At the same time the

point particle approximations need to be enhanced in order to recover continuous fields

(see [21,71] and references there in). Among the different approaches of recovering con-

tinuous fields from point samples, for reasons that will become evident below, we con-

sider the approach of regularising their support, replacing δ by a smooth cut-off function

which has the same mass (unity) and a small support:

δ(x) ≃ ζǫ(x) = ǫ−dζ(
x

ǫ
) (6)

where d is the dimension of the computational space and ǫ << 1 is the range of the

cut-off. In most cases, on uses a function with radial symmetry A typical and often used

example is the Gaussian

ζ(x) = π−d/2 exp (−|x|2)
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Other functions that ”resemble” more to the dirac mass, in the sense that they have the

same values (zero) for higher moments, can be constructed in a systematic way, a topic

that is beyond the scope of these class notes. We refer to [21] for further discussions on

this issue.

The particle representation formula (4) then becomes a blob representation

u(x, t) ≃ uǫ(x, t) =
∑

αpζǫ(x− xp(t)). (7)

Most importantly, regularization can be used to compute local (e.g. algebraic functions)

or non-local (in particular derivatives of any order) quantities based on u. We will show

later a number of examples of how this principle is used in practice.

Using smooth particles to solve 3 in the general case (F 6= 0), one further needs

to increment the particle strength by the amount that is dictated from the right hand

side F . For that purpose, local values of F at particle locations multiplied by local

volumes around particles are required. The local values of F can always be obtained

from regularization formulas (7). The volumes v of the particles are updated using the

transport equation
∂v

∂t
+ div (Uv) = −v div U (8)

The particle representation of the solution is therefore given by (4), (5) complemented

by the differential equations

dvp

dt
= −div U(xp, t) vp ,

dαp

dt
= vpFp. (9)

In (4), particle masses represent local integrals of the desired quantity around a parti-

cle. Typically, if particles are initialized on a regular lattice with grid size ∆x, one will

set x0
p = (p1∆x, · · · , pn∆x) and αp = (∆x)d u(xp, t = 0). One may also write the

weight of the particles as the product of the particle strength and particle volume that are

updated separately :

αp = vp up. (10)

2.2 Examples: SPH and Vortex Methods

Two of the most widely used particle methods for flow simulations are Smoothed Particle

Hydrodynamics (SPH) and Vortex Methods (VM). We outline here the key elements of

these methods with an emphasis on their underlying principles. Extensive reviews of

these methods can be found in [63, 48].

2.2.1 COMPRESSIBLE FLOWS AND SPH The method of SPH was introduced for

the study of gas dynamics as they pertain to astronomical systems [56,31]. In these notes

we introduce for simplicity the numerical formulation of Smoothed Particle Hydrody-

namics (SPH), using the Euler equations for gas dynamics in one space dimension. The

equations of gas dynamics for the density ρ and the velocity u can be cast in the follow-

ing form

∂ρ

∂t
+ u

∂ρ

∂x
= −ρ

∂u

∂x
(11)

∂u

∂t
+ u

∂u

∂x
=

∂τ

∂x
(12)



8

Figure 3: SPH Simulations of protoplanetary disk formation [44].

where τ denotes the fluid stress. This system needs a closure to determine the fluid

stress, which in turn requires an energy equation and a constitutive law for the gas under

consideration. In that case, particles weights are written using (10). To obtain local val-

ues (ρp, up) of density and velocities, the right hand side of (11),(12) are computed from

regularized evaluations of the velocity. Unfortunately, there is a discrepancy between

the notation used in the SPH literature and the rest of the particle literature (or the other

way around !). In SPH related works the cut-off function are denoted by W , the cut-off

range is h instead of ǫ, and ζǫ(x) becomesW (x, h) . With these notations the divergence

of the velocity is given by

∂u

∂x
(xp) =

∑

q

vq(uq − up)
∂W

∂x
(xp − xq, h)

The particle representation for u and ρ is therefore given by

ρ(x, t) =
∑

p

vpρpδ(x− xp) (13)

u(x, t) =
∑

p

vpδ(x− xp), (14)

where the weights of the particle are obtained by solving the differential equations :

v̇p = vp

∑

q

vq(uq − up)
∂W

∂x
(xp − xq, h) (15)

ρ̇p = −ρp

∑

q

vq(uq − up)
∂W

∂x
(xp − xq, h) (16)

u̇p =
∑

q

vq(τq − τp)
∂W

∂x
(xp − xq, h). (17)

This system has to be closed by an additional energy equation.

Note that, in the expression giving the divergence, we have subtracted from the ex-

pected expression
∑

q vquq
∂W
∂x (xp − xq, h) the term

∑
q vqup

∂W
∂x (xp − xq, h). In the

limit of an infinite number of particles, this term vanishes since it tends to the integral of

the the function ∂W
∂x . Its contribution is to maintain for a finite number of particles the

conservativity of the method. This issue of conservation (of mass, energy ..) is indeed a

central issue in SPH methods and has been the subject of many works. The approach to
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derive schemes that have these properties is often very closely related to deriving parti-

cles dynamics that mimic at the discrete level the underlying physics. For these reasons,

SPH simulations are very appealing and often give qualitatively satisfying results even

with a rather small degrees of freedom, and this explains their popularity in the graphics

community and the animation industry (see Fig.4 and [55])

However, as one may wish to increase the reliability, and not only the visual plausi-

bility of the simulations, the use of SPH for flow simulations raise some serious con-

cerns [11]. We will revisit this key issue in Section 3.

Figure 4: Two-way coupled SPH and particle level set fluid simulation [55].

SPH methods have been originally designed for compressible flows with an empha-

sis on gas dynamics of astrophysical systems (see Fig.3). In the case of incompressible

flows, the need to define ad-hoc constitutive law, they have to resolve unphysical waves

along with the related numerical stability constraints and the necessary artificial viscos-

ity. In recent years a number of efforts [41,26] have been presented in order to introduce

incompressibility into SPH formulations with variable degrees of success. Note that in

incompressible formulations a Poisson equation is necessary in order to ensure the in-

compressibility of the flow and efforts to bypass this relatively expensive computation

have to maintain the right balance of accuracy and computational cost. Alternatively,

vortex methods based on the vorticity form of the incompressible Navier-Stokes equa-

tions can be considered as more suitable numerical tools for these flows.

2.2.2 INCOMPRESSIBLE FLOWS AND VORTEX METHODS In Vortex Methods

particles discretize the velocity-vorticity formulation of the Navier-Stokes equations

which takes the following form

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω (18)



10

Figure 5: Vortex Method simulations of solid particle ladden flows with two way cou-

pling [97].

The vorticity field ω is related to the velocity field u by ω = ∇ × u. This equation

together with the incompressiblity constraint

div u = 0 (19)

and suitable boundary conditions allows to express the velocity in terms of the vortic-

ity (we will come back later to this important point). Equation (18) thus appears as a

nonlinear advection-diffusion equation for the vorticity. The diffusion term is just one

particular instance of the right hand side F in (3). One particular and appealing feature

of this form of the flow equations is that the divergence free constraint is not directly

involved in the transport equation. Also, the equation points straight to the very nature

of vorticity dynamics in incompressible flows: transport and dissipation (in 2 and 3D)

, change of orientation and strengthening (in 3D only, since in 2D the term (ω · ∇)u
vanishes). A vortex particle method consists of sampling vorticity on points that follow

the flow field:

ω(x, t) =
∑

p

ωpδ(x− xp) (20)

with

dxp

dt
= u(xp, t) (21)

dωp

dt
= [∇u(xp, t)]ωp + ν ∆ω(xp). (22)

In the above equation [∇u(xp, t)] is the tensor made of all derivatives of the velocity. The

way to compute this term as well as the diffusion term remains to be specified. Vortex
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Methods are distinct from SPH, in that they enforce explicitly the incompressibility of

the flow while in addition they resolve gradients of the flow field rather than primitive

variables. Furthermore they use computational elements only where the vorticity field

is non-zero which at times can be only a small fraction of the domain, thus providing

increased efficiency (Fig.5). At the same time they require the solution of a Poisson

equation to recover the velocity field from the vorticity, while their implementation in the

presence of boundaries requires the reformulation of the velocity boundary conditions.

A monograph by the authors [21] discusses several of the methodological developments

of Vortex Methods.

Here we wish to mention that another particle possible approach to 3D incompress-

ible flows is possible using filaments instead of point particles. A filament method will

consist of tracking markers on lagrangian curves that sample the vorticity field and re-

constructing the corresponding curves at each time step, in order to recompute velocities

and so on. Filaments are curves that carry one scalar quantity called the circulation. A

filament can be viewed as a vortex tube, that is a space volume with vorticity is parallel to

the walls, shrunk on its centerline. The circulation is the vorticity flux across the sections

of the tube. Filaments are both very physically and numerically appealing for several

reasons. Their Lagrangian character and the fact that their circulation remains constant

when the flow is inviscid, translates Kelvin and Helmoltz theorems which are the two

major facts in incompressible flows. From a numerical point of view, they allow to give

with few degrees of freedom a rather detailed description of albeit complex dynamics.

They have been investigated in some of the first ever 3D simulations in CFD [52] and

they have been successfully used in several graphics works(see for instance [1]). How-

ever, several points detract them from being considered as a general tool to model and

simulate incompressible flows. Except in specific (nonetheless interesting) situations,

like rings and jets, they are not so easy to initialize for a given flow. Moreover, follow-

ing a filament eventually requires at some point ad hoc decisions to avoid tiny loops or

to decide reconnections between nearby filaments (something which is called filament

surgery). Finally there is no clear cut way to simulate diffusion with filaments. For all

these reasons we will only consider point particles in the rest of this class.

2.3 Grid-Free and Hybrid Particle Methods

The distinction between grid-free particle and hybrid particle-grid methods emerges

when dealing with flow related equations besides the advection. These additional equa-

tions may be necessary in order to determine the right hand F in (3) or when the advec-

tion velocity is not given as a function of the advected quantity (as in the Biot-Savart

law for the velocity-vorticity formulation). When we discuss Grid Free particle meth-

ods , we imply methods that rely solely on the particles to compute these quantities. By

Hybrid: Particle-Grid methods, we imply methods which also use and underlying fixed

grid.

Hybrid methods involve combinations of mesh based schemes and particle methods

in an effort to combine computational advantages of each method. The first such method

involves the Particle in Cell algorithm pioneered by Harlow [34] in which a particle de-

scription replaces the non-linear advection terms and mesh based methods can be used

to take advantage of the efficiency of Eulerian schemes to deal with elliptic or hyperbolic

problems. In the following we give two examples of these methods one for each of the

two classes of methods we have introduced.
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up = α

∑

q "=p

K(xp − xq) × dlq

x
p
(t)

x
p-1

(t)

x
p+1

(t)

x
p
(t+Δt)

x
p-1

(t+Δt)

x
p+1

(t+Δt)

u
p
(t)

ω

dl p
(t

)

d
l p

(t
+
Δ

t)

α=∫
S

 ω.n ds
S

t

t+Δt

Figure 6: Top picture: vortex tube, filament and circulation. Evolution from time t to

time t+ ∆t. the markers along the filament allow to reconstruct the curve and compute

velocities for the next time step. The velocity formula is obtained from the Bio-Savart

law (23).Bottom picture: example of image synthesis implementing filaments from [1].

2.3.1 SPH AND PARTICLE MESH HYDRODYNAMICS First for SPH methods, we

have underlined in (15), (16) a method which is grid-free. Instead of evaluating the term

∂u/∂x with the kernel W one might have chosen to use an underlying fixed grid and to

increment particle density through the following successive steps

• assign velocity values ui on the grid from the known particle quantities up

• evaluate by finite-differences on the grid derivatives of u on the grid

• interpolate back these quantities on the particles to obtain particle quantities divp

• finally solve dρp/dt = −ρp divp

The same approach can be used to determine the stresses in the right hand side of the

momentum equation. In case the stresses result form an energy carried by particle, there
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is an additional quantity carried by the particles, and both particles velocity and energy

have to be assigned on the grid to compute the stresse which are next interpolated on the

particles. The use of a mesh in the context of SPH helps accelerate the calculations and

as we will see later it helps maintain the accuracy of the method. This combination of

grids and particles, that we baptized PMH : Particle-Mesh Hydrodynamics [13]has been

shown to be highly effective in a number of flow systems that have been challenging for

traditional SPH. The two phases of assignment and interpolation between grid and parti-

cles are crucial to ensure that the process is both accurate and does not introduce spurious

oscillations. A lot of effort has been devoted in CFD to this issue. We will come back

later when we discuss remeshing which somehow is currently the most effective way to

approach this problem. Grid-free SPH have a symmetric issue for the choice of the ker-

nel W and renormalization techniques to ensure conservation properties. Both methods

crucially need to care about the number of particles per grid-size (for PIC method) or

inside the range of the kernel W (for grid-free methods). It is important to realize at

that point that in particle methods particles have a numerical meaning not as individual

points but only through their collective contribution. This is a definite difference with

finite-diffrence, finite element or finite volume methods.

2.3.2 VORTEX METHODS : GRID FREE AND HYBRID For the second example,

we consider vortex methods of the the inviscid (ν = 0) Navier-Stokes equation (18).

In that case, we only need to determine the velocity values necessary to push particles

and to update particle vorticity values. The grid-free way to do it relies on the so-called

Biot-Savart law.

The Biot-Savart law is an integral expression of the velocity in terms of the vorticity.

Consider first the case of a non-bounded flow. A divergence-free velocity uwith vorticity

ω and vanishing at infinity is given by

u(x, t) =

∫
K(x− y)× ω(y) dy (23)

where the kernel K is given by the formula K(x) = 1
4π

x
|x|3 . If the velocity has a given

non zero value at infinity, this contribution has just to be added in the right hand side of

(23).

The case of a flow with solid boundaries is more involved. In that case the bound-

ary condition to be imposed on the velocity is in general a condition on the normal

component of the velocity (a condition on the other component becomes necessary and

physically relevant only for viscous flows). For the classical case of no-flow through

a boundary Σ enclosing a fluid domain Ω, the theory of integral equations leads to the

addition of a potential to the formula (23) :

u(x, t) =

∫

Ω
K(x− y)× ω(y) dy +

∫

Σ
K(x− y)× q(y) dy (24)

where q is a potential to be determined through an integral equation such that the result-

ing velocity satisfies:

u(x, t) · n(x) = 0for xon Σ

The enforcement of the kinematic boundary conditions result in boundary integral equa-

tions that can be solved using boundary element methods [36] an approach that is widely

used in engineering.

Let us now turn to the hybrid particle-grid counterpart of this method. As for the

case of gas dynamics, one first needs to assign the quantity advected by particles - the
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Figure 7: Billion Particle Simulations of Aircraft Wakes using Remeshed Vortex Meth-

ods [12]

vorticity values in this case - to grid nodes. Once it is done, one can reformulate the

problem of finding the velocity in terms of the vorticity as a Poisson equation. Indeed,

since div u = 0, one may write u = ∇×ψ whereψ is a divergence-free stream function.

Then one gets ω = ∇×u = −∆ψ. We are thus left with the following Poisson equation:

−∆ψ = ω. (25)

This problem can be solved by off-the-shelf grid based Poisson solvers. To handle in a

simple fashion boundary conditions of no-through flow type, it is in general advisable to

use an additional scalar potential φ and look for u under the following form:

u = ∇×ψ +∇φ. (26)

The stream vector ψ has to to be divergence-free and satisfy (25). The scalar potential φ
does not contribute to vorticity. To give a divergence-free contribution it must satisfy

−∆φ = 0 (27)

in the computational domain. Its boundary condition is then adjusted to give no-though

flow at the boundary Σ: from (26) it has to satisfy

∂φ

∂n
= −(∇×ψ) · n.

This is classical Neumann-type boundary condition that complements (97). The ad-

vantage of this formulation is that it facilitates the calculation of the stream function.

Without this potential, the stream function would have to satisfy boundary conditions

coupling its components in order to be consistent with the divergence free condition.

To illustrate the method we present below a sketch of an hybrid particle-grid method

using Williamson’s low-storage third order Runge-Kutta scheme number 7 to integrate

the equations of the particles. The scheme limits the numerical dissipation introduced
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into the flow, and it is memory efficient, requiring only one N additional storage per

variable. The overall procedure is illustrated by Algorithm 1.

Set up, initial conditions, etc. , t = 0;

/* Particle quantities stored in arrays,

e.g. vorticity: ω ∈ R∋×N. For the ODE solver we

need two temporary variables: u0, and dω0 */

while t ≤ T do

for l = 1 to 3 ; /* stages of the ODE Solver */

do
Interpolate ω onto the grid (ω → ωijk);

Compute velocity uijk from ωijk;

u0← Interpolate uijk onto the particles;

u0← u+ αl u0; dω0← dω + αl dω0 ; /* α = (0,−5
9 ,

153
128) */

x← x+ δt βl u0; ω ← ω + δt βl dω0 ;
end

end

Algorithm 1: A Particle-in-Cell method using Williamson’s Runge-Kutta scheme

no.7.

We note that this hybrid formulation has enabled simulations using an unprecedented

number of 10 billion particles [12] of computational elements for the simulation of

aircraft vortex wakes (see Fig:7 )

2.3.3 GRID-FREE VS. HYBRID - THE WINNER IS.... Let us now pause to com-

pare the respective merits of the grid-free and particle-grid approaches. Clearly the grid-

free approach is appealing in that it fully maintains the lagrangian nature of the method.

If short range interactions of particles are involved in the right hand side F one may

devise particle interactions on physical basis. Particle methods can then be seen both as

numerical methods and as discrete physical models. For incompressible flows the Biot-

Savart law is required to compute non-local interactions. One is thus led to a N -body

problem. If the vorticity is sampled on N particles, the simple minded calculation of

the right hand side of (23) requires O(N2) operations, something which is not afford-

able for N beyond a few hundreds. To overcome this problem, a lot of effort has been

devoted, following the pioneering work of Greengard and Rokhlin [33], to reduce this

cost to something approaching O(N). To summarize, the idea is to divide the particle

distribution in clusters of nearby particles. The exact interaction of particles in one clus-

ter with particles of another well separated cluster is replaced by an algebraic expansion

using the moments of clusters of particles around their center. The number of terms only

depends on the desired accuracy and never goes beyond a single digit number. Only

interaction between particles in the same cluster are computed by direct summation. For

maximal efficiency, the clustering of particles is done using a tree algorithm which cre-

ates boxes at different level of refinements containing always about the same number of

particles. These fast summation formulas are now routinely used in CFD particle-based

grid-free codes.

Unfortunately, practice shows that the construction of the tree, the evaluation of ex-

pansion coefficients and of the direct interaction of nearest particles, remain expansive,

in particular in 3D. As a matter of fact the turnover point where the fast summation

formulas become cheaper than the direct summation formulas is always beyond a few

hundreds, which means that the constant in front of N or N logN in the evaluation of
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the complexity of the method is quite high. The cost of fast summation formulas is defi-

nitely much higher than that of FFT-based grid Poisson solvers. This is the reason why

hybrid particle-grid methods can be seen as attractive alternative to grid-free methods. In

an hybrid method, one first need to overlay a fixed grid to the particle distribution. This

immediately rises the question of artificially closing a computational domain which is

some cases should not. In grid-based method this is classical issue but it is somehow

disturbing to introduce it in particle methods which in principle could avoid it. Also,

in many instances vorticity is localized in a narrow part of the space, and the grid is

certainly going to waste a number of points. All these observations point to the fact that

hybrid grid-particle methods go in some sense against the very nature and advantages of

particle methods, and thus should only be used if they come with a significantly lower

computational cost. Clearly this will heavily depend on the ratio number of particles/

number of grid points, and thus on how much the vorticity support is concentrated and

how far the artificial boundaries of the grid should be pushed if we deal with an external

flow (a wake or a jet for instance). It also depends on the efficiency of the grid-based

Poisson solver.

Figure 8: Implementation of a tree code/ Illustration of the clustering of particles in

boxes obtained by successive subdivisions of the computational box.

In many cases of practical interest, the result of this comparison, taking into account

all these factors, is in favor of hybrid particle-grid methods. Figure 8 shows the computa-

tional times on a single processor machine for various 3D methods found in the literature.

The computational time shown in this experiment corresponds to one evaluation of the

velocities on all particles. The grid-free method has been used in an unbounded doamin,

that is without the additional complexity of identifying the boundary potential, either

with direct or fast summation formulas derived in [51]. The hybrid particle-grid method

has been used either in a square box, together with a FFT method, or in a cylindrical box,
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with a cyclic method to solve the linear system obtained from the discretization of the

Poisson equations on the grid. In the first case the particles fill the whole box (like in an

homogeneous turbulence experiment), while in the other case they fill only about 25%
of the box. This last configuration is typical of what we would get for the simulation of

the wake behind a circular cylinder. Not surprisingly, the hybrid method gives the largest

speed up (about a factor 100 compared to grid-free methods with fast summations) in

the first configuration. But even in the second configuration, where one would think that

many grid points are wasted, the speed up is already significative (about a factor 10).

Recently we have developed a Parallel Particle-Mesh (PPM) software library [78]

that facilitates large-scale calculations of transport and related problems using particles.

The library implements grid-particle methods. The library provides the mechanisms

necessary to achieve good parallel efficiency and load balancing in these situations where

both meshes and particles operate as computational elements. The PPM library scales to

systems with up to 16,000 processors, with an efficiency of 80% and allows simulations

using billions of computational elements [12]

2.3.4 FURTHER HYBRIDIZATION The above two concepts of Grid-Free and Hy-

brid can be further combined and extended giving rise to a variety of numerical meth-

ods. In this context Lagrangian-Eulerian domain decomposition methods use high or-

der grid methods and vortex methods in different parts of the domain [19, 69] and can

even be combined with different formulations of the governing equations. A finite differ-

ence scheme (along with a velocity-pressure formulation) can be implemented near solid

boundaries, and vortex methods (in a velocity-vorticity formulation) can be implemented

in the wake to provide the flow solver with accurate far-field conditions. In this approach

Eulerian methods handle the wall boundary conditions and can be complemented with

immersed boundary methods [61] to handle complex geometries. A rigorous framework

for particle based immersed boundary methods has been developed based on a unified

formulations of the equations for flow-structure interaction [18]. Simulations involving

this formulation are a subject of ongoing investigations.
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3 REMESHED PARTICLE METHODS

Particle methods are often defined as grid-free methods making them an attractive al-

ternative to mesh based methods for flows past complex and deforming boundaries.

However the adaptivity provided by the Lagrangian description can introduce errors

and particle methods have to be conjoined with a grid to provide consistent, efficient

and accurate simulations. The grid does not detract from the adaptive character of the

method and serves as a tool to restore regularity in the particle locations via Remesh-

ing while it simultaneously enables systematic Multiresolution particle simulations [5],

allows Fast velocity evaluations [34] and facilitates Hybrid Particle-Mesh methods ca-

pable of handling different numerical methods and different equations in various parts

of the domain [19].

3.1 (the need of) Remeshing for Particle Distortion

Particle methods, when applied to the Lagrangian formulation of convection-diffusion

equations enjoy an automatic adaptivity of the computational elements as dictated by the

flow map. This adaptation comes at the expense of the regularity of the particle distribu-

tion because particles adapt to the gradients of the flow field. The numerical analysis of

vortex methods shows that the truncation error of the method is amplified exponentially

in time, at a rate given by the first order derivatives of the flow that are precisely related

to the amount of flow strain. In practice, particle distortion can result in the creation and

evolution of spurious vortical structures due to the inaccurate resolution of areas of high

shear and to inaccurate approximations of the related derivative operators.

To remedy this situation, location processing techniques reinitialize the distorted par-

ticle field onto a regularized set of particles and simultaneously accurately transport the

particle quantities. The accuracy of remeshing has been thoroughly investigated in [47].

The Remeshing is shown to introduce numerical disspation that is far below the dissipa-

tion introduced by time and spatial discretizations. One way to regularize the particles

is setting the new particle positions to be on the grid node positions and recomputing the

transported quantities with a particle-mesh operation.

In order to demonstrate the need of the remeshing step, we consider the vorticity

equation without the viscosity term (ν = 0).

In this case the vorticity evolves according to the Euler equation Dω
Dt = 0. As initial

condition we set a radial function:

ω0(x) = ωmax ·max (0, 1− ‖x‖/R) , (28)

where W is the maximum vorticity and R controls the support of ω0. Since the vortic-

ity is radially symmetric and there is no diffusion, the system is in a steady state: the

exact solution in time is just the initial condition (ω(t) = ω0). We can therefore use

this problem as validation test and study how is important to remesh the particles dur-

ing the simulation. Figure 9 shows the crucial difference between performing and not

performing the remeshing step. In this case we used W = 100, R = 0.5, and a time

step δt = 5 · 10−3. When no remeshing step is performed, the solver generates growing

spurious structures which lead to a break in the radial symmetry of the vorticity field.

This break causes an highly increasing inaccuracy of the computed solution.
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Figure 9: Why do we need to remesh ? Inviscid evolution of a 2D axisymmetric

vorticity field (an exact solution of the Euler equations) at time t = 0.01, t = 0.10
and t = 0.15; using a second order time integrator for the Euler equation. A grid-free

particle simulation produces spurious artifacts that becomes progressively stronger (top).

Remeshing the particles enables the method to maintain the axisymmetric profile and to

provide an accurate solution of the Euler equations (bottom).

The problem of extracting information on regular grid from a set of scattered points

has a long history in the fields of interpolation [80]. To facilitate the analysis we restrict

our attention to a one dimensional equispaced regular grid with unit mesh-size onto

which we interpolate quantities (qn) from scattered particle locations(xn) :

Q(x) =
∑

n

qn W (x− xn). (29)

The properties of the interpolation formulas can be analysed through their behavior in

the Fourier space [80]. The characteristic function g(k) of the interpolating function

W(x) is defined as :

g(k) =

∫ +∞

−∞
W (x) e−ikx dx.

When W decays fast at infinity, g is a smooth function and the interpolation formula

Eq.29 is of degreem if the following two conditions hold simultaneously: (i) g(k)−1 has

a zero of order m at k = 0 and (ii) g(k) has zeros of order m at all k = 2πn, (n 6= 0).
These requirements translated back in the physical space are nothing but the moment

properties of the interpolant
∫
W (y) dy = 1 ;

∫
yαW (y) dy = 0, if 1 ≤ |α| ≤ m− 1 .

This is reminiscent of the conditions for accurate function particle approximations using

moment conserving kernels. In fact the interpolation accuracy [40] can be described
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by splitting the interpolation error into a convolution and sampling error reminiscent of

the smoothing/quadrature error for function approximations. Hence, good interpolation

schemes are those that are band-limited in the physical space and are simultaneously

close approximations of the ideal low pass filter in the transformed space. Monaghan

[62] presents a systematic way of increasing the accuracy of interpolating functions,

such as B-splines, while maintaining their smoothness properties using extrapolation.

He constructs interpolation formulas such that if m = 3 or m = 4 the interpolation

will be exact for quadratic functions, and the interpolation will be third or fourth order

accurate. One widely used formula involves the so-called M ′
4 function

M ′
4(x) =





0 if |x| > 2
1
2(2− |x|)2(1− |x|) if 1 ≤ |x| ≤ 2

1− 5x2

2 + 3|x|3

2 if |x| ≤ 1

(30)

Interpolations in higher dimensions can be achieved by tensorial products of these for-

mulas. However, these tensorial products require particle remeshing on a regular grid.

For non grid-conforming boundaries, remeshing introduces particles onto areas that are

outside the flow domain and violates the flow boundary conditions. Remedies such

as one-sided interpolation have been proposed and a working solution can be obtained

( [24] and [72]) by eliminating particles outside the domain and adjusting accordingly

the modification of particle strengths by re-enforcing the boundary conditions in a frac-

tional step algorithm. Alternatively, Weight Processing schemes attempt to explicitly [3]

or implicitly [90] modify the particle weights in order to maintain the accuracy of the

calculation but they result in rather costly computations.

Finally one lingering question is : when to remesh ? Practice indicates that remeshing

at every time step does not detract from the accuracy of the method and at the same

time enables the use of the grid to develop differential operators. In [37] a criterion was

developed that is well suited to particle methods and their caharcteristics as a partition if

unity technique. In order to determine the rate at which particle remeshing is necessary

it is possible to introduce a measure of distortion. This measure relies on the fact that

the weighted sum H(t) over all particles must be equal to unity in a regularised particle

map

H(t) =
∑

j

vj(t)ζǫ(xp(t)− xj(t)) (31)

H(0) = H0 = 1. (32)

The average change of H(t) over all particles is a measurement of distortion

∆H =
1

Np

∑

j

|Hj(t)−H0,j |

H0,j
, (33)

where Np is the number of particles. When considering particles undergoing a solid

body motion or rotation there is no particle distortion and as such ∆H = 0 Remeshing

can be invoked each time the function ∆H exceeds a small prespecified threshold.

3.2 Communication between particles and meshes

The combined use of particles and meshes has been dictated in the past by the need to

accelerate the velocity evaluations in vortex particle methods as in the PIC methodology.
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Figure 10: Why do we need to remesh ? Evolution of an initially random vorticity dis-

tribution, using a first order time integrator (top), a 4th order time integration (middle),

a 4th order time integrator without remeshing during the simulation (bottom), at time

t = 0.01, t = 0.1 and t = 0.2. Note that without remeshing the random field remains

random, while first order time integration schemes introduce high viscosity to the flow.

As we discuss here, in addition to facilitating the computation of the velocity field the

mesh is needed for the regularisation of the particle locations.

The mesh is used in the present framework to regularize the particle locations, with

the grid nodes becoming particles that are convected in a Lagrangian manner in the

following time step. Going between particles and mesh requires the definition of two

interpolating operators. The Particle-Mesh interpolation (M ← P ) is denoted as I
M
P .

On a given a set of particles {(ωp,xp)}, the I
M
P maps the particle vorticity onto grid

nodes with grid spacing h as

(IM
P {(ωp,xp)}, {x

mesh
m })→ ωmesh

m =
∑

p

ωp ·W (
1

h
(xmesh

m − xp)). (34)



22

0. PARTICLES

1. PARTICLES  + GRID 2. PARTICLE - MESH

     INTERPOLATION

3. ACTIVE  NODES

4. REMESHED PARTICLES

Figure 11: Remeshing of Particles on a Regular Grid. The particles are superimposed

on the grid and their values are interpolated onto the grid nodes. After eliminating grid

nodes with value below a threshold the grid nodes become particles ready to be con-

vected by the flow field

The Mesh-Particle interpolation (P ← M ) is denoted as I
P
M . Given the vorticity

on the mesh one can recover the vorticity of each particle by defining the mesh-particle

operation I
P
M :

(IM
P {(ωm,x

mesh
m )}, {xp)} → ωp =

∑

m

ωmesh
i ·W (

1

h
(xp − x

mesh
m )). (35)

The interpolation kernel can be expressed as tensorial product W (x, y) = W (x)W (y).
For example the M ′

4 kernel conserves the total value, the linear and angular impulse

between quantities on particles and the mesh and it is expressed as :

W (x)M ′
4(x) =





0 if |x| > 2
1
2(2− |x|)2(1− |x|) if 1 ≤ |x| ≤ 2
1− 5

2x
2 + 3

2 |x|
3 if 1 ≥ |x|

(36)

Note that using M ′
4 as interpolation kernel is equivalent to the Catmull-Rom spline in-

terpolation used in computer graphics.

To formally express the remeshing operation, we can suppose that we have a particle

set S = {(ωp,xp)} and W (.). Then, the result of a remeshing operation is the following

particle set:

Remeshing( {(ωp,xp)} ) = (IM
P {(ωp,xp)}, {x

mesh
m }). (37)

3.2.1 EFFICIENT IMPLEMENTATION OF PARTICLE-MESH INTERPOLATION The

efficiency gain of hybrid particle methods over non-hybrid particle methods hinges on

the efficient implementation of Particle-Mesh and Mesh-Particle interpolations. As we
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have seen before, the P→ M interpolation has the form

qi =
∑

p

QpM(i h− xp) . (38)

The most straightforward way to implement (38) is a verbatim translation of the expres-

sion into code, i.e. to sum over all particles and evaluate the kernel function M . Clearly,

this is very inefficient due to the locality of the kernel M . A more efficient approach

would be to use cell lists an loop over cell lists located around the target grid point i.
Still this involves calculating distances of particles to i, and we perform many extra

operations.

The key to an efficient implementation of (38) lies in realizing that the operation is

usually performed for a whole grid, i.e. a set of grid points i, and then to flip the loops

as illustrated by Algorithm 2.

for p ∈ P do

x̂ = xp h
−1;

i1 = INT(x̂); i0 = i1− 1; i2 = i1 + 1; i3 = i1 + 2;

x1 = x̂− REAL(i1); x0 = x1− 1.0; x2 = x1 + 1.0; x3 = x1 + 2.0;

a0 = M(x0); a1 = M(x1); a2 = M(x2); a3 = M(x3);
/* In these kernel evaluation statements we can

exploit the fact that the kernel M is usually a

piecewise polynomial, and that we a-priori know

which interval of the kernel x0, x1, etc. fall

into; this saves us from using any conditionals.

*/

q[i0[0], i0[1], i0[2]] = q[i0[0], i0[1], i0[2]] +Qp a0[0] a0[1] a0[2];
q[i0[0], i0[1], i1[2]] = q[i0[0], i0[1], i1[2]] +Qp a0[0] a0[1] a1[2];
. . .;
q[i3[0], i3[1], i3[2]] = q[i3[0], i3[1], i3[2]] +Qp a3[0] a3[1] a3[2];

end

Algorithm 2: P → M interpolation; in this 3D example we assume that the com-

putational domain starts at the origin, the indices start at zero, and that we are

using a kernel with support 4. The index i is a symbolic abbreviation for i, j, k,

e.g. i1[1] ≡ j1.

3.3 Evaluation of differential operators

Our hybrid particle mesh methods have a one-to-one relation between particles and the

mesh. Thus we can make use of the efficiency of the evaluation of differential operators

on a regular grid by interpolating particle quantities onto the grid (P → M), evaluating

the operators (M→ M) and interpolating the result back onto the particles (M→ P):

(1) P→ M qi =
∑

pQpM(i h− xp)

(2) M→ M ri = (∆h,FD q)i

(3) M→ P (∆q)(xp) =
∑

j M(xp − j h) rj
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Together this yields

(∆q)(xp) =
∑

i

M(xp − i h)(∆
h,FD)

(∑

p′

Qp′(i h− xp′

)
, (39)

or

∆hq = MTDM Q. (40)

Next to the efficiency gain by bypassing particle-particle interactions, this approach

plays an enabling role in adopting immersed interface techniques (see Chapter 3), and

multiresolution (see Chapter 5).

Velocity evaluation The velocity evaluation involves solving the Poisson equation 25

and computing the curl of the resulting stream function Ψ. In the following we will

be dealing with unbounded or periodic flows only. In these cases we use FFT-based

Poisson solvers. As we do not require the stream function as such, but only its curl, we

can perform the curl also in Fourier space. Thus the velocity evaluation takes the form:

(i) Transform vorticity into Fourier space, (ii) evaluate velocity as û(k) = k × ω̂ |k|−2,

(iii) transform velocity into physical space. In the case of unbounded domains we also

use FFTs and apply the technique introduced by Hockney and Eastwood in [40].

Stretching and dissipation The stretching and the dissipation are computed in phys-

ical space on the grid as

∇h · (ux ω) + Re−1 ∆h ωx

∇h · (uy ω) + Re−1 ∆h ωy

∇h · (uz ω) + Re−1 ∆h ωz ,

where∇h is the fourth-order finite difference approximation of∇, and ∆h is the fourth-

order finite difference approximation of the the Laplacian. As the velocities are spec-

trally accurate using fourth-order differences here is beneficial if the flow is well re-

solved, and leads to more accurate results.

Figure 12: Simulations of the thin double shear layer. Red denotes high positive vor-

ticity, and blue denotes high negative vorticity. From left to right: simulation using

256x256, 512x512 and 2048x2048 particles. Note the development of a spurious vortex

for the two lower resolutions
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3.3.1 THE ADVANTAGES OF STRUCTURE On a structured grid physical neigh-

borhood and logical neighborhood (in memory, access) usually coincide. Compare the

following evaluation of ∆q in 2D at a given point (on a particle, on a grid point, respec-

tively):

∆h=1q ≈ (qi+1,j + qi−1,j + qi,j+1 + qi,j−1 − 4 qi,j);

Algorithm 3: Laplacian on the grid

for p′ = 1, Nneighbors(p) do
l = NeighborIndex(p′);
(∆ε,hq)p′+ = η(xp − xl) (ql − qp);

end

Algorithm 4: Laplacian on particles

Evidently, the minimal size, direct access evaluation on the grid is more efficient and

in general leads to less cache misses than the particle evaluation. Additionally, the grid-

based evaluation is much easier to program as it does not require auxiliary data structures

such as verlet lists, or cell lists.

The particle solver has been validated on a number of benchmark tests for accuracy

and efficiency. The thin double shear layer is a challenging benchmark for incompress-

ible flow solvers. Brown and Minion [60] have demonstrated that in under-resolved

simulations spurious vortices infiltrate the numerical solution in discretizations by var-

ious computational methods. We have computed the double shear layer problem as

presented in [60], studying the effect of solving the vorticity at low-resolutions often as-

sociated with the creation of secondary spurious vortices. The domain is again the unit

square with periodic boundary conditions with the initial condition for the velocity field

u = (u, v) in the following non-dimensional form:
{
u(x, y) = tanh(ρ ·min(y − 0.25, 0.75− y))
v(x, y) = δ · sin(2π(x+ 0.25))

In the present simulations we consider the thin shear layer obtained by setting δ = 0.05,

ρ = 80 and a viscosity ν = 10−4.

All simulation were performed using the 4th order Runge-Kutta with a timestep dt =
0.02 for tend = 1.0 The numerical results are depicted in 12 in the form of vorticity for

three different resolutions. It is evident that a spurious vortex is present in the simulation

result with the coarsest resolution. The spurious vortices are eliminated using a hybrid

particle method with 512x512 grid/particles. Note however the solution shows some

minor undulations instead of the expected straight line [60], near to the center of the

domain.

This numerical artifact disappears when using 2048x2048 computational elements.

Next we consider the case of viscous vorticity decay from an initially uniform random

distribution with an average of zero vorticity and a maximum value of 400. The con-

sidered physical domain was the unit square with periodic boundary conditions, and the

viscosity was set to ν = 10−7. Figure 10 shows the evolution of the flow obtained with

a first order time integrator and a timestep dt = 0.001 and with a 4th order Runge-Kutta

time integrator. The utilization of a first order time integration scheme introduces a large

amount of numerical viscosity producing large, weak vortex cores. On the other hand,

the 4th order Runge-Kutta scheme succeeds in restraining the effects of numerical vis-

cosity producing smaller vortices of higher intensity. Furthermore we note in particular

the role of remeshing : In the absence of remeshing the random vorticity field remains

random, as the low viscosity is overwhelmed by the chaotic motion of the particles and
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no structure emerges as one would expect from a viscous flow field.

3.4 A REMESHED particle method

We finally present the algorithm that is being used in our function evaluations

Set up, initial conditions, etc. , t = 0;

/* Particle quantities will be stored in arrays,

e.g. vorticity: ω ∈ R∋×N. For the ODE solver we

need two temporary variables: u0, and dω0 */

while t ≤ T do

for l = 1 to 3 ; /* stages of the ODE Solver */

do
Interpolate ω onto the grid (ω → ωijk);

Compute velocity uijk from ωijk;

dωijk ← Compute stretching and dissipation from uijk and ωijk;

dω ← Interpolate dωijk onto the particles;

u0← u+ αl u0; dω0← dω + αl dω0 ; /* α = (0,−5
9 ,

153
128) */

x← x+ δt βl u0; ω ← ω + δt βl dω0 ; /* β = (1
3 ,

15
16 ,

8
15) */

end

end

Algorithm 5: Overall procedure of a hybrid vortex method using Williamson’s

Runge-Kutta scheme no. 7.

We note here two important facts: this algorithm is fast because every differential

operation is performed in an Eulerian frame, without evaluating any kernel. Also the

convection is performed in a fast way: we are dealing with particles, so we do not have

a classical CFL condition on u, we can take large time steps because they are bounded

according to δt ∼ 1/||∇u||2.

At the same time the convection is solved accurately because is solved in a Lagrangian

fashion, i.e. following the characteristics of the solution. This method has been imple-

mented efficiently in parallel computer architectures leading to unprecedented simula-

tions using billions of particles (Figure 7 ) the simulation of aircraft wakes [12]
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4 MULTIRESOLUTION PARTICLE METHODS

Lagrangian particle methods enjoy automatic adaptivity of the computational elements

to the flow map. At the same time this adaptivity is not necessarily associated with an

increased resolution of the flow in areas with critical phenomena as the convection of

the particles is dictated by the corresponding velocity field. Furthermore regularity in

the particle resolution in general imposes a severe restriction on the overall adaptivity

of particle methods. For example in bluff body flows the boundary of the body is the

source of vorticity and it is important to discretize adequately the region near the surface

of the body [49]. This requirement dictates the size of the particle cores. However for

constant size particles, as the vorticity gradients decay in the wake, it is clear that the

flow is discretized using unnecessarily large numbers of computational elements. At the

same time near areas of high shear (e.g. near the solid walls) small scales are produced

and there is clearly a need to resolve this scale by adapting the particle distribution in

these regions. The deficiency of constant size particle methods clearly detracts from the

adaptive character of the method and its capability to accurately resolve strong gradients

while remaining computationally efficient.

Hence, beyond adaptivity as dictated by the flow map, it is often necessary to employ

particle methods with different resolution requirements as dictated by the physics of the

problem.

The use of remeshing introduces the periodic regularisation of the particle locations

and enables yet another important contribution to particle methods, namely the intro-

duction of a consistent multiresolution framework for flow simulations. Borrowing from

Eulerian based methods, techniques such as AMR can be easily incorporated. Remesh-

ing of the particles can be adapted to accommodate grids of different resolutions based

on criteria partaining to the structures of the flow field. In [21] Cottet, Koumoutsakos

and Ould-Salihi formulated a convergent variable core size vortex method for the Navier-

Stokes equations by using mappings from a reference space with uniform blobs to the

“physical” space with blobs of varying size in conjunction with an anisotropic diffusion

operator. This method was extended in a domain decomposition framework to han-

dle several mappings corresponding to different zones and grid-size requirements in the

flow. All these methods require a priori knowledge of where the flow field should be

refined, and the refinement strategy is not of adaptive nature.

Both types of methods can be viewed as extensions of the methods proposed in [21]:

one uses a global adaptive mapping, while the other is based on combinations of several

local mappings. They also relate to adaptive Eulerian methods. The first class pertains

to r-Adaptive finite element methods [59] while the second one is reminiscent of finite-

difference Adaptive Mesh Refinement (AMR) methods [7]. The concept of r-adaptivity

originated in the realm of finite elements and amounts to moving the computational el-

ements into areas of the computational domain where increased resolution capability

is needed. The first finite element method that achieved improved accuracy by adap-

tively moving the nodes of the triangulation has been presented by Miller in [59]. The

equations of motion of the nodes have been determined by minimizing a global error

functional with respect to the weights of the finite element basis functions and the posi-

tions of the nodes simultaneously. One can argue, that particle methods are inherently

r-adaptive due to their Lagrangian character. This is true in the sense that computational

elements are moved into areas where increased capability of resolution is required. Un-

like the finite element method, the characteristic length scale of these elements remains
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unaltered and it is usually uniform. Thus, the analog for r-adaptivity in particle meth-

ods is to employ particles with varying core sizes which adapt with the evolution of the

solution they represent.

AMR methods have been first proposed by Berger and Oliger [7] in the context of

finite-difference methods. The idea here is to define blocks of uniform grid-sizes, that

are defined dynamically based for instance on a posteriori error estimates. Blocks with

different grid-sizes communicate by exchange of boundary conditions as in domain de-

composition methods. We revisit this class of methods in the context of particle methods

by extending the variable-blob techniques introduced in [21] for the case of several local

mappings. Our method is heavily based on overlapping of the sub-domains and particle

remeshing in the overlapping zones play the role of interface boundary conditions in

finite-difference AMR methods.

Finally AMR techniques require various criteria for the introduction of mesh refinement

and they are often difficult procedures to automate. This automation can be further fa-

cilitated by introducing a wavelet analysis of the flow field borrowing from ideas in

signal processing [57]. The use of wavelets in flow simulations has received significant

attention in recent years but it has been mostly focused on Eulerian grid based meth-

ods (see [95] and references therein). In the context of remeshed particle methods it

is possible however to adopt wavelet concepts leading to a Lagrangian particle wavelet

technique [5]

In summary we distinguish four types of multiresolution particle methods that are

further described in the following sections :

1. Particle Methods with Variable cores [22]

2. Particle Methods with Adaptive Global Mappings [4]

3. Particle Methods with AMR capabilities [4]

4. Particle-Wavelet techniques [5]

In our two classes of techniques, one can expect that rephrasing in terms of particle

methods concepts inherited from adaptive finite-element or finite-difference methods

may lead to methods that will keep the essence of particle methods, namely its robust-

ness when dealing with convection dominated problems or problems involving complex

physics, while optimizing their accuracy.

4.1 Particle method with variable core sizes

We present the variable core method as it is applied to convection-diffusion problems of

the form
∂q

∂t
+∇ · (u q) = ν∆q . (41)

Using the particle discretizations described in Chapter 2, Equation (41) can be solved by

integrating the following ODEs for the particle positions, volumes and strengths:

dxj

dt
= u(xj , t) ,

dvj

dt
= ∇ · u(xj , t) vj ,

dQj

dt
=

ν

ε2

∑

k

[
Qk vj −Qj vk

]
ηε(|xj − xk|)

(42)
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for j = 1, . . . , N .

In order to resolve problems with variable resolution requirements particle methods

with variable core sizes have been introduced in [22]. They utilize a smooth map f :
Ω̂ → Ω, which maps a “reference” space Ω̂ ⊆ R⌈ with uniform core sizes ε̂ onto a

“physical” space Ω ⊆ R⌈, so that

x = f(x̂) , x̂ = g(x) ,
{
Φ

}
ij

=
∂x̂i

∂xj
and |Φ| = detΦ (43)

and the cores in physical space become anisotropic and of the order of ε ∼

(
1
|Φ|

)1
d
.

Like in the uniform core size method (42), we convect the particles in physical space, but

diffusion is performed in reference space, so that withN particles, located in {xj(t)}
N
j=1 =

{f(x̂j)}
N
j=1 we find an approximate solution to (41) by integrating the following set of

ODEs:

dxj

dt
= u(xj , t) ,

dQj

dt
=

ν

ε̂2

∑

k

ψε̂
pq(x̂j − x̂k)

(mpq(x̂j) +mpq(x̂k)

2

)
[v̂jQ̂k − v̂kQ̂j ] ,

dv̂j

dt
= ∇̂ ·

(
Φu

)
(xj , t) v̂j .

(44)

In the above equation Qj and Q̂j denote the particle strength in physical and reference

space, respectively, related by

Q̂j = Qj |Φ|(xj) .

4.2 Particles with Adaptive Global Mappings

The framework introduced in section 4.1 involves analytical maps for which the Jacobian

is readily available. If the mapping is invertible it can be changed at any time during a

simulation. In the present method, particles are convected in physical space, remeshing

and diffusion are performed in reference space, so that one can envision the following

adaptive algorithm (see Figure 13): In this method, analytic, invertible maps could be

dynamically adapted to the flow field. For instance, this could be done by adjusting their

parameters: if f(x̂) = c1 e
−c2x̂ was used as a map to resolve a 1D boundary layer, we

could adjust c1 and c2 to account for the growth of the layer. However, in order to have a

map that is general enough to provide heterogenous flexible adaptation, it is desirable to

use a finite dimensional map. Such a map could be described by a particle representation

as

x(x̂, t) = f(x̂, t) =

M∑

j=1

χ(t)j ϕj(x̂) . (45)

In the present method we introduce such a map and we require that the basis functions

C2(Ω̂) ∋ ϕj(x̂) = ϕ(x̂ − ξj) be positive and have local support. Positivity is desirable

as it assures that monotonicity of the nodes {ξj}
M
j=1 and node values {χj}

M
j=1 leads to

monotonicity of the map. The parameters in the map that are changed in the process

of adaptation are the node values {χj}
M
j=1. Due to the lack of simple invertibility we

require that χj(t) ∈ C
1([0, T ]) for all j = 1, . . . ,M , i.e. that the adaptation of the nodes
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Figure 13: Illustration of an invertible adaptive mappings algorithm : Given a map f and

an inverse map g and particles in Ω, 1. transfer particles to Ω̂ using an adapted inverse

map g. 2. remesh particles in Ω̂ and perform diffusion 3. transfer particles to Ω with

adapted map f

be continuous and differentiable. Using a map as described in (45) makes it impossible

to leap back and forth from physical to reference space. However its differentiability

enables us to cast the governing equations into reference space and solve the problem

there, without the need of the inverse map g : x→ x̂, i.e. without the need of invertibility.

4.3 Particles with Adaptive Mesh Refinement

In [21] different mappings were used in different parts of the computational domain,

leading to different grid-sizes. Typically, for a flow around obstacles, one can think

of local mappings adapted to a fine resolution of each boundary layer while another

mapping could be used in intermediate zones with a stretched resolution away from

the obstacles. These methods can be viewed as non-conforming domain decomposition

methods with domain overlapping.

We propose here a method along the same lines but with piecewise constant grid-sizes

adaptively adjusting to the solution. At every time-step blocks with grid-sizes, say, of

the form h2−l are defined and discretized by particles with corresponding blob-sizes.

As in the method proposed in [21], the overlapping of the blocks is essential to allow

particles around the block-interfaces to exchange information and maintain a consistent

approximation at the desired resolution everywhere. The exchange of information is

done by interpolation at the remeshing stage that in our particle algorithms is done at

every time-step. In the sequel we detail this procedure for a one-dimensional advection

problem.

4.3.1 THE ONE-DIMENSIONAL ADVECTION EQUATION To describe more pre-

cisely the algorithm, we focus on equation (41) and we consider the case of two given

blocks Ωc and Ωf :

Ωc =]−∞, a[ , Ωf =]b,+∞[

with a > b. Ωc and Ωf are respectively coarse and fine resolution zones, with particle

sizes H and h.

We will denote by xn
c,i (resp xn

f,i) the locations of particles in the coarse (resp. fine)

block at time tn = nδt, and by Qn
c,i (resp Qn

f,i) their strengths. A complete time-
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step of the algorithm alternates particle motion and remeshing. Particles are pushed in

both zones in the same way as in a single-resolution method. We assume that, after

particles have moved they provide a consistent approximation of the solution q, at the

corresponding resolution, in both domains. We denote by x̃n+1
c,i and Q̃n+1

c,i the particle

locations and weights after advection in the coarse grid domain, with similar notations in

the fine resolution domain. The goal of the remeshing step that follows is to make sure

this this assumption will still be valid at the next time-step. For this purpose we need to

extend Ωc and Ωf , such that there is a region of overlap. We thus define

Ωc =]−∞, a+ l1[ , Ωf =]b− l2,+∞[

We also set

Ω̃c =]−∞, a− l3[ , Ω̃f =]b+ l4,+∞[

with li > 0 such that a−l3 > b+l4, so that Ω̃c and Ω̃f overlap (see sketch on Figure 14).

The remeshing step will remesh existing particles x̃n+1
c,i , x̃n+1

f,i at regular locations xn+1
c,i ,

Ω̄f
Ωf Ω̃f

Ω̃c
Ω̄c

Ωc

a + l1aa − l3

b − l2 b b + l4

1

2

3 4

Figure 14: Sketch of coarse-fine domain decomposition. Arrows indicate how particles

at the end of advection contribute to remeshed particle values in the different domains.

Particles in grey (resp. in black) obtain their strength after remeshing from the domain

with different resolution (resp. the same resolution). Numbers refer to the different

stages in the remeshing algorithm.

xn+1
f,i respectively in Ω̃f and Ω̃c, and create new particles in Ωc− Ω̃c and Ωf − Ω̃f . More

precisely, the remeshing algorithm proceeds as follows:

1. particle weights of fine-size particles in Ωf are interpolated to give values for

particles at regular locations on a fine grid in Ω̃f .

2. particle weights of coarse-size particles in Ωc are interpolated to give values for

particles at regular locations on a coarse grid in Ω̃c.

3. coarse-size particles in Ω̃c are used to compute values for particles at regular lo-

cations on a fine grid in Ωf − Ω̃f

4. fine-size particles in Ω̃f are used to compute values for particles at regular loca-

tions on a coarse grid in Ωc − Ω̃c
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The remeshing in steps 1, 2 and 3 above are done by interpolation with the kernel used

for remeshing particles. Steps 3 and 4 can be either done simultaneously with steps one

and two, or follow these stages. In that case, stage 4 is just a sampling of the values

obtained in stage 2.

Figure 15: Top Row : Vorticity contours for the high-resolution reference calculation

at t = 1.5 with N = 60’800 (left) and the corresponding contours for the adaptive global

mappings based method with N = 15’100 (center). The adaptive mapping of the parti-

cles is shown on the right.

Bottom Row : Vorticity contours for the high-resolution reference calculation at t = 1.5

with N = 60,800 (left) and the corresponding AMR-based contours (solid lines corre-

spond to refinement areas, dashed lines correspond to coarse areas) with N = 20,500

(right).The AMR remeshing of the particles is shown on the right.

To be more specific, let us clarify the conditions to ensure consistent transfers of

information from one level of refinement to another. First, it is important to observe that

the fine-size particles in Ω̃f do not suffice to give consistent remeshed values throughout

Ω̃f , unless a one-sided interpolation formula was used near the domain interfaces. We

did not consider that option, as it would add some algorithmic complexity. On the other

hand, using information from the coarse-grid domain, as prescribed in step 3 above, is

consistent, provided the stencil needed for the interpolation remains in Ωc. Similarly,

in order for the remeshing from Ωf to Ω̃f to be consistent, we need that the stencil

centered at the boundary of Ω̃f does not extend outside Ωf . These observations also

give us overlapping rules that the domains Ω, Ω̃, and Ω must obey. Let k be the number

of points in each direction involved in the interpolation function used to remesh particles

(k = 2) for the M ′
4 used here.

• consistency of stage 1 above requires l4 ≥ (k − 1)h

• consistency of stage 2 above requires l3 ≥ (k − 1)H
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• consistency of stage 3 requires that b− l4 + kH ∈ Ωc, that is a− b− l4 > kH

• consistency of stage 4 requires that a− l3 − kh ∈ Ωf , that is a− b− l3 > kh

Denoting by δ = b− a the width of overlapping between the two domains, these condi-

tions can be rewritten

hk ≤ l4 < δ − kH , Hk ≤ l3 < δ − kh (46)

We deduce from these conditions that δ must satisfy

δ > k(H + h) (47)

Under the conditions (46) and (47), given the fact that particles x̃n+1
c,i x̃n+1

f,i with weights

Q̃n+1
c,i and Q̃n+1

f,i were a consistent discretization of Ωc and Ωf , remeshed particles xn+1
c,i

xn+1
f,i with weights Qn+1

c,i and Qn+1
f,i provide a consistent discretization of Ωc and Ωf at

the corresponding resolution. It remains then to ensure that the next advection step will

keep consistent particle values in Ωc and Ωf . If ‖u‖∞ denotes the maximum advection

velocity, a sufficient condition is clearly

l1 ≥ ‖u‖∞δt , l2 ≥ ‖u‖∞δt (48)

Figure 16: Inviscid Evolution of an Elliptical Vortex using Particle Wavelets. The last

figure on the right shows a zoom at the vortex filaments demonstrating the different sizes

of particles as identified by the wavelet analysis.

4.4 A Particle Wavelet Method

The “remeshing” procedure introduced by the Particle Mesh technique ensures particle

overlap and preserves the accuracy of the method [48].

As a consequence, it distances itself from classical particle methods with an automatic

adaptivity that is synonym of degraded accuracy. Adaptation can be reintroduced in

Particle-Mesh techniques though, in a more controlled fashion, through adaptive mesh

refinement techniques [4] or the Wavelet-based [5] approach presented here.

4.4.1 WAVELET-BASED ADAPTATION OF REMESHED PARTICLE QUANTITIES In

the present framework we implement tensor-product wavelets ψl,µ and scaling func-

tions ϕl on a sequence of L+ 1 dyadically refined grids with mesh spacings {hl}
L
l=0 =
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Figure 17: Each detail coefficient dl,µ
k , with µ = 1, . . . , 2d− 1 corresponds to a specific

grid point on the next finer level.
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Figure 18: Particles are created on the adapted grid K>(t) and advected. In the context

of a two-step ODE integration scheme, the particle function representation is evaluated

(P→ M) on an intermediate gridK>(t+ 1
2δt) and the right-hand sides that are evaluated

on this grid (M → M) are interpolated back onto the particles (M → P). At the end of

the time step the particles are remeshed onto a meshK>(t+δt) on which the next MRA

is performed.

{h0 2−l}Ll=0 and grid points k ∈ {Kl}Ll=0. The scaling functions and wavelets are related

as:

ϕl
j =

∑

k

H l
j,k ϕ

l+1
k , ψl,µ

j =
∑

k

Gl,µ
j,k ϕ

l+1
k , (49)

where µ = 1, . . . , 2d−1. The discrete filtersH l
j,k andGl,µ

j,k depend on the specific choice

of wavelets employed. Using these bases the function q(x) is expressed as

q(x) =
∑

k∈K0

c0k ϕ
0
k(x) +

L−1∑

l=0

∑

k∈Kl

2d−1∑

µ=1

dl,µ
k ψl,µ

k (x) . (50)

The scaling coefficients clk and detail coefficients dl,µ
k can be efficiently computed using

a Fast Wavelet Transform. In areas where the function q(x) is smooth the detail coeffi-

cients of fine levels l will tend to be small, and a compressed representation of q(x) is

obtained by discarding detail coefficients for which |dl,µ
k | < ε. The error introduced by
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this compression is bounded by

‖q(x)− q≥(x)‖∞ ≤ C1 ε ≤ C2N
P/d , (51)

where P is the order of the wavelets and N is the number of active coefficients.

It is important to note that each detail coefficient is associated with a grid point on

the next finer grid, as illustrated in Figure 17. Hence, the compressed representation q≥
is inherently linked with a adapted grid, composed only of the grid points whose detail

coefficients are significant, i.e. |dl,µ
k | ≥ ε.

4.4.2 PARTICLE-MESH INTERPOLATION AND WAVELET MRA The wavelet-based

MRA of the remeshed particle properties enables an enhanced multiresolution particle

function representation. In order to allow for the emergence of small scales between two

remeshing steps we additionally activate all children of the active grid points.

The computational steps (P → M, M → M, M → P) are outlined in Figure 18 for

the case of a two-step ODE integration scheme), and are based on level-wise operations.

For a detailed description of multiresolution P→ M and M→ P interpolations we refer

to [5].
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5 PARTICLE METHODS FOR INTERFACES

The previous sections have been devoted to generic simulation tools in particle methods.

We now come to issues that are more specific to problems and situations encountered in

graphics applications. In these applications most often several physical systems, fluids,

gas, rigid or elastic solids coexist and interact. We show how particle methods can be

used both to simulate these different systems and to account for their interactions.

Interfaces (e.g. gas-liquid, flow-structure) deserve careful attention because they sep-

arate systems driven by different physical laws, and because it is the place where conti-

nuity conditions have to be enforced to preserve conservation of energy and momentum,

and thus to give plausible physical dynamics. Generally speaking, there exist two classes

of numerical methods to deal with interfaces : tracking and capturing methods.

Tracking methods solve the interface evolution equation in a Lagrangian fashion, for

example by evolving marker particles. The origin of tracking methods can be traced to

the 1930’s and to calculations made by hand by Rosenhead [77] to describe the evolu-

tion of a vortex sheet in incompressible flows. These calculations have been followed

40 years later by the introduction of vortex methods [16] and the method of contour

dynamics [98] while we consider that the Immersed boundary Method pioneered by Pe-

skin [70] shares the spirit of these techniques. A fundamental problem of Lagrangian

methods is the distortion of the locations of the computational elements resulting in an

inaccurate description of the interface. Lagrangian interface capturing method require

inserting or deleting points on the interface, with ad-hoc procedures. These methods

are recognized to have difficulties to satisfy mass conservation. In capturing methods,

the interface is determined by an implicit function that is advected in the computational

domain. The most common interface capturing methods include Volume of Fluid [39]

and Level Set methods [67, 83]. Volume of Fluid (VOF) methods are inherently linked

to fluid mechanics problems and to Eulerian discretizations of the flow equations. They

have enjoyed significant success in simulations of free surface and multiphase flow phe-

nomena [79]. Level Set (LS) methods [85, 68, ?, 66, 30, 86] employ an implicit function

to describe the advection of the interface and are well suited to problems where inter-

faces undergo extreme topological changes. They have been applied with significant

success to problems ranging from fluid mechanics to image processing and materials

science (see the textbooks [?,68] and references therein). The LS equation is commonly

solved in an Eulerian framework by using high order finite difference methods, such as

the fifth-order accurate Hamilton -Jacobi WENO schemes [9]. The accuracy of inter-

face capturing schemes is reduced when the interface develops structures whose length

scales are smaller than those afforded by the Eulerian mesh [75]. In addition time step

limitations are introduced by the associated CFL condition for the discretization of the

advection term. A number of remedies have been proposed to rectify this situation, such

as high order ENO/WENO approximations, semi-Lagrangian techniques [91] and hy-

brid particle-level set techniques as introduced in [27]. In the latter work, the cells near

the interface are seeded with marker particles in order to obtain sub-grid scale accuracy.

This hybrid method has been shown to provide superior results for a number of bench-

mark problems in two and three dimensions. However, a number of open issues remain

regarding the manner in which particles are introduced as well as the number of particles

necessary to obtain a prescribed accuracy.
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Figure 19: Zalesak’s Slotted Sphere. Top: Eulerian Level Sets using 100x100x100 cells

(from Enright et al. [27]). Middle: Hybrid Eulerian-Particle Level Sets of Enright et

al. [27] using 100x100x100 cells and subscale particles. Bottom: Lagrangian Particle

Level Sets [37]. The simulation uses 24351 Lagrangian particles in a narrow band, with

an effective resolution of 64x64x64 cells.
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The equations for the evolution of level sets can be cast, however in a lagrangian form

enabling the use of all the tools, including remeshing, that we have developed so far in

particle methods. As a matter of fact, the level set equation is an advection equation of

the form (3), and as such qualifies for particle discretization.This Lagrangian Particle

Level set technique was introduced in [37] and it is discussed in the following sections.

5.1 Lagrangian Particle Levels Sets for Interface Capturing

The Level Set method [67, 83] defines an interface Γ(t) as the zero level set of a high

dimensional, scalar function Φ(x, t) : R
3 → R:

Γ(t) = {xǫΩ : Φ(x, t) = 0} , (52)

where Ω is the computational domain. The level set function has the following proper-

ties:

Φ(x, t) > 0, x ∈ Ω̃

Φ(x, t) ≤ 0, x /∈ Ω̃, (53)

where Ω̃ ⊂ Ω is an open region bounded by Γ. The motion of the interface is driven by

a velocity field u(x, t) as:

∂Φ

∂t
+ u · ∇Φ = 0 for t > 0, (54)

Φ(x, 0) = Φ0(x). (55)

The specific form of the advection velocity field for the level set depends on the problem

under consideration. This velocity is often considered as a function of the geometric

properties of the surface, such as the normal and the curvature which are in turn com-

puted via the definition of the level set

n =
∇Φ

|∇Φ|
κ = ∇ ·

∇Φ

|∇Φ|
(56)

The function Φ0 is usually chosen as the signed distance to the interface such that

|∇Φ| = 1. However, during its evolution, the level set function Φ(t) can lose the prop-

erty of being the distance function [93]. Reinitialization schemes such as fast marching

methods have been introduced [83, 84] in order to maintain this property. Usually the

evolution of the level set function is computed using grid-based methods and the spatial

derivatives in Eq. (56) are calculated by finite difference schemes [?].

In the context of the particle methods we propose in this class the level set equation can

be expressed in a Lagrangian framework using the material derivative D
Dt = ∂

∂t + u · ∇
as

DΦ

Dt
= 0 (57)

Dx

Dt
= u,

(58)

where x denotes the characteristics of the equation. The Lagrangian description of the

level set equation is utilised in interface tracking methods. These methods encounter
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difficulties when singularities are formed during the evolution of the interface and need

to be complemented with suitable regularisation procedures [83] in order to recover a

desired weak solution. In the Lagrangian Particle Level Sets (LPLS) [37] this regulari-

sation is performed by a remeshing procedure (see Section 3).

5.1.1 RE-INITIALISATION AND REMESHING OF PARTICLE LEVEL SETS Reini-

tialisation of the signed distance function is a key issue in level sets and we discuss in

this section how it can be combined with the remeshing step in the context of Lagrangian

particle level sets.

The level set functions can be defined through the signed distance function (SDF) is

defined by Eq. (53) along with the constraint that

|∇Φ(x, t)| = 1. (59)

The absolute value of the SDF measures the distance to the interface and the sign of

the function changes when crossing the interface. Alternatively level sets are defined by

a color function (CF) [64] using a different characteristic constant on each subdomain

separated by the interface, as in :

Φ(x, t) = 1, x ∈ Ω̃ (60)

Φ(x, t) = 0, x /∈ Ω̃, (61)

where Ω̃ ⊂ Ω is an open region bounded by the interface Γ. The SDF approach can be

used for computing quantities such as surface tension. However, in cases where the dis-

tance information is not necessary, use of the CF can result in significant computational

savings. In a particle method, the evolution of the LS function Φ amounts to evolving the

particles on which it is discretised. Using smooth particles this amounts to expressing

the level sets as:

Φ(x) =

M∑

p

vpΦpζǫ(x− xp(t)) (62)

The particle position xp, volume vp and level set attribute Φp, evolve by the following

system of ordinary differential equations derived from Eq. (54):

DΦp

Dt
= 0

Dvp

Dt
= 〈∇ · u〉p vp

Dxp

Dt
= up (63)

where 〈⋄〉p denotes the derivative approximation on a particle p.

An immediate implication of the Lagrangian description is that simulation of solid

body rotation is exact, except for the introduction of errors introduced by the particle

initialisation and by the accuracy of the time integration [37]. The spatial derivatives

used in Eq. (56) are computed by differentiating the regularization formula (62) or by

using the mesh as it was discussed in the context of Hybrid Grid-Particle Methods.

As already discussed, remeshing is necessary when particles cease to overlap as they

adapt to the flow map. Remeshing acts to suppress the evolution of scales that are smaller

than the particle core and to prevent the formation of spurious scales resulting from non-

overlapping particles, thus providing an entropy condition for the evolution of the level



40

sets. When considering a purely rigid body motion, e.g. the rotation of the Zalesak’s

disk, ∆H in Eq.31 is zero and no remeshing of the particles is necessary. This is an

important feature of the present Lagrangian method, in particular when considering the

use of level sets for simulations of solids.

During its evolution, the level set function usually ceases to be the signed distance

function. Techniques such as fast marching methods [15, 85, 83] and re-distancing al-

gorithms [92] have been introduced in order to maintain this property by reinitializing

the level set function. A prerequisite for applying techniques such as the fast marching

method is the regularity of the computational elements. This reinitialisation is straigh-

forward when using an Eulerian description of the level set methods but , in general, it is

not possible for an arbitrary particle distribution. Remeshing, however, offers the benefit

that it distributes the particles on a cartesian mesh and it allows the implementation of

the fast marching method. Remeshing also enables use of the level set redistancing algo-

rithm introduced by Sussman [92] by solving the following equation on the regularised

particle locations :

Φt = sign(Φ0) (1− |∇Φ|) ,Φ(x, 0) = Φ0(x) for t→∞. (64)

The computational effort of this scheme can be significantly high when the time integra-

tion of Eq. (64) requires a small time step to ensure the convergence of the solution.

An alternative scheme, well suited for particle methods as it does not require that

particles are distributed on a regular mesh, was developed based on the first order ap-

proximation of the derivative
∂Φ(x,t)

∂x
= Φ(x,t)−Φ(x0,t)

x−x0
where x0 is the position on the

interface that minimizes |x − x0|. Reformulation of this equations leads to a first order

approximation of the distance to the interface that can be used in turn for reinitialization:

|x− x0| =

∣∣∣∣∣
Φ(x, t)− Φ(x0, t)

∂Φ(x,t)
∂x

∣∣∣∣∣ =

∣∣∣∣∣
Φ(x, t)
∂Φ(x,t)

∂x

∣∣∣∣∣ . (65)

The approximation of the gradient of the level set that can be obtained on the particle

locations using regularization formulas. An assessment of the various reinitialisation

and remeshing schemes for particle level sets can be found in [37]

Figure 20: Evolution of a dumbbell shaped surface under mean curvature flow at t =
0, 10−3, 1.1 · 10−3, 1.26 · 10−3 [37]

In order to reduce the computational cost of the level set method the computational

elements are limited to narrow bands around the interface [83]. This concept is readily

implemented in the present method due to the local support of the underlying particle
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based functions. The remeshing provides a consistent process by which particles near the

interface of the level set are being introduced while particles away from the interface are

eliminated. The equations for the particle locations and volumes (Eq. (54)) are integrated

using a Runge-Kutta method of 4th order in all cases. To reduce the computational cost

involved with the reconstruction of the level set function from the individual particles

(Eq. (62)) we use Linked List [40] and Verlet Lists [96]. The overall cost of the method

scales linearly with the number of active particles. For 105 particles one time step of the

method implemented in FORTRAN 90 requires 1.2 (in 2D) and 2 (in 3D) CPU seconds

on an Apple Powerbook with a G4 processor of 1.25 GHz. The method is detailed in [37]

where a number of comparisons with existing techniques are outlined.

Figure 21: Crossections of the evolving dumbbell using LPLS (left) in comparison to

Chopp and Sethian [14] (right).

Finally we wish to note here the proposed LPLS framework renders itself amenable

to all of the advances described so far in particle methods. We wish to note in particular

the applications of the particle-wavelet techniques [5] which provide an adaptive method

for capturing interface that has unprecedented accuracy and efficiency (see below).

5.2 Applications of Lagrangian Particle Level Sets

We provide now a list of examples where Particle Level Sets have been employed for

multiphysics simualtions. Further examples can be found in the following section dis-

cussing fluids and solid boundaries

5.2.1 BENCHMARKING THE LPLS In these notes we report results from the solid

body rotation of a slotted sphere which corresponds to the well known problem of the

2D Zalesak’s disk in a constant vorticity field [99]. The sphere has a radius of 0.15 and

placed at (0.5, 0.75, 0.5) in a unit domain. The slot has a width of 0.05 and and length

of 0.125. It rotates in the z=0.5 plane around the point (0.5, 0.5, 0.5). The velocity field

describes a rigid body rotation evolving over 628 time units per revolution

v(x) =
π

314




0.5− y
x− 0.5

0


 (66)

As reported in [27] the level set solution with 100x100x100 cells (Fig. 19) suffers from

numerical diffusion which can be alleviated by the hybrid particle level set method in-

troduced in [27] as shown in Fig. 19. In this method grid points at the interface are

assisted by subgrid particles. In LPLS the discretization is equivalent to 64x64x64 and

the slotted sphere maintains its sharp features (Fig. 19) as the particles follow the rigid

body rotation, without any numerical diffusion effects, associated with the advection of
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the level sets. Fig. 19 shows that the Lagrangian particle level set method performs very

well on this problem. In this case, since the particle level set function remains a SDF

there is no need for reinitialization. The present method is straightforward to implement,

does not require seeding of the interface and it is exact in the case of solid body rotation.

To further illustrate the performance in three dimensions we simulate the collapse of a

dumbbell that is a well known curvature flow example [14,82] as it exposes a singularity.

The mean curvature flow pinches off the handle that separates into two pieces, which

continue to shrink and finally vanish. Grayson [32] used this example to show that non-

convex shapes in three dimensions may in fact not shrink to one sphere. The dumbbell

is made up of two spheres, each of radius 0.3, and connected by a cylindrical handle of

radius 0.15. The x-axis is the axis of symmetry. We choose a particle spacing of 0.097
and a time step of 2 · 10−5. The particles are reinitialized every 10th time step. Fig. 20

shows the surface as it appears initially, after shrinkage, when reaching the singularity

and after the break up. The quality of the results is comparable with the finite difference

solution of Sethian [14, 82] as seen in Fig. 21. The resolution of domain and the size of

the time step are equivalent in both simulations. In the rest of this section we investigate

a few applications which involve interfaces and physical processes on surfaces.

5.2.2 WAVELETS AND LPLS The wavelet particle methods [5] described in Sec-

tion3 can be readily extended to LPLS as the level set function can be effectively con-

sidered a scalar subject to a multiresolution evolution.

In order to illustrate this approach we first considered the convection of a passive

scalar (not only its interface !) in 2D, subject to a vortical velocity field [53]. The

problem involves strong deformation of a initial circular scalar field which at the end

of the simulation returns to the initial condition. The remeshing function and particle

kernel were both chosen as

W (x) = ζ(x) =
d∏

l=1

M ′′′
6

(
(x)l

)
,

where the fourth-order accurate interpolating function M ′′′
6 is of higher order than the

M ′
4 function at the expense of a larger support. The wavelets employed were also fourth-

order accurate. The maximum CFL measured during the course of the simulation was

40.7. We also applied the presented method to the simulation of a propagating interface

using a level set formulation. A “narrow band” formulation is easily accomplished with

the present method by truncating the detail coefficients that are far from the interface.

We consider the well-established 2D deformation test case which amounts to the prop-

agation of a circle subject to the same velocity field as above. Figure 23 depicts the

grid adaptation and comparing to Figure 22, one can clearly see the restriction of the re-

finement to a small neighborhood around the interface. We measure the error of the area

encompassed by the interface at the final time and compare it against a non-adaptive par-

ticle level set method [37] and against the “hybrid particle level set method” of Enright

et al. [27]. Figure 24 displays this comparison and we find that our adaptive approach

performs favorably, which may be attributed in part to the adaptive character and in part

to the high order of the method.

5.2.3 FREE SURFACE FLOWS We focus here on the case of variable density flows,

typically liquid-gas systems. This is of course a case of interest in the animation of nat-

ural scenes. To be more specific we consider the case of variable density incompressible

flows, in vorticity formulation and discretized by vortex particle methods.
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Figure 22: Active grid points/particles at two different times of the simulation of a

passive scalar subject to a single vortex velocity field.

Figure 23: Active grid points/particles at two different times of the simulation of a

propagating interface subject to a single vortex velocity field.

One can start from a formulation which combines transport equations for the vorticity

and density gradient∇ρ, obtained by differentiating the velocity-pressure flow equations

(as usual in vortex methods) and the mass conservation equation. In 2D, this gives the

following system.

∂ω

∂t
+ div(uω) = µ∆ω +

∇p×∇ρ

ρ2
+ τ∇φ×∇ (κ(φ)ζǫ/ρ)

∂(∇ρ)

∂t
+ div(u∇ρ) + [∇u]t∇ρ = 0

In the above system, κ is the surface tension, obtained through the level set function by

(??) and ζǫ is a usual regularization function. The right hand side of the vorticity equa-

tion shows that vorticity production results solely from density variation. This vorticity
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Figure 24: Plot of relative error of the area enclosed by the interface against de-

grees of freedom: Hieber & Koumoutsakos [37] (filled circles with dashed line , par-

ticles at time t=0), Enright et al. [27] (empty circles with dashed line , auxiliary par-

ticles at time t=0 and empty squares with dashed line , grid points) and present method

(empty circles with solid line, active grid points at time t=0, filled circles with solid line,

active grid points at the final time).

creation is the same mechanisms that produces vorticity - and thus motion - in a ring of

smoke, or a cloud in air.

It is interesting to note that if the density is constant on either side of the interface S,

or more generally on either side of an interface separating two different fluids, like water

and air, this term will be concentrated on the interface. When a particle method is used,

it will therefore create particles only a small domain. This is particularly visible on the

so-called Boussinesq approximation of the problem. In this approximation, one assumes

that the density variation are small. The vorticity created by this density variation is

approximately solution to the equation

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ν∆ω +∇ρ× g + λ∇× χS(u− u). (67)

Figure 25 represents the interface of two bubbles merging due to gravity and density
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Figure 25: Merging of two bubbles : interfaces and and vorticity contours

contrast, together with a color representation of the vorticity, illustrating that the vorticity

is localized around the interface. In this experiment, no reinitialization was used to

preserve a signed distance function. Instead the cut-off function was normalized at each

point by the norm of the gradient of the level function φ, as indicated in (65) .

5.2.4 VIRTUAL CUTTING USING LPLS The simplicity and efficiency of the pro-

posed method enables simulations associated with virtual cutting of soft biological tis-

sue [38] We consider a liver topology that was segmented from image data of the Visible

Human Project. Based on the a triangular mesh of the topology, particles are placed

inside the liver surface and they are assigned values following a CF approach. Fig.26

shows the surface reconstruction of the liver based on 3209 particles. In order to sim-

ulate cutting, whenever a medical device collides with one of the particles inside, the

contribution of this particles it is removed from the superposition of Eq. (62). Hence

reconstruction of the surface is computationally very inexpensive as the new surface is

reconstructed according to:

Φ(x)new = Φ(x)old −
M∑

q

vqΦqζǫ(x− xq) (68)

where M denotes the (small) number of particles detected during the collision process.

This algorithm shows high efficiency and enables interactive simulations (Fig. 26)

when the devices moved into the liver are not thinner than the particle spacing. Adaptive

insertion of particles having smaller core size is necessary in order to refine this process.
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Figure 26: Particles assign with a color functions are removed from the superposition in

real time when hit by an instrument [38].
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5.2.5 SURFACE DIFFUSION AND GROWTH USING PARTICLES Simulations of

Growth require the capability of modifying the surface and volume of the domain where

the equations of the underlying physics are solved. Particle methods and in particular

the Lagrangian Particle Level Sets that were introduced earlier provide a natural way of

developing computational methods capable of handling diffusion, reaction and growth

processes as they pertain to complex volumes and surfaces. An example of this ap-

plications is the simulation of diffusion on the surface of a biological cell organelle (the

Endoplasmic Reticulum) that was reconstructed from microsections [78] (Fig.27). In the

following we provide examples of growing surfaces and volumes, due to reactions diffu-

sion processes that take place on their surfaces. Such physical systems provide models

for processes such as tumor growth and tumor induced angiogenesis [58]. Further details

of the formulations listed below can be found in [6].

Figure 27: Simulation of the Fluorescence Recovery After Photobleaching (FRAP) dif-

fusion process on the membrane of the cell’s Endoplasmic Reticulum [78]. Solution on

the membrane of an in vivo ER geometry at times t =0 (a), t =36 (b), t =216 (c), and t

=441 (d). The computational diffusion constant is Dsim=1.0 and the diffusion operator

is supported on 3x3x3 particles in a narrow band of half-width of 2h and extended to a

larger band of k ? 3h every time step, using the second-order GMM extension method.

The membrane and the concentration field are discretized using 1.7 million particles.

The three lines indicate the 25%, 50%, and 75% recovery iso-lines..

We start by considering reaction diffusion systems on a closed smooth surface Γ ⊂
Ω ⊆ R

3. A general reaction diffusion system for NS species on Γ can be written as,

∂cs
∂t

= Fs(c1, c2, . . . , cs) +∇Γ

(
D

s
∇Γcs

)
, (69)

where s = 1, 2, . . . , NS ; Fs represents the reaction terms for species s undergoes and

D
s

denotes the diffusion tensor associated with species s. For simplicity of presenta-
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tion we will only consider homogeneous isotropic diffusion in the following, i.e. D
s

=
Ds 1 , s = 1, 2, . . . , NS , where Ds is a constant. Equation (70) then simplifies to

∂cs
∂t

= Fs(c1, c2, . . . , cs) +Ds∆Γcs , (70)

The operator ∆Γ is called the Laplace-Beltrami operator on Γ.

We now consider a geometry that changes in time, i.e. Γ(t) = {xΓ(t)} , with

dxΓ

dt
= un(x, c,Γ) . (71)

Together with Equation (71) the governing equations of the full system are then given

by
∂cs
∂t

+∇Γ · (cs u) = Fs(c) +Ds ∆Γcs , (72)

which can be rewritten as

∂cs
∂t

+
(
(1− n⊗ n)∇

)
(c u) = Fs(c) +Ds∇

(
(1− n⊗ n)∇cs) , (73)

We refer to [89] for a derivation. As we are going to solve this problem with particle

methods it is more suiting to write Equation (73) as a conservation law:

∂cs
∂t

+∇ · (cs u) = (u · n)
∂cs
∂n

+ cs n⊗ n∇u

+ Fs(c) +Ds∇
(
(1− n⊗ n)∇cs)

(74)

The reformulation from (73) to (74) necessitates the extension of both cs and u from Γ
to Ω. Furthermore it becomes evident that if we extend cs and u such, that

∂cs
∂n

= 0 , and
∂(n · u)

∂n
= 0 , (75)

we can simplify Equation (74) to

∂cs
∂t

+∇ · (cs u) = Fs(c) +∇
(
(1− n⊗ n)∇cs

)
. (76)

In the context of particle methods that we have introduced in this class, the surface Γ
is represented implicitly by the zero iso-surface of a level set function

Γ = { x | ϕ(x) = 0 } , (77)

where ϕ is chosen as the signed-distance function of Γ so that |∇ϕ|= 1..

Surface properties can be evaluated exploiting the property (??): the surface normal

and the mean curvature can be computed as n = ∇ϕ , κ = ∆ϕ

The level set function is approximated as ?? as ϕh(x, t) =
∑

p Φp ζ
h(xp(t) − xp) ..

The discretization of Equation (76) using the particle function representation (??) leads

to the following system of ordinary differential equations:

dxp

dt
= u(xp, t) ,

dCp

dt
= vp F (c) + vpD∇

h
(
(1− n⊗ n)∇hc

)
,

dvp

dt
= vp∇ · u ,

(78)
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which has to be numerically integrated in time.

As the level set is advected by Equation (??) it eventually loses its signed-distance

property and it needs to be “reinitialized”. The approach we employ is based on [93],

where the following PDE is iterated to steady state:

∂ϕ

∂τ
+ sign(ϕo) (1− |∇ϕ|) = 0 , (79)

where ϕo = ϕ(τ = 0). Equation (79) is solved using the scheme formulated in [?]. As

we are solving the conservation law formulation (76) to extend both the concentrations

c and the velocities u off the interface Γ, while we require this extension to satisfy the

requirements (75). As we are only interested in the concentrations on Γ it suffices to

extend the quantities into a narrow band around the level set, which we define as

Γe =
{
x

∣∣ |ϕ(x)| ≤ γ
}
. (80)

All calculations are restricted to this narrow band. We periodically extend the concen-

trations by using solving the following PDE:

∂cs
∂τ

+ sign(ϕ)∇ϕ · ∇cs = 0 , (81)

As particles follow the flow map u their locations eventually become distorted and need

to be regularized to ascertain convergence [48]. Regularization is performed by “remesh-

ing” the particles periodically, i.e. resetting particle locations by interpolating the par-

ticle quantities onto a regular grid. For the level set function ϕ the situation is slightly

different: the level set is not subject to a conservation law but to the non-conservative

advection equation 54. We therefore remesh the level set function as:

Φnew
p =

(∑

p′

ζh(xp′ − x
new
p )

)−1
hd

∑

p′

Φp′ ζ
h(xp′ − x

new
p ) . (82)

Alternatively we could compute the evolution of the particle volumes and remesh the

values as

Φnew
p = hd

∑

p′

Φp′/vp′ ζ
h(x′p − x

new
p ) . (83)

Equation (82) however, leads to smoother solutions as it renormalizes ζ implicitly, thus

removing the sampling error from the interpolation. The following algorithm describes

an explicit Euler discretization of the systems in Equation 78 :

The anisotropic differential operator is discretized using second order finite differ-

ences and second order approximations of the diffusion tensor, resulting in a 3 × 3 × 3
stencil. The minimal narrow band thickness is thus γ = 2h. For our calculations we

used γ = 4h, so that the extension was only performed every third time step.

Reaction-Diffusion Simulations on a sphere To assess the accuracy of the present

calculations we perform diffusion only simulations on the unit sphere.

We consider one species, i.e.
∂c

∂t
= ∆Γc , (84)

with initial conditions

c(θ, φ, t = 0) = Y 0
1 (θ, φ) , (85)
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for (k = 0 to k δt = T ) do

On the grid:

Extend c from Γ to Γe using (81)

Calculate reaction terms and diffusion terms in the narrow band

Advance Cp with an Euler step of size δt
if mod(k,m) = 0 then

Create particles

On the particles:

Calculate u in Γe satisfying (75)

Advance xp with an Euler step of size mδt
Interpolate ϕp and cp onto the mesh

Reinitialize the level set

end if

end for

Figure 28: Simulation of the reaction diffusion system (??). From left to right: distri-

bution of c1 after iterations 1,000, 10,000 and 200,000.

Figure 29: Reaction - diffusion equations solved on the Dragon’s surface

where Y 0
1 is the (1, 0) spherical harmonic. The exact solution is given by

c(θ, φ, t) = e−2 t Y 0
1 (θ, φ) . (86)

For the time stepping we employ a TVD RK2 scheme. This case was also considered

in [78], and we reproduce the second-order convergence obtained therein up to a con-

stant (see Figure ??). As a further example we consider two different reaction-diffusion
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systems. The first system is the linearized Brusselator from [94]:

∂c1
∂t

= α c1 (1− r1 c2
2)− c2 (1− r2 c1) +D1 ∆ c1 ,

∂c2
∂t

= β c2
(
1 + α r1

β c1 c2
)

+ c1 (γ − r2 c2) +D2 ∆ c2 .

(87)

The second system is an activator-substrate system from [?]:

∂c1
∂t

= ρ1
c1

2 c2
1 + κ1 c12

− µ1 c1 + σ1 +D1 ∆Γ c1 ,

∂c2
∂t

= −ρ2
c1

2 c2
1 + κ2 c12

+ σ2 +D2 ∆Γ c2 .

(88)

We use the same parameters as Varea et al. [94]: r1 =, r2 =. The initial condition is

given by c1 = c2 = 0 except on a band of width 0.2 centered on the equator, where the

values of both u and v are uniformly randomly distributed in [−0.5, 0.5]. We obtain the

same six-spot pattern as in Varea et al. [94] (Figure 28). The next system we consider is

the activator-substrate system (88), for which we perform two different parameter sets,

resulting in to spot patterns and stripe patterns, respectively on a square lattice in [?].

We demonstrate the flexiblity of our systems by solving the equations on the surface of

the dragon (from the Stanford Depository) (Fig.29) and we observe similar patterning

on the sphere R = 0.3.

Reaction Diffusion and Growth We now couple the deformation of the geometry to

the reaction diffusion system by calculating the local velocity as

u = αn c1 . (89)

where α is a parameter that affects the patterns of growth. As c1 ≥ 0 this will always

result in an outward motion of the geometry, and thus it will lead to an increase in surface

area. This increase of surface area can be viewed as lowering the effective diffusion

constants in the reaction diffusion system, as the reactions are generally independent of

the surface properties.

Figure 30: Growth simulations of the spot forming reaction diffusion system (88) for an

ellipsoidal initial geometry. For iterations 0, 36,000, 124,000, and 170,000.

The only direct effect that growth has on the reactions is the decrease of the concen-

tration in the sense of a decay term that depends on the growth velocity. By changing
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Figure 31: Growth of the stripe pattern of system (88) on a sphere. Iterations 0, 50,000

and 150,000.

the geometry, the diffusion and reaction constants as well as the velocity of the surface

propagation a number of different patterns can be observed (see Fig.31 and Fig.30. For

an extensive study of these systems the reader is referred to [6].
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6 PARTICLE METHODS AND FLUID-STRUCTURE INTERACTIONS

In Multiphysics simulation, physical and numerical methods usually need to handle

complex geometries. These geometries correspond to objects where the physics are

of different nature, typically fluids and solids.The examples that come to mind are, with

increasing complexity :

• a fluid around a fixed, or moving with a prescribed velocity, obstacle

• a fluid interacting with one or several rigid obstacle(s)

• a fluid interacting with an elastic obstacle.

In all cases, the problem amounts to prescribing and enforcing boundary conditions at

the fluid/solid interface. As we have already seen , particle methods differ from classical

grid-based methods in the discretization points have a meaning only through their col-

lective behavior. This collective behavior is obtained at a given point by gathering the

information of nearby particles. This has an immediate consequence for deriving and

implementing boundary conditions : on may anticipate that assigning values at individ-

ual particles located on the interface will not be enough to enforce a desired boundary

condition at these locations.

In these notes we focus on the two first problems. We first consider the case of solid

and fixed boundaries. We will distinguish between grid-free and particle-grid methods,

as in the questions related boundary conditions they lead to different approaches.

6.1 Fixed boundaries and grid-free particle methods

6.1.1 BACKGROUND Assume one needs to enforce a given boundary condition on

a scalar field transported by a flow. This is the case in compressible viscous flows for

each component of the momentum. To fix ideas, let us consider the boundary condition

u = 0 at a solid wall. This is the classical no-slip condition, valid for a viscous flow, or

for an inviscid flow where we use an artificial viscosity. If we assume that u is carried

by a collection of particles, in principle u at a given point is obtained by averaging the

strength of nearby particles. If this point is on the boundary, if the regularization blob

is symmetric, which is in general the case, the cloud of particles is on both sides of the

boundary. Since the flow lives only on one side, one must either consider a-symmetric

clouds or include artificial particles on the other side of the boundary. The first solution,

which amounts to using one-sided cut-off functions is in principle possible, but would

not help to compute the field for points inside the domain at a distance less than the

cut-off range. So we will not consider it.

The second solution uses ghost particles in the obstacle (see Figure 32). For the

boundary condition u = 0, or any boundary condition which one way or another reduces

to this one, there are clearly 2 choices : use ghost particles with zero strength, or with

opposite strength. From numerical analysis one can expect the second choice to be more

accurate. In particular, il one solves for diffusion with an initial condition which is odd

across a plane boundary, one knows that this property will be preserved by diffusion and

therefore the field with vanish at the boundary.

The difficulty is to create ghost particles. For a flat boundary it is straightforward,

but in the general case it is not, unless some kind of mapping is explicitly known that
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maps the fluid domain on a half-space. In that case, in principle one has to write the flow

equation in the mapped coordinates, enforce the ’mapped’ boundary condition for a flat

boundary with image symmetric particles and finally go back to physical coordinates.

This can be done for simple geometries (like cylinders) but become cumbersome for

complex geometries, especially for moving and deforming geometries.

h

Fluid

Solid

Figure 32: Boundary conditions and ghost particles (in green). The radius of the cut-off

function is h

6.1.2 THE CASE OF VORTEX METHODS Let us now consider the particular case

of the incompressible Navier-Stokes equation in vorticity formulation. The problem of

boundary conditions faces an additional difficulty due to the fact that boundary condi-

tions appear at two different levels : the boundary condition needed to determine the

velocity from the vorticity, and the vorticity boundary conditions needed to advance the

vorticity transport-diffusion equation. These two boundary condition should not be con-

fused : they play a different role both form the mathematical and numerical point of

view.

As already mentioned in session 1, the determination of the the velocity from the

vorticity in general uses a boundary condition on the normal component of the velocity

at the boundary. In the Biot-Savart based grid-free methods, this boundary condition is

dealt with by the addition of a potential term in the integral representation of the velocity

(equation (26)). Examples of integrale representations and associated integral equations

for the potentials are given in the book [21]. Whatever method is chosen, the solution

procedure always breaks down to to using markers on the boundary and to discretizing

surface integrals by means of a panel method and finally solving a linear systems for

potential values at the markers locations. Different recipes are available, depending

on what kind of approximation -piecewise constant or linear - is used for the potential

between two markers (in 2D) or in the panel centered around one marker (in 3D). This

type of discussion is classical in the field of Boundary Element Method and we do not
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Figure 33: Vortex Methods simulations of the flow pas a head.

wish to enter in too much details.

We now come to the enforcement of the boundary conditions for the tangential ve-

locity values. In flows around obstacles, the no-slip boundary condition is inherently

related to the mechanism of vorticity creation in the flow. The common numerical ap-

proach for this problem is to mimic the physical process in a fractional step algorithm,

where for each time step one successively solves for the advection and the diffusion of

the vorticity:

• advection step: particles are pushed with velocities obtained by formula

• the slip at the boundary is obtained by evaluating tangential velocities on a set of

markers

• a vortex sheet is created at the vorticity of the basis of this residual slip and fluxed

out to vorticity particles in the fluid.

The advection step is solved by pushing particles. In the third step above, the vortex

sheet is a layer of particles located on the boundary. A vortex sheet has the effect of cre-

ating a discontinuous tangential velocity field, which is exactly what is needed to cancel

the residual slip. By ’fluxed out’ we mean that this layer of vorticity is immediately

distributed to nearby particles through diffusion. The clear-cut mathematical interpreta-

tion of this algorithm is to view the vortex sheet as a boundary condition for the normal

derivative of the vorticity in the diffusion equation [50,49,20]. Note that in 3D there are

two tangential components for the slip velocity and for the vorticity. The vortex sheet

at the boundary thus involves two components, each of them cancelling the slip in the

orthogonal direction in the tangential plane. Figure 34 summarizes this algorithm.

We note that the coupling of boundary elements and vortex methods enables the simu-

lation of flows past complex geometries (see Fig. 33). The difficulty lies in the introduc-

tion of particles in the interior of the body when remeshing around a complex geometry

using a regular grid. Empirical results however indicate that by eliminating the interior

particles and reapplying the vorticity flux algorithm the method is able to recover the

correct flow field.
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sub-step 

1

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = 0 in fluid domain

u · n = 0 on Γb

sub-step 

2

∂ω

∂t
− ν∆ω = 0 in fluid domain

ν
∂ω

∂n

= −

u · τ

∆t
on Γb

Figure 34: Fractional step algorithm to satisfy no-slip at the boundary

6.2 Fixed boundaries and hybrid particle-grid methods

Let us now consider the case of hybrid particle-grid methods and focus on vortex meth-

ods for incompressible flows. As we have seen, the grid can be used at different levels,

either to compute velocity fields or to compute the velocity field and to remesh particles.

To be more specific we consider the latter case, as we think it is the most suitable for

both fast and accurate calculations. There are two cases to consider : the case where the

grid fits with the boundary, and the case where the boundary is immersed in the grid.

6.2.1 BODY-FITTED GRIDS Like in the above section, we have to address two

issues : the determination of the velocity from the vorticity and the vorticity creation to

adjust the slip velocity. The approach is very similar to the case of grid-freee method,

except that the condition for the normal velocity is enforced in the grid Poisson solver,

using for instance the potential form of the velocity (26). To create vorticity in the flow,

the residual slip is evaluated on markers introduced at the boundary by interpolation form

grid velocity values. Then the algorithm proceeds along the same lines as in the grid-free

case : a vortex sheet is created at the markers location then fluxed out on particles in the

flow.

The efficiency of this approach is of course very much dependent on how easy a body-

fitted grid can be constructed and how fast and easy to implement will be the Poisson

solver associated to this grid.

A more flexible an practical method is given by immersed boundary approaches.

6.2.2 IMMERSED BOUNDARY TECHNIQUES - A FIRST APPROACH Because of

their flexibility, immersed boundary techniques are receiving a lot of attention in CFD,

both for grid-based or particle methods, in velocity-pressure as well as in vorticity for-

mulations. The general idea is to consider the flow equations in the whole space, in-

cluding walls and obstacles, and to replace boundary conditions on boundary points by

a forcing term in the flow equations.

In some sense particle methods are by nature immersed boundary methods, at least in
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the vorticity creation at the boundary. The methods that we have outlined does not as-

sume that the boundary markers fit to the boundary. The flux of vorticity in the flow that

will cancel the residual slip can actually be seen as a forcing term in the right hand side

of the diffusion equation. The distinction between body-fited and immersed boundary

vortex methods essentially arise for the enforcement of the normal velocity condition.

To be more specific, let us assume that we want to use a cartesian uniform grid both

to remesh particles and to compute velocity fields and that the obstacle does not fit

with grid-points, like in Figure 35. We follow the potential decomposition (26) but we

look for potential extensions across the boundaries of the obstacles. We thus need an

extension of the vorticity as well. For fixed objects, a natural choice is to extend the

vorticity by 0 in the obstacles. In the discussion below we denote with a bar all the

extensions of the quantities - domain, potentials, vorticity ...

The strategy to implement the boundary condition on u · n when the boundary Γb

does not coincide with grid-points starts with the following observation: if φ is a contin-

uous harmonic extension of the exact flow potential across the boundary, in view of its

gradient discontinuity we get

∆φ =

[
∂φ

∂n

]

Γb

⊗ δΓb

where [·] means the jump across Γb and δΓb
is the two-dimensional Dirac mass supported

by Γb. The goal is to determine
[

∂φ
∂n

]

Γb

, to distribute it on grid points and then to solve

the Poisson equation on the grid. One can proceed as follows : we first tag grid points

which are at a distance less than the grid-size from the boundary. We denote by Γ̃ the

set made by these N grid-points. We then are looking for a function g, with support on

Γ̃ (see figure 35), such that the solution to the system

∆φ = g in Ω (90)

∂φ

∂n
= 0 on Γ (91)

satisfies
∂φ

∂n
= −(∇×ψ) · nonΓ̃

This constitutes a linear system for the unknown function g over Γ̃ of sizeN . A GMRES

type iterative solver can be used to solve this system. Note that the vector-matrix product

involved in the iterative method consists of the solution of a Poisson equation followed

by the evaluations of potential derivatives on the tagged grid-points. The speed of con-

vergence of a GMRES algorithm, and thus the efficiency of the method, is very much

dependent on how well-behaved the linear system is. Unfortunately for complex geome-

tries with angular points, the condition number of the system deteriorates. In that case,

one needs to explicitly construct the inverse matrix to solve the liear system, something

which becomes expensive if the body moves or changes shape.

We now come to alternative method that we believe is at the same time clear-cut

from numerical analysis recipes, flexible to address complex geometries and easy to

implement even in 3D. The method is based on penalization. Penalization methods are

actually rather natural, even naive, ways to address boundary conditions on immersed

boundaries.
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Obstacle

Fluid

Tagged grid points for 

the solution 

of the linear system

Physical 
boundaryNumerical 

boundary

Figure 35: Immersed boundary

6.2.3 IMMERSED BOUNDARY TECHNIQUES - THE PENALIZATION METHOD The

idea behind penalization method is to view obstacles, walls, etc .. as porous media

which absorb the velocity in a small layer on the boundary of the obstacle [2]. From a

mathematical point of view, it means assuming a flow everywhere, including inside the

obstacles, and adding a term in the flow equation which drives the velocity back to zero

- or whatever value is sought - inside the obstacles.

To be more specific, we consider, in a computational domainK, the case of an incom-

pressible flow around an object S with prescribed velocity u inside S. We denote by λ
a penalization parameter, λ >> 1, and denote by χS the characteristic function of S (1
inside, 0 outside). The model equation is then the following :

ρ

(
∂u

∂t
+ (u · ∇)u

)
− ν∆u+∇p = ρ g + λ ρχS(u− u)forx ∈ K (92)

coupled with the incompressibility condition

div u = 0 for x ∈ K (93)

In the above equation ρ denotes the density, with value ρS in S and ρF in the fluid

outside S, F = K − S. If we want to use vortex particles to handle this penalization

model, we first need to derive the vorticity form of (92). Taking the curl of (92) we get

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω −∇p×∇(

1

ρ
) + λ∇×χS(u− u). (94)

This system has to be complemented by the usual system giving the velocity in terms of

the vorticity :

∇ · u = 0inK;∇×u = ω inK. (95)

The right hand side above exhibits two terms : a so-called barotropic term, resulting

from the density variations, already seen in variable density and free surface flows, and
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a term coming from the penalization. We now continue with the derivation of the model.

Developing the term ∇×χS(u− u) one obtains

∂ω

∂t
+(u·∇)ω−(ω ·∇)u−ν∆ω = −∇p×∇(

1

ρ
)+λχS(ω−ω)+λδΣ n×(u−u). (96)

In the above equation we have set ω = ∇×u and n is the normal to the interface Σ ori-

ented towards the solid. It is interesting to note that the right hand side of this equation

contains, in addition to the density-driven term, a vorticity generator coming from the

no-slip condition at the fluid-solid interface.This term is also localized at the interface.

It is very much reminiscent to vorticity creation algorithms that we have outlined when

we have discussed gird-free methods (Figure 34). A definite difference though with

previously seen immersed boundary methods, is that here, both normal and tangential

components of the velocity are handled by a single term in the vorticity equation. This

greatly simplifies the algorithm. A drawback is that the condition on the normal compo-

nent is possibly not satisfied with the same accuracy as when it is addressed by potential

sources like in 6.2.2. Therefore it may happens that a few particles cross the interface.

To avoid circulation defect in the method, it is therefore important that vorticity inside

the solid domain is not discarded. We will outline the algorithm box, when we adress

the more general situation of a fluid fully interacting with a solid body.

6.3 Interaction of a fluid with rigid bodies

The classical approach to adress fluid solid interaction (wether the solid is rigid or elas-

tic) is to solve separately fluid and solids, with the associated physics, and to couple

them through interface conditions that translate the continuity of forces and velocities.

In general the description of the physics in the fluids is Eulerian, that is equations of the

fluid are solved in Eulerian coordinates on a grid, while it is Lagrangian in the solid.

The grid for the fluid has to adjust to the moving interface with the solid, at least in the

normal direction (whence the name ALE for Arbitrary Lagrangian Eulerian methods).

These methods are rather tricky to implement in particular in 3D and/or in presence of

large defomations.It is clearly possible to define ALE particle methods, here the fluid is

solved by a grid-free or hybrid particle-grid algorithm combined with solid solvers (for

instance based on classical Finite Element solvers). However one may anticipate that

these methods will face the problems of all ALE methods, with the additional difficulty

inherent to particle methods for enforcing boundary conditions.

In the following we therefore focus on an alternative approach, which is to consider

fluids and solids as a single, variable density, multiphase, flow. The different phases,

fluids, elastic or rigid solids, are captured by level set methods. Interface conditions are

enforced by penalization methods. We first consider the case of a single rigid body in an

incompressible fluid, and we show how to model it with a vortex particle method

The starting model is the penalization model (94) just seen, with two additional fea-

tures:

• the solid velocity is not given, but a result of flow forces, gravity and so on ..

• the solid is moving, and its boundary is captured by a level set function.

This means that we have to complement (94) by an expression for u, an advection equa-

tion for a level set following the fluid/solid interface, and an expression of the penaliza-
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tion term based on this level set. The level set equation is classically :

∂φS

∂t
+ (u · ∇)φS = 0. (97)

The level set function is initialized as a distance function to the initial boundary of the

solid, positive inside and negative outside. The expression of the rigid motion u is actu-

ally rather simple : it is obtained by averaging the velocity (to obtain the translation part

of the rigid body - and the vorticity (to obtain the rotation) inside the body :

u =
1

|S|

∫

K
χSu dx+

(
J−1

∫

K
χSu× (x− xG) dx

)
×(x− xG). (98)

We have denoted by χS the characteristic function of the solid which can be immediately

recovered from the level set function : χS(x) = (1 + sign(φS(x)))/2. The appealing

Figure 36: Kissing and tumbling of 2 spheres by a vortex level set method.

character of is model is the fact that it both relies on clear-cut numerical recipes (one

can actually prove that it converges, when numerical discretization parameters tend to

0, to the exact physical solution) and is very easily implemented in a remeshed particle

algorithm. Such an algorithm will combines the following steps, for each time interval :

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∆ω (99)
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∂ω

∂t
= λ∇× (χS(u− u)) (100)

∂ω

∂t
= −
∇ρ

ρ
×

(
∂u

∂t
+ (u · ∇)u− g

)
(101)

Equation (99) is solved by pushing particles (locations and weights) and remeshing them

on a regular grid (note that this grid has not to comply with the walls, solid etc ..). At

the end of this step, every thing (velocities and vorticity) is known on the grid so that the

following steps can be solved by finite-differences on that grid. The pressure which is

(unfortunately, unless a Boussinesq approximation (67) is used) necessary to solve for

(101) is computed on the grid from the velocity. To improve the stability of the method

when λ >> 1, it is recommended to use an implicit time-discretization of (100). Starting

from an implicit formulation in velocity formulation and differentiating this formula one

obtains the following scheme:

ω̃n+1 = ∇×

[
un + λ∆tχSu

n

1 + λ∆tχS

]
.

The right hand side above is evaluated by centered finite differences on the grid on which

particles have just been remeshed. In presence of several objects, it is of course very

Figure 37: A cup falling into water. Level set functions are used for the air-water free

surface and the cup-flow interface.

much desirable to be able to derive contact or collision methods from clear-cut physical

models and numerics. This is of course independent of the chosen numerical method

so we will spend too much time on this issue. Such a model derived and used in [17]
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(details can be found in this reference). Contacts between several object Si interacting in

a fluid can be taken into account by adding to the vorticity equation an additional forcing

term which is localized on the objects boundaries through the same level set functions

which capture their interface and allow to enforce continuity of stresse. This term can

be written as ∇×fcol

ρ where the collision force is

fcol(x) = −ρ
∑

ij

κij

ǫ
ζ

(
φi(x)

ǫ

)
∇φj(x)

φj(x)
exp (−φj(x)/ǫ). (102)

Figures 36 and 37 illustrate the method. In the second case, level set are involved to

capture both the air-liquid free surface and and cup-water, cup-aire interfaces. Although

the physics of the different systems, the immersed boundary approach allows to view as

a single flow described by its vorticity. Comparisons with grid-based methods reported

in [17] on similar problems at the at same time validate the numerical approach and

demonstrate the computational efficiency of the particle approach. This efficiency comes

from the combined effects of the localization of the computational effort around the

interface and of the use of relatively large time-steps.
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7 GPU ACCELERATED PARTICLE METHODS

In this section we present an overview of the solver and we emphasize the handling of

the particle-mesh interpolations by the GPU.

7.1 Representation

In GPGPU the computational elements are often mapped to textures. In this case the

computational elements are both regularly spaced grid nodes and particles at arbitrary

locations. Similar to [46] and [45], we employ an RGB texture to represent a set of

particles where each texel contains the state of one particle. For two dimensional flows

the red and green channel of a given texel represent the particle position, whereas the

B channel indicates the transported vorticity. A one-to-one mapping between texels and

grid nodes is used to represent the computational mesh with a texture.

Figure 38: The components of the GPU-solver with first-order time integration.

7.2 Solver Overview

The main workflow of our GPU-Solver is illustrated in figure 38.

The core components of the solver are shown in blue, the gray component identifies a

tool used as a “black box”, whose subcomponents are not further explored. Each core

component takes as input a set of textures and produces as output another set of tex-

tures. The managed data is represented with texture and is painted in orange or yellow.

The yellow color signifies that the texture represents a particle set, therefore the RGB

channels are (xp, yp, ωp). The orange color indicates that the texture represents a grid,

therefore it contains only ω. The green box represent the particle-mesh operation. Ad-

ditionally to the texture texTmpParticles, the green box requires a vertex array of

the same size.

7.3 Runge-Kutta time integration

Figure 39 illustrates the core components of the solver when a Runge-Kutta method is

employed for the temporal advancement of the particle properties.

At each step the solver starts by reading the vorticity field that resides in texVorticity.

A significant part of the components employed in the Euler GPU-Solver are re-used for
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the Runge Kutta GPU-Solver.

There are two more core components to create particle sets at each substep and at the

final stage. Beside this, the solver has an additional array of textures for Ki.

It is easy to see that the time complexity is increased by the number of times that we

must compute Ki and the main cost is attributed to the multigrid solver.

Figure 39: The components of the GPU-solver with k-th Order Runge Kutta time inte-

gration: a significant part of the component in Figure 38 is reusable here.

7.4 Particle-Mesh Operation

In the present method the particle-mesh operation is performed using a tensorial product

of one-dimensional interpolating kernels. The contributions of all particles on each grid

node are computed iteratively. The use of interpolation kernels with compact support

implies that the contributing particles are located close to the grid nodes. If we are forced

to avoid data-scatter the particle-mesh operation, then we would require an appropriate

data structure like cell lists. In this way the particles can be ordered with respect to their

positions. This approach has some drawbacks: the time complexity of the particle-mesh

operation is sensitive to external parameters (e.g. cell size). Furthermore, the efficiency

is decreased by the additional cost of building the location-processing datastructure and

keeping it up-to-date.

On the other hand, this operation can be significantly simplified by utilizing data-

scatter instructions. For each particle we can locate which grid nodes are affected and

therefore add its respective contributions to these nodes. Based on this observation we

present a concise method, to perform data-scattering particle-mesh operations on the

GPU.

By employing point-sprite primitives, which allow the use of points rather than quads,

we are able to generate texture coordinates which are interpolated across the point

Pointsprite:2003. We start by having the status of the particle set stored in a texture

texParticles and the mesh in the texture texMesh. In order to ensure that the

number of vertices corresponds to the number of texels we use a vertex array with the

size of texParticles.

The algorithm has the following steps:
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1. Set the point size equal to the support of W (.).

2. Enable the point-sprite drawing mode.

3. Attach the texMesh as render target and clear it with zeros.

4. Enable blending with 1 as source factor as well as destination factor.

5. Set the graphics pipeline as follows:

Vertex shader:

Read (xp, yp, ωp) from texParticles. Store the transported vorticity ωp as

front color of the primitive and the location coordinates as the position of the

vertex.

Geometry shader:

If a particle is close to the boundary, dynamically clone the particle to reproduce

the right boundary conditions. If a particle has ωp = 0, discard the primitive.

Fragment shader:

Compute the vector distance d = (d1, d2) of the fragment with respect to the

center of the point-sprite to produce color = W (d1)W (d2)ωp as result, where ωp

is the vorticity of the current point sprite.

6. Draw the vertex array as point-sprites.

Because we are drawing point sprites, each vertex will be rasterized in a quad made

of several fragments and different texture coordinate values. The distance between the

center of the point sprite and the generated fragments is known at the fragment stage,

and it is stored as texture coordinate. We re-scale appropriately the texture coordinate

and we use it as an argument ofW (.). Since we know the quantity carried by the particle

(as it is stored as primitive color) we multiply these together to obtain the contribution

of the particle to that grid node.

Enabling the blending mode, we can sum each contribution from every particle to any

node and obtain as a result an interpolated grid from values transported by the particle

set.

For a given framebuffer (destination) pixel, the blending is performed as an atomic in-

struction. Therefore it cannot be performed in parallel with respect to the incoming

source fragments. This could be a potential performance bottleneck. However, we can

minimize this problem by reducing the maximal number of incoming fragments per

framebuffer pixel. This is possible if the particles are not concentrated on a particu-

lar region so that their contributions will be spread uniformly in the framebuffer. This

is automatically guaranteed in the remeshing stage: since by remeshing we uniformly

redistribute the particles in the domain, thus avoiding that blending becomes a critical

bottleneck.

The basic steps of the algorithm are illustrated in Figure 40. On the very left of this

figure, we show the vertex array which is sent through the graphics pipeline. Then the

vertex array is processed by the vertex shader. The latter assigns the correct value of

each vertex by reading a texture where the particles status is stored.

The third image shows the vertex array after the geometry shader: the particles with

zero vorticity are discarded (marked in red), and new particles are created to simulate

the periodic boundary conditions (marked in green).

The last image shows the final result: after the rasterization the vertices have been trans-

formed into point sprites, each fragment contains a contribution from a particle. The

fragments are then summed together by a blending operation.
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Figure 40: Particle-mesh on the GPU. From left to right: vertex array that is sent through

the graphics pipeline, after the vertex stage, after the geometry stage and the result in the

framebuffer.

7.5 Mesh-Particle Operation

Since the mesh-particle operation is essentially a gathering data operation, it can be done

straightforwardly with a fragment shader, reading a texture representing the mesh and

attaching the particle set texture as render target.

At the fragment stage, by performing texture dependent texture-fetches, we read a subset

of mesh nodes and we compute I
P
M , eventually obtaining the carried quantity for each

particles.

7.6 Periodic Boundary Conditions

As depicted in Figure 40, the generated point-sprites are clipped in the rasterization.

In the case of periodic boundary conditions this could be a problem, since we are dis-

carding contributions from some particles. In order to overcome this problem, we use a

geometry shader to check if the kernel assigned to each particle “touches” the boundary.

If this is the case, we create a new particle with the same vorticity and with a position

translated by one domain length. In this way we can generate exactly the contributions

that are discarded at the rasterization stage.

The geometry shader presents an elegant choice to solve this problem, however it is not

the only one. We could perform a 4-passes rendering with blending, where in each pass,

a slightly shifted domain is considered and each particle has to be redrawn. This method

gives exactly the same result as the geometry shader but it is much more expensive as

every particle has to be rendered 4 times. Conversely, with the geometry shader, only the

particles at the boundary have to be rendered 2 times (4 times for the negligibly small

particle set at the corners).

Furthermore, with the geometry shader we not only have the opportunity to create parti-

cles on-demand, but also to discard particles, when they are unnecessary, i.e. when the

transported vorticity is zero. This adaptivity additionally improves the performance of

the proposed solver.

Even if the particle-mesh operations are cheap when compared to other components of

the solver, the performance difference between these two approaches appears significant.
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7.7 Solving the Poisson Equation

To solve the Poisson equation for the velocity field u we developed a periodic 2D multi-

grid solver [8] for the GPU. The GPU-Multigrid is designed for cell-centered elements,

it has prolongation and restriction of order 4. We validated the GPU-Multigrid against

different test problems, and we observed that on average, the relative residual was be-

tween 10−5 and 10−3 (in both L2 and L∞ norm). We have noticed that, for the same

physical domain, higher resolution discretization causes bigger residual (∼ 10−4). The

most probable reason is the single floating point precision limitation in the arithmetic.

7.8 Performance

The presented solver involves a number of computational parameters, such as multigrid

steps, order of time integration, etc. In order to quantify its performance we discuss

three representative sets of parameters resulting respectively in: Fastest, Trade-Off and

Most Accurate simulations. The Fastest set of parameters consists of a first order time

integration, 2 V-Cycles with 2 Jacobi relaxation iterations at each level, per time step),

the Trade-Off consists of a 2nd order Runge-Kutta with 2 V-Cycles (4 Jacobi relaxation

iterations per level), per step. The last set of parameters corresponds to the one referred

into Figure 10 (fourth order time integration, 4 V-Cycles with 4 Jacobi relaxation iter-

ations at each level, per timestep). As indicated in Figure 41, one can achieve more

than 25 FPS using a set of 1024x1024 particles with the Fastest set of parameters. The

Trade-off configuration barely achieves 10 FPS with the same number of particles. The

main decrease in performance is noticed by passing from 1024x1024 to 2048x2048 par-

ticles. For the Most Accurate configuration we observe the least change in performance,

revealing that the texture size is not the most performance-critical parameter in this case.

As we have mentioned the remeshing step can be performed either with a multi-pass

approach or by utilizing a geometry shader. The diagram on the right of Figure 41 sum-

marizes the performance of solving the random vorticity problem for both approaches

as a function of the utilized number of particles. It is obvious that the geometry shader

approach always is the fastest, in particular when we use 1024x1024 particles, where we

obtain a speed up of 1.5, as on average the geometry shader has to render each particle

just once. The multi pass approach, on the other hand, processes each particle 4 times

(at least at the vertex stage).
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Figure 41: Overall performance measurements: on the left we compare three different

configurations of our solver: Fastest (Euler, with a rough GPU-Multigrid), Trade-Off

(2nd order Runge-Kutta, with an accurate GPU-Multigrid but few cycles) and Most Ac-

curate (4th order Runge-Kutta, accurate GPU-Multigrid). On the right we compare the

performance of the remeshing by using a multi-pass rendering method and by using a

geometry shader.

8 CONCLUSIONS

We have implemented a hybrid particle-mesh algorithm for accurate and efficient sim-

ulations of incompressible vortical flows on GPUs. The solver implements a hybrid

vortex methodology that utilizes both particles and mesh to best achieve accuracy and

efficiency at the same time.The resulting fluid solver runs exclusively on the GPU and

has second order accuracy in space and up to fourth order accuracy in time.

The algorithms have been validated in challenging benchmark problems demonstrat-

ing for example that even with the limitation of single precision arithmetic, we able

to obtain a second order convergence in space in the case of the Taylor-Green and re-

cover the correct solution for the thin double shear layer. In two different test prob-

lems we have shown the importance of adopting high-order time integration methods to

achieve accuracy. Furthermore we have demonstrated that the performance of the GPU-

solver depends critically on the set of computational parameters: The fastest set allows

flow simulations with 1024x1024 particles at 25 FPS, whereas the most accurate only

achieves 3 FPS, but with a significant greater accuracy.

The particles-mesh communication is performed in a straightforward and efficient

way, by using a geometry shader, texture fetch at the vertex stage and the floating point

framebuffer/blending.

Present work focuses on extending the solver to 3D domains, where the particles-mesh

communication is not straightforward. In addition we aim to implement on the GPU

multiresolution particle methods [5] and efficient particle methods capable of handling

effectively complex, deforming geometries [23]. In addition accurate and efficient sim-

ulations on the GPU can be very helpful in applications related to optimization of flow

problems using evolutionary algorithms [43] [65]. We envision that such implementa-

tion will help in the real time and accurate simulation and optimization of challenging

fluid mechanics phenomena.



69

LITERATURE CITED

1. A. Angelidis and F. Neyret. Simulation of smoke based on vortex filament primi-

tives. In ACM-SIGGRAPH/EG Symposium on Computer Animation (SCA), 2005.

2. P. Angot, C. H. Bruneau, and P. Fabrie. A penalization method to take into ac-

count obstacles in incompressible viscous flows. NUMERISCHE MATHEMATIK,

81(4):497–520, Feb 1999.

3. J. T. Beale. A convergent 3-D vortex method with grid-free stretching. 46:401–424,

1986.

4. M. Bergdorf, G. H. Cottet, and P. Koumoutsakos. Multilevel adaptive particle

methods for convection-diffusion equations. Multiscale Modeling and Simulation,

4(1):328–357, 2005.

5. M. Bergdorf and P. Koumoutsakos. A lagrangian particle-wavelet method. MULTI-

SCALE MODELING AND SIMULATION, 5(3):980–995, 2006.

6. M. Bergdorf, I. F. Sbalzarini, and P. Koumoutsakos. Particle simulations of growth.

J. Computational Physics, 2008 (submitted).

7. M. J. BERGER and J. OLIGER. Adaptive mesh refinement for hyperbolic partial-

differential equations. JOURNAL OF COMPUTATIONAL PHYSICS, 53(3):484–

512, 1984.

8. W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial: second

edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,

2000.

9. S. Bryson and D. Levy. High-order central WENO schemes for multidimensional

Hamilton-Jacobi equations. 41(4):1339–1369, 2003.

10. M. CARLSON, P. MUCHA, and G. TURK. Rigid fluid: Animating the interplay

between rigid bodies and fluid, 2004.

11. A. K. Chaniotis, C. E. Frouzakis, J. C. Lee, A. G. Tomboulides, D. Poulikakos, and

K. Boulouchos. Remeshed smoothed particle hydrodynamics for the simulation of

laminar chemically reactive flows. 191(1):1–17, 2003.

12. P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W. Andreoni, and P. Koumout-

sakos. Billion vortex particle direct numerical simulations of aircraft wakes. Com-

puter Methods in Applied Mechanics and Engineering, 197(13-16):1296–1304,

2008.

13. C. G. Chatelain P. and K. P. Particle mesh hydrodynamics for astrophysics simula-

tions. Int. J. Modern Physics C, 18(4):610–618, 2007.

14. D. Chopp and J. Sethian. Flow under curvature: Singularity formation, minimal

surfaces, and geodesics. 2(4):235–255, 1993.

15. D. L. Chopp. Computing minimal-surfaces via level set curvature flow. 106(1):77–

91, 1993.

16. A. J. Chorin. Numerical study of slightly viscous flow. 57(4):785–796, 1973.

17. M. Coquerelle and G.-H. Cottet. A vortex level set method for the two-way coupling

of an incompressible fluid with colliding rigid bodies. J. Comput. Phys., (in print),

2008.

18. G. Cottet. A particle model for fluid-structure interaction. C.R. Acad. Sci. Paris,

Ser. I(335):833–838, 2002.

19. G. H. Cottet. A particle-grid superposition method for the Navier-Stokes equations.

89:301–318, 1990.

20. G. H. Cottet. Multi-physics and particle methods. COMPUTATIONAL FLUID AND

SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, pages 1296–1298,

2003.



70

21. G.-H. Cottet and P. Koumoutsakos. Vortex Methods, Theory and Practice. Cam-

bridge University Press, 2000.

22. G.-H. Cottet, P. Koumoutsakos, and M. L. O. Salihi. Vortex methods with spatially

varying cores. 162(1):164–185, 2000.

23. G. H. Cottet and E. Maitre. A level set method for fluid-structure interactions

with immersed surfaces. Mathematical Models and Methods In Applied Sciences,

16(3):415–438, Mar 2006.

24. G.-H. Cottet and P. Poncet. Advances in direct numerical simulations of 3D wall-

bounded flows by Vortex-in-Cell methods. 193(1):136–158, 2004.

25. S. Elcott, Y. Y. Tong, E. Kanso, P. Schroder, and M. Desbrun. Stable, circulation-

preserving, simplicial fluids. ACM TRANSACTIONS ON GRAPHICS, 26(1), 2007.

26. M. Ellero, M. Serrano, and P. Espanol. Incompressible smoothed particle hydro-

dynamics. JOURNAL OF COMPUTATIONAL PHYSICS, 226(2):1731–1752, Oct

2007.

27. D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex

water surfaces, 2002.

28. R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In E. Fiume, ed-

itor, SIGGRAPH 2001, Computer Graphics Proceedings, pages 15–22. ACM Press

/ ACM SIGGRAPH, 2001.

29. N. Foster and D. Metaxas. Realistic animation of liquids. Graphical models and

image processing: GMIP, 58(5):471–483, 1996.

30. F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach for the numer-

ical simulation of dendritic growth. J. Sci. Comput., 19(1-3):183–199, 2003.

31. R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and

application to non-spherical stars. Month Notices Roy. Astron. Soc., 181:375–389,

1977.

32. M. Grayson. A short note on the evolution of surfaces via mean curvatures. 58:285–

314, 1989.

33. L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. 73:325–348,

1987.

34. F. H. Harlow. Particle-in-cell computing method for fluid dynamics. 3:319–343,

1964.

35. L. Hernquist. Some cautionary remarks about smoothed particle hydrodynamics.

ASTROPHYSICAL JOURNAL, 404(2):717–722, Feb 1993.

36. J. L. Hess. Higher order numerical solution of the integral equation for the two-

dimensional Neumann problem. 2:1–15, 1973.

37. S. E. Hieber and P. Koumoutsakos. A lagrangian particle level set method. J. Com-

putational Physics, 210:342–367, 2005.

38. S. E. Hieber, J. H. Walther, and P. Koumoutsakos. Remeshed smoothed particle

hydrodynamics simulation of the mechanical behavior of human organs. 12(4):305–

314, 2004.

39. C. W. Hirt and B. D. Nichols. Volume of fluid (Vof) method for the dynamics of

free boundaries. 39(1):201–225, 1981.

40. R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Institute

of Physics Publishing, Bristol, PA, USA, 2 edition, 1988.

41. X. Y. Hu and N. A. Adams. An incompressible multi-phase sph method. JOURNAL

OF COMPUTATIONAL PHYSICS, 227(1):264–278, Nov 2007.

42. Y. Kawaguchi. A morphological study of the form of nature. SIGGRAPH Comput.

Graph., 16(3):223–232, 1982.

43. S. Kern and P. Koumoutsakos. Simulations of optimized anguilliform swimming.



71

JOURNAL OF EXPERIMENTAL BIOLOGY, 209(24):4841–4857, Dec 2006.

44. R. A. Kerr. Planetary origins: A quickie birth for jupiters and saturns. Science,

298(5599):1698b–1699, 2002.

45. A. Kolb and N. Cuntz. Dynamic particle coupling for GPU-based fluid simulation.

In Proc. ASIM, pages 722–727, 2005.

46. A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and collision

detection for large particle systems. In Proc. Graphics Hardware, pages 123–131.

ACM/Eurographics, 2004.

47. P. Koumoutsakos. Inviscid axisymmetrization of an elliptical vortex. JOURNAL OF

COMPUTATIONAL PHYSICS, 138(2):821–857, Dec 1997.

48. P. Koumoutsakos. Multiscale flow simulations using particles. ANNUAL REVIEW

OF FLUID MECHANICS, 37:457–487, 2005.

49. P. KOUMOUTSAKOS and A. LEONARD. High-resolution simulations of the flow

around an impulsively started cylinder using vortex methods. JOURNAL OF FLUID

MECHANICS, 296:1–38, 1995.
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