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TOPOLOGICAL DERIVATIVES IN PIEZOELECTRICITY

G.CARDONE, S.A. NAZARQOV, AND J. SOKOLOWSKI

AsstracT. Asymptotic formulae for the mechanical and electric fiéhds piezo-
electric body with a small void are derived and justified. ISuesults are new
and useful for applications in the field of design of smarteriats. In this way
the topological derivatives of shape functionals are ole@ifor piezoelectric-
ity. The asymptotic formulae are given in terms of the sdechpolarization
tensors (matrices) which are determined by the integralacieristics of voids.
The distinguished feature of the piezoelectricity bougidadue problems under
considerations is the absence of positive definiteness dfferential operator
which is non self-adjoint. Two specific Gibbs’ functionalstbe problem are
defined by the energy and the electric enthalpy. The topcddgierivatives are
defined in diferent manners for each of the governing functionals. Abtuthle
topological derivative of the enthalpy functional is local, defined by the point-
wise values of the governing fields, in contrary to the enéuggtional and some
other suitable shape functionals which admit non-locablogical derivatives,
i.e., depending on the whole problem data. An example wighwikak inter-
action between mechanical and electric fields provides xpéoi asymptotic
expansions and can be directly used in numerical proceddiregtimal design
for smart materials.

Keywords: Shape optimization, asymptotic analysis, piezoeletyri@lectric enthalpy,
topological derivative
MSC:Primary 35Q30, 49J20, 76N10; Secondary 49Q10, 74P15

1. INTRODUCTION

The paper is devoted to the asymptotic analysis of boundaneproblems for
coupled models. The coupling occurs between the mechagracalvhich takes the
form of the linearized elasticity and governs the stressirsstate of the body, and
the electrical part which describes the electromagnetid iiiethe body.

From the view point of applications, piezoelectric materare of common use
in electromechanical sensors and actuators, e.g., ulindswansducers in medical
imaging and therapy, force and acceleration sensors,iqguisij sensors, surface
acoustic wave filters, still with the growing range of apgtions in modern tech-
nology. Their mode of action is based on the piezoelectiiecg that couples the
electrical and mechanical behavior of such materials. Reraptimal design of
piezoelectric devices figcient numerical procedures for shape and topology opti-
mization should be still developed. In the modern theoryhafoe optimization itis
required that the derivation of shape and topological dévigs of shape function-
als to be optimized is performed beforehand. From one didajarivation of shape
gradients of integral functionals in smooth domains [45] ann-smooth domains
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2 G. CARDONE, S.A. NAZAROV AND J. SOKOLOWSKI

[25] (cf. [36, 37]) has become a standard procedure. There major dificulty to
perform such a shape sensitivity analysis for the elliptardary value problem
under considerations. However, the boundary value prolitepiezoelectricity
cannot be posed in such a way that it simultaneously is fdynself-adjoint and
possesses a semi-bounded quadratic form. This specifizdaatkes the problem
more involved from the asymptotic analysis point of view qared to the pure
elasticity or pure electricity boundary value problemsadidlition, the general case
of inhomogeneous and anisotropic body is considered, wdigthrequires for ad-
ditional and new technicalities in asymptotic proceduréictvis the main subject
of the paper. In particular, flerent formulations of the piezoelectricity problem
(cf. Sections 2.2, 2.3, 3.3) lead to two definitions of theapahtion matrices
which differ one from another by its properties. Moreover, only thetakal en-
thalpy, which is but the governing functional for the pielsotric media (see, e.g.,
[11, 14, 42]) admits the topological derivative dependamtiazal characteristics
of mechanical and electrical fields. Other shape functgredpecially the energy
functional, get the topological derivatives dependentt@nglobal characteristics
of mechanical and electrical fields. This acquired trageaithe natural question
on the properties of material derivatives for piezoeletiriin the framework of
the shape sensitivity analysis with smooth or non-smootintary variations, it is
clear that the result could be of the same nature, since gwéagical derivatives
can be identified from the first order shape gradients by & ji@ssage e.g. in
elasticity, [47] (cf. also [13]).

In the paper, we restrict ourselves to the asymptotic pra@sdof singular do-
main perturbations which allow us to obtain, in a natural wiing topological
derivatives of shape functionals. In principle, the metkegieloped here can be
generalized to characterize the influence on solutionseohtim-smooth boundary
variations, therefore, we can derive the shape gradiemts ievsuch a case, e.g.,
for small defects located close-by the boundary, includimcro-cracks (see [38]).

Without entering into details, but with the strong pradtioaplications in mind,
we can claim that some possible applications of shape ggiion in the field con-
cern the design of electro-acoustic transducers which @mseticted with piezo-
electric actuator-patches and capacitative micro-machirtrasound transducers.
The task for optimal design for a class of electrostaticimaadcal-acoustic trans-
ducers can be e.g., the topology of electro-acoustic natanid the topology of
the electrode-layers, in order to achieve a maximal acoystssure, or a max-
imal acoustic energy in a specific sub-domains of the hdidahain. We refer
the reader e.g. to [42, 11, 14] for modeling of piezoeleatnaterials, to [16] for
material tensor identification for such materials, and g fbr control issues.

Our aim is a possible application in shape optimizationsttwe introduce the
so-called topological derivatives of shape functionatgpfezoelectric materials. It
seems that the models are not up to now used in applied matibsrfa the pur-
poses of shape optimization, although the smart matenal®facommon use in
the engineering practice. In shape optimization, the modpproach to numerical
solution, requires the preliminary knowledge of expliatrhulae for shape gradi-
ents [45] as well as of the topological derivatives [46, 36, These formulae are
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used in thdevel-settype methods which model the geometrical domain evolution
by a zero-level set of solutions to non-linear hyperbolioagpns of the Hamilton-
Jacoby type. The shape gradient are present as tfffecoerts of the equations, and
the topological derivatives are used to improve the valde¢heoshape functional
under consideration by the appropriate topology changgs fer the minimization

of the shape functional, the minima of the topological daiixe of the functional
indicate the location of a new hole in the geometrical donfiair7, 8.

2. FORMULATION OF THE PROBLEM AND THE PRELIMINARY DESCRIPTION OF RESULTS

2.1. Shape optimization in piezoelectricity. This paper is motivated by the fact
that, among numerous publications on shape optimizatiwapes sensitivity anal-
ysis for piezoelectric bodies does not exist, although geéctric materials are
of extremely wide usage in the modern technologies, one luak bf a simple
lighter, available in any supermarket, or an elaboratedprder work-station in
a university. One, and definitely not the only one, distisging feature of such
smart materials implies an easy energy transfer in boticiities from mechanical
fields to electric fields. The mathematical modeling of sugihanomenon leads
to serious complications of analysis for governing PDEsause the correspond-
ing boundary value problem is not formally self-adjoint omtrast to the boundary
value problems for purely elastic bodies or purely elecagnetic media. This fact
requires for the development of new mathematical tools azateful choice of the
cardinal shape functional while neglecting of non-sefbadness provokes mis-
takes in both, mathematical formulae and physical intéagicn of the obtained
results (see Remark 4.4 below).

Introduced in [46, the topological derivativé (U°; w1) of a shape functional
is intended to describe the change of the functigiialue to nucleation of holes
or voids and allows to extend possible variations of the sliapan optimization
process [2, 7, 8] in comparison with classical tools (cf., [455]),

1) J U Qh) = J(U; Q) + KT (U; w1) + o(h*), h — +0,

In (1), h > 0 is a small parameter, i.e., the diameter of the opewnipdn the
entire bodyQ c R", u" andu are solutions of the boundary value problem in
Q(h) = Q\ wn, andQ, respectively, and the exponent- 0 depends on the space
dimensionn and boundary conditions imposed on the interior (1)-dimensional
surfacedwn.

Asymptotic analysis of elliptic problems in singularly pgbed domains, e.g.,
methods of matched and compound asymptotic expansiongl&jfand [25], re-
spectively), has become the most appropriate and relevaitainalmost explicit
formulae for the topological derivatives as it has been destrated in [36, 37] and
others. We also mention books [28, 3] where the subject dsesiuto some extend,
from physical and numerical point of view.

IActually, asymptotic formulae of type (1) together with thbole asymptotic series for energy
functionals under various singular boundary perturbatibad been derived much earlier in [24],
although the notion of the topological derivative is due46][
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Strangely enough, only self-adjoint problems were heoetobxamined care-
fully, although the full-blown approach in [25] can work fgeneral boundary
value problems for elliptic systems. In this paper we pditliyhis gap by adapting
formula (1) to certain shape functionals for a piezoeledindy.

The piezoelectricity problems admits twdigrent formulations with non-symmetric
and symmetric but non-semibounded quadratic forms, theygrand electric en-
thalpy functionals, respectively. By means of the Lax-Milgp lemma, the first
formulation furnishes the existence and uniqueness reétiithe same time, the
topological derivative of the energy functional is a nondbcharacteristics of the
piezoelectricity solutions in contrast to the pure elatstiproblem (see Remark
4.3 below), while the absence of this intrinsic propertya$ caused by amcor-
rect definition (1) but occurs as well for the energy release natméchanics of
cracks for piezoelectric media (see Remark 4.3 again). @ineekplanation, we
refer the reader to [48] for the modeling issues, of the lattéers to the electric
enthalpy as one of Gibbs’ functional obtained from the epdupctional by the
partial Lagrange transform on the electric componentss iBtithe electric enthalpy
(UM Q(h)) (see the definition in (20)), that governs the mechanieaitec state of
the piezoelectric bod{2(h) and, therefore, the second formulation becomes varia-
tional and provides the clear interpretation of the topialgderivative7 g(u; w1)
in

(2) E(un; Q(h) = EU; Q) + h*T(U; w1) + O(hY), h - +0.

The indicated peculiarity of the piezoelectricity problemucially influences
topological derivatives of other shape functionals, toar. éxample, the traditional
adjoint state (cf. [4, 45, 46]) has to be found out in the fdiynadjoint boundary
value problem that occasionally underlines its name.

All the above observations lifts the piezoelectricity deosh on the top of the
list of unsolved problems in shape optimization, it seenat #ven the classical
formulae for material derivatives, which are not under adestion in the paper,
ought to be revisited.

2.2. Constitutive relations in piezoelectricity. Let Q c R2 be a piezoelectric
body with the Lipschitz boundagQ and the compact closufe = Q U Q. Using
the matrixcolumn notation (cf. [22, 29]), we regard the displacemeutoru™ as
the columnu™ = (W), U, uY)™ whereu?" is the projection ofi on thex;-axis of the
fixed Cartesian coordinates system (xi1, Xo, X3)" and T stands for transposition.
Together with the electric potential™, the displacements compose the column
u= (W, ud!, uf,u®)" of height 4. The strain column

(3) 8M(UM) = (82\_/|1, 8g/|2, 8:’\3/|3, \/_Zgg/l?’, @gﬂl, \/_Zgjvz)T
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consists of the Cartesian componeﬁﬁs: $(0;uM + 8ku'j\") of the strain tensor and
takes the fornzM(u") = DM(V,)uM where

(4)

9, 0 0 0 21245, 2712y, 0 P
DM(V)T=| 0 4, 0 212, 0 27124, ,Vx=[8z ,a,-:T.
0 0 a3 27Y2%, 2712y, 0 3 Xj

We introduce the columa(u) = (MU, eE(UF)™)T wheresF(UF) = VyUE is the
electric strain column, taken with the sign minus, &{&) implies a (%4)-matrix
of the first-order dierential operators,

M T
5) £(U) = D(V)U, D(V,)" =( D o(vg VO; ) 0=(0,0,0).

We also assemble the colurarfu) of height 9 from the stress columrf(uM)
of structure (3) and the electric induction columf(u®) = (¢§, 05, 05)7. In this
manner, the constitutive relations of piezoelectricitye(§11, 14, 42])

(6) O'M — AMMSM _AMEgE’ O'E — AEMGM +AEE8E

can be rewritten as follows:

(7) o(u) = As(u),
where the matripA of size 9x 9,

AMM _AME
(8) A= ( AEM  AEE )

is formed by the symmetric and positive definitex(6)- and (3x 3)-matricesAMM
and AFE, respectively the elastic finess matrix and the dielectric permeability
matrix, and the block&ME = (ABM)T of piezoelectric moduli. We emphasize that,
by its physical nature, the matrix (8) is not symmetric pded the (6x 3)-block
AVE is not null, i.e., the mechanical and electric fields interac

The state of the piezoelectric boflyis described by the mixed boundary value
problem

9) D(=Vx)TAX)D(Vx)u(x) = f(X), x€ Q,
(10) D(n(x)) "AX)D(Vx)u(x) = g(X), x € Iy,
(11) u(x) =0, xe Iy =0Q\ T,

wheren = (ng, Ny, N3) " is the unit vector (column) of the outward normal. On the
right hand-side of the equations (9) and (10), we have themvelforcesfM =
(M, £, 7 and the surface mechanical loadig§ = (gY',d}.d})" together
with the volumefE and surface&F electric charges. The Dirichlet conditions (11)
mean that the body is mechanically clamped over the suffgaad in contact with
an electric conductor. As usuall§® = 0 and, if the surfac&,, is in contact with a
dielectric medium, i.e., vacuum, we are to gﬁt: 0.
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2.3. Solvability of the problem. Let us assume thatesI, > 0 andf e L3(Q)%
g € L3(,)* whereL?(Z) denote the Lebesque space with the intrinsic inner prod-
uct (, )= and the superscript 4 indicates the number of component®indctor
functions f andg. Notice that the subscript is always omitted in our notafmn
inner products and norms.

The integral identity (cf. [21]) serving for problem (9)4(}, reads as follows:

(12) Qv Q) := (AD(V:)u, D(Vi)V)a = (f,V)a + (3 V)r,, Ve HYQTW)*,

where I3|1(Q;Fu) denotes the Sobolev space of functions vanishin§j,at The
left-hand side of (12) is understood properly providediestof the matrixA are
measurable and uniformly bounded functionsCin In addition, for almost all
X € Q, we assume the symmetry and positivity properties

AMM(X) — AMM(X)T, AME(X) — AME(X)T, AEE(X) - AEE(X)T,
(13) emldVPAMM(x)aM < CylaMf?, aV e RS,

ce|aF[PAFE(x)aF < CglaFf?, aF € RS,
wherecy, Cy andcg, Cg are positive constants. We emphasize that no positivity
restriction is imposed on the piezoelectric modulANE.

Although in the cas&ME #0 the sesquilinear forrQ(-, -; Q) cannot be an inner
product on the Hilbert spadd!(Q;T',)* due to thewrongsign onAVE in (8), the
Lax-Milgram lemma ensures the following assertion becaiske formula
(14)

Q(u,y; Q) = (A"D(V,)u™, DM(V)u")q + (ATEVLUE, VidF)a > cllu; HY(Q)IP

caused by the Poincaré inequality térand the Korn inequality fonV (see [6, 19]
and others).

Proposition 2.1. Under the condition§13), (14), the problen{12) admits a unique
solution ue HY(Q; T'y)*, and the following estimate is valid:

(15) llu; HY(Q)Il < ca(llf; LX)l + llg; LTI
Unfortunately, the problem (12) is non variational. Indeé energy functional
U,
1
(16) Uu; Q) = 5(AD(Vu, D(Vx)u)a — AU ),
17) A(y; Q) = (f, U)o + (9, U)r,,

is but the sum of the mechanical and electric energy funatson

(18) UM(U";0) = SAMDM(T I, DM — (1, uM)a - (@, 1)

1
(19) UE(E; Q) = E(AEEVXUE, VilF)a — (5, uF)q - (¢F, UF)r,,

while a stationary point of (16) becomes a solution of thebfgm (12) with the
block-diagonal (9 9)-matrix diag{AMM, AFE}, i.e., the variational problem does
not accept an interaction of the mechanical and electriddigf. an example in
Section 4.4).
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It is known (see, e.qg., [48]) that the electric enthathy
1
(20) E(u; Q) = E(A(_)D(Vx)u, D(Vu)a — R(u; Q),

(21) RU; Q) = (fM, uMa + @, u")r, - (f5, U)o - (6, U)r...
gives rise to the variational formulation of the piezodiiety problem

(22)  Qu(uV;Q) = (ALD(V U, D(Vi)V)a = R(; Q), ve HY(Q; T,
where the matriX_ is composed from blocks in (8) as follows

AMM AME
(23) Ac) =( AEM  _ AEE )

The matrix (23), in contrast to the mati is symmetric, however, neither matrix
(23), nor the quadratic form on the left-hand side of (22)asifive definite. Thus,
a solutionu € H(Q;T,)* is a stationary point of the functional (20) butannot
be any minimizer of the electric enthal@u; Q).

The integral identity (22) with the test functioy = (W), V), Vj§, —VF) trans-
forms into the problem (12). The inverse transformationls® available. These
facts prove that the problem (22) inherits the unique sdlitsalrom (12) in Propo-
sition 2.1.

Remark 2.1. The integral identity is formally obtained by the multiplgisystem
(9) with v scalarly and integrating by parts. Using.yas the multiplier, one arrives
at (22). This explains the equivalency of the problems. In Secti@na@ shall

outline a dfferent way to modify the piezoelectricity problem in orderstody

properties of the mechanical and electric fields on the bdsmown results.

The electric enthalpy is but theftierence of elastic energy (18) and electric
energy (19). Expression (17) implies the external work.nBehe diference of
the mechanical and electric external works, the compoRémiQQ) of the electric
enthalpy has no physical meaning as a whole. NeverthelesSegtion 4.2 we
shall observe that asymptotic formulae &u; Q2) become meaningful while the
analogous formulae fot/(u; Q) look rather queer.

2.4. Structure of the paper. In Section 3 the asymptotic analysis of the piezoelec-
tricity problem for the body2(h) with a small voidwy, is performed (see (24)). The
applied here asymptotic procedure [25, Ch.4] requiresttooduction of an intrin-
sic integral characteristics of the vaigi in the homogeneous piezoelectric space
R3, the polarization matrisM (A%, w) of size 9x 9 (see formulae (61)-(63)). The-
orem 3.4 establishes general properties of the polarizatiatrix, see also (172)
for the case of weak interaction between mechanical andrieldields. The po-
larization matrix appears in the asymptotic expansion eflibundary layer term
at infinity that also permits in Section 3.5 to complete thengstotic ansatz of the
solution to the piezoelectricity problem (h). The asymptotics constructed in
Section 3 is justified in section 4.1. In Section 4.2 the adptigs of the energy
and electric enthalpy functionals are analysed, while ictiSe 4.3 rather arbitrary
shape functional is considered and the correspondingrddjtzite is detected. The
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paper is completed by inquiring into a piezoelectric bodthvei weak interaction
of the mechanical and electric fields. All asymptotic foremulerived in the paper
are made more explicit in such a case due to the fact that fer glectricity and

pure elasticity the polarization matrices are known exlidor many canonical

shapes (see, respectively, [44], [49, 23, 3] and others).

3. ASYMPTOTIC ANALYSIS

3.1. The problem with an interior singular perturbation in the do main. Letw

be an open set iR3 with a Lipschitz boundary and a compact closure. We assume
that bothQ andw contain the coordinate origi@. Given a small dimensionless
parameteh € (0, hp], we introduce the sets

(24) wh = {Xx:&:=h1xew}, QM) =Q\ o

The boundhy > 0 is chosen such thai, c Q for h € (0, hp]. By rescaling, we
reduce a characteristic size @fandw to the unit and make the coordinateand
& dimensionless.

Supposing2(h) to be a connected set, we consider the piezoelectricityl@no
in the domainQ(h), namely,

(25) D(=V)TAXD(V)U'(X) = (¥, x € Q(h),
(26) D(N(x)) "AXD(V,)u"(x) = g(X), X € T,
(27) D(n"(X))TAX)D(V,)u(X) = 0, X € dwp,
(28) u'(x) = 0, x € I',.

In (27), n" stands for the outward normal @p. Since the Neumann conditions
are imposed on the boundary©f, there is no traction ofiwp and the openingy,

is filled with a dielectric medium. This problem, of courseigat to be reformu-
lated as either integral identity (12), or (22) in the funotispaceH1(Q(h); Tu)*,
hence

(29) QUM VM () = (F,V)am + (9. V)r,., V! e HY(Q(h); Tu)*.

Proposition 2.1 remains valid for the problem (29) in the dong2(h).

For h = 0, the openinguy, disappears and the singularly perturbed problem
(25)-(28) becomes the original problem (9)-(11). In oradedéscribe the behavior
of the solutionu” e If|1(Q(h);1"u)4 ash — +0, we have to assume an additional
smoothness of the matr, for exemple, in the balbg = {x : |X| < R} the inclusion

(30) Ae C>*([BR)*>°

is valid, whereC%®(2) is the Holder space with the standard norm

k
Iv; K@)l = > suplVAv()l + sup|x - YI™*|VEv(3) — Viv(y)|

=1 XEE X,YyeE
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and VKv denotes the family of all derivatives ofof orderk. Since the matrix
differential operator

(31) L(X, Vx) = D(=Vx)" A(X)D(V)

is elliptic (see Section 3.3 below), a solutiare H(Br)* of the system (9) iBg
with the right-hand side

(32) f e COBR)* a € (1/2,1),

falls into the spac€>*(Bgr)* for anyR’ € (0, R). This fact is due to local estimates
of solutions to elliptic systems [1]. Note that (32) provsdle estimate

(33) If(x) — f(0)] < cIX?, X € Br.

We also need the Taylor formula
(34) lu(x) — d(x)a - D(X)T&° — U(X)| < c|x>*?, x € Br,
whereD(x)" is the matrix in (5) under the substitutiéfy — X,
(35) &% = D(V,)u(0) € R,

d(x)a with a € R’ implies a rigid motion in the mechanical component and a
constant potential in the electric one,

(36)
dM(X) 0 1 0O 0 —2_1/2X3 2_1/2X2
d(x):( 00 l),d'\"(x): 0 1 0 22 0 —22y
0 0 1 —2_1/2X2 2_1/2X1 0

We emphasize a similarity of the matricB¥(x)™ anddv(x). Finally, U in (34) is
a quadratic term, i.e.,

(37) U(tx) = tPU(X), t > 0, x € R3.

Remark 3.1. The factor V2 is present in the strain colum(8) in order to equalize
the natural norms for tensors of rarikwith the norms of corresponding columns
of height6. As a result, an orthogonal transformation of the Cartestaordinate
system x implies the orthogonal transformations for allioohs introduced to re-
place tensors (see, e.§R9, Ch.2). By the facto2=/2 in (36), we also achieve the
relations

D(Vx)D(X)T = ngg, D(Vx)d(x) = @9)(7,
d(Vx) Td(X)x=0 = Izx7, d(Vx)" D(X) "lg=0 = O7xo,
wherelnn and Omxn Stand for the unit and null matrices of sizexm and mx n,

respectively. Notice thdB5) follows from the first couple of the relatio38) and
our way to write the Taylor formula.

(38)

By (30), we particularly obtain

3
(39) AX) = A% + Z XAl + A(X), [Apg(¥)] < cIx?, x € B,
=1
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with the constant (& 9)-matricesAl so that matrix (31) of dferential operator
gets the decomposition

(40) L(x Vx) = LoV + L' (%, V) + L(X V).
Inserting the Taylor formula fou into the equation (9) and using (39) yield

3
(41) LoVU() - D" D(e))TAle = £(0).

j=1
Hereej = (6j1,0j2,6j3)" . SinceU is quadratic irx (see (37)), the first term on the
left hand-side is independent wf

Remark 3.2. To guarantee formula€33) and (34) with « € (0,1/2), we could
assume f H2(BR)* while deriving ue H*(Br)* from local estimates for solutions
of elliptic systems (sgd]). This is due to the Sobolev embedding theoréi? H
C'in R3 for any« € (0, 1/2). However, in Theorem 4.1 and Remark 4.2 we shall
see that we really need > 1/2. The latter requires, for example, & H3(Br)*,
and, therefore, we prefer here to use the Holder scale.

3.2. The asymptotic ansatz.Based on general results in [25], we accept the fol-
lowing asymptotic ansatz for the solutiefi of the singularly perturbed problem
(25)-(28) :

(42) u"(%) = u(x) + ()W) + hPwWA(©)) + h3u(x) + . ..

Hereu is a solution of the limit problem (9)-(11w! andw? are terms of the
boundary layer type, and is the main regular corrector. The cuf-dunction
x € C2(Q) is equal to one in the ballr/3 and null outsideB,r,3 So that, now, we
fix ho > 0 such thatw, c Br/3 for h € (0, hg).

In view of (24), the coordinate dilatiorn— ¢ = h™1x removes the boundasQ
close to infinity and the formal limit passatje— +0 makes the exterior domain
Z = R®\ @ from the nucleated domaif2(h). Moreover, the decomposition (40)
yields

(43) L(x, Vx) = L(h&, h71V,) = h2L0(V,) + L/ (€, V) + ...

Similarly, for the Neumann boundary operate?(x, V) on the left hand-side of
(27), we have

(44) N(x, Vi) = h"INO(£, V) + hON'(€, V) + . ..

where

3
(45)  NO¢,Ve) = D((€))TA’D(Vy), N'(£,Ve) = D(n“())" ijA’D(Vf),

j=1
andn® is the unit vector of the outward normal 6.

Let us derive the exterior boundary value problemsvibrandw?. First, we
insert the ansatz (42) into (25), make use of the expansidy &hd collect coef-
ficients written in the fast variablesfor similar powers of the small parameter
As a result, we obtain systems offgirential equations i& for w! andw? (see (46)
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and (47) below). Second, we calculate the discrepancy yettid leading asymp-
totic termu(x) in the boundary conditions (27). Namely, by means of (344)(
we derive that

N"(x, V,)u(x) = D(N“(£))7

=1

3
A° + th,-Ai]go +hNO(E, VAU () + ...

Finally, we write the problems

46 LOVaW (€) =0, £ € &,
(46) NO(E, VAWH(E) = —D(n(&)) T A%Y, ¢ € dw,
and
(47)
LO(VWA(E) = —L' (&, VIWH(E), € € B,
NOE, VaWA(E) = =N/ (£, VAWL(E) — N'(€, V£)D(£) Teo — NO(E, VU (), € € dw.

3.3. The exterior problem in piezoelectricity. The polynomial property [30, 31]
of a formally self-adjoint system of fierential equations delivers plenty of results
for the exterior boundary value problemahsuch as the ellipticity, the solvability,
asymptotic expansions of solutions, and intrinsic integharacteristics, i.e. the
polarization matrices (see [35, Ch.6], [31, 33] and [36]hae optimization). As
it has been mentioned, the piezoelectricity system (9) idarmally self-adjoint,
however, introducing the imaginary potemiaf (see [31, Example 1.13]) and the
columnugy = (U}, U}, u¥,iu§)™ brings the sesquilinear form

(48) aa) (Uq)» Veys E) = (AGD(Ve)ug), D(Ve)Vi))=

wherei is the imaginary unit ané\?i) stands for modified matrix (23),

0 AOMM’ iAOME 0 0
(49) Ay = ( [AOEM  pOEE ) = Arg + 1A(Im)
while both A(Re) and A(Im) are real symmetric anA(Re is positive definite. The

sesquilinear form (48) is not Hermitian in the cas®& # g3, but it enjoys the
polynomial property [30, 32, 31]:

(50) C](i)(U(i), Ugy; T =0 = Uiy € Plv,

whereT is any domain irR® and® = {p : p(x) = d(X)a, a € C’} is a polynomial
subspace of dimension 7 generated by the matrix in (36).

The above observations made in [32, 31] and the investiyattheme [35, Ch.6]
provide all results we formulate below with exception foe fholarization matrix
and here the most attention is paid to this integral chaniatites of the opening
in the homogeneous piezoelectric space.

Let Vg(E) be the Kondratiev space [18] obtained by the completiorheflin-

ear spacé:g"(i) (infinitely differentiable functions with compact supports) with
respect to the Dirichlet integral noriiv:w; L%(Z)||. Applying the one-dimensional
Hardy inequality in the radial variabje= |£|, we use the equivalent norm

(51) Iw; V3E)I = (IVew; LAE)IZ + llo~tw; L2(E)I12) M2,
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The problem (46) with the right-hand sides L2(dw)* in the Neumann bound-
ary conditions can be reformulated as the integral iderditgilarly to (12)

(52) A°D(VAW, D(VeV)z = (9 V)aws V € V(E)™.

Proposition 3.1. For any g € L%(dw)?, the problem(52) has a unique solution
w e V(E)* and the estimatgw; V3(Z)I| < cllg; L?(0w)|| is valid.

Althoughdw andg are not smooth, the solutiamin Proposition 3.1 is infinitely
differentiable outside of any neighborhadtbf the setw (recall the local estimates
in [1] mentioned above). To describe the behaviow(#) asp — «, we introduce
the fundamental matri®(x) of size 4x 4 for the operatoLO(Vg) in R3 (see [10,
12]). This matrix is positive homogeneous of degrde namely,

(53) O(te) = t71(E), t> 0, £ e R\ {0).
The next assertion is due to [18], [27] (see also [43] and, 8§, Ch.6]).

Proposition 3.2. The solution we V(}(E)4 of the problem(52) admits the asymp-
totic form

(54) W(E) = (d(=V)"®(€) ") "a+ (D(=V)@(#) ") b + W(E),
(55) VEW(E)| < ko, keNg=1{0,1,2,...}, £ e R3\V,

where ac R’ and be R® while|a] + |b| < d||g; L2(w)l.

Remark 3.3. Formula (54) contains the matrices d and D {{36) and (5). Let
dX(¢),...,d"(¢) be columns of @) and let Dy(¢),..., Dg(¢) be strings of ).
Then we rewritg54) in the form of strings

7 9
WE)T = )" ajdl(-V.)T0E)T + > BDk(-V)PE)" +W(E)".
=1 k=1

Therefore, the asymptotic terms detached5#) are but a linear combination of
columns of the fundamental matidx&) (with the cogicients a, ap, ag and &;
cf.(36)) and of the first-order derivatives of the columns (with tbefficients a,

as, ag and by, ... ., bo).

The columnsd?, ..., d satisfy the homogeneous problem (46). However, the
columns are not in the weighted spa\(ﬁE)“ by the lack of their decay rate and,
henced! () are not solutions of the homogeneogs<0) problem (52) in Proposi-
tion 3.2. According to the general method [26] such solgtiare used to compute
the codficients in the asymptotic expansion (54). We are going tohisentethod
twice. First, we observe that the right-hand gida (46) verifies the orthogonality
conditions

(56) \f«@w@m%=0eR?
ow
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Indeed, by (38), we get
(57)

[ f d(f)Tg(f)de] - (%07 f D(n*(€)d()ds = —(A%)T f D(V)d(&)de = 0.
Ow

ow w

Proposition 3.3. Under orthogonality conditior{56), the column a R’ in (54)
vanishes.

The proof is commented in Remark 3.6.

Let W! e V7(£)* be a solution to the problem (52) with the specific right-hand
side
(58) g'€) = -D(° ()" A%;;

herej=1,...,9,¢j = (6j1,..- ,5,-,9)T is the unit column irR?, and¢j stands for
the Kronecker symbol. Recalling the problem (46) for therimtary layer ternw?,
we see that

(59) WHE) = W(¢)e°

with the (4x 9)-matrix functionW composed from the columna?, ..., W?® of
height 4,

(60) W= (W, ..., Wo).
By Proposition 3.3 and the relation (57), we conclude theaazpns
9
(61) WIET = 3" MjpDy(V)0(&)" +Wi(e)T
p=1

where the remaindeM/! (¢) obey the estimates (55). The cheientsMjp in (61)
form the matrix of size % 9

(62) M = M(A°, w)

which, in the analogy with [49, 34, 40] and others, is catlesl polarization matrix
of the openingw in the homogeneous piezoelectric space.

As in Section 2.3, our study of general properties of (62ksebn both formu-
lations (12) and (22) of the piezoelectricity problem. Henwe have to perform
the same sign changes as in (23),

MMM MME MMM _MME
(63) M =( MEM  MEE )'—) M(:)=( MEM  _MEE )

Theorem 3.4. Entries of the modified polarization matrix M satisfy the relation

where Q_) is the quadratic form in(22) with the matrix /%_) = A)(0) (see(23)
and (39)).
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Proof. By (58) and (38), the suri(£) = D)™ + Wi(¢) verifies the homo-
geneous problem (46). In the method [26] these solutiongthiasame role as it
was registered for the columas, . . ., d” above Proposition 3.3. We underline that
the vector function

(65) Wy = (Wi W wi —wiEyT

verifies a homogeneous boundary value problem which is filyradjoint for (46)
and involves the dierential operatora( ', and N(OT) constructed from.® and N°
in (40) and (45), respectively, by replaciig with the transposed matriaf)T.
Clearly, L?T)(Vf) = L9(V,)* is the formally adjoint for the dierential operator
LO(V,). _

We insertw! andwp) into the Green formula written for the truncated domain
Er = & N Br and choose the radius of the b&lk = {£ : |£] < R} such that the
sphereSg = dBR envelopes the sei. We have
(66)

(LOWL, WE )z + (NWL WP Dawse = (W, LE W )ze + (W, Ny WE Dawuse-

SincelL%Wi = 0 prowdesL0 W‘ = 0, the integrals oveEg in (66) vanish.
FurthermoreN(T)(f, Vg)(Wp_)(f) = O & € dw. Thus, (66) converts into

(67) NOW), WP ) = (W, NG WE s = (NOWI, W )s,

whereN°(¢, V) = D(I¢]71¢) TA°D(¢) on the spherér.
Taking into account the estimates (55) # and the concomitant estimates
|VkWp(§)| < cpo~17%, we obtain that the right-hand snﬂ#;ht of (66) satisfies

whereX! means the asymptotic term detached in (61) Bpd)(£)" is a column of
the matrixD(£) ™ transformed according to (58). Understanding integraés tive
ball B in the framework of the theory of distributions, we obtain

Jp —1

(68) - ZM,-q f Do) (E)Da(Ve) " 8(€)dE + OR™)

Br

g=1
9
> MigDq(-Ve)Dp)(€) Tle=o + O(R™)
1

0=
_ Mjp fOI’ p:l,...,G, 1y . .
B { Mjp for p= 7, 8’9 + O(R ) = _(M(:))Jp + O(R )
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Here we have used that, firddy)(¢) is linear iné and, thereforeL?T)Dg(_) =0
and, second,

9 9
LAVAEE) 1= D MigL%(V)(Do(=Y)P(E) )™ = ) MigDa(-Ve)T6(¢)

o=1 o=1

caused by the fOfmUlBO(Vg)(D(é:) = 6(&)yx4, i.e., by the definition of the funda-
mental matrixd. _
Let us process the left-hand sidr’%ht of (66). Again integrating by parts, this
time in the domain& andw, it follows that
I ip
left

(N°W/, WP)5= = (N°D], D))o
Qo(Wja W(p_); E) + QO(DT, D;)—(_); w)
= Q?_)(WJ,Wp; E) + (A?_))jpmeSw,

(69)

wheremesw is the volume ofv. Note that, first, the equalitf®W! = —NODJ.T on
dw is inherited from (58) and (38), second, and—n® imply the outward normals
with respect to the set andw, respectively, and, third,

Qu V- E) = (AD(Ve)u, D(VelV())z
(ALY D(Ve)u, D(VelV)= = QO (U, V; E),
(AQ_)ej, €p)w = (A?_)) ipMmesw.

Comparing (68) and (69), we seRdo +co and obtain the desired relation (cs).

Theorem 3.4 ensures the matfik., in (63) to be symmetric, in particular,
MME — _(MEM)T_ However, in contrast to the polarization matrix in elasfic
(cf. [49, 34, 40]) neitheM(-), nor M enjoy the positivitynegativity property. In
the caseAME = Qg3 the piezoelectricity problem decouples into the elastiaitd
electricity problems so that,

(70)

(71) MMM <0, MEE > 0, MME = —_(MEMYT = Ogya,

provided, e.g.mesw > 0. We emphasize that in (7MEE is but the virtual mass
tensor (see [44]). By the perturbation argument, the matrixas six negative and
three positive eigenvalues, if the matd¥E is sufficiently small (cf. Section 4.4).
However, for arbitraryAME, this property is still an open question.

We have examined the first asymptotic term (59) of the boynldger type in
the asymptotic ansatz (42). By the representation (61)Researk 3.3), we write
the expansion ofi'(¢£) for £ — +co in the matrix form as follows

(72) wi(g) = (D(V) @) ) M7 + WHe).

The remainde! obeys the estimates (55).
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Remark 3.5. Formula(72) can be derived in the following way:

Wig)

Z Mip Z (f)Dp(eq)T + Wi)
p=1

9

Z Mip

p=1
9

.
> Mjpr(Vg)ﬂD(f)T] + W)
p=1

where M, ..., Mg are strings of the matrix M.

Z Dp<eq>—(§>T] + W)

3.4. The second term in the boundary layer. By virtue of (39) and (40), the
operator

(73) L'(£,Ve) = D(-V,)"

3 .
DA D(Vf)]

=1
gets the following homogeneity property:

(74) L' (&, Ve)p'e(6) = p'1y(0), & € R3\ {0},

Herel € R, (p, ) are the spherical coordinatesid, p = |¢| andd = p~1¢ € Sy,
andey, y € C*(S1)*. Thus, by means of (59) and (61), (55), (53), we obtain that

(75)  F'(&) = —L'(& VAW () = D(Ve) (07 2¥(&)) + O(p?), p — +ov,

while the formula can be fferentiated under the standard conven¥g®(p ) =
O(p~*1). Due to the definition (51) of the Kondratiev norm the rigatad side of
(75) gives rise to the continuous functional

V3(E)* 5 v (F/ 1),

= =

1/

(F.v)zl<c f pIMENdE < c[ f p“‘df] lo™'v; 2@l < Clv; V5 E)II-
Thus, similarly to Proposition 3.1, we obtain the existené& unique solution
w? € V3(E)* to the problem (47). Now, we need to examine the behaviov*(f)
asp — +oo. According to [18] (see also [35, 83.5]), first of all, we hawaleter-

mine the power-law solution

(76) 2(¢)=p"20)
to the system of dierential equations
(77) LUVA)Z(E) = p~°F (0) := D(V)T (0" 2¥(0)), & € R®\ {0},

with the right-hand side taken from (75). Note that, in gaheghe multiplier' in
(76) may be linear in Ip but, owing to a special form d¢f’, the next lemma proves
the absence of the logarithm.
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Lemma 3.1. The systen(77) admits the power-law solution of for(ﬁ!6) whose
angular partW(¢) is defined up to the linear combinationde'(6) + - - - + ca®*(6),
where ¢ € R and ®l(0) is the trace on the unit sphef of the cqumerJ(g) in
the fundamental matri.

Proof. After separation of variables and rewriting the operda.ﬂlirvg) = p~22(6, Vy, p0,)
in the spherical coordinateg, @), the system (77) takes the form

(78) (0, Ve, -1)Z(0) = F(6), 6 € S1.

By the Fredholm alternative, this system on the unit sphaseahsolution if and
only if the right-hand side& is orthogonal to all solutions of the formally adjoint
homogeneous system. Owing to [26] (see also [35, Lemma]B.5he formally
adjoint operator fof(6, Vy, —1) is nothing bute(+)(6, V4, 0), where

(79) p72L1)(0, Vo, p0,) = Ly(Ve) = LOV,)".

By virtue of the polynomial property (50), any power-lawsibn X(¢) = pPX(&)
of L(OT)(Vg)X = 0inR3)\ {0} is a constant column iR*. Thus, it siffices to verify
the orthogonality condition

(80) f F(0)ds = 0 R%.

LetR>r > 0 and let® be the annulugt : r < p < R}. We have

?R f F(O)ds = f “tdp f F(O)ds = f T (0)dé

=[ D(VE)T 2w(e))df = [ D(p-lf)T(p-sz(a))dsfc — [ D7) (p~2P(0))ds = O.
0] SR Sr

We have used here the Gauss formula and the fact that theantlgatp = R
andp = r are equal tdR"?D(0)T¥(6) andr—2D(6) "¥(6), respectively, so that the
integrals cancel each other.

Thus, the compatibility condition (80) holds true and thetsyn (78) admits a
solution. It remains to recall that any power-law soluti@g) of the homogeneous
system (77) becomes a linear combination of the fundamerdsix columnsa

To assure the uniqueness of the solution (76), we imposeotiditon

(81) f D(6) T A%D(6, Vg, -1)Z(6)ds) = 0 € R?,

S1

wherep™1D(6, Vo, pd,) is the matrix operatoD(Vy) written, similarly to (79), in
the spherical coordinatep, ).

Now, we are in position to write an expansion at infinity foe gecond boundary
layer term in (42).
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Proposition 3.4. The solution W € V}(E)* of the problen(47) admits the asymp-
totic form

(82) WAE) = Z(¢) + D(E)C + WA (£),

(83) IVERP(€)] < G 2, ke No, £ € R3\ Y,

wheres > 0 is arbitrary, Z is a power-law solution of forrfr6) and C € R* is
determined as follows:

(84) C = —f(0)mesw + J € R?,

3
(85) 1= [D@" Y, 6N DEADEI0E) dsM e

S1 =1

Proof. The asymptotic expansion (82) with a certain coluthaind the estimates
(83) result from [18] and [27], respectively (see also [35,3]). We again employ
the method proposed in [26] to evaluate the constant coldmNow, we use the
Green formula irEg for w? andep = (6p1,-..,0p4) . Recalling (47), we have
(86)

lieft :=—f epL'whde - f epN'whdst - fe N'D(£)sd s — fe N'Uds

fTLOWZd§+f TNOWZd%' fTNOWde— lright-

R ow

[

Here N°(¢,V;) = D(6)"A°D(V;) on the sphereSg with the unit normal vector
6 = p~1& (cf. (45) and (81)). Similarly to the calculation (68), usi(82) and (81),
we get
lright = — [ egN°Zds - [efN@dsC + O(R™?) =
Sr Sr
87 _ _
(87) = f epL%@déC + O(R™Y) = Cp + O(R™).

Br

By integrating by parts, the last couple of integrald,ém; turns into

(88)
f TL'whde— f epN'whdst = f TD(G)TZf,AJD(Vé.-)(D(Vf)(D(f)T)TdQ:Ms +O(R™Y).
ER ow

Here we have applied the decomposition (72vbtogether with the estimate (55)
for the remainder. Since its integrand is a positive homegasa function ir¢ of
degree-2 (cf. (53)) the integral, over Sg in (88) is independent of the radils
and becomes an entry of column (85).
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The first couple of integrals in (86) is equal to

f epN'D(¢)e%ds — f epN°Uds = - f ep(L'D(€)e® + LOU)dé
ow ow . w
= —-meswep (- X°_; D(g))TAl? + LOV)U(#)) = - fp(O)mesw.
Here, the elementary formula (41) has been taken into atcoun

Now the limit passag® — +co in (86)-(88) furnishes (84) and (8W).

Remark 3.6. Proposition 3.3 can be proved by an application of the mef@6tlin
the same way as it is made in Proposition 3.4 and Theorem 34only mention
that the columns 4. ..,d’ of the matrix ¢¢) in (36) satisfy sumultaneously the
homogeneous proble(d6) and the formally adjoint boundary value problem&n
with the operators g)(Vf) and I\FT)(g, V,), respectively.

3.5. The regular correction term. Let us consider now the subsequent term in
the asymptotic ansatz (42), namely the regular correcéom ti(x).
By means of (72) and (82), we have

hwA(h~1x) + h2w2(h1x) = h(S2(h-1x) + Wi(h X))+
+h(SY(h1X) + WR(h~1x)) = h3(S2(X) + SL(X)) + O(hA(IXI~3 + [XI~2))

where, according to (53) and (76), we have set
(90) S%(&) = (D(-V(E)) M’ SYE) = Z(&) + (E)C,
SP(t&) = tPSP(¢).

(89)

Therefore, this i$u(x) in the asymptotic ansatz (42) that compensates the main
part of a discrepancy produced by the boundary layer tevhrendw?.

Taking into account the equalitie€S? = 0 andL%S! = —L’S? designated in
two last sections, we arrive at the following representatib the discrepancy in
the system (25) :

f(x) = =L V) ()(S*(X) + SH(x)) =
(91) = —[L.xI(S*(¥) + S*(¥) = x((L(x Vx) = LO%(Vx) = L' (x Vx))S*(X)~
~x(})(L(% Vx) = LAV))SHX).
Here L, x] stands for the commutator of thefidirential operatoL. and the cut-of
functiony, i.e.,

(92) [L.x] = D(=Vx)"A(X)D(Vxx(x)) = D(Vxx(X)) " A(X)D(Vy).
Recalling (39) and (40), in view of (90), we obtain that
(93) ()] < X2

We see that the regular correction teurmust satisfy the piezoelectricity prob-
lem

(94) D(=Vx)"A(X)D(Vx)u(x) = f(X), x € Q,
(95) D(N(X)) "A(X)D(Vx)u(X) =0, x eIy, u(x) =0, x e I'y.
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We emphasize that the sumw(h~1x) + h2W?(h~1x) in (89) becomes of order*
only at a distance from the coordinate origin= 0. However, we have extended
equations (94) over the whole domanbecause the singularit@(x|=2) of the
right-hand sidd(X) is not too strong. In particular, by (93), the functional the
right-hand side in the integral identity

(96) Q. v; Q) = (f,V)a, v e H{Q; TW)*,
serving for the problem (94), (95) (cf. (12)), is continualige to the estimate

1/2 1/2
|(f,v)g|sc[ f IX|2|f(X)|2dx] [ f X2 v(X)[Pd X
Q Q
1/2

diamQ
sc[ f r2r-4r2dr] IVxv; La(@)l] < Cliv; HY(@)I
0

<

and the one-dimensional Hardy inequality mentioned abbig. (Hence, in the
analogy with Proposition 2.1, the Lax-Milgram lemma ensutee existence and
uniqueness of the solutiame I3|1(Q; I',)*. These observations complete the eval-
uation of all asymptotic terms detached in (42).

Remark 3.7. The singularity off can lead to a logarithmical singularity of the
solutionu. However, we shall need only the following inequalitieshveitbitrary
B>0:

(97) U()| < calX ™, VU] < cglx ™7
delivered by a result ifi27] (see alsd35, §3.6).

For the further usage, it is convenient to rewrite the anéé?z in a diferent
form, namely

98)  u'(x) = u(x) + hfU(X) + y(X)(h(h™1x) + hPRA(h1x)) + T(X),
where, in accordance with (89) and (90),
(99) U(X) = u(X) + x(x)(S(x) + S*(x)).

In other words, we detadiS?(h~1x) andh?St(h~1x) from the boundary layer terms
and attach them to the regular teunTherefore, the remaind@f in (98) stays the
same as in the original ansatz (42).

Let us derive armlmost explicitformula for (99). To this end, léB(x, y) be the
Green matrix for the piezoelectricity problem (9)-(112.].

D(=Vx)TAXD(Vx)G(X,Y) = (X — y)laxa, X € Q,
D(N(X))TA(X)D(Vx)G(x,Y) =0, xeTl,, ux) =0, xeIy

Of course, the relations (100) are understood in the sendistoibutions, so that,
G e L2(Q)*4, G € L%(0Q)*“ and

(G, LV)a + (G, N)r, = V), ve CI(@Tw)*,

(100)
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where the linear spa(ﬁg"(ﬁ; I'y) consists of infinitely dierentiable functions in

Q which vanish oT,. SinceA is a smooth matrix function inside of the balk
(see (30)), the Green matrix is properly definedyfer Br (see [10, 12]) and

(X = G(x,y) — D(x,y)) € HL(Q)¥.
Moreover,G can be diferentiated in the second argument and we set
(101) GO(X) = G(x,0), G(x) = D(~Vy)G(X, )ly=o-
By repeating the considerations in and around of Lemma 3Icam detect that
(102) G%— @ e HY{(Q)™4, G® - D(V)® - Z - K® € HY(Q)%4,

whereK is a certain matrix of the size 9 4 with real entries and is such that
Z(x) = Z(XMT£0 (cf. (73) and (75)-(77)). Since, by definition afandS9, the
vector functionU verifies the boundary conditions (95) and the homogeneais sy
tem (94) everywhere i@, except at the poir®. Let us now compare singularities
in (102) and (99) to conclude that

(103) U(x) = G2(XMT£% — G(x) f (O)mesw.
Remark 3.8. 1. We emphasize that thefdrential operator [-Vy) in (101)is re-

placed by §Vy) in (102). This is due to the evident relationshig-Bv,)d(x-y) =
D(V)@(x - Y).

2. If Ais a constant matrix, then the terrdsand K® are absent in(102),
in other words, their presence results from the variableficients of djferential
operator(40). Therefore, the columaf(0)megw occurs on the right-hand side of
(103) instead of the colum(B4). To ensure that the additional colun@5) does
not gfect the form of the last term i(103), one may put® = 0 to see that then
J = 0. A direct calculation leading to formulél03) can be found if39] for the
three-dimensional elasticity problem.

Since the coordinate origi@ is situated insidevy, i.e., outside®, (cf. Section
3.1), the second term (103) in the new ansatz (98) is smodtheinlomainQ(h),
although the Green matrices (101) have singulariti€3. at

4. JUSTIFICATION OF ASYMPTOTICS AND ANALYSIS OF SHAPE FUNCTIONALS
4.1. The justification of asymptotics. The diference
(104) " = u" - u— y(hwt + hw?) — hiu
(see (42) and (98)) satisfies the integral identity
(105) QE", v; Q(h) = F'(v), v e HYQ(h); Tw)*,
whereF " is a certain functional. If the estimate
(106) 77 < ch™*32|jv; HY@Q(h)|
is proved, we could take = T in order to conclude by using (14) that
(107) A" HY(Q(h)I| < ch™+¥/2,
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To verify (106), first, we assume thawanishes in the balb,r/3 while yv = 0.
Then, we have
(108) FM(v) = Q(U"—u—h3u, v; Q(h)) = Q", v; Q(h))-Q(u, v; Q)-h3Q(u, v; Q).

Recalling (29), (12) and (96), we observe that the suppoth@fvector function
(91) satisfiesuppf c Bor/z and, hence, (108) is null.
Second, lesuppvc Bgr \ wh. We write

F'(v) = (f,V)ag) — (AD(Vx)U, D(Vx)V)am — i*(AD(V,)u, D(V)Maqm)
(109)  —h(AD(Vx)(W"), D(Vx)V)a(h — h*(AD(V)(xW?), D(V)V)ah)
= (f,V)qn — 1Y - h31Y — hi}’ - h2|¥\’.
Since the vector functionsandu are smooth iBgr \ wn, we integrate by parts
and obtain

1Y = (f, V)am + (DM TA%L, V)g,,, + (D(NMTAD(V,)U, Vs,

3
(110) + > (DM XA, V)ag, + T,
=1
1" = (D(N")TAD(Vx)(u - D(¥)7&% = U), V) s+

3
(DO (A= A" = " XA, V)i, + (D) (A= A%)D(V,)U, Vi,
=1

(111) 1Y = (f,V)om + 19, 1" = (D(N")TAD(V,)U, Vg
To process the termd andI", we recall the inequality
(112) f X2V Pdx < cliv; HYQE)I
Q(h)

which is a consequence of the one-dimensional Hardy ingguaf. [35, 84.5])
and the trace inequality (see [21])

(113) f V(9Pds, < chilv: HYQIE .

Owh

where the constantsare independent df € (0, hg] andv.
Now by (113) and (97), we readily derive that
(114)
R < chéh™ [ M(x)lds, < chP#(mesdwn)2hY/2|v; HY Q)|

Owh

ChA+72)v; HY(Q(N))II.
Analogously, by means of (39), (34) and (113), we have
(115) 1Y < c(h**® + W2 + h?) f v(x)lds, < ch*>2|v; HY(Q(h))II.

Own
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We may choosg = 1—a > 0 in order to equalize the final exponentshah (114)
and (115).
Dealing withlY, we write

(116) 13 = (AD(Vxx)S, D(Vx)Mam — (AD(VX)SE, D(Vxx)V)ah)
+  (A°D(V)W?, D(V,)(xW)agy + 13,

(117)
13 = (AD(Vyxy)(W? — S1), D(Vx)V)an) — (AD(Vxx)(W? — S1), D(Vix )Mo
+ (A= AD)D(V )W, D(Vx)(xV))ah)-

Here, we detactst(h~1x) from w?(h™1x) (cf. (89)) and commute twice thefttr-
ential operatoD(Vy) with the cut-dtf function y (see (92)).

In view of (39) and (82), the absolute value of the last exgigesin (117),
multiplied byh? according to the definition df’in (109), does not exceed the sum
of the following two expressions:

-3+
ct? f |x|h-1(%) DV OOVO))Idx <

Q\Brh

(118) diamo 1/2
sch“—ﬁ[ f r2r‘6+28r2dr] lIv; HY(Q(h))Il < ch’/3|lv; HY(Q(h))|
Rh

and

of? f IXID(V )R 1lID (V) (r )l

Brn\wh .

(119)

< chZRhL f hZD(Vg)\WF(f)Fde] lIv; HY(@(h)I|

rR\w

< ch’2|v; HY(Q(N))!!.

The radiusRis chosen such th&@r > w. Since the support dD(Vy)| belongs to
the annulusByr/3 \ Br/s Where, according to (82),

WA(h1x) — SYIX)] + [V WA(h1x) — SY(h1X)| < ch?,

the remaining terms in (117), again after multiplication iy are bounded by
chtP|lv; HY(Q)|| while we may sefs = 1/2 to achieve the same exponent as in
(118). In other words, fop = 2, we now have

(120) hPITI < eh/2jiv; HY Q).

By formulae (72), (55) and (89), the similar argument leadthe estimate (120)

for the remainder in the representation

(121) 1Y = (AD(Vxx)S?, D(Vx)V)a(r) — (AD(Vx)S?, D(Vxx)V)ah) + B
(A°D(V, )WL, D(V,)(xV)) ety + Z?:l(XjAJD(Vx)Wl, D(Vx)(eW)am) + 17
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Now, we are in position to conclude the estimate (106) forftimetional F" in
(105), (108) and (109). To this end, we list several factsstFthe inner product
(f,V)a on the right hand-side of (109) cancels the same productlid)(BSecond,
the equality

(F,V)am = —(AD(Vxr)(S? - Sh), D(Vx)V)am + (AD(Vx)(S? - S1), D(Vix)V)a)

is inherited from the definitions (91) and (92). Third, we make coordinate
dilation x - ¢ = h™1xin the first couples of terms on the right hand-side of (116)
and (121), simultaneously multiplying the termshtgyandh, respectively. Noting
that SP(h™1x) = hPSP(x), p = 1,2, we see that these couples amgf, V)a)
annihilate. Finally, we recall the integral identities J58erving for the problems
(46) and (47), and after the substitutions» ¢ andv(¢) — y(hé)v(hé), we detect

all terms in the identities on the right hand-sides of (1{D)6) and (121). Thus,

F'v) = 1U + h31Y + hiY + h2TY
and the inequality (106) holds true by virtue of (115), (144yl (120) withp = 1, 2.
We notice that the lowest exponent5/2 of h occurs in (115) becausee (1/2,1)

anda +5/2 € (3,7/2).
We now formulate the result.

Theorem 4.1. Let all assumptions in Section 3.1 be valid, in particulage inclu-
sion (32) with a € (1/2,1). Then the solution "uof the piezoelectricity problem
(25)(28) and its approximation constructed in Section 3 are in thatiehship

(122) U™ = u = h3u — y(hw! + h®w); HY(Q(h))|| < ch**>/2N,

where the constant c is independent of the paramete() hy] and the right-hand
sides f, g while

(123) N = [If; LX@Q)Il + llg; L*(0Q)ll + I f; C>*(BR)Il.

Remark 4.2. The obtained estimai@d22)is asymptotically sharp, in particular, it
satisfies the "first omitted term” rule. Indeed, for the sntodata A and f, the sub-
sequent asymptotic term in the ansg2) is Py (X)w3(h~1x), the H(Q(h))-norm
of the latter term is just (/). This bound appears if123)if « — 1 — 0. More-
over, the estimatél22) holds true when the last addendum(i23)is changed for
||f; C31(BR)|| with any ey € (0,1). If the right-hand side fe C%*(Br)* in the
equationg25) is not sificiently smooth, e.g.,

f(9 = 1909 + x> f1(9), %€ C*(BR)*, '€ C=(s1)",

then the asymptotic ansa#2) gains the boundary layer ternff y (x)w2+®(h=1x)
with the Sobolev norm if2(h) of the some order®i®2 as on the right hand-side
of (122).

A direct calculation show that
(124) hlw!; H(QN)Il = O(**?), j=1,2,
and, therefore, in view of the relatian+ 5/2 > 3 (see (32)), théd1(Q(h))-norm
of each of the detached asymptotic terms in (122) (cf. (48)(88)) is of ordeh®
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with s < 3. In other words, Theorem 4.1 justifies the constructed psytics of
solutionu”, indeed.

4.2. The energy and the electric enthalpy.We proceed with energy functional
(17), assuming for simplicity that the volume forces andvbkime charges are
absent, i.e.f = 0 on the right hand-sides of (9) and (25). Then, integrating b
parts and taking into account formulae (98) and (107), we hav

U Q(h) 3(D(MTAD(V,)u", u")r, — (9, UM, = -3(g, UM,
= _%(g’ U)F,T - %hg(g’ U)F(r + O(ha+5/2) .

(125)
Let oM € HL(Q;Ty)* andvE e HY(Q;T,)* imply the solutions of the problem
(9)-(11) with the right-hand sides

(126) o = (9. 95", 95, 0)", o = (0,0,0,¢7)".

Using the representation (103) wifif0) = 0 and the modified columb_, (see
(65)), we obtain

(sM,U)r,,

(@™, Ur, = (D(N)TAD(Vx)oM, U )r,
(M, D(=Vx) TATD(V)U))r,
= (3O)TM(DM’ D(—VX)TATD(VX)G?_))Q
= (E9)TMEM, (D(V)T6(X) ) = —(80)T|V|e?’l),
@5 U, = (@5 U, = -5, D(=Vx) TATD(V)U)r,
= (9™ )

(127)

Here, we apply formula (100) for the derivativ@8 of the Green matrix in (100).
We emphasize that

(128) (.GY)a + (6. G2 )r, = ~(D(V)u))(0) = —&2,

because entries @° are given by the derivatives of columns of the fundamental
matrix G(x, y) with respect to the second argument, &d satisfies the problem

D(~V,)TAX)TD(V)G() (X ¥) = 5(x ~ W)y, X € O,
D(N(X)) "A(X) 'D(Vx)G)(x.y) =0, xe Iy, G(Xy) =0, xe Ty,

wherel_) = diag{1, 1,1, -1} (cf. the problem (100)).
By (125) and (127), the following representation is valid:

3
(129) (L{(Uh; Q(h)) — ﬂ(u, Q) = %(80)—'—'\/'((5'(\/'_) _ Gj?_)) + O(ha+5/2),
At the first sight, (129) looks like (1), however this impriessis wrong.

Remark 4.3. The decomposition & o™ + oF is only a mathematical device in
our analysis, since in a smart material it is impossible tstidiguish between the
strain columngM = D(V,)oM(0) and¢F = D(Vy)vE(0) generated at the poir® by
the external mechanical loading' and the electrical surface chargé in (126).
Surely, one can measure only the sefn= D(V,)u(0) resulting from complete
external action and standing as the first term on the rightdiaide of(129).



26 G. CARDONE, S.A. NAZAROV AND J. SOKOLOWSKI

The diference
M- eF = (65, GO, - (™, GO,

ought to be regarded as a global characteristics of the maetalectric state of
the bodyQ and, therefore, formula (129) has dfdrent physical meaning com-
pared to (1) and (136) below.

Remark 4.4. A similar situation with the energy functional occurs for @k in

a piezoelectric medium. Applying the @&th energy fracture criterion, if42] the
energy release rate at the crack tip is expressed in termgadssintensity factors,
i.e., local characteristics of the elasttectric state at the tip. 1{20] a mistake in a
calculation (formulas (33.23) and (34.48)[#2, pages 296 and 31,2jf. comments
in [20]) was discovered and a non-local formula for the energy sde@te of type
(129)was derived rigourously and justified. The non-local ch#&eaof the energy
release rate means that the energy functiob&lu; Q) cannot be employed for a
fracture criterion and in the Gyfith criterion must involve the electric enthalpy (cf.
[14, 42]for an interpretation from the view point of solid mechahics

Let us now compute the incremef(u"; Q(h)) — E(u; Q) of the mechanical en-
thalpy determined in (20) and (21). Returning back to theegarcasef # 0, we
obtain

E(U; QM) = 3(AD(V)U", DU )am — (F, Ul ))e — (9, U7 ))a
(130) = %(D(_VX)TAD(VX)Uh, UP_ )Q(h) + %(D(n)TAD(Vx)Uh, U?_))F(r
_(f, U?_))Q - (g, u?_))Q = _j(f, u?_))Q - :_zl(g, U?_))l}-
As above, we have
(131) @ Uyr, = (@ Uo)r, + %@ Up)r, + O(h**/2),
Furthermore, in view of representation (98) we derive
(132) . Uy, = (f.uo)r, + b3 (f,U)r, + O(h+>/2).

according to inequality (107) and the following relations

h3|(f, U )yl < ch® f I "2dx < ch* < ch*5/2,

wh
diamQ

(133)  hi(f, xW")ae| < ch f 1+ %)‘3r2dr < ch|Inh| < ch**52,
0

diamQ
(134) RY(f,xW)ag| < cf? f (L+ ) 20r2dr < o0 < off*572
0

In the estimation (133) we have used the formulae (55) an)l f(82W' and W?
together with the demanded inclusiong (1/2,1) ands € (0, 1/2).
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Now formulae (131), (132) and (103), (128) convert (1309 ithte form
EWN Q) — &U; Q) = —3(f, U))w,+
+3R3f(0) mesw((f.GY ))a + (8. G )r, )-
(135)  —3h*(e)TM((f, G )a + (9. GY)r,) + O(h**5/2) =
—%((f, U=))wn — U-(0)" f(O)meswn) + %h?’(sO)TI\/Is?_) + O(h*+/2)
— %h3(80)T M(:)go + O(ha+5/2).
Here, we have taken into account that, firta‘tg?_) = Me® according to the
definition of M) in (63) and, secondy_(0)" f(0)meswh = (f, U-))w, + O(h3+)
due to the smoothness properties (33) and (34) afidu.
Let us formulate the result obtained in (135).

Theorem 4.5. The electrical enthalpy20) admits the asymptotic expansion
(136) gu Q(h) = Eu; Q) + %h3(g°)T Mye® + O(h+3/2),

where (1 and u imply solutions of the piezoelectricity problef®s)-(28) and (9)-
(11), respectivelys? = D(V,)u(0) is the strain columii35)and M-y = M5 (A% w)
is the modified polarization matrix which is a symmetric mxatf size9 x 9 (see
formulae(62), (63) and Theorem 3.4).

Note that in contrast to the energy functional (16) the elegtenthalpy has the
topological derivative
1
(137) Q(D(VX)U(O))T M=)(A%, wn)D(V;)u(0)

expressed in terms of local characteristics of the ejadtictric state in the entire
body Q and of the shape of the small voig,., Owing to representation (64),
we emphasize that the polarization matrix (62) enjoys thadgeneity property
M(AC; wp) = h®M(A; wp) which has been used in the passage from (136) to (137).

4.3. Shape functionals and the adjoint state.Recalling the Sobolev embedding
theoremH(Q) c L(Q) in R3, we assume that the densityn the shape functional

(138) T = [ 3u09: 9dx
Q
satisfies the following restrictions:

(139) 13(a; X)| < c(1 + |a),
(140) 13(b; X) — J(a; X) — V(& X) " (b—a)| < cla— b2+ |a™ + b,
(141) 13(b; ) — I(; 0) < cIx”(1 + [b")

wherex € Q, a andb are arbitrary columns ii®*, and the vector functiod’ is
subject to the conditions

(142) 17(& X < c(1+]a"™),
(143)  |T(@x) - Tyl < c(la—br(a™ +[07) +[x - yi’(lal" + [bl')),
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while
(144) te[2,6), y € (0,1).

In other words, along with the restrictions on the growtll@ndJ’, the integrand
J is differentiable with respect to the first variable and Holdettiooious with re-
spect to the second variable. Moreow#ris Holder continuous in both arguments.
Inequality (139) ensure that functional (138) is defineduferH(Q)* c L8(Q)*
LY(Q)*.

We consider the dierence

(145) F(U"; Q(h) - T (u; Q) = f (JUN(X); X) = JU(X); X))dx + f J(U(X); X)dx
Q(h) ©h
and, owing to (140) and (98), obtain the formula
(146)
1395 %) = IU(); ) = I (U(x); )T (MPU) + x(¥) T4 HWI(F) +T(x)] <
< (MU + x(x)? 221 PPIW ()P + A (P)(L + U912 + Ju(3)[-2).
Recalling the estimates (107), (142) and applying the Etdidequality with the
index couplesg, ) = (5/6,6) and @, q) = (3, 2/3), we obtain

f J(u(x); ¥)TT"(¥)dx < c f (1 + uG)P)E"(X)dx <
Q(h) Q(h)
< o1+ [lu; LYQIP)IE; LYQ(M)I < et HY(Q)]| < ch5/2,

f A2 + U2 + jut?)dx < ¢ f A2 + U + utydx <

Q(h) Q(h)
< @, LSQ(N)IP(L + (lu"; LSQ(n)II* + [lu; LS(Q)II14) < ch?e+S.

Similarly,
hé f UL + (UM + Ju(X)[F2)dx < chP.
Q\Bj

However, because of the singularity(x)| = O(Ix|"2), we use in the balBr the
Holder inequality with the couple

6 6
(147) 0.0) = (—8 ° 2 2)
to derive that
8-t
R 6
hé f JUP@ + U2 + ut2)dx < ch6[fr8241r2dr x
Br \wh ch

x(L+ U HY(Q)IE2 + lu; HY(Q)I?) < chb-v2,

We deal with the boundary layers in the same way as in (118]Ek#). Outside
the ballBr, we apply the inequalities (55) and (82) even much roughes,otme
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conclude by the Holder inequality with the index coupleqLthat

h2i f %(x)\ij (’ﬁ)‘2 (L + TR + Ju()P)dx <

Q\Brnh

(148) R

8-t
6
123-) .
fr‘ or r2dr] <chY2 j=1,2

ch

<chP

Inside the balBgpthe Holder inequality gives

el f \wi(ﬁ)z(uru“(x)|2+|u(x)|2)dx

BRrh\wh

EN

8-t 8
6

can| [ (;)ls%dx] _Chznssa[g [ w (;)s%dg]s

BRrh\w| Rh\@

h
< chPI+4 U2 < 12 =12

Note that81—_2t < 6 due to (144) and, therefore,
W L8 (B \ w)l| < ¢l H(Br \ w)ll < dW; VEE)IL

Although, the faster rates of decay of the remaindeérandWw? (cf. (89)) are
not used in the estimation (148), the rate of decay becommsportant ingredient
of the inequalities

hil f T ) THIT ()X < o2, =12
a(h)

its derivation is much simpler, though. A simplificationginates from the relation
| (u(x); X)| < constfor x € suppy € Br so that one may repeat the calculation
(133).

Finally, we write

Rh
hS| fJ’(u(x); X)TU(XdX < ch3fr‘2r2dr <ch?
Wh 0
and, in view of (34) and (143),
f J(u(x); X)dx — h3J(u(0); O)mesw| < chd*miniey)

wh

Everything is prepared to derive a formula of type (1) for $h@pe functional
(138).
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Theorem 4.6. Let the assumption formulated above hold true. Then the pisyin
formula

j(uh; QM) = Ju Q)+ h3((J(u(O); 0)- P(O)T f(0)mesw
(D(Vx)P(0))" MeP) + O(h3+mintr.a-1/23-1/2})

is valid where Pe HL(Q; I',)*nC2Mine)(Bg )4 is a solution of the formally adjoint
piezoelectricity problem

D(=Vx)TA(X) 'D(V)P(X) = J'(u(x); x), x € Q,
D(N(X)) "TA(X) 'D(Vx)P(X) =0, xeI',,P(x) =0, x€I,.

Proof. The calculations performed above provide the relation
h=3(T (" Q) - T (U; Q) = J(U(0); OMesw+ (I (), U)o + O(h™"7e~H/2312)),

We recall the representation (103) wh&®is the Green matrix, i.e., a solution to
the problem (100). The Green matrix and derivatives hel@toutate the solution
P of the formally adjoint problem (150) and the derivati@$ (see (101)) deliver
the columnD(V)P(X) at the pointx = 0. In other words, we write

(J'(U),U)a (D(-V)TAX)D(Vx)P, G%)qMe® — meg(wG°f(0))q
(151) = (P,D(Vy)T6Me®)q — mesw(P,5f(0))a
—(D(Vx)P(0))"Me® — P(0)™ f(0O)mesw.

We again used the Dirac measurin the framework of the theory of distributions
to compute the expression (151).

Finally, in order to justify our calculations we make theldaling comments.
By assumptions (139), (144) and (143), (32), the functional

HY(Q; Ty 5 v = (J(U), Vo

is continuous and)’(u) € COMneYi(BR) with any R < R Thus, the same ar-
guments as in Sections 2.3 and 3.1 guarantee the existercsotiitionP to the
problem (150) which is twice flierentiable in the vicinity of the point = 0. These
observations make all calculations justifmd.

The topological derivative of the functiondl, i.e.,

7 (U, ) = (J(u(0); 0) - P(0)" f (0))mesw — (D(Vx)P(0))" M&",

is non-local since it involves the adjoint sta®ein (150) which depends on the
solutionu of the piezoelectricity problem in the entire domé&in

(149)

(150)

4.4. Example. Assume that there is a weak interaction between the medianic
and electric fields. This means that in the decomposition

(152) A=Ag+ Ay,
A Og, 3 Ogxe —AME
Ap) = ( Osxs AEE | - Ag) = AEM O3zx3

the entries of matriXd1) are much smaller compared to non trivial entries of the
matrix Ag). It implies that in the first order approximation the piezsmtticity
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problem is decoupled into two problems, the pure elastmibblem with the sft-
ness matrixAVM, and the pure electricity problem with the permeability rixat
AFE,

We are going to evaluate the main correction terms in the psytin expansions
of characteristics for the piezoelectric bodies= andQ(h) (see Sections 2.2, 3.3
and 3.1). We proceed with the solution

(153) u(x) = Uy + uy(x) + ...

of the problem (9)-(11). In (153) and further, the dots stiordhe second order
terms. In view of (152), the displacement vect%) and the electric vectau(EO)
verify the problems

(154) DY(=v) TAMM)DM(T,)uigy () = FM(x), x € Q,
DY(n(x))T AM™(X)DM(V,)uigy(¥) = gM(x), x€ Ty, U5 (¥) =0, x € T,
(155) —V ASEV, UG () = R (%), xe Q,

nTATEUG) (0 = g5(¥), Xx€ Ty,  Ug(¥) =0, xeTly,

and can be determined separately. Inserting (153) and (b&2)9)- (11), we
arrive at the problem

D(-Vx) T A)(X)D(Vx)uy(X) = D(=Vx) " Agy(X)D(Vx)u)(X), X € Q,
(156)  D(N(x))" A)(X)D(Vx)ue)(x) = D(N(X)) " A)(X)D(Vx)u)(X), X € Ty,
up(¥) =0, xeTy.

This problem is decoupled as well, however, its solution ifieats the interaction

between electric and mechanical fields, since the displanEnrectom(’\g) depends
only on the main paru(EO) of the electric potential and, in the same manmﬁr),
depends omiy, .

In order to complete the asymptotic formulae, in the sameasgdy the previous
sections, we also need the expansion for the polarizatidrixna

(157) M = M(o) + |V|(1) +...,

Mo = MM Opys Moo = Oexs MME
)] ®3><6 ME ’ (1) MEM @3)(3 .

We emphasize that the matrickgo) and My) inherit the block diagonal struc-
ture of Ay and the block-anti-diagonal @), respectively. The same structures
are kept by all matrix objects, in particular, the fundanaéntatrix takes the form

(158) D=0 +Dy+...,

Do = oM Oz Dy = Osxg OME
0 = ©1><3 (DE ’ L= (DEM 0 .
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Here,®M is the fundamental matrix for the elasticity matrix operdd¥'(—v,)TAMDM (V)
and®E is the fundamental matrix for the scalar operat@’rg A%V, Furthermore,

ME and MM are the virtual mass matrix and the elasticity polarizatioatrix for
the cavityw c R3, which are negative definite (see [44] and [34, 40]).

It is convenient to proceed with the matrix solution (60) @hiaccording to
(152) and (61), enjoys the expansion

(159) W = W(O) + W(l) +...,
WM 033 Ozvg WME
W) =( Ong WE ) , W(1)=( WEM O
with
(160) W(£) = (MD(Va)®(€)")T + O(I17?) =

(M@D(Ve)@0)(€))™ + (M)D(Ve)D1)(é) ™ + M1)D(VeD0)(&)T)T + - - + O(¢?) .

The correction ternid(y) in (158) is a power-law solution of form (76) for the
system of diterential equations

(161) D(-V,)"AD(Ve) D)) = D(Ve) AYD(V)P(0)(€) , € € R\ {0},

(cf. (77)). By a general result in [18] (see also [35, Lemma&si3and 3.5.11]),
the solution®(;) can depend linearly on |, however, the same argument as in
the proof of Lemma 3.1 ensures thhy) is positive homogeneous of degree -1
according to (53). The solutiof), which is defined up to the linear combination
®(0)C of the fundamental matrix columns with the constant col@mmR?, can be
fixed such that

(162) f D(V)TA’D(V,)D1y(€)ds: = 0 e R? .
Sy

The exterior problem for the correction term in (159) takesform

(163) D(=Ve) " Ay D(Ve)Ww)(€) = D(Ve) T AL D(Ve)W(o)(€) ,é € E,
(164)  D(n“(£))" AyD(Ve)Wn)(€) = ~D(n“(€))T Ay D(Ve)Wi0)(é) . € € dew .

Since, owing to (160), we have
Wo)(€) = (MD(Ve)P0)(€) )™ + O(l ) ,

the right-hand sid&(1)(¢) in (163) admits the decomposition
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F@)(€) = D(Ve) "ALyD(Ve)(D(Ve)P0)(€) )T Mgy + Fy(€) =
3
16s) =) a%qD(vg)TA?l)D(vg)m(O)@)TD(eq)TM(B) + Fay(®) =
g=1

3 o _
=> D(—vg)TA?o)Dwg)?;” D(e) "M, + Fuy(©)

a=1

with the remaindeﬁ(l)(g) = O(|¢™). In (165), the equation (161) has been ap-
plied. Comparing (165) with (160), we set

(166) W)€ = W)€ + (M)D(Ve) @) (&) )T .

Re_call thatw contains the origi = 0, therefore, the last term in (166) is smooth
in 2. As a result, a new exterior problem is obtained, with thatrigand side- ;)
which decays dficiently fast at infinity,

(167) D(-V:)TAlyD(Ve)Ww)(€) = Fuy() .£ € E,
D(n“(€))T A%y D(Ve)Wn)(é) = Gy(#) .£ € dw ,

where

(168) Gy() = D(N“(£)) " Al D(Ve)Wio)(€)-

~D(“(£)) " A% D(Ve)(M@D(Ve) D@ ) -

Now, the decay 05(1)(5) can be used, indeed, by Proposition 3.2 (see [18] and

[35, Theorem 3.5.6]) and the calculations (57), (56), thetam W, € V3(2)*
admits the asymptotic form

(169) W)(€) = (M@)D(Ve)D0)(€)T)T + Wiy(é) ,

where the remaindJV(l) is subject to the estimates (55) with the majoragts 3+
(6 > Ois arbitrary) and the notation used for the derivativeheffindamental ma-
trix @(g) is matched with formulae (160) and (166).

In order to evaluate the correction teivhjy) in the expansion of the polarization
matrix the method [26] is employed, here we recall that tHeroas of the matrix

(170) Wo)-)(€) = D))" + Wy (€)

(cf. (64)) are formal solutions to the homogeneous probl&é8). By the Green
formula inZ N B, we obtain
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(171) f Wi &) Fay@)dé + f W@ Cu@ds =

ZNBRr ow

f (Wia)(&)TD(E174)T Ay, DE W0)) — Wigyy D(€178)T Ay D(€)Wey())ds
IBR
+O(R™Y) = M) + O(R™Y) .

We have here repeated the computation (68) based on theeapxgons (169)
and (170). The integrand on the left-hand side of (171) is@éds|~* and, hence,
the integral oveE converges and the formula

172)  Muo = - f Wiy @) Fay(@)é + f Wiy ) Guy)ds

together with (165)- (168) expresses the maMgg) (cf. the definition (63)) in
terms of the matrixAME = (AFM)-1 and the special solutiond/?,..., W8 and
W7, W8 W? of the pure elasticity and the pure electricity exteriormms inz=.
Theorem 3.4 shows thalls/r(“ﬁ)E —M(El';"

The formulae derived above can be used, e.g., to obtain gudoigical deriva-
tive of the electric enthalpy (136):

(173) Te(u, w) =
= %hS((DM(Vx)U%)(O))T MMDM(V,)ui5)(0) — VxU(g)(0)) " MEV Ui (0))+
+h3((DM(V,)uigy(0))" MMDM(V,) Ut (0) — Vxtig)(0) " MEV,u,(0)))+
+h3VxUg)(0)) " MEMDM(V,)ulfy(0) + . ..

Even the main term (with the factc%‘n3) of the topological derivative (173) has
no sign, that is, in contrast to the forms of topological d&ives of the energy
functionals for the pure elasticity and the pure electfipitoblems. The correction
term (with factorh®) in (173) depends on two specific ingredients, namely, tite co
rection termMEM in polarization matrix (see (157) and (172)), and the cdioec

termsu?"l), (El) for the combined mechanical and electric fields.

Remark 4.7. All the attributes in the above formulae can be given exiblidor
some canonical shapes, including balls, ellipsoids angtatlcracks in three spa-
tial dimensions, and some other shapes in two spatial dimesgseg44] and
[49, 28, 23, 3Jand others).

Remark 4.8. The case of'g= 0, f& = 0 has a very clear physical meaning (i.e.
one gets an electric sparkle when pressing the lighter byttéhen, in notation of
Section 4.2,
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thus, by relation(63), we can conclude that the topological derivatives(3)
and (69) of the energy and electric enthalpy functionals coincides with an-
other. In general, this identity is false, and can be misiegdor the choice of
governing Gibbs’ functional for piezoelectric body (cf.nkRek 4.4). The relations
between the topological derivatives for elasticity andzpigectricity are easy to
established, since the topological derivative for piegoglcity can be viewed as
the djference of that for elasticity and of the other for electsicit

REFERENCES

[1] Acmon S., DouaLrs A., NIRenserG L. Estimates near the boundary for solutions of elliptic palrti
differential equations satisfying general boundary condgioh Comm. Pure Appl. Math. 17,
1964, 35-92.

[2] ALLare G., De Gournay F., buve F., Toaber A.M., Structural optimization using topological
and shape sensitivity via a level set meth@dntrol and Cybernetics (2005).

[3] Ammart H., Kang H. Polarization and moment tensors. With applications to isgeproblems
and gfective medium theonApplied Mathematical Sciences, 162, Springer, New YorK720

[4] Cuor K.K., Nam-Ho Km Structural sensitivity analysis and optimizatiorolumes 1 and 2,
Springer Mechanical Engineering Series, Springer New ,Y20K5

[5] Derrour M.C., Zoresio J.P.,Shapes and Geometriesdvances in Design and Control. Society
for Industrial and Applied Mathematics (SIAM), PhiladelphPA, 2001.

[6] Duvaur G., Lions J.L. Inequalities in Mechanics and Physi&rundlehren der mathematischen
Wissenschaften 219, 1976, Springer-Verlag, Berlin.

[7] Fuimanski P., Lauramve A., Scuem J.F., Skorowskr J. A level set method in shape and topology
optimization for variational inequalitiesint. J. Appl. Math. Comput. Sci., 17, (3) 2007, 413-
430.

[8] Furmanski P., Lauraine A., ScuEem J.F., Skorowskr J. Level set method with topological deriva-
tives in shape optimizatidmternational Journal of Computer Mathematics, in press.

[9] Garreau S., GuiLLauMme Pu., Masmount M. The Topological Asymptotic for PDE Systems: The
Elasticity CaseSIAM Journal on Control and Optimization, 39, 2001, 17564.7

[10] Ger'ranp I.M., Suicov G.E.Generalized functions. Vol. 2: Spaces of fundamental andrgé
ized functionsNew York and London, Academic Press. X, 1968.

[11] Grincuenko V.T., Uuitko A.F., Sturga N.A. Mechanics of interacting fields in constructions
componentKiev, Naukovaja Dumka, 1989, 280 p. (Russian)

[12] Hormanber, L. Linear partial diferential operators(English) Die Grundlehren der mathema-
tischen Wissenschaften. 116, 1963, Berlin- Gttingen-elbierg: Springer-Verlag.

[13] Hravalex ., Novorny A.A. , Sokorowskr J., Zocowskr A. On topological derivatives for
elastic solids with uncertain input datlOTA (to appear)

[14] Ixepa T. Fundamentals of Piezoelectricjt@xford University Press, London, 1996.

[15] I'iv A.M.:  Matching of asymptotic expansions of solutions of boundeaiyie problems
Moscow: Nauka, [in Russian], 1989. [English translatiorMatching of asymptotic expan-
sions of solutions of boundary value problefranslations of Mathematical Monographs, 102,
American Mathematical Society, Providence, RI, 1992].

[16] KacrrenBacuer B., Laumer T., Mour M., Karrensacuer M. PDE based determination of piezo-
electric material tensor&uro J. of Appl. Mathematics 17, 2006, 383-416.

[17] Kaprronov B., Miara B., PerLa MenzaLa G. Boundary observation and exact control of a
quasi-electrostatic piezoelectric system in multilagereediaSIAM Journal on Control and
Optimization, 46, (3) 2007, 1080-1097.

[18] Konprariev V.A. Boundary problems for elliptic equations in domains withical or angular
points Trudy Moskov. Mat.Obshch., 16, 1967, 209-292. (Engl. transTrans. Moscow Math.
Soc., 16, 1967, 227-313).



36 G. CARDONE, S.A. NAZAROV AND J. SOKOLOWSKI

[19] Konprariev V.A., OLemik O.A. Boundary-value problems for the system of elasticity théor
unbounded domains. Korn'’s inequaliti€dussian Mathematical Surveys, 43, (5) 1988, 65-119.

[20] KuLikov A.A., Nazarov S.A. Cracks in piezoelectric and electro-conductive bod&iberian J.
of Industrial Mathematics, 8, (1) 2005, 70-87. (Engl. ttank Math. Sci., 1, (2) 2007, 201-216).

[21] Labyzuenskaya O.A. Boundary value problems of mathematical phyditsscow: Nauka,
1973. English translationThe boundary value problems of mathematical physigmlied
Mathematical Sciences, 49, Springer-Verlag, New York,5198

[22] Lexunitskn S. G. Theory of Elasticity of an Anisotropic Elastic Bodyolden-Day, Inc., San
Francisco, California, 1963.

[23] Lewmskr T., Sokorowskr L. Energy change due to the appearance of cavities in elaslidsso
Int. J. Solids Struct. 40, 2003, 1765-1803.

[24] Maz'va V.G., Nazarov S.A. The asymptotic behavior of energy integrals under smaliysba-
tions of the boundary near corner points and conical poifitsidy Moskov. Mat. Obshch., 50,
1987, 79-129. (English transl.: Trans. Mosc. Math. Soc, 1888, 77-127).

[25] Mazia W.G., Nazarov S.A., Ramenewskl B.A. Asymptotische Theorie elliptischer Randwer-
taufgaben in singuléar gestorten Gebiet8&ul. 1. Berlin: Akademie-Verlag. 1991. English trans-
lation: Asymptotic theory of elliptic boundary value problems imgsilarly perturbed domains.
Vol.1, Birkhauser Verlag, Basel, 2000.

[26] Maza V.G., Reamenevski B.A. On cogficients in asymptotics of solutions of elliptic boundary
value problems in a domain with conical poinkdath. Nachr., 76, 1977, 29-60. (Engl. transl. in
Amer. Math. Soc. Transl. 123, 1984, 57-89).

[27] Mazia V.G., Puamenevskn B.A. Estimates in L and Holder classes and the Miranda-Agmon
maximum principle for solutions of elliptic boundary val®blems in domains with singular
points on the boundaryath. Nachr. [in Russian], 81, 1978, 25-82. (English tras&ln in:
Amer. Math. Soc. Transl. 123, 1984, 1-56).

[28] Movcuan A. B., Movcuan N. V. Mathematical modelling of solids with nonregular boundssi
CRC Mathematical Modelling Series. CRC Press, Boca Raton] $95.

[29] Nazarov S.A. Asymptotic theory of thin plates and rods. Dimension reédacand integral
estimatesNauchnaya Kniga, Novosibirsk, 2001.

[30] Nazarov S.A. Self-adjoint elliptic boundary-value problems. The paolymal property and for-
mally positive operatorProbl. Mat. Anal., 16. St.-Petersburg: St.-Petersbury.UhP97, 167-
192. (English transl.: J. Math. Sci. 92, (6) 1998, 4338-4353

[31] Nazarov S.A. The polynomial property of self-adjoint elliptic boundarglue problems and
the algebraic description of their attributeslspehi mat. nauk., 54, (5) 1999, 77-142. (English
transl.: Russ. Math. Surveys., 54, (5) 1999, 947-1014)

[32] Nazarov S.A.Non-self-adjoint elliptic problems with the polynomiabperty in domains hav-
ing cylindric outlets to infinityZap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. SteRéS,
1997, 212-231. (English transl.: J. Math. Sci., 101, (5)24%%5125-3522).

[33] Nazarov S.A. Asymptotic conditions at a point, self-adjoint extensioh®perators and the
method of matched asymptotic expansiditsidy St.-Petersburg Mat. Obshch., 5, 1996, 112-
183. (English transl.: Trans. Am. Math. Soc. 193, 1999, Z8)1

[34] Nazarov S.A. The damage tensor and measures. 1. Asymptotic analysissoftrapic media
with defectsMekhanika tverd. tela., 3, 2000, 113-124. (English trariglechanics of Solids,
35, (3) 2000, 96-105.)

[35] Nazarov S.A., Ramenevsky B.A. Elliptic problems in domains with piecewise smooth bound-
aries. Moscow: Nauka. 1991. (English transl.: Elliptic problemsdomains with piecewise
smooth boundaries. Berlin, New York: Walter de Gruyter.4)99

[36] Nazarov S.A., Sxorowskr J. Asymptotic analysis of shape functiondlsMath. Pures Appl.,
82, (2) 2003, 125-196.

[37] Nazarov S.A., Sokorowski J. Self-adjoint extensions for the Neumann Laplacian andiegpl
tions.Acta Mathematica Sinica, 22, (3) 2006, 879-906.

[38] Nazarov S.A., Sxorowski J. Spectral problems in the shape optimisation. Singular ey
perturbations Asymptotic Analysis, 56(2008), No 3-4, 159-204.



TOPOLOGICAL DERIVATIVES IN PIEZOELECTRICITY 37

[39] Nazarov S.A., Sokorowski J. Spectral problems in elasticity. Singular boundary pepations,
submitted.

[40] Nazarov S.A., Soxorowskr J., SEcovius-NEuGEBAUER M. General properties and shape sensi-
tivity analysis of polarization matrices in elasticity. preparation

[41] Noraro J.A., Benpsge M.P., Haer R.B., TortoreLLI D.A. A topological derivative method for
topology optimizationStruct Multidisc Optim 33, 2007, 375-386.

[42] PartoN V.Z., Kupriavrsev B.A. Electromagnetoelasticity: Piezoelectrics and Electilic€on-
ductive SolidsGordon & Breach Science Publishers Ltd, New York, 1998.

[43] Pazy A. Asymptotic expansions of ordinaryfdrential equations in Hilbert spacérch. Ra-
tional Mech. Anal. 24, 1967, 193-218.

[44] Powxa G., SEGO G. Isoperimetric inequalties in mathematical physiésnals of Mathematics
Studies, 27, Princeton University Press, Princeton, N9b]1.

[45] Sokorowskr J., Zoresio J.P., Introduction to Shape Optimization. Shape Sensitivitylysis,
Springer Verlag, 1992.

[46] Sokorowski J.,ZocHowskl A. On topological derivative in shape optimizatid®AM Journal
on Control and Optimization. 37, (4) 1999, 1251-1272.

[47] Sokorowski J.,ZocHowskIA. Topological derivatives of shape functionals for elasfisystems.
Mechanics of Structures and Machines. 29:333-351, 2001.

[48] Suo Z., Kuo C.M., Barnerr D.M., WiLLis J.R.Fracture mechanics for piezoelectric ceramics.
J. Mech. Phys. Solids. 40, (4) 1992, 739-765.

[49] ZoriN I.S., Movcuan A.B., Nazarov S.A. Application of the elastic polarization tensor in the
problems of the crack mechaniddekhanika tverd. tela., 6, 1988, 128-134. (Russian)

UNIVERSITY OF SANNIO, DEPARTMENT OF ENGINEERING Piazza Roma, 21 - 82100 BNEVENTO, ITALY
E-mail addressgiuseppe.cardone@unisannio.it

INSTITUTE OF MECHANICAL ENGINEERING PROBLEMS, RUSSIAN ACADEMY OF SCIENCES, SAINT-PETERSBURG,
Russia
E-mail addressserna@snark.ipme.ru

INsTITUT ELIE CARTAN, LABORATOIRE DE MATHEMATIQUES, UNIVERSITE HENRI PoiNncaRE Nancy 1,
B.P. 239, 54506 MpoeUVRE LES NaNcYy CEDEX, FRANCE

E-mail addressJan. Sokolowski@iecn.u-nancy. fr

URL http://www.iecn.u-nancy.fr/ sokolows/



