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SUBELLIPTIC ESTIMATES FOR QUADRATICDIFFERENTIAL OPERATORSKarel Pravda-StarovImperial College, LondonAbstrat. We prove global subellipti estimates for quadrati di�erential opera-tors. Quadrati di�erential operators are operators de�ned in the Weyl quantizationby omplex-valued quadrati symbols. In a previous joint work with M. Hitrik, wepointed out the existene of a partiular linear subvetor spae in the phase spaeintrinsially assoiated to their Weyl symbols, alled singular spae, whih rules spe-tral properties of non-ellipti quadrati operators. The purpose of the present paperis to prove that quadrati operators whose singular spaes are redued to zero, aresubellipti with a loss of �derivatives� depending diretly on partiular algebrai prop-erties of the Hamilton maps of their Weyl symbols. More generally, when singularspaes are sympleti spaes, we prove that quadrati operators are subellipti in anydiretion of the sympleti orthogonal omplements of their singular spaes.Key words. Quadrati di�erential operators, subellipti estimates, singular spae,Wik quantization.2000 AMS Subjet Classi�ation. 35B65, 35S05.1. Introdution1.1. Misellaneous fats about quadrati di�erential operators. Sine thelassial work by J. Sjöstrand [11℄, the study of spetral properties of quadratidi�erential operators has played a basi r�le in the analysis of partial di�erentialoperators with double harateristis. Roughly speaking, if we have, say, a las-sial pseudodi�erential operator p(x, ξ)w on Rn with the Weyl symbol p(x, ξ) =
pm(x, ξ) + pm−1(x, ξ) + . . . of order m, and if X0 = (x0, ξ0) ∈ R2n is a point where

pm(X0) = dpm(X0) = 0,then it is natural to onsider the quadrati form q whih begins the Taylor expansionof pm at X0 in order to investigate the properties of the pseudodi�erential operator
p(x, ξ)w. For example, the study of a priori estimates suh as hypoellipti estimatesof the form

||u ||m−1 ≤ CK (|| p(x, ξ)wu ||0 + ||u ||m−2) , u ∈ C∞
0 (K), K ⊂⊂ R

n,then often depends on the spetral analysis of the quadrati operator q(x, ξ)w . Seealso [6℄, as well as Chapter 22 of [7℄ together with further referenes given there.In [11℄, the spetrum of a general quadrati di�erential operator has been determined,under the basi assumption of global elliptiity for the assoiated quadrati form.In a reent joint work with M. Hitrik, we investigated spetral properties of non-ellipti quadrati operators. Quadrati operators are pseudodi�erential operatorsde�ned in the Weyl quantization,(1.1) q(x, ξ)wu(x) =
1

(2π)n

∫

R2n

ei(x−y).ξq
(x+ y

2
, ξ
)

u(y)dydξ,by some symbols q(x, ξ), where (x, ξ) ∈ Rn × Rn and n ∈ N∗, whih are omplex-valued quadrati forms. Sine these symbols are quadrati forms, the orrespondingoperators in (1.1) are in fat di�erential operators. Indeed, the Weyl quantization1



2of the quadrati symbol xαξβ , with (α, β) ∈ N2n and |α + β| ≤ 2, is the di�erentialoperator
xαDβ

x +Dβ
xx

α

2
, Dx = i−1∂x.One an also notie that quadrati di�erential operators are a priori formally non-selfadjoint sine their Weyl symbols in (1.1) are omplex-valued.Considering quadrati operators whose Weyl symbols have real parts with a sign,say here, Weyl symbols with non-negative real parts(1.2) Re q ≥ 0,we pointed out in [5℄ the existene of a partiular linear subvetor spae S in the phasespae Rn

x × Rn
ξ intrinsially assoiated to their Weyl symbols q(x, ξ), alled singularspae, whih seems to play a basi r�le in the understanding of the properties of thesenon-ellipti quadrati operators. We �rst proved in [5℄ (Theorem 1.2.1) that whenthe singular spae S has a sympleti struture then the assoiated heat equation(1.3) {

∂u

∂t
(t, x) + q(x, ξ)wu(t, x) = 0

u(t, ·)|t=0 = u0 ∈ L2(Rn),is smoothing in every diretion of the orthogonal omplement Sσ⊥ of S with respetto the anonial sympleti form σ on R2n,(1.4) σ
(

(x, ξ), (y, η)
)

= ξ.y − x.η, (x, ξ) ∈ R
2n, (y, η) ∈ R

2n,that is, that, if (x′, ξ′) are some linear sympleti oordinates on the sympleti spae
Sσ⊥ then we have for all t > 0, N ∈ N and u ∈ L2(Rn),(1.5) (

(1 + |x′|2 + |ξ′|2)N
)w
e−tq(x,ξ)w

u ∈ L2(Rn).We also proved in [5℄ (Theorem 1.2.2) that when the Weyl symbol q of a quadratioperator ful�lls (1.2) and an assumption of partial elliptiity on its singular spae Sin the sense that(1.6) (x, ξ) ∈ S, q(x, ξ) = 0 ⇒ (x, ξ) = 0,then this singular spae always has a sympleti struture and the spetrum of theoperator q(x, ξ)w is only omposed of a ountable number of eigenvalues of �nite mul-tipliity, with a struture similar to the one known in the ase of global elliptiity [11℄.In the present paper, we are interested in investigating the r�le played by thesingular spae when studying subellipti properties of quadrati operators. We shall�rst prove that quadrati operators whose singular spaes are redued to zero, ful�llglobal subellipti estimates(1.7) ∥

∥

(

〈(x, ξ)〉2(1−δ)
)w
u
∥

∥

L2 . ‖q(x, ξ)wu‖L2 + ‖u‖L2,where 〈(x, ξ)〉 = (1 + |x|2 + |ξ|2)1/2, with a loss of �derivatives� δ > 0 whih anbe diretly haraterized by algebrai onditions on the Hamilton maps of their Weylsymbols. More generally, when singular spaes S have a sympleti struture, we provethat quadrati operators are subellipti in any diretion of the sympleti orthogonalomplements of their singular spaes Sσ⊥, in sense that, if (x′, ξ′) are some linearsympleti oordinates on Sσ⊥ then(1.8) ∥

∥

(

〈(x′, ξ′)〉2(1−δ′)
)w
u
∥

∥

L2 . ‖q(x, ξ)wu‖L2 + ‖u‖L2,where again, the loss of �derivatives� δ′ > 0 an be diretly haraterized by algebraionditions on the Hamilton maps of their Weyl symbols.



3Before giving the preise statement of our main result, we shall reall misellaneousfats and notations about quadrati di�erential operators. In all the following, weonsider
q : R

n
x × R

n
ξ → C

(x, ξ) 7→ q(x, ξ),a omplex-valued quadrati form with a non-negative real part(1.9) Re q(x, ξ) ≥ 0, (x, ξ) ∈ R
2n, n ∈ N

∗.We know from [8℄ (p.425) that the maximal losed realization of the operator q(x, ξ)w ,i.e., the operator on L2(Rn) with the domain
D(q) =

{

u ∈ L2(Rn) : q(x, ξ)wu ∈ L2(Rn)
}

,oinides with the graph losure of its restrition to S(Rn),
q(x, ξ)w : S(Rn) → S(Rn).Assoiated to the quadrati symbol q is the numerial range Σ(q) de�ned as thelosure in the omplex plane of all its values,(1.10) Σ(q) = q(Rn

x × Rn
ξ ).We also reall from [7℄ that the Hamilton map F ∈M2n(C) assoiated to the quadratiform q is the map uniquely de�ned by the identity(1.11) q

(

(x, ξ); (y, η)
)

= σ
(

(x, ξ), F (y, η)
)

, (x, ξ) ∈ R
2n, (y, η) ∈ R

2n,where q(·; ·) stands for the polarized form assoiated to the quadrati form q. Itdiretly follows from the de�nition of the Hamilton map F that its real part Re F andits imaginary part Im F are the Hamilton maps assoiated to the quadrati forms Re qand Im q, respetively. One an notie from (1.11) that a Hamilton map is alwaysskew-symmetri with respet to σ. This is just a onsequene of the properties ofskew-symmetry of the sympleti form and symmetry of the polarized form,(1.12) ∀X,Y ∈ R
2n, σ(X,FY ) = q(X ;Y ) = q(Y ;X) = σ(Y, FX) = −σ(FX, Y ).Assoiated to the symbol q, we de�ned in [5℄ its singular spae S as the followingintersetion of kernels,(1.13) S =

(

+∞
⋂

j=0

Ker[Re F (Im F )j
]

)

∩ R
2n,where the notations Re F and Im F stand respetively for the real part and theimaginary part of the Hamilton map assoiated to q. Notie that the Cayley-Hamiltontheorem applied to Im F shows that

(Im F )kX ∈ Vet(X, ..., (Im F )2n−1X
)

, X ∈ R
2n, k ∈ N,where Vet(X, ..., (Im F )2n−1X

) is the vetor spae spanned by the vetors X , ...,
(Im F )2n−1X , and therefore the singular spae is atually equal to the following �niteintersetion of the kernels,(1.14) S =

(

2n−1
⋂

j=0

Ker[Re F (Im F )j
]

)

∩ R
2n.



41.2. Statement of the main results. In this paper, we shall �rst study the spei�ase where the singular spae S is redued to {0}. By assuming that(1.15) S = {0},we an therefore onsider the smallest integer 0 ≤ k0 ≤ 2n− 1 suh that(1.16) (

k0
⋂

j=0

Ker[Re F (Im F )j
]

)

∩ R
2n = {0},and state the following result:Theorem 1.2.1. Consider a quadrati operator q(x, ξ)w whose Weyl symbol

q : R
n
x × R

n
ξ → C

(x, ξ) 7→ q(x, ξ),is a omplex-valued quadrati form ful�lling (1.9) and (1.15) then the operator q(x, ξ)wful�lls the following global subellipti estimate(1.17) ∃C > 0, ∀u ∈ D(q),
∥

∥

(

〈(x, ξ)〉2/(2k0+1)
)w
u
∥

∥

L2 ≤ C
(

‖q(x, ξ)wu‖L2 + ‖u‖L2

)

,where k0 stands for the smallest integer 0 ≤ k0 ≤ 2n− 1 suh that (1.16) is ful�lled,and 〈(x, ξ)〉 = (1 + |x|2 + |ξ|2)1/2.We shall begin our few omments about the result of Theorem 1.2.1 by notiingthat the estimate (1.17) is easy to obtain in the ase where k0 = 0. Indeed, we shallhek in the following, that in this ase the operator q(x, ξ)w is neessarily ellipti,and we reall from [11℄ that, when q(x, ξ)w is an ellipti quadrati operator whoseWeyl symbol ful�ll (1.9),1 that is, an operator whose Weyl symbol q(x, ξ) is globallyellipti on the phase spae R2n,(1.18) (x, ξ) ∈ R
2n, q(x, ξ) = 0 ⇒ (x, ξ) = 0,then one an onstrut a parametrixe induing that this ellipti quadrati operatorde�nes a Fredholm operator of index 0 with disrete spetrum (Theorem 3.5 in [11℄),(1.19) q(x, ξ)w : B → L2(Rn),where B is the Hilbert spae

B =
{

u ∈ L2(Rn) : q(x, ξ)wu ∈ L2(Rn)
}(1.20)

=
{

u ∈ L2(Rn) : xαDβ
xu ∈ L2(Rn) if |α+ β| ≤ 2

}

,with the norm
‖u‖2

B =
∑

|α+β|≤2

‖xαDβ
xu‖

2
L2(Rn).We therefore have in this ase the natural a priori estimate(1.21) ∃C > 0, ∀u ∈ B,

∥

∥

(

〈(x, ξ)〉2
)w
u
∥

∥

L2 ≤ C
(

‖q(x, ξ)wu‖L2 + ‖u‖L2

)

,whih gives the estimate (1.17) of Theorem 1.2.1 when k0 = 0.A notieable example of quadrati operator ful�lling the assumptions of Theo-rem 1.2.1 is the Fokker-Plank operator
K = −∆v +

v2

4
−

1

2
+ v.∂x −

(

∂xV (x)
)

.∂v, (x, v) ∈ R
2,1One an atually only assume that Σ(q) 6= C, when n = 1, see Lemma 3.1 in [11℄.



5with a quadrati potential
V (x) =

1

2
ax2, a ∈ R

∗.Here, we onsider this non-ellipti operator only in the one-dimensional ase, but it isof ourse just for onveniene reasons. Considering this example, our Theorem 1.2.1allows to reover the global subellipti estimate proved by B. Hel�er and F. Nier in[2℄ (Proposition 5.22),(1.22) ∃C > 0, ∀u ∈ D(K), ‖Λ2/3
x u‖2

L2 + ‖Λvu‖
2
L2 ≤ C

(

‖Ku‖2
L2 + ‖u‖2

L2

)

,where
Λx = (−∆x + x2/4)1/2 and Λv = (−∆v + v2/4)1/2.The Fokker-Plank operator with a quadrati potential an indeed be expressed as

K = q(x, v, ξ, η)w −
1

2
,with a Weyl symbol

q(x, v, ξ, η) = η2 +
1

4
v2 + i(vξ − axη),whih is a non-ellipti omplex-valued quadrati form whose real part is non-negative.By heking that the assoiated Hamilton map

q(x, v, ξ, η) = σ
(

(x, v, ξ, η), F (x, v, ξ, η)
)

,is given by
F =









0 1
2 i 0 0

− 1
2ai 0 0 1
0 0 0 1

2ai
0 − 1

4 − 1
2 i 0









,and that the singular spae
S = Ker(Re F ) ∩Ker(Re F Im F ) ∩ R

4,is equal to {0}, we therefore dedue from Theorem 1.2.1 the global subellipti estimate(1.23) ∃C > 0, ∀u ∈ D(K),
∥

∥

(

〈(x, v, ξ, η)〉2/3
)w
u
∥

∥

L2 ≤ C(‖Ku‖L2 + ‖u‖L2).Notie that the improvement in the variables (v, η) appearing in the estimate (1.22)is easily obtained by using the Cauhy-Shwarz inequality in the following estimate
2‖Λvu‖

2
L2 − ‖u‖2

L2 = 2Re(Ku, u) ≤ 2‖Ku‖L2‖u‖L2 ≤ ‖Ku‖2
L2 + ‖u‖2

L2.The work of B. Hel�er and F. Nier in [2℄ about this partiular example of theFokker-Plank operator with a quadrati potential has been the starting point of ourinvestigation of subellipti properties for quadrati di�erential operators. Neverthe-less, the reader will notie that our proof of Theorem 1.2.1 will not use the sameapproah as the one followed by B. Hel�er and F. Nier. Indeed, the proof of (1.22) in[2℄ really takes advantage of the very spei� struture of the Fokker-Plank operatorand seems di�ult to adapt in a general setting. For our proof, we shall rather use amultiplier method inspired from the work of F. Hérau, J. Sjöstrand and C. Stolk in [4℄,one we will have ahieved the onstrution of a weight funtion (Proposition 2.0.1).One an explain the loss of �derivatives� (See (1.7)), δ = 2k0/(2k0+1) appearing inthe estimate (1.17) by the following informal disussion. There are two di�erent typesof points X0 = (x0, ξ0) in the phase spae R2n: those for whih Re q(X0) > 0 andthose for whih Re q(X0) = 0. Di�ulties will ome from the presene of this seond



6type of points, and the fat that the set ∂Σ(q) ∩ Σ∞(q), where (See Theorem 1.4in [1℄),
Σ∞(q) =

{

z ∈ C : z = lim
j→+∞

q(xj , ξj), |(xj , ξj)| → +∞ when j → +∞
}

,may not be empty in general. In order to deal with that kind of points, we shall takeadvantage from the notieable property that the average of the real part of q,(1.24) 〈Re q〉T (X) =
1

2T

∫ T

−T

Re q(etHImqX)dt≫ |X |2,by the �ow generated by the Hamilton vetor �eld of its imaginary part
HImq =

∂Im q

∂ξ
.
∂

∂x
−
∂Im q

∂x
.
∂

∂ξ
,is always a positive de�nite quadrati form when its singular spae S = 0. Thispartiular property (proved in [5℄) ensures that the operator q(x, ξ)w is of prinipal-type

dIm q(X0) 6= 0,in any non-zero point X0 ∈ R2n for whih Re q(X0) = 0. We also notied in [5℄(See Remark, Setion 2) that the property (1.24) indues that one an �nd for anynon-zero point X0 ∈ R2n suh that Re q(X0) = 0, a positive integer 1 ≤ k ≤ 2n− 1suh that(1.25) ∀ 0 ≤ j ≤ 2k − 1, HjImqRe q(X0) = 0 and H2kImqRe q(X0) 6= 0.All the points are therefore of �nite type. Sine moreover the ondition (P ) holdsbeause of the sign property of Re q, one an miroloalize the operator q(x, ξ)w ina neighborhood of a point X0 ∈ R2n suh that (1.25) holds, to the subellipti modeloperator with large parameter Λ ≥ 1,
Dt + iΛ2t2k,where roughly speaking, Λ ∼ (x2 + ξ2)1/2; for whih the lassial a priori estimate(1.26) ‖Dtu+ iΛ2t2ku‖L2 & (Λ2)

1
2k+1 ‖u‖L2,is ful�lled. This informal disussion allows to understand from (1.26) from where theloss of �derivatives� appearing in (1.17) omes. Indeed, the integer k0 in Theorem 1.2.1that we haraterize there by other algebrai properties on the Hamilton map, analso be haraterized as the smallest integer 0 ≤ k0 ≤ 2n − 1 suh that for any

X ∈ R2n, X 6= 0,
∃ 0 ≤ k ≤ k0, ∀ 0 ≤ j ≤ 2k − 1, HjImqRe q(X) = 0 and H2kImqRe q(X) 6= 0.Let us now onsider the more general ase where the singular spae S de�ned in(1.14) has a sympleti struture, that is, that the restrition of the sympleti form

σ to S is non-degenerate. We reall (see [5℄) that this assumption is always ful�lledwhen the symbol q ful�lls (1.9) and an assumption of partial elliptiity on its singularspae S,
(x, ξ) ∈ S, q(x, ξ) = 0 ⇒ (x, ξ) = 0.By denoting now k0 the smallest integer 0 ≤ k0 ≤ 2n− 1, suh that(1.27) S =

(

k0
⋂

j=0

Ker[Re F (Im F )j
]

)

∩ R
2n,one an generalize Theorem 1.2.1 as follows:



7Theorem 1.2.2. Consider a quadrati operator q(x, ξ)w whose Weyl symbol
q : R

n
x × R

n
ξ → C

(x, ξ) 7→ q(x, ξ),is a omplex-valued quadrati form ful�lling (1.9). When its singular spae S has asympleti struture then the operator q(x, ξ)w is subellipti in any diretion of Sσ⊥in the sense that, if (x′, ξ′) are some linear sympleti oordinates on Sσ⊥ then wehave(1.28) ∃C > 0, ∀u ∈ D(q),
∥

∥

(

〈(x′, ξ′)〉2/(2k0+1)
)w
u
∥

∥

L2 ≤ C
(

‖q(x, ξ)wu‖L2 + ‖u‖L2

)

,where k0 stands for the smallest integer 0 ≤ k0 ≤ 2n− 1 suh that (1.27) is ful�lled,and 〈(x′, ξ′)〉 = (1 + |x′|2 + |ξ′|2)1/2.As we will see in the following, Theorem 1.2.2 will be dedued from a simpleadaptation of the analysis led in the proof of Theorem 1.2.1.Aknowledgements. The author is partiularly grateful to M. Hitrik and N. Lernerfor very enrihing omments and remarks about this work.2. Proof of Theorem 1.2.1In the following, we shall use the notation SΩ

(

m(X)r,m(X)−2sdX2
), where Ω isan open set in R2n, r, s ∈ R and m ∈ C∞(Ω,R∗

+), to stand for the lass of symbols averifying
a ∈ C∞(Ω), ∀α ∈ N

2n, ∃Cα > 0, |∂α
Xa(X)| ≤ Cαm(X)r−s|α|, X ∈ Ω.In the ase where Ω = R2n, we shall drop for simpliity the index Ω in the notation.We shall also use the notations f . g and f ∼ g, on Ω, for respetively the estimates

∃C > 0, f ≤ Cg and, f . g and g . f , on Ω.The proof of Theorem 1.2.1 will rely on the following key proposition. Considering
q : R

n
x × R

n
ξ → C

(x, ξ) 7→ q(x, ξ),a omplex-valued quadrati form with a non-negative real part(2.1) Re q(x, ξ) ≥ 0, (x, ξ) ∈ R
2n, n ∈ N

∗,we assume that there exist a positive integer m ∈ N∗ and an open set Ω0 in R2n suhthat the following sum of m+ 1 non-negative quadrati forms satis�es(2.2) ∃c0 > 0, ∀X ∈ Ω0,

m
∑

j=0

Re q((Im F )jX
)

≥ c0|X |2,where the notation Im F stands for the imaginary part of the Hamilton map F as-soiated to the quadrati form q, then one an build a bounded weight funtion withthe following properties:Proposition 2.0.1. If q is a omplex-valued quadrati form on R2n verifying (2.1)and (2.2) then there exists a real-valued weight funtion
g ∈ SΩ0

(

1, 〈X〉−
2

2m+1 dX2
)

,suh that(2.3) ∃c1, c2 > 0, ∀X ∈ Ω0, Re q(X) + c1HImq g(X) + 1 ≥ c2〈X〉
2

2m+1 ,



8where the notation HImq stands for the Hamilton vetor �eld of the imaginary partof q.The onstrution of this weight funtion will really be the ore of this paper. Itsproof, whih is tehnial, is given in Setion 4. Let us mention that beause ofits simple properties, this weight funtion may also be of further interest for futurestudies of doubly harateristi pseudodi�erential operators with prinipal symbolswhose Hessians at ritial points ful�ll (1.9) and (1.15).Before proving this proposition, we shall explain how we an dedue Theorem 1.2.1from it. In doing so, we shall use as previously mentioned a multiplier method in-spired from the work [4℄ of F. Hérau, J. Sjöstrand and C. Stolk about Fokker-Plankoperators. In their analysis, they are led to establish a similar estimate as (1.17) inthe ase where the non-negative integer k0 in Theorem 1.2.1 is equal to 1. One anindeed hek that their subellipti assumption for their symbols at ritial points, sayhere X0 = 0,
∃ε0 > 0, Re p(X) + ε0H

2ImpRe p(X) ∼ |X |2,is equivalent to the fat that their Hessians in these points ful�ll (2.2) with m = 1 and
Ω0 = R2n. In order to de�ne our multiplier, we shall use the Wik quantization of theweight funtion given by Proposition 2.0.1. The de�nition of the Wik quantizationand some elements of Wik alulus, we need here, are realled in the appendix(Setion 5.1).To hek that we an atually dedue Theorem 1.2.1 from Proposition 2.0.1, webegin by onsidering a omplex-valued quadrati form q on R2n, n ≥ 1, with a non-negative real part and a zero singular spae S = {0}. We know from (1.16) that onean �nd a smallest integer 0 ≤ k0 ≤ 2n− 1 suh that(2.4) (

k0
⋂

j=0

Ker[Re F (Im F )j
]

)

∩ R
2n = {0}.We then notie, as in [5℄ and [10℄, that (2.4) indues that the following sum of k0 + 1non-negative quadrati forms(2.5) ∃c0 > 0, ∀X ∈ R

2n, r(X) =

k0
∑

j=0

Re q((Im F )jX
)

≥ c0|X |2,is a positive de�nite quadrati form. Let us indeed onsider X0 ∈ R2n suh that
r(X0) = 0. Then, the non-negativity of the quadrati form Re q indues that for all
j = 0, ..., k0,(2.6) Re q((Im F )jX0

)

= 0.By denoting by Re q(X ;Y ) the polar form assoiated to Re q, we dedue from theCauhy-Shwarz inequality, (1.11) and (2.6) that for all j = 0, ..., k0 and Y ∈ R2n,
∣

∣Re q(Y ; (Im F )jX0

)∣

∣

2
=
∣

∣σ
(

Y,Re F (Im F )jX0

)∣

∣

2

≤ Re q(Y ) Re q((Im F )jX0

)

= 0.It follows that for all j = 0, ..., k0 and Y ∈ R2n,
σ
(

Y,Re F (Im F )jX0

)

= 0,whih implies that for all j = 0, ..., k0,(2.7) Re F (Im F )jX0 = 0,sine σ is non-degenerate. We �nally dedue (2.5) from (2.4).



9In the ase where k0 = 0, the quadrati form Re q is positive de�nite. Thisimplies that the quadrati form q is ellipti. As previously mentioned, the result ofTheorem 1.2.1 is in this ase a straightforward onsequene of lassial results aboutellipti quadrati di�erential operators realled in (1.21).We an therefore assume in the following that k0 ≥ 1 and �nd from Proposi-tion 2.0.1 a real-valued weight funtion(2.8) g ∈ S
(

1, 〈X〉
− 2

2k0+1 dX2
)

,suh that(2.9) ∃c1, c2 > 0, ∀X ∈ R
2n, Re q(X) + c1HImq g(X) + 1 ≥ c2〈X〉

2
2k0+1 .For 0 < ε ≤ 1, we onsider the multiplier de�ned in the Wik quantization by thesymbol 1 − εg. We reall that the de�nition of the Wik quantization and someelements of Wik alulus are realled in Setion 5.1. It follows from (2.8), (5.4),(5.7), (5.8) and the Cauhy-Shwarz inequality that(2.10) Re(qWiku, (1 − εg)Wiku) =

(Re((1 − εg)WikqWik)u, u)
≤ ‖1 − εg‖L∞(R2n)‖q

Wiku‖L2‖u‖L2 . ‖qWiku‖2
L2 + ‖u‖2

L2 . ‖q̃wu‖2
L2 + ‖u‖2

L2,where(2.11) q̃(x, ξ) = q
(

x,
ξ

2π

)

,beause the operator (1 − εg)Wik whose Wik symbol is real-valued, is formally self-adjoint. Indeed, the symbol r(q) de�ned in (5.8) is here just onstant sine q is aquadrati form. The fator 2π in (2.11) omes from the di�erene of normalizationshosen between (1.1) and (5.9) (See remark in Setion 5.1). Sine from (5.10),
(1 − εg)WikqWik =

[

(1 − εg)q +
ε

4π
∇g.∇q −

ε

4iπ
{g, q}

]Wik
+ S,with ‖S‖L(L2(Rn)) . 1, we obtain from the fat real Hamiltonians get quantized inthe Wik quantization by formally selfadjoint operators thatRe((1 − εg)WikqWik) =

[

(1 − εg)Re q +
ε

4π
∇g.∇Re q +

ε

4π
HImq g

]Wik
+ Re S,beause g is a real-valued symbol. Sine Re q ≥ 0 and g ∈ L∞(Rn), we an hoosethe positive parameter ε su�iently small suh that

∀X ∈ R
2n, 1 − εg(X) ≥

1

2
,in order to dedue from (2.9), (2.10) and (5.3) that(2.12) (

(〈X〉
2

2k0+1 )Wiku, u) . ‖q̃wu‖2
L2 + ‖u‖2

L2 +
∣

∣

(

(∇g.∇Re q)Wiku, u)∣∣,beause from (5.1) and (5.2), 1Wik = Id.By denoting X̃ =
(

x, ξ/(2π)
) and Opw

(

S(1, dX2)
) the operators obtained by theWeyl quantization of symbols in the lass S(1, dX2), it follows from (5.7), (5.8) andusual results of symboli alulus that(2.13) (

〈X〉
2

2k0+1
)Wik

−
(

〈X̃〉
2

2k0+1
)w

∈ Opw
(

S(1, dX2)
)and(2.14) (

〈X̃〉
1

2k0+1
)w(

〈X̃〉
1

2k0+1
)w

−
(

〈X̃〉
2

2k0+1
)w

∈ Opw
(

S(1, dX2)
)

,sine k0 ≥ 0. By using that
((

〈X̃〉
1

2k0+1
)w(

〈X̃〉
1

2k0+1
)w
u, u

)

=
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

2

L2 ,



10we therefore dedue from (2.12) and the Calderón-Vaillanourt theorem that(2.15) ∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

2

L2 . ‖q̃wu‖2
L2 + ‖u‖2

L2 +
∣

∣

(

(∇g.∇Re q)Wiku, u)∣∣.Then, we get from (2.8) and (5.3) that(2.16) ∣

∣

(

(∇g.∇Re q)Wiku, u)∣∣ .
(

|∇Re q|Wiku, u).Realling now the well-known inequality(2.17) |f ′(x)|2 ≤ 2f(x)‖f ′′‖L∞(R),ful�lled by any non-negative smooth funtion with bounded seond derivative, wededue from another use of (5.3) that(2.18) (

|∇Re q|Wiku, u) .
(

((Re q) 1
2 )Wiku, u) .

(

(1 + Re q)Wiku, u),sine Re q is a non-negative quadrati form and that
2(Re q) 1

2 ≤ 1 + Re q.By using the same arguments as in (2.10), we obtain that
(

(1 + Re q)Wiku, u) =
(

(Re q)Wiku, u)+ ‖u‖2
L2 = Re(qWiku, u) + ‖u‖2

L2

≤ ‖qWiku‖L2‖u‖L2 + ‖u‖2
L2 . ‖qWiku‖2

L2 + ‖u‖2
L2 . ‖q̃wu‖2

L2 + ‖u‖2
L2.It therefore follows from (2.15), (2.16) and (2.18) that(2.19) ∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

2

L2 . ‖q̃wu‖2
L2 + ‖u‖2

L2.In order to improve the estimate (2.19), we arefully resume our previous analysisand notie that our previous reasoning has in fat established that
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

2

L2 .
∣

∣Re(qWiku, (1 − εg)Wiku)∣∣+ ∣∣((∇g.∇Re q)Wiku, u)∣∣+ ‖u‖2
L2

.
∣

∣Re(qWiku, (1 − εg)Wiku)∣∣+ |Re(qWiku, u)| + ‖u‖2
L2

.
∣

∣Re(q̃wu, (1 − εg)Wiku)∣∣+ |Re(q̃wu, u)| + ‖u‖2
L2,beause (1 − εg)Wik is a bounded operator on L2(Rn),(2.20) ‖(1 − εg)Wik‖L(L2) ≤ ‖1 − εg‖L∞(R2n).By applying this estimate to (〈X̃〉

1
2k0+1

)w
u, we dedue from (2.14) and the Calderón-Vaillanourt theorem that(2.21) ∥

∥

(

〈X̃〉
2

2k0+1
)w
u
∥

∥

2

L2 .
∣

∣

∣Re(q̃w
(

〈X̃〉
1

2k0+1
)w
u, (1 − εg)Wik(〈X̃〉

1
2k0+1

)w
u
)∣

∣

∣

+
∣

∣

∣
Re(q̃w

(

〈X̃〉
1

2k0+1
)w
u,
(

〈X̃〉
1

2k0+1
)w
u
)∣

∣

∣
+
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

2

L2 + ‖u‖2
L2.Then, by notiing that the ommutator(2.22) [

q̃w,
(

〈X̃〉
1

2k0+1
)w]

∈ Opw
(

S
(

〈X〉
1

2k0+1 , 〈X〉−2dX2
))

,beause q̃ is a quadrati form, and that(2.23) (

〈X̃〉−
1

2k0+1
)w(

〈X̃〉
1

2k0+1
)w

− Id ∈ Opw
(

S(〈X〉−2, 〈X〉−2dX2)
)

,we dedue from standard results of symboli alulus and the Calderón-Vaillanourttheorem that
∥

∥

[

q̃w,
(

〈X̃〉
1

2k0+1
)w]

u
∥

∥

L2 .
∥

∥

[

q̃w,
(

〈X̃〉
1

2k0+1
)w](

〈X̃〉−
1

2k0+1
)w(

〈X̃〉
1

2k0+1
)w
u
∥

∥

L2 + ‖u‖L2

.
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

L2 + ‖u‖L2.(2.24)



11By introduing this ommutator, we get from the Cauhy-Shwarz inequality and(2.24) that
∣

∣

∣Re(q̃w
(

〈X̃〉
1

2k0+1
)w
u,
(

〈X̃〉
1

2k0+1
)w
u
)∣

∣

∣ .
∣

∣

∣Re(q̃wu,
(

〈X̃〉
1

2k0+1
)w(

〈X̃〉
1

2k0+1
)w
u
)∣

∣

∣

+
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

2

L2 + ‖u‖2
L2.By using that another use of the Cauhy-Shwarz inequality and the Calderón-Vaillanourttheorem with (2.14) gives that

∣

∣

∣Re(q̃wu,
(

〈X̃〉
1

2k0+1
)w(

〈X̃〉
1

2k0+1
)w
u
)∣

∣

∣ . ‖q̃wu‖L2

∥

∥

(

〈X̃〉
2

2k0+1
)w
u
∥

∥

L2+‖q̃wu‖L2‖u‖L2,we dedue from (2.19) and the previous estimate that
∣

∣

∣Re(q̃w
(

〈X̃〉
1

2k0+1
)w
u,
(

〈X̃〉
1

2k0+1
)w
u
)∣

∣

∣

. ‖q̃wu‖L2

∥

∥

(

〈X̃〉
2

2k0+1
)w
u
∥

∥

L2 + ‖q̃wu‖2
L2 + ‖u‖2

L2.By using again the Cauhy-Shwarz inequality, (2.19), (2.20), (2.21) and (2.24), thisestimate implies that
∥

∥

(

〈X̃〉
2

2k0+1
)w
u
∥

∥

2

L2 .
∣

∣

∣Re([q̃w,
(

〈X̃〉
1

2k0+1
)w]

u, (1 − εg)Wik(〈X̃〉
1

2k0+1
)w
u
)∣

∣

∣(2.25)
+
∣

∣

∣
Re(q̃wu,

(

〈X̃〉
1

2k0+1
)w

(1 − εg)Wik(〈X̃〉
1

2k0+1
)w
u
)∣

∣

∣
+ ‖q̃wu‖2

L2 + ‖u‖2
L2

.
∣

∣

∣Re(q̃wu,
(

〈X̃〉
1

2k0+1
)w

(1 − εg)Wik(〈X̃〉
1

2k0+1
)w
u
)∣

∣

∣+ ‖q̃wu‖2
L2 + ‖u‖2

L2

. ‖q̃wu‖L2

∥

∥

(

〈X̃〉
1

2k0+1
)w

(1 − εg)Wik(〈X̃〉
1

2k0+1
)w
u
∥

∥

L2 + ‖q̃wu‖2
L2 + ‖u‖2

L2,beause we get from (2.20) and (2.24) that
∣

∣

∣Re([q̃w,
(

〈X̃〉
1

2k0+1
)w]

u, (1 − εg)Wik(〈X̃〉
1

2k0+1
)w
u
)∣

∣

∣ .
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

2

L2

+
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

L2‖u‖L2.Notie now that (2.8), (5.5) and (5.6) imply that
[(

〈X̃〉
1

2k0+1
)w
, (1 − εg)Wik] ∈ Opw

(

S(1, dX2)
)

,sine (1 − εg)Wik = g̃w, with g̃ ∈ S(1, dX2) and k0 ≥ 0. By introduing this newommutator, we dedue from the Calderón-Vaillanourt theorem, (2.14), (2.19) and(2.20) that
∥

∥

(

〈X̃〉
1

2k0+1
)w

(1 − εg)Wik(〈X̃〉
1

2k0+1
)w
u
∥

∥

L2

.
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

L2 +
∥

∥(1 − εg)Wik(〈X̃〉
1

2k0+1
)w(

〈X̃〉
1

2k0+1
)w
u
∥

∥

L2

.
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

L2 +
∥

∥

(

〈X̃〉
1

2k0+1
)w(

〈X̃〉
1

2k0+1
)w
u
∥

∥

L2

.
∥

∥

(

〈X̃〉
2

2k0+1
)w
u
∥

∥

L2 +
∥

∥

(

〈X̃〉
1

2k0+1
)w
u
∥

∥

L2 + ‖u‖L2

.
∥

∥

(

〈X̃〉
2

2k0+1
)w
u
∥

∥

L2 + ‖q̃wu‖L2 + ‖u‖L2.Realling (2.25), we an then use this last estimate to obtain that(2.26) ∥

∥

(

〈X̃〉
2

2k0+1
)w
u
∥

∥

2

L2 . ‖q̃wu‖2
L2 + ‖u‖2

L2.By �nally notiing from the homogeneity of degree 2 of q̃ that we have
(q̃ ◦ T )(x, ξ) =

1

2π
q(x, ξ),



12if T stands for the real linear sympleti transformation
T (x, ξ) =

(

(2π)−
1
2x, (2π)

1
2 ξ
)

,we dedue from the sympleti invariane of the Weyl quantization (Theorem 18.5.9in [7℄) that
∥

∥

(

〈X〉
2

2k0+1
)w
u
∥

∥

2

L2 . ‖qwu‖2
L2 + ‖u‖2

L2,whih proves Theorem 1.2.1.3. Proof of Theorem 1.2.2This setion is devoted to the proof of Theorem 1.2.2. We begin by realling thatthe sympleti invariane property of the Weyl quantization (Theorem 18.5.9 in [7℄)allows us to freely hoose the linear sympleti oordinates (x, ξ) in whih we wantto express our symbol q in our proof of Theorem 1.2.2. Considering
q : R

n
x × R

n
ξ → C

(x, ξ) 7→ q(x, ξ),a omplex-valued quadrati form with a non-negative real partRe q(x, ξ) ≥ 0, (x, ξ) ∈ R
2n, n ∈ N

∗,and assuming that its singular spae S has a sympleti struture, we dedue fromProposition 2.0.1 in [5℄ that one an �nd some linear sympleti oordinates in R2n,
(x, ξ) = (x′, x′′; ξ′, ξ′′) ∈ R

2n,with (x′, ξ′) and (x′′, ξ′′) some linear sympleti oordinates respetively in Sσ⊥ and
S; suh that we an write the symbol q as the sum of two quadrati forms(3.1) q(x, ξ) = q1(x

′, ξ′) + iq2(x
′′, ξ′′),where q1 is a omplex-valued quadrati form on R2n′ with a non-negative real partand q2 is a real-valued quadrati form on R2n′′ . More preisely, we proved in [5℄(Proposition 2.0.1) that the spaes S and Sσ⊥ are stable by the real and imaginaryparts of the Hamilton map F of the symbol q; and that the two quadrati forms q1and q2 are atually equal to

q1(x
′, ξ′) = σ

(

(x′, ξ′), F |Sσ⊥(x′, ξ′)
) and iq2(x′′, ξ′′) = σ

(

(x′′, ξ′′), F |S(x′′, ξ′′)
)

.By denoting F1 = F |Sσ⊥ the Hamilton map of q1, we �rst hek that (1.27) impliesthat the non-negative quadrati form(3.2) r(X ′) =

k0
∑

j=0

Re q1((Im F1)
jX ′

)

,is atually positive de�nite on Sσ⊥. Indeed, onsider X ′
0 ∈ Sσ⊥ suh that r(X ′

0) = 0.As in (2.7), it follows that Re F1(Im F1)
jX ′

0 = 0 for all 0 ≤ j ≤ k0, whih aordingto (1.27), implies that X ′
0 ∈ S ∩ Sσ⊥ = {0}.Let us �rst onsider the ase where k0 ≥ 1. As in the proof of Theorem 1.2.1,one an �nd from (3.2) and Proposition 2.0.1 a real-valued weight funtion in thevariables X ′ = (x′, ξ′) ∈ Sσ⊥,(3.3) g1 ∈ S

(

1, 〈X ′〉
− 2

2k0+1 dX ′2
)

,suh that(3.4) ∃c1, c2 > 0, ∀X ′ ∈ Sσ⊥, Re q1(X ′) + c1HImq1 g1(X
′) + 1 ≥ c2〈X

′〉
2

2k0+1 .



13When k0 = 0, it is su�ient to just take g1 = 0 to ful�ll (3.4). Then, as previouslyin (2.10), one an use the multiplier de�ned in the Wik quantization by the symbol
1 − εg1, for 0 < ε ≤ 1; and onsider the quantityRe(qWiku, (1 − εg1)

Wiku).By notiing from (3.1) that we have this timeRe((1−εg1)WikqWik) =
[

(1−εg1)Re q1+ ε

4π
∇g1.∇Re q1+

ε

4π
HImq1 g1

]Wik
+Re S1,with ‖Re S1‖L(L2) . 1, sine

HImq g1 = HImq1 g1,beause of the variables tensorization. Next, one an exatly resume our analysis ledin the proof of Theorem 1.2.1 from (2.12) in order to �nish the proof of Theorem 1.2.2.4. Proof of Proposition 2.0.1We prove the proposition 2.0.1 by indution on the positive integerm ≥ 1 appearingin (2.2). Let m ≥ 1, we shall assume that the proposition 2.0.1 is ful�lled for anyopen set Ω0 of R2n, when the positive integer in (2.2) is stritly smaller than m.In the following, we denote by ψ, χ and w some C∞(R, [0, 1]) funtions respetivelysatisfying(4.1) ψ = 1 on [−1, 1], supp ψ ⊂ [−2, 2],(4.2) χ = 1 on {x ∈ R : 1 ≤ |x| ≤ 2}, supp χ ⊂ {x ∈ R : 1/2 ≤ |x| ≤ 3},and(4.3) w = 1 on {x ∈ R : |x| ≥ 2}, supp w ⊂ {x ∈ R : |x| ≥ 1}.More generially, we shall denote by ψj , χj and wj , j ∈ N, some other C∞(R, [0, 1])funtions satisfying similar properties as respetively ψ, χ and w with possibly di�er-ent hoies for the positive numerial values whih de�ne their support loalizations.Let Ω0 be an open set of R2n suh that (2.2) is ful�lled. Considering the quadratiform(4.4) rk(X) = Re q((Im F )k−1X ; (Im F )kX
)

, k ∈ N
∗,and de�ning(4.5) gm(X) = ψ

(Re q((Im F )m−1X
)

〈X〉−
2(2m−1)
2m+1

)

〈X〉−
4m

2m+1 rm(X),where ψ is the funtion de�ned in (4.1), we get from Lemma 5.2.1 that
HImq gm(X) = 2ψ

(Re q((Im F )m−1X
)

〈X〉−
2(2m−1)
2m+1

)Re q((Im F )mX
)

〈X〉
4m

2m+1

(4.6)
+ 2ψ

(Re q((Im F )m−1X
)

〈X〉−
2(2m−1)
2m+1

)Re q((Im F )m−1X ; (Im F )m+1X
)

〈X〉
4m

2m+1

+ HImq

(

ψ
(Re q((Im F )m−1X

)

〈X〉−
2(2m−1)
2m+1

)) rm(X)

〈X〉
4m

2m+1

+ ψ
(Re q((Im F )m−1X

)

〈X〉−
2(2m−1)
2m+1

)

HImq

(

〈X〉−
4m

2m+1

)

rm(X).We �rst hek that(4.7) gm ∈ S
(

1, 〈X〉−
2(2m−1)
2m+1 dX2

)

.



14In order to verify this, we notie from Lemma 5.2.6 that the two quadrati forms(4.8) Re q((Im F )m−1X ; (Im F )mX
) and Re q((Im F )m−1X ; (Im F )m+1X

)

,belong to the symbol lass(4.9) SΩ

(

〈X〉
4m

2m+1 , 〈X〉−
2(2m−1)
2m+1 dX2

)

,for any open set Ω where Re q((Im F )m−1X
)

. 〈X〉
2(2m−1)
2m+1 . To hek this, we justuse in addition to Lemma 5.2.6 the obvious estimatesRe q((Im F )mX

)
1
2 . 〈X〉 and Re q((Im F )m+1X

)
1
2 . 〈X〉.Moreover, sine(4.10) 〈X〉−

4m
2m+1 ∈ S

(

〈X〉−
4m

2m+1 , 〈X〉−2dX2
)

,we obtain (4.7) from (4.1), (4.4), (4.5), (4.8), (4.9) and Lemma 5.2.2.Denoting respetively A1, A2, A3 and A4 the four terms appearing in the righthand side of (4.6), we �rst notie from (4.1), (4.8), (4.9), (4.10) and Lemma 5.2.2 that(4.11) A2 ∈ S
(

1, 〈X〉−
2(2m−1)
2m+1 dX2

)

.Next, by using that Im q ∈ S
(

〈X〉2, 〈X〉−2dX2
)

,sine Im q is a quadrati form, we get from (4.1), (4.4), (4.8), (4.9), (4.10) andLemma 5.2.2 that(4.12) A3 ∈ S
(

〈X〉
2

2m+1 , 〈X〉−
2(2m−1)
2m+1 dX2

)

,sine
HImq

(

ψ
(Re q((Im F )m−1X

)

〈X〉−
2(2m−1)
2m+1

))

∈ S
(

〈X〉
2

2m+1 , 〈X〉−
2(2m−1)
2m+1 dX2

)

.By using now that
HImq

(

〈X〉−
4m

2m+1

)

∈ S
(

〈X〉−
4m

2m+1 , 〈X〉−2dX2
)

,we �nally obtain from another use of (4.1), (4.4), (4.8), (4.9) and Lemma 5.2.2 that(4.13) A4 ∈ S
(

1, 〈X〉−
2(2m−1)
2m+1 dX2

)

.Sine the term A3 is supported insupp ψ′
(Re q((Im F )m−1X

)

〈X〉−
2(2m−1)
2m+1

)

,we dedue from (4.6), (4.11), (4.12) and (4.13) that there exists χ0 a C∞(R, [0, 1])funtion satisfying similar properties as in (4.2), with possibly di�erent positive nu-merial values for its support loalization, suh that, ∃c1, c2 > 0, ∀X ∈ R
2n,

HImq gm(X) + c1 + c2χ0

(Re q((Im F )m−1X
)

〈X〉−
2(2m−1)
2m+1

)

〈X〉
2

2m+1(4.14)
≥ 2ψ

(Re q((Im F )m−1X
)

〈X〉−
2(2m−1)
2m+1

)Re q((Im F )mX
)

〈X〉
4m

2m+1

.Realling (2.2), one an �nd some positive onstants c3, c4 > 0 suh that(4.15) m−1
∑

j=0

Re q((Im F )jX
)

≥ c3|X |2,on the open set(4.16) Ω1 =
{

X ∈ R
2n : Re q((Im F )mX

)

< c4|X |2
}

∩ Ω0.



15Whenm ≥ 2, one an �nd aording to our indution hypothesis a real-valued funtion(4.17) g̃m ∈ SΩ1

(

1, 〈X〉−
2

2m−1 dX2
)

,suh that(4.18) ∃c5 > 0, ∀X ∈ Ω1, Re q(X) + c5HImq g̃m(X) + 1 & 〈X〉
2

2m−1 .For onveniene, we set in the following g̃1 = 0 when m = 1. By hoosing suitably
ψ0 and w0 some C∞(R, [0, 1]) funtions satisfying similar properties as the funtionsrespetively de�ned in (4.1) and (4.3), with possibly di�erent positive numerial valuesfor their support loalizations, suh that(4.19) supp ψ0

(Re q((Im F )mX
)

|X |−2
)

w0(X)

⊂
{

X ∈ R
2n : Re q((Im F )mX

)

< c4|X |2
}

,and setting(4.20) Gm(X) = gm(X) + ψ0

(Re q((Im F )mX
)

|X |−2
)

w0(X)g̃m(X), X ∈ Ω0,we dedue from a straightforward adaptation of the Lemma 5.2.2 by realling (4.1)and (4.3) that(4.21) ψ0

(Re q((Im F )mX
)

|X |−2
)

w0(X) ∈ S
(

1, 〈X〉−2dX2
)

.Aording to (4.7) and (4.17), this implies that(4.22) G1 ∈ SΩ0

(

1, 〈X〉−
2
3 dX2

) and Gm ∈ SΩ0

(

1, 〈X〉−
2

2m−1 dX2
)

,when m ≥ 2. Sine from (4.21),
HImq

(

ψ0

(Re q((Im F )mX
)

|X |−2
)

w0(X)
)

∈ S
(

1, 〈X〉−2dX2
)

,beause Im q is a quadrati form, we �rst notie from (4.16), (4.17) and (4.19) that
HImq

(

ψ0

(Re q((Im F )mX
)

|X |−2
)

w0(X)
)

g̃m(X) ∈ SΩ0

(

1, 〈X〉−
2

2m−1 dX2
)

,and then dedue from (4.14), (4.16), (4.18), (4.19) and (4.20) that there exist c6, c7 > 0suh that for all X ∈ Ω0,Re q(X) + c6HImq Gm(X) + 1 + c7χ0

(Re q((Im F )m−1X
)

〈X〉−
2(2m−1)
2m+1

)

〈X〉
2

2m+1

& ψ
(Re q((Im F )m−1X

)

〈X〉−
2(2m−1)
2m+1

)Re q((Im F )mX
)

〈X〉
4m

2m+1

+ ψ0

(Re q((Im F )mX
)

|X |−2
)

w0(X)〈X〉
2

2m−1 ,when m ≥ 2. Sine
〈X〉

2
2m−1 & 〈X〉

2
2m+1 and Re q((Im F )mX

)

〈X〉
4m

2m+1

& |X |
2

2m+1 ,when Re q((Im F )mX
)

& |X |2, we dedue from the previous estimate by distinguish-ing the regions in Ω0 whereRe q((Im F )mX
)

. |X |2 and Re q((Im F )mX
)

& |X |2,aording to the support of the funtion
ψ0

(Re q((Im F )mX
)

|X |−2
)

,



16that one an �nd a C∞(R, [0, 1]) funtion w1 with the same kind of support as thefuntion de�ned in (4.3) suh that(4.23) ∃c8, c9 > 0, ∀X ∈ Ω0, Re q(X) + c8HImq Gm(X)

+ c9w1

(Re q((Im F )m−1X
)

〈X〉−
2(2m−1)
2m+1

)

〈X〉
2

2m+1 + 1 & 〈X〉
2

2m+1 ,when m ≥ 2. When m = 1, we notie from (2.2) that(4.24) Re q(Im FX
)

& 〈X〉2,on any set where(4.25) |X | ≥ c10 and Re q(X) ≤ 〈X〉
2
3 ,if the positive onstant c10 is hosen su�iently large. Moreover, sine in this ase

G1 = g1 and that Re q ≥ 0, one an dedue from (4.1), (4.3), (4.14), (4.24) and (4.25),by distinguishing the regions in Ω0 whereRe q(X) . 〈X〉
2
3 and Re q(X) & 〈X〉

2
3 ,aording to the support of the funtion

ψ
(Re q(X)〈X〉−

2
3

)

,that the estimate (4.23) is also ful�lled in the ase m = 1. Continuing our study ofthe ase where m = 1, we notie from (4.3) and Re q ≥ 0, that one an estimate
w1

(Re q(X)〈X〉−
2
3

)

〈X〉
2
3 . Re q(X),for all X ∈ R

2n. It therefore follows that one an �nd c11 > 0 suh that for all
X ∈ Ω0, Re q(X) + c11HImq G1(X) + 1 & 〈X〉

2
3 ,whih proves Proposition 2.0.1 in the ase where m = 1, and our indution hypothesisin the basis ase.Assuming in the following that m ≥ 2, we shall now work on the term

w1

(Re q((Im F )m−1X
)

〈X〉−
2(2m−1)
2m+1

)

〈X〉
2

2m+1 ,appearing in (4.23). By onsidering some onstants Λj ≥ 1, for 0 ≤ j ≤ m− 2, whosevalues will be suessively hosen in the following, we shall prove that one an writethat for all X ∈ R2n,(4.26) w1

(Re q((Im F )m−1X
)

〈X〉
2(2m−1)
2m+1

)

≤ W̃0(X)Ψ0(X)

+

m−2
∑

j=1

W̃0(X)
(

j
∏

l=1

Wl(X)
)

Ψj(X) + W̃0(X)
(

m−1
∏

l=1

Wl(X)
)

,with(4.27) Ψj(X) = ψ





ΛjRe q((Im F )m−j−2X
)Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1



 , 0 ≤ j ≤ m− 2,(4.28) Wj(X) = w2





Λj−1Re q((Im F )m−j−1X
)Re q((Im F )m−jX

)
2m−2j−1
2m−2j+1



 , 1 ≤ j ≤ m− 1,



17(4.29) W̃0(X) = w1

(Re q((Im F )m−1X
)

〈X〉
2(2m−1)
2m+1

)

,where ψ is the C∞(R, [0, 1]) funtion de�ned in (4.1), and w2 is a C∞(R, [0, 1]) funtionsatisfying similar properties as the funtion de�ned in (4.3), with possibly di�erentpositive numerial values for its support loalization, in order to have that(4.30) supp ψ′ ⊂
{

w2 = 1
} and supp w′

2 ⊂
{

ψ = 1
}

.In order to hek (4.26), we begin by notiing from (4.3), (4.28) and (4.29) that for
0 ≤ j ≤ m− 1,(4.31) Re q((Im F )m−j−1X

)
1

2m−2j−1 & Re q((Im F )m−jX
)

1
2m−2j+1

& ... & Re q((Im F )m−1X
)

1
2m−1 & 〈X〉

2
2m+1 ,on the support of the funtionsupp(W̃0

j
∏

l=1

Wl

)

, if 1 ≤ j ≤ m− 1, or, supp W̃0, if j = 0.Notie that the onstants in the estimates (4.31) only depend on the values of theparameters Λ0,...,Λj−1 but not on Λl, when l ≥ j. This shows that the funtions
Ψ0;

(

j
∏

l=1

Wl

)

Ψj , for 1 ≤ j ≤ m− 2; and m−1
∏

l=1

Wl,are well-de�ned on the support of the funtion W̃0. Now, by notiing from (4.1),(4.3), (4.27), (4.28) and (4.30) that(4.32) 1 ≤ Ψj +Wj+1,on the support of the funtionsupp(W̃0

j
∏

l=1

Wl

)

, if 1 ≤ j ≤ m− 2, or, supp W̃0, if j = 0,we dedue the estimate (4.26) from a �nite iteration by using the following estimates
W̃0 ≤ W̃0Ψ0 + W̃0W1and

W̃0

(

j
∏

l=1

Wl

)

≤ W̃0

(

j
∏

l=1

Wl

)

Ψj + W̃0

(

j+1
∏

l=1

Wl

)

,for any 1 ≤ j ≤ m− 2. One an also notie that (4.32) implies that(4.33) 1 ≤ Ψj +

m−2
∑

k=j+1

(

k
∏

l=j+1

Wl

)

Ψk +

m−1
∏

l=j+1

Wl,on the support of the funtionsupp(W̃0

j
∏

l=1

Wl

)

, if 1 ≤ j ≤ m− 2, or, supp W̃0, if j = 0.Sine Re q ≥ 0, we then get from (4.31) that(4.34) ∀X ∈ R
2n, W̃0(X)

(

m−1
∏

l=1

Wl(X)
)

〈X〉
2

2m+1 ≤ ãΛ0,...,Λm−2Re q(X),



18where ãΛ0,...,Λm−2 is a positive onstant whose value depend on the parameters
(Λl)0≤l≤m−2.We de�ne(4.35) pj(X) = W̃0(X)

(

j
∏

l=1

Wl(X)
)

Ψj(X)
rm−j−1(X)Re q((Im F )m−j−1X

)
2m−2j−2
2m−2j−1

,for 1 ≤ j ≤ m− 2, and(4.36) p0(X) = W̃0(X)Ψ0(X)
rm−1(X)Re q((Im F )m−1X

)
2m−2
2m−1

,where the quadrati forms rk are de�ned in (4.4). We get from (4.1), (4.3), (4.27),(4.28), (4.29), (4.31), Lemma 5.2.2, Lemma 5.2.4, Lemma 5.2.5 and Lemma 5.2.7 that(4.37) pj ∈ S
(

1, 〈X〉−
2(2m−2j−3)

2m+1 dX2
)

.for any 0 ≤ j ≤ m− 2.We shall now study the Poisson brakets HImq pj . In doing so, we begin by writingthat
HImq pj(X) =

(

HImqW̃0

)

(X)
(

j
∏

l=1

Wl(X)
)

Ψj(X)
rm−j−1(X)Re q((Im F )m−j−1X

)
2m−2j−2
2m−2j−1

(4.38)
+ W̃0(X)

(

j
∏

l=1

Wl(X)
)

(

HImqΨj

)

(X)
rm−j−1(X)Re q((Im F )m−j−1X

)
2m−2j−2
2m−2j−1

+ W̃0(X)
(

j
∏

l=1

Wl(X)
)

Ψj(X)HImq

(Re q((Im F )m−j−1X
)− 2m−2j−2

2m−2j−1

)

rm−j−1(X)

+ W̃0(X)
(

j
∏

l=1

Wl(X)
)

Ψj(X)
HImq rm−j−1(X)Re q((Im F )m−j−1X

)
2m−2j−2
2m−2j−1

+

j
∑

l=1

W̃0(X)
(

HImqWl

)

(X)
(

j
∏

k=1
k 6=l

Wk(X)
)

Ψj(X)
rm−j−1(X)Re q((Im F )m−j−1X

)
2m−2j−2
2m−2j−1

,for 1 ≤ j ≤ m − 2. We denote by respetively B1,j , B2,j , B3,j , B4,j and B5,j the�ve terms appearing in the right hand side of (4.38). We also write in the ase where
j = 0,

HImq p0(X) =
(

HImqW̃0

)

(X)Ψ0(X)
rm−1(X)Re q((Im F )m−1X

)
2m−2
2m−1

(4.39)
+ W̃0(X)

(

HImqΨ0

)

(X)
rm−1(X)Re q((Im F )m−1X

)
2m−2
2m−1

+ W̃0(X)Ψ0(X)HImq

(Re q((Im F )m−1X
)− 2m−2

2m−1

)

rm−1(X)

+ W̃0(X)Ψ0(X)
HImq rm−1(X)Re q((Im F )m−1X

)
2m−2
2m−1

,and denote as before by respetivelyB1,0, B2,0, B3,0 and B4,0 the four terms appearingin the right hand side of (4.39).



19Sine the onstants in the estimates (4.31) only depend on the values of the param-eters Λ0,..., Λj−1; but not on Λl, when l ≥ j; we notie from (4.26), (4.31) and (4.34)that there exist a0 > 0 and some positive onstants aj,Λ0,...,Λj−1 , for 1 ≤ j ≤ m− 1,whose values with respet to the parameters (Λl)0≤l≤m−2 only depend on Λ0,..., Λj−1;but not on Λl, when l ≥ j; suh that for any onstants (αj)1≤j≤m−2, with αj ≥ 1;and X ∈ R2n,
w1

(Re q((Im F )m−1X
)

〈X〉
2(2m−1)
2m+1

)

〈X〉
2

2m+1 ≤ a0W̃0(X)Ψ0(X)Re q((Im F )m−1X
)

1
2m−1

(4.40)
+

m−2
∑

j=1

αjaj,Λ0,...,Λj−1W̃0(X)
(

j
∏

l=1

Wl(X)
)

Ψj(X)Re q((Im F )m−j−1X
)

1
2m−2j−1

+ am−1,Λ0,...,Λm−2Re q(X).The positive onstant a0 is independent of any of the parameters (Λl)0≤l≤m−2. Setting(4.41) p = a0p0 +

m−2
∑

j=1

αjaj,Λ0,...,Λj−1pj ,we know from (4.37) that(4.42) p ∈ S
(

1, 〈X〉−
2

2m+1 dX2
)

.For any ε > 0, we shall prove that after a proper hoie for the onstants (Λj)0≤j≤m−2and (αj)1≤j≤m−2, with Λj ≥ 1, αj ≥ 1, whose values will depend on ε; one an �nda positive onstant c12,ε > 0 suh that for all X ∈ R2n,(4.43) c12,εRe q(X)+HImq p(X)+ε〈X〉
2

2m+1 ≥ w1

(Re q((Im F )m−1X
)

〈X〉
2(2m−1)
2m+1

)

〈X〉
2

2m+1 .One this estimate proved, Proposition 2.0.1 will diretly follow from (4.22), (4.23),(4.42) and (4.43), if we hoose the positive parameter ε su�iently small and onsiderthe weight funtion
g = c13,εGm + c14,εp,after a suitable hoie for the positive onstants c13,ε and c14,ε.Let ε > 0, it therefore remains to hoose properly these onstants (Λj)0≤j≤m−2and (αj)1≤j≤m−2, with Λj ≥ 1, αj ≥ 1, in order to satisfy (4.43).Realling from (5.22) that(4.44) ∀ 0 ≤ j ≤ m− 2, HImq rm−j−1(X) = 2Re q((Im F )m−j−1X

)

+ 2Re q((Im F )m−jX ; (Im F )m−j−2X
)

,one an notie by expanding the term 2am−1,Λ0,...,Λm−2Re q+HImq p by using (4.38),(4.39) and (4.41) that the terms in
a0B4,0 +

m−2
∑

j=1

αjaj,Λ0,...,Λj−1B4,j,



20produed by the terms assoiated to 2Re q((Im F )m−j−1X
) while using (4.44), giveexatly two times the term

a0W̃0(X)Ψ0(X)Re q((Im F )m−1X
)

1
2m−1(4.45)

+

m−2
∑

j=1

αjaj,Λ0,...,Λj−1W̃0(X)
(

j
∏

l=1

Wl(X)
)

Ψj(X)Re q((Im F )m−j−1X
)

1
2m−2j−1

+ am−1,Λ0,...,Λm−2Re q(X),for whih we have the estimate (4.40). To prove the estimate (4.43), it will thereforebe su�ient to hek that all the other terms appearing in (4.38) and (4.39) an alsobe all absorbed in the term (4.45) after a proper hoie for the onstants (Λj)0≤j≤m−2and (αj)1≤j≤m−2; at the exeption of a remainder term in
ε〈X〉

2
2m+1 .We shall hoose these onstants in the following order Λ0, α1, Λ1, α2, ...., αm−2 and

Λm−2.We suessively study the remaining terms in (4.38) and (4.39), by inreasing valueof the integer 0 ≤ j ≤ m− 2. We �rst notie from (4.1), (4.3), (4.27), (4.29), (4.39),Lemma 5.2.8 and Lemma 5.2.12 that one an hoose the �rst onstant Λ0 ≥ 1 suhthat for all X ∈ R2n,(4.46) a0|B1,0(X)| . Λ
− 1

2
0 〈X〉

2
2m+1 ≤

ε

m− 1
〈X〉

2
2m+1 .By notiing from (4.3) and (4.29) that the estimates(4.47) Re q((Im F )mX

)

. 〈X〉2 . Re q((Im F )m−1X
)

2m+1
2m−1 ,are ful�lled on the support of the funtion W̃0, we dedue from (4.1), (4.3), (4.27),(4.29), (4.39), Lemma 5.2.8, Lemma 5.2.9 and Lemma 5.2.10 that the modulus of theterm B3,0 and the seond term in B4,0 assoiated to

2Re q((Im F )mX ; (Im F )m−2X
)

,while using (4.44), that we denote here B̃4,0, an both be estimated as
a0|B3,0(X)| + a0|B̃4,0(X)| . Λ

− 1
2

0 W̃0(X)Ψ0(X)Re q((Im F )m−1X
)

1
2m−1 ,for all X ∈ R2n. By possibly inreasing su�iently the value of the onstant Λ0 whihis of ourse possible while keeping (4.46), one an ontrol these terms with the �good�term (4.45). The value of the onstant Λ0 is now de�nitively �xed. In (4.39), it onlyremains to study the term B2,0.About this term, we dedue from (4.1), (4.3), (4.27), (4.29), (4.39), Lemma 5.2.8and Lemma 5.2.11 that for all X ∈ R2n,(4.48) a0|B2,0(X)| . W̃0(X)W1(X)Re q((Im F )m−1X

)
1

2m−1 .By using now (4.31) and (4.33) with j = 1, we obtain that for all X ∈ R
2n,

a0|B2,0(X)| ≤ cm−1,Λ0,...,Λm−2W̃0(X)
(

m−1
∏

l=1

Wl(X)
)Re q(X)

+

m−2
∑

j=1

cj,Λ0,...,Λj−1W̃0(X)
(

j
∏

l=1

Wl(X)
)

Ψj(X)Re q((Im F )m−j−1X
)

1
2m−2j−1 ,



21whih implies that(4.49) a0|B2,0(X)| ≤ cm−1,Λ0,...,Λm−2Re q(X)

+
m−2
∑

j=1

cj,Λ0,...,Λj−1W̃0(X)
(

j
∏

l=1

Wl(X)
)

Ψj(X)Re q((Im F )m−j−1X
)

1
2m−2j−1 ,where the quantities cj,Λ0,...,Λj−1 stand for positive onstants whose values dependon Λ0,..., Λj−1, but not on (Λk)j≤k≤m−2 and (αk)1≤k≤m−2, aording to the remarkdone after (4.31). One an therefore hoose the onstant α1 ≥ 1 in (4.41) su�ientlylarge in order to absorb the term of the index j = 1 in the sum appearing in the righthand side of the estimate (4.49) by the term of same index in the �good� term (4.45).This is possible sine the onstants a1,Λ0 and c1,Λ0 are now �xed after our hoie ofthe parameter Λ0.This ends our step index j = 0 in whih we have hosen the values for the twoonstants Λ0 and α1 ≥ 1. We shall now explain how to hoose the remaining onstants

(Λj)1≤j≤m−2 and (αj)2≤j≤m−2 in (4.41) in order to satisfy (4.43). This hoie willalso determine the values of the onstants (aj,Λ0,...,Λj−1)1≤j≤m−2 appearing in (4.41).After this step index j = 0, we have managed to absorb all the terms appearing in(4.39) in the �good� term (4.45) at the exeption of a remainder oming from (4.46)and (4.49),
m−2
∑

j=2

cj,Λ0,...,Λj−1W̃0(X)
(

j
∏

l=1

Wl(X)
)

Ψj(X)Re q((Im F )m−j−1X
)

1
2m−2j−1

+
ε

m− 1
〈X〉

2
2m+1 ,where one reall that the positive onstants cj,Λ0,...,Λj−1 only depend on Λ0,...,Λj−1,but not on (Λk)j≤k≤m−2 and (αk)1≤k≤m−2.We proeed in the following by �nite indution and assume that, at the beginningof the step index k, with 1 ≤ k ≤ m − 2, we have already hosen the values for theonstants (Λj)0≤j≤k−1 and (αj)1≤j≤k in (4.41); and that these hoies have allowedto absorb all the terms appearing in the right hand side of (4.39) and (4.38), when

1 ≤ j ≤ k − 1, in the �good� term (4.45) at the exeption of a remainder term(4.50) k

m− 1
ε〈X〉

2
2m+1 +

m−2
∑

j=k+1

c̃j,Λ0,...,Λj−1,α1,...,αk−1
W̃0(X)

(

j
∏

l=1

Wl(X)
)

Ψj(X)Re q((Im F )m−j−1X
)

1
2m−2j−1 ,where the quantities c̃j,Λ0,...,Λj−1,α1,...,αk−1

stand for positive onstants whose valuesonly depend on Λ0,..., Λj−1, α1,..., αk−1; but not on (Λl)j≤l≤m−2 and (αl)k≤l≤m−2.We shall now explain how to hoose the onstants Λk and; αk+1, when k ≤ m− 3;in this step index k in order to absorb the terms appearing in the right hand side of(4.38), when j = k, at the exeption of a remainder term of the type (4.50) where kwill be replaed by k+ 1; in the �good� term (4.45). Sine the onstants (Λj)0≤j≤k−1and (αj)1≤j≤k have already been hosen, we shall only underline in the following thedependene of our estimates with respet to the other parameters (Λj)k≤j≤m−2 and
(αj)k+1≤j≤m−2, whose values remain to be hosen.We notie from (4.1), (4.3), (4.27), (4.28), (4.29), (4.31), (4.38), Lemma 5.2.8 andLemma 5.2.12 that one an assume by hoosing the onstant Λk ≥ 1 su�iently large



22that for all X ∈ R2n,(4.51) αkak,Λ0,...,Λk−1
|B1,k(X)| . Λ

− 1
2

k 〈X〉
2

2m+1 ≤
ε

m− 1
〈X〉

2
2m+1 ,sine the onstants αk, Λ0,....,Λk−1 have already been �xed. Next, we dedue from(4.1), (4.3), (4.27), (4.28), (4.29), (4.31), (4.38), Lemma 5.2.8, Lemma 5.2.9 andLemma 5.2.10 that the modulus of the term B3,k and the seond term in B4,k asso-iated to

2Re q((Im F )m−kX ; (Im F )m−k−2X
)

,while using (4.44), that we denote here B̃4,k, an both be estimated as
αkak,Λ0,...,Λk−1

|B3,k(X)| + αkak,Λ0,...,Λk−1
|B̃4,k(X)|

. Λ
− 1

2

k W̃0(X)
(

k
∏

l=1

Wl(X)
)

Ψk(X)Re q((Im F )m−k−1X
)

1
2m−2k−1 ,for all X ∈ R2n. By possibly inreasing su�iently the value of the onstant Λk whihis of ourse possible while keeping (4.51), one an ontrol these terms with the �good�term (4.45).For 1 ≤ l ≤ k, we shall now study the term

B5,k,l(X) = W̃0(X)
(

HImqWl

)

(X)
(

k
∏

j=1
j 6=l

Wj(X)
)

Ψk(X)
rm−k−1(X)Re q((Im F )m−k−1X

)
2m−2k−2
2m−2k−1

,appearing in the term B5,k in (4.38). By notiing thatRe q((Im F )m−l−2X
)

∼ Λ−1
l Re q((Im F )m−l−1X

)
2m−2l−3
2m−2l−1 ,on the support of the funtion HImqWl+1, it follows from (4.1), (4.3), (4.27), (4.28),(4.29), (4.31), (4.47), Lemma 5.2.8 and Lemma 5.2.13 that for all X ∈ R2n,

αkak,Λ0,...,Λk−1
|B5,k,1(X)| . Λ

− 1
2

k W̃0(X)Ψ0(X)Re q((Im F )m−1X
)

1
2m−1and

αkak,Λ0,...,Λk−1
|B5,k,l(X)|

. Λ
− 1

2

k W̃0(X)
(

l−1
∏

j=1

Wj(X)
)

Ψl−1(X)Re q((Im F )m−lX
)

1
2m−2l+1 ,when l ≥ 2. By possibly inreasing again the value of the onstant Λk, one antherefore ontrol the term αkak,Λ0,...,Λk−1

B5,k with the �good� term (4.45). The valueof the onstant Λk is now de�nitively �xed.About the term B2,k, we dedue from (4.1), (4.3), (4.27), (4.28), (4.29), (4.31),(4.38), Lemma 5.2.8 and Lemma 5.2.11 that for all X ∈ R2n,(4.52) αkak,Λ0,...,Λk−1
|B2,k(X)|

. W̃0(X)
(

k+1
∏

l=1

Wl(X)
)Re q((Im F )m−k−1X

)
1

2m−2k−1 .



23By distinguishing two ases, we �rst assume in the following that k ≤ m− 3. In thisase, by using (4.31) and (4.33) with j = k + 1, we obtain that for all X ∈ R2n,
αkak,Λ0,...,Λk−1

|B2,k(X)| ≤ c′m−1,Λ0,...,Λm−2,α1,...,αk
W̃0(X)

(

m−1
∏

l=1

Wl(X)
)Re q(X)

+

m−2
∑

j=k+1

c′j,Λ0,...,Λj−1,α1,...,αk
W̃0(X)

(

j
∏

l=1

Wl(X)
)

Ψj(X)Re q((Im F )m−j−1X
)

1
2m−2j−1 ,whih implies that(4.53) αkak,Λ0,...,Λk−1

|B2,k(X)| ≤ c′m−1,Λ0,...,Λm−2,α1,...,αk
Re q(X)

+

m−2
∑

j=k+1

c′j,Λ0,...,Λj−1,α1,...,αk
W̃0(X)

(

j
∏

l=1

Wl(X)
)

Ψj(X)Re q((Im F )m−j−1X
)

1
2m−2j−1 ,where the quantities c′j,Λ0,...,Λj−1,α1,...,αk

stand for positive onstants whose valuesonly depend on Λ0,..., Λj−1, α1,..., αk, but not on (Λl)j≤l≤m−2 and (αl)k+1≤l≤m−2.Indeed, we reall that the onstants appearing in the estimates (4.31) only depend onthe values of the parameters Λ0,..., Λj−1; but not on (Λl)j≤l≤m−2 and (αl)1≤l≤m−2.One an therefore hoose the onstant αk+1 ≥ 1 in (4.41) su�iently large in order toabsorb the term of index j = k+1 in the sum (4.50); and the term of index j = k+1in the sum appearing in the right hand side of the estimate (4.53), by the term ofsame index in the �good� term (4.45).When k = m−2 and taking Λm−2 = 1, it follows from (4.31), used with j = m−1,and (4.52) that for all X ∈ R2n,
αm−2am−2,Λ0,...,Λm−3 |B2,m−2(X)| . W̃0(X)

(

m−1
∏

l=1

Wl(X)
)Re q(Im FX)

1
3(4.54)

. Re q(X).This proess allows us to ahieve the onstrution of the weight funtion p satisfying(4.43), whih ends the proof of (4.43). This also ends the proof of Proposition 2.0.1. �5. Appendix5.1. Wik alulus. The purpose of this setion is to reall the de�nition and basiproperties of the Wik quantization that we need for the proof of Theorem 1.2.1. Wefollow here the presentation of the Wik quantization given by N. Lerner in [9℄ andrefer the reader to his work for the proofs of the results realled below.The main property of the Wik quantization is its property of positivity, i.e., thatnon-negative Hamiltonians de�ne non-negative operators
a ≥ 0 ⇒ aWik ≥ 0.We reall that this is not the ase for the Weyl quantization and refer to [9℄ for anexample of non-negative Hamiltonian de�ning an operator whih is not non-negative.Before de�ning properly the Wik quantization, we �rst need to reall the de�nitionof the wave pakets transform of a funtion u ∈ S(Rn),

Wu(y, η) = (u, ϕy,η)L2(Rn) = 2n/4

∫

Rn

u(x)e−π(x−y)2e−2iπ(x−y).ηdx, (y, η) ∈ R
2n.where

ϕy,η(x) = 2n/4e−π(x−y)2e2iπ(x−y).η, x ∈ R
n,



24and x2 = x2
1 + ...+x2

n. With this de�nition, one an hek (see Lemma 2.1 in [9℄) thatthe mapping u 7→Wu is ontinuous from S(Rn) to S(R2n), isometri from L2(Rn) to
L2(R2n) and that we have the reonstrution formula(5.1) ∀u ∈ S(Rn), ∀x ∈ R

n, u(x) =

∫

R2n

Wu(y, η)ϕy,η(x)dydη.By denoting by ΣY the operator de�ned in the Weyl quantization by the symbol
pY (X) = 2ne−2π|X−Y |2 , Y = (y, η) ∈ R

2n,whih is a rank-one orthogonal projetion,
(

ΣY u
)

(x) = Wu(Y )ϕY (x) = (u, ϕY )L2(Rn)ϕY (x),we de�ne the Wik quantization of any L∞(R2n) symbol a as(5.2) aWik =

∫

R2n

a(Y )ΣY dY .More generally, one an extend this de�nition when the symbol a belongs to S′(R2n)by de�ning the operator aWik for any u and v in S(Rn) by
< aWiku, v >S′(Rn),S(Rn)=< a(Y ), (ΣY u, v)L2(Rn) >S′(R2n),S(R2n),where < ·, · >S′(Rn),S(Rn) denotes the duality braket between the spaes S′(Rn) and

S(Rn). The Wik quantization is a positive quantization(5.3) a ≥ 0 ⇒ aWik ≥ 0.In partiular, real Hamiltonians get quantized in this quantization by formally self-adjoint operators and one has (see Proposition 3.2 in [9℄) that L∞(R2n) symbols de�nebounded operators on L2(Rn) suh that(5.4) ‖aWik‖L(L2(Rn)) ≤ ‖a‖L∞(R2n).Aording to Proposition 3.3 in [9℄, the Wik and Weyl quantizations of a symbol aare linked by the following identities(5.5) aWik = ãw,with(5.6) ã(X) =

∫

R2n

a(X + Y )e−2π|Y |22ndY , X ∈ R
2n,and(5.7) aWik = aw + r(a)w ,where r(a) stands for the symbol(5.8) r(a)(X) =

∫ 1

0

∫

R2n

(1 − θ)a′′(X + θY )Y 2e−2π|Y |22ndY dθ, X ∈ R
2n,if we use here the normalization hosen in [9℄ for the Weyl quantization(5.9) (awu)(x) =

∫

R2n

e2iπ(x−y).ξa
(x+ y

2
, ξ
)

u(y)dydξ,whih di�ers from the one hosen in this paper. Beause of this di�erene in nor-malizations, ertain onstant fators will naturally appear in the ore of the proofof Theorem 1.2.1 while using ertain formulas of Setion 5.1, but these are minoradaptations. We also reall the following omposition formula obtained in the proofof Proposition 3.4 in [9℄,(5.10) aWikbWik =
[

ab−
1

4π
a′.b′ +

1

4iπ
{a, b}

]Wik
+ S,



25with ‖S‖L(L2(Rn)) ≤ dn‖a‖L∞γ2(b), when a ∈ L∞(R2n) and b is a smooth symbolsatisfying
γ2(b) = sup

X∈R2n,

T∈R2n,|T |=1

|b(2)(X)T 2| < +∞.The term dn appearing in the previous estimate stands for a positive onstant de-pending only on the dimension n, and the notation {a, b} denotes the Poisson braket
{a, b} =

∂a

∂ξ
.
∂b

∂x
−
∂a

∂x
.
∂b

∂ξ
.5.2. Some tehnial lemmas. This seond part of the appendix is devoted to theproofs of several tehnial lemmas.Lemma 5.2.1. If l1, l2 ∈ N then(5.11) HImq Re q((Im F )l1X ; (Im F )l2X

)

= 2Re q((Im F )l1+1X ; (Im F )l2X
)

+ 2Re q((Im F )l1X ; (Im F )l2+1X
)

,where Re q(X ;Y ) stands for the polarized form assoiated to the quadrati form Re q.Proof of Lemma 5.2.1. We begin by notiing from (1.11) and the skew-symmetryproperty of Hamilton maps (1.12) that the Hamilton map of the quadrati form
r̃(X) = Re q((Im F )l1X ; (Im F )l2X

)

,is given by(5.12) F̃ =
1

2

(

(−1)l1(Im F )l1Re F (Im F )l2 + (−1)l2(Im F )l2Re F (Im F )l1
)

,sine for any l1, l2 ∈ N,
(−1)l1σ

(

X, (Im F )l1Re F (Im F )l2X
)

= σ
(

(Im F )l1X,Re F (Im F )l2X
)(5.13)

= Re q((Im F )l1X, (Im F )l2X
)

.Then, a diret omputation (see Lemma 2 in [10℄) shows that the Hamiton map ofthe quadrati form
HImq r̃ =

{Im q, r̃
}

=
∂Im q

∂ξ
.
∂r̃

∂x
−
∂Im q

∂x
.
∂r̃

∂ξ
,is given by the ommutator −2[Im F, F̃ ], that is,

HImq r̃(X) = −2σ
(

X, [Im F, F̃ ]X
)

.A omputation using (5.13) then allows to diretly get (5.11). �Lemma 5.2.2. Consider a C∞(R) funtion f suh that
f ∈ L∞(R) and ∃c1, c2 > 0, supp f ′ ⊂

{

x ∈ R : c1 ≤ |x| ≤ c2
}

,then for all 0 < α ≤ 1 and k ∈ N,(5.14) f
(Re q((Im F )kX)〈X〉−2α

)

∈ S(1, 〈X〉−2αdX2).



26Proof of Lemma 5.2.2. It is su�ient to hek that(5.15) ∇
(Re q((Im F )kX)〈X〉−2α

)

∈ SΩ

(

〈X〉−α, 〈X〉−2αdX2
)

,where Ω is a small open neighborhood of supp f ′
(Re q((Im F )kX)〈X〉−2α

)

. We de-due from (2.1), (2.17) and the fat that Re q((Im F )kX) is a quadrati form thatRe q((Im F )kX
)

∼ 〈X〉2αand
|∇
(Re q((Im F )kX)

)

| . Re q((Im F )kX)1/2 . 〈X〉α,on Ω. By notiing that 0 < α ≤ 1, 〈X〉r ∈ S(〈X〉r, 〈X〉−2dX2), for any r ∈ R, andthat the funtion Re q((Im F )kX) is just a quadrati form, we diretly dedue (5.15)from the previous estimates and the Leibniz's rule, sineRe q((Im F )kX) ∈ SΩ

(

〈X〉2α, 〈X〉−2αdX2
)

. �Lemma 5.2.3. For all s ∈ R and 0 ≤ j ≤ m− 2, we haveRe q((Im F )m−j−1X
)s

∈ SΩ

(Re q((Im F )m−j−1X
)s
,Re q((Im F )m−j−1X

)−1
dX2

)

,if Ω is any open set whereRe q((Im F )m−j−1X
)

& 〈X〉
2(2m−2j−1)

2m+1 .Proof of Lemma 5.2.3. Realling that the symbol Re q((Im F )m−j−1X
) is a non-negative quadrati form and that we have from (2.17) that(5.16) ∣

∣∇Re q((Im F )m−j−1X
)∣

∣ . Re q((Im F )m−j−1X
)

1
2 ,whih implies that for all s ∈ R,

∣

∣

∣∇
(Re q((Im F )m−j−1X

)s
)∣

∣

∣Re q((Im F )m−j−1X
)s .

∣

∣∇Re q((Im F )m−j−1X
)∣

∣Re q((Im F )m−j−1X
)(5.17)

. Re q((Im F )m−j−1X
)− 1

2 ,on Ω, we notie that the result of Lemma 5.2.3 is therefore a straightforward onse-quene of the Leibniz's rule. �Lemma 5.2.4. Consider the funtion Ψj de�ned in (4.27) then for any 0 ≤ j ≤ m−2,
Ψj ∈ SΩ

(

1,Re q((Im F )m−j−1X
)− 2m−2j−3

2m−2j−1 dX2
)

,if Ω is any open set whereRe q((Im F )m−j−1X
)

& 〈X〉
2(2m−2j−1)

2m+1 ,whih implies in partiular that
Ψj ∈ SΩ

(

1, 〈X〉−
2(2m−2j−3)

2m+1 dX2
)

.



27Proof of Lemma 5.2.4. We �rst notie from (4.1) and (4.27) thatRe q((Im F )m−j−2X
)

∼ Re q((Im F )m−j−1X
)

2m−2j−3
2m−2j−1 ,on Ω ∩ supp Ψ′

j . Sine from (2.17),
∣

∣∇Re q((Im F )m−j−2X
)∣

∣ . Re q((Im F )m−j−2X
)

1
2(5.18)

. Re q((Im F )m−j−1X
)

2m−2j−3
2(2m−2j−1) ,on Ω∩ supp Ψ′

j , we dedue that the quadrati symbol Re q((Im F )m−j−2X
) belongsto the lass(5.19) SΩ∩suppΨ′

j

(Re q((Im F )m−j−1X
)

2m−2j−3
2m−2j−1 ,

dX2Re q((Im F )m−j−1X
)

2m−2j−3
2m−2j−1

)

,It follows from Lemma 5.2.3 thatRe q((Im F )m−j−2X
)Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1

∈ SΩ∩suppΨ′
j

(

1,
dX2Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1

)

,whih implies that
Ψj ∈ SΩ

(

1,Re q((Im F )m−j−1X
)− 2m−2j−3

2m−2j−1 dX2
)

.This ends the proof of Lemma 5.2.4. �Lemma 5.2.5. Consider the funtion Wj de�ned in (4.28) then for any 1 ≤ j ≤
m− 1,

Wj ∈ SΩ

(

1,Re q((Im F )m−j−1X
)−1

dX2
)

,if Ω is any open set whereRe q((Im F )m−j−1X
)

& 〈X〉
2(2m−2j−1)

2m+1 ,whih implies in partiular that
Wj ∈ SΩ

(

1, 〈X〉−
2(2m−2j−1)

2m+1 dX2
)

.Proof of Lemma 5.2.5. By notiing from (4.3) and (4.28) thatRe q((Im F )m−j−1X
)

∼ Re q((Im F )m−jX
)

2m−2j−1
2m−2j+1and Re q((Im F )m−jX

)

& 〈X〉
2(2m−2j+1)

2m+1 ,on Ω ∩ supp W ′
j , and that the two derivatives ψ′ and w′

2 of the funtions appearingin (4.27) and (4.28) have similar types of support as the funtion de�ned in (4.2), wenotie that we are exatly in the setting studied in Lemma 5.2.4 with j replaed by
j − 1. We therefore dedue the result of Lemma 5.2.5 from our analysis led in theproof of Lemma 5.2.4. �Lemma 5.2.6. If l1, l2 ∈ N then

∣

∣Re q((Im F )l1X ; (Im F )l2X
)∣

∣ ≤ Re q((Im F )l1X
)

1
2Re q((Im F )l2X

)
1
2 ,

∣

∣∇Re q((Im F )l1X ; (Im F )l2X
)∣

∣ . Re q((Im F )l1X
)

1
2 + Re q((Im F )l2X

)
1
2 .



28Proof of Lemma 5.2.6. By reason of symmetry, we an assume in the following that
l1 ≤ l2. Realling that the quadrati form Re q is non-negative, the �rst estimate isa diret onsequene of the Cauhy-Shwarz inequality. About the seond estimate,we reall from (5.12) that the Hamilton map of the quadrati formRe q((Im F )l1X ; (Im F )l2X

)

,is
1

2

(

(−1)l1(Im F )l1Re F (Im F )l2 + (−1)l2(Im F )l2Re F (Im F )l1
)

.A diret omputation as in (3.18) of [10℄ shows that(5.20) ∇Re q((Im F )l1X ; (Im F )l2X
)

= (−1)l1+1σ(Im F )l1Re F (Im F )l2X

+ (−1)l2+1σ(Im F )l2Re F (Im F )l1Xwhere
σ =

(

0 In
−In 0

)

.The notation In stands here for the n by n identity matrix. We dedue from (2.17)and (5.20) that for any k ∈ N,(5.21) |(Im F )kRe F (Im F )kX | .
∣

∣∇Re q((Im F )kX
)∣

∣ . Re q((Im F )kX
)

1
2 .By using twie the estimate (5.21) with respetively X and (Im F )l2−l1X , and theindex k = l1, we dedue from (5.20) the seond estimate of Lemma 5.2.6. �Lemma 5.2.7. Consider the quadrati form rm−j−1 de�ned in (4.4) then for any

0 ≤ j ≤ m− 2,
rm−j−1(X)Re q((Im F )m−j−1X

)
2m−2j−2
2m−2j−1

∈ SΩ

(

1,Re q((Im F )m−j−1X
)− 2m−2j−3

2m−2j−1 dX2
)

,if Ω is any open set whereRe q((Im F )m−j−1X
)

& 〈X〉
2(2m−2j−1)

2m+1and Re q((Im F )m−j−2X
)

. Re q((Im F )m−j−1X
)

2m−2j−3
2m−2j−1 ,whih implies in partiular that

rm−j−1(X)Re q((Im F )m−j−1X
)

2m−2j−2
2m−2j−1

∈ SΩ

(

1, 〈X〉−
2(2m−2j−3)

2m+1 dX2
)

.Proof of Lemma 5.2.7. Sine from Lemma 5.2.6,
|rm−j−1(X)| . Re q((Im F )m−j−1X

)
2m−2j−2
2m−2j−1and

|∇rm−j−1(X)| . Re q((Im F )m−j−1X
)

1
2 + Re q((Im F )m−j−2X

)
1
2

. Re q((Im F )m−j−1X
)

1
2 ,on Ω, we get that the quadrati form rm−j−1 belongs to the symbol lass

SΩ

(Re q((Im F )m−j−1X
)

2m−2j−2
2m−2j−1 ,Re q((Im F )m−j−1X

)− 2m−2j−3
2m−2j−1 dX2

)

.One an then dedue the result of Lemma 5.2.7 from Lemma 5.2.3. �



29When adding a large parameter Λj ≥ 1 in the desription of the open set Ω, astraightforward adaptation of the proof of the previous lemma gives the following
L∞(Ω) estimate with respet to this parameter.Lemma 5.2.8. Consider the quadrati form rm−j−1 de�ned in (4.4) then for any
0 ≤ j ≤ m− 2,

∥

∥Re q((Im F )m−j−1X
)− 2m−2j−2

2m−2j−1 rm−j−1(X)
∥

∥

L∞(Ω)
. Λ

− 1
2

j ,if Ω is any open set whereRe q((Im F )m−j−1X
)

& 〈X〉
2(2m−2j−1)

2m+1and Re q((Im F )m−j−2X
)

. Λ−1
j Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1 .In the following lemmas, we shall arefully study the dependene of the estimateswith respet to the large parameter Λj ≥ 1.Lemma 5.2.9. For any 0 ≤ j ≤ m− 2, we have for all X ∈ Ω,

∣

∣

∣

∣

∣

∣

HImq rm−j−1(X)Re q((Im F )m−j−1X
)

2m−2j−2
2m−2j−1

− 2Re q((Im F )m−j−1X
)

1
2m−2j−1

∣

∣

∣

∣

∣

∣

. Λ
− 1

2

j Re q((Im F )m−j−1X
)

1
2m−2j−1 ,if Ω is any open set whereRe q((Im F )m−j−1X

)

& 〈X〉
2(2m−2j−1)

2m+1 ,Re q((Im F )m−j−2X
)

. Λ−1
j Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1 ,Re q((Im F )m−jX

)

. Re q((Im F )m−j−1X
)

2m−2j+1
2m−2j−1 .Proof of Lemma 5.2.9. We begin by writing from (4.4) and Lemma 5.2.1 that(5.22) HImq rm−j−1(X) = 2Re q((Im F )m−j−1X

)

+ 2Re q((Im F )m−jX ; (Im F )m−j−2X
)

.Lemma 5.2.9 is then a onsequene of the following estimate
∣

∣Re q((Im F )m−jX ; (Im F )m−j−2X
)∣

∣

≤ Re q((Im F )m−jX
)

1
2Re q((Im F )m−j−2X

)
1
2

. Λ
− 1

2
j Re q((Im F )m−j−1X

)

,ful�lled on Ω that we obtain from Lemma 5.2.6. �



30Lemma 5.2.10. For any 0 ≤ j ≤ m− 2, we have for all X ∈ Ω,
∣

∣

∣Re q((Im F )m−j−1X
)

2m−2j−2
2m−2j−1HImq

(Re q((Im F )m−j−1X
)− 2m−2j−2

2m−2j−1

)∣

∣

∣

. Re q((Im F )m−j−1X
)

1
2m−2j−1 ,if Ω is any open set whereRe q((Im F )m−j−1X

)

& 〈X〉
2(2m−2j−1)

2m+1 ,Re q((Im F )m−j−2X
)

. Λ−1
j Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1 ,Re q((Im F )m−jX

)

. Re q((Im F )m−j−1X
)

2m−2j+1
2m−2j−1 .Proof of Lemma 5.2.10. We begin by writing from Lemma 5.2.1 that(5.23) HImq Re q((Im F )m−j−1X

)

= 4Re q((Im F )m−j−1X ; (Im F )m−jX
)

.Sine Re q((Im F )m−j−1X
)

2m−2j−2
2m−2j−1HImq

(Re q((Im F )m−j−1X
)− 2m−2j−2

2m−2j−1

)

= −
2m− 2j − 2

2m− 2j − 1

HImq Re q((Im F )m−j−1X
)Re q((Im F )m−j−1X

) ,Lemma 5.2.10 is then a onsequene of the following estimate
∣

∣Re q((Im F )m−j−1X ; (Im F )m−jX
)∣

∣(5.24)
≤ Re q((Im F )m−j−1X

)
1
2Re q((Im F )m−jX

)
1
2

. Re q((Im F )m−j−1X
)1+ 1

2m−2j−1 ,ful�lled on Ω that we obtain from Lemma 5.2.6. �Lemma 5.2.11. Consider the funtions Ψj and Wj+1 de�ned in (4.27) and (4.28)then for any 0 ≤ j ≤ m− 2, we have for all X ∈ Ω,
|HImqΨj(X)| . Λ

1
2
j Re q((Im F )m−j−1X

)
1

2m−2j−1Wj+1(X),if Ω is any open set whereRe q((Im F )m−j−1X
)

& 〈X〉
2(2m−2j−1)

2m+1 ,Re q((Im F )m−j−2X
)

. Λ−1
j Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1 ,Re q((Im F )m−jX

)

. Re q((Im F )m−j−1X
)

2m−2j+1
2m−2j−1 .Proof of Lemma 5.2.11. We begin by notiing from (4.28) and (4.30) that(5.25) ∣

∣

∣

∣

∣

∣

ψ′





ΛjRe q((Im F )m−j−2X
)Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1





∣

∣

∣

∣

∣

∣

. Wj+1(X),and by writing from Lemma 5.2.1 that(5.26) HImq Re q((Im F )m−j−2X
)

= 4Re q((Im F )m−j−2X ; (Im F )m−j−1X
)

.



31It follows from Lemma 5.2.6 that for all X ∈ Ω,
∣

∣Re q((Im F )m−j−2X ; (Im F )m−j−1X
)∣

∣(5.27)
≤ Re q((Im F )m−j−2X

)
1
2Re q((Im F )m−j−1X

)
1
2

. Λ
− 1

2

j Re q((Im F )m−j−1X
)

2m−2j−2
2m−2j−1 .Then, by writing that

HImq





ΛjRe q((Im F )m−j−2X
)Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1



 =
ΛjHImq Re q((Im F )m−j−2X

)Re q((Im F )m−j−1X
)

2m−2j−3
2m−2j−1

−
2m− 2j − 3

2m− 2j − 1

ΛjRe q((Im F )m−j−2X
)

HImq Re q((Im F )m−j−1X
)Re q((Im F )m−j−1X

)1+ 2m−2j−3
2m−2j−1

.Lemma 5.2.11 is a onsequene of (4.27), (5.23), (5.24), (5.26), (5.27) and (5.28), sineRe q((Im F )m−j−2X
)

∼ Λ−1
j Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1 ,on the support of Ψ′

j . �Lemma 5.2.12. For m ≥ 2, onsider the funtion W̃0 de�ned in (4.29) then for all
X ∈ R

2n,
|HImqW̃0(X)| . 〈X〉

2
2m+1 .Proof of Lemma 5.2.12. Sine |∇Im q(X)| . 〈X〉, beause Im q is a quadrati form,Lemma 5.2.12 is then a onsequene of (4.3), (4.29) and Lemma 5.2.2. �Lemma 5.2.13. Consider the funtion Wj+1 de�ned in (4.28) then for any 0 ≤ j ≤

m− 2, we have for all X ∈ Ω,
|HImqWj+1(X)| . Λ

1
2

j Re q((Im F )m−j−1X
)

1
2m−2j−1 Ψj(X),if Ω is any open set whereRe q((Im F )m−j−1X

)

& 〈X〉
2(2m−2j−1)

2m+1 ,Re q((Im F )m−j−2X
)

. Λ−1
j Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1 ,Re q((Im F )m−jX

)

. Re q((Im F )m−j−1X
)

2m−2j+1
2m−2j−1 .Proof of Lemma 5.2.13. One an notie from (4.1), (4.3), (4.27), (4.28) and (4.30)that(5.28) ∀ 0 ≤ j ≤ n− 2,

∣

∣

∣

∣

∣

∣

w′
2





ΛjRe q((Im F )m−j−2X
)Re q((Im F )m−j−1X

)
2m−2j−3
2m−2j−1





∣

∣

∣

∣

∣

∣

. Ψj(X),and that the derivatives of Ψj and Wj+1 are exatly the same types of funtions. Itfollows that Lemma 5.2.13 is just a straightforward onsequene of Lemma 5.2.11. �
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