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Simultaneous Modular Reduction and Kronecker

Substitution for Small Finite Fields
∗

Jean-Guillaume Dumas† Laurent Fousse† Bruno Salvy‡

August 30, 2008

Abstract

We present algorithms to perform modular polynomial multiplication
or modular dot product efficiently in a single machine word. We pack
polynomials into integers and perform several modular operations with
machine integer or floating point arithmetic. The modular polynomials
are converted into integers using Kronecker substitution (evaluation at a
sufficiently large integer). With some control on the sizes and degrees,
arithmetic operations on the polynomials can be performed directly with
machine integers or floating point numbers and the number of conversions
can be reduced. We also present efficient ways to recover the modular
values of the coefficients. This leads to practical gains of quite large
constant factors for polynomial multiplication, prime field linear algebra
and small extension field arithmetic.

1 Introduction

While theoretically well understood, the basic routines for linear algebra or
polynomial arithmetic over finite fields are difficult to implement efficiently. Im-
portant factors of speed can be gained by exploiting machine integer or floating-
point arithmetic and taking cache effects into account. This has been demon-
strated for instance by Dumas et al. (2002; 2004) who wrapped cache-aware
routines for efficient small finite field linear algebra in their FFLAS/FFPACK
project.

The elements of small enough prime fields can be represented as integers
fitting in a machine word or half-word, or in exact floating point numbers. For
extension fields, the elements can be represented as polynomials over a prime
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field. A further compression is proposed by Dumas et al. (2002; 2008), using
Kronecker substitution (Gathen and Gerhard, 1999, §8.4): the polynomials are
represented by their value at an integer q larger than the characteristic of the
field. We call DQT, for Discrete Q-adic Transform, this simple map:

DQT : Z/pZ[X ]→ Z

k∑

i=0

αiX
i 7→

k∑

i=0

αiq
i.

(1)

With some care, in particular on the size of q, it is possible to map the operations
in the extension field into the floating point arithmetic realization of this q-adic
representation.

In computational number theory, matrices over F2 are often compressed
by fitting several entries into one via the binary representation of machine in-
tegers (Coppersmith, 1993; Kaltofen and Lobo, 1999). The need for efficient
matrix computations over very small finite fields also arises in other areas and
in particular graph theory (adjacency matrices), see e.g., (May et al., 2007) or
(Weng et al., 2007). In these cases, one is thus led to work with polynomials as
in (1), using a small q.

Recovering the results is obtained by an inverse DQT. This consists of a
radix conversion (Gathen and Gerhard, 1999, Algorithm 9.14), followed by a re-
duction of the coefficients modulo p. On modern processors, machine division or
remaindering, that are used in radix conversion, are quite slow when compared
to other arithmetic operations1.

In this article, we use two techniques to avoid some of these remainderings:
(i) delayed reduction; (ii) simultaneous reduction. Delayed reduction means
that after having been transformed into their DQT form, polynomials may un-
dergo several arithmetic operations before being converted back into coefficient
form. This is possible as long as the coefficients remain smaller than q, which
is prevented by a priori bounds. Simultaneous reduction is the operation of re-
covering αi mod p from αi, for i = 1, . . . , k, in the context of the inverse DQT.
We propose a new algorithm called REDQ performing these k modular reduc-
tions by a single division, ⌈k+1

2 ⌉ additions and multiplications and some table
look-up. We also discuss the possibility of replacing the remaining division by
floating point operations, taking into account the rounding modes.

We recall in Section 2 the Kronecker substitution and delayed reduction
algorithms. Then we present our new simultaneous reduction algorithm and give
its complexity in Section 3 and we discuss how to replace the remaining machine
division by floating point operations with different rounding modes in Section 4.
Our new reduction algorithm has two parts. The first one is a compression,
performed by arithmetic operations, which reduces the size of the polynomial
entries. The second one is performed only when required and is a correction,

1On a Xeon 3.6GHz using doubles, addition, multiplication and axpy take roughly the
same time, while division is 10 times slower and fmod (floating point remainder) again 2.5
times as long as division
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which gives to the residues their correct value modulo p when the compression
has shifted the result. We also present a time-memory trade-off enabling some
table look-ups computing this correction. Then we apply the DQT to different
contexts: modular polynomial multiplication in Section 5; linear algebra over
small extension fields in Section 6; compressed linear algebra over small prime
fields in Section 7. This gives some constraints on the possible choices of q and
k. In the three applications anyway, we show that these compression techniques
represent a speed-up factor usually of the order of the number k of residues
stored in the compressed format.

Preliminary versions of this work have been presented by Dumas (2008) and
Dumas et al. (2008). Here, we give an improved version of the simultaneous
reduction where the number of operations has been divided by two. We also
give a complete study of the behavior of the division of integers by floating
point routines, depending on the rounding modes. Finally, we present more
experimental results and faster implementations of the applications, namely
a Karatsuba version of the polynomial multiplication and a right compressed
matrix multiplication.

2 Q-adic Representation of Polynomials

2.1 Kronecker Substitution

The principle of Kronecker substitution is very simple. It consists in evaluating
polynomials at a given integer as in Eq. (1). For instance, for k = 2, the
substitution is performed by the following compression:

double& init3( double& r, const double u, const double v, const double w) {

// _dQ is a floating point storage of Q

r=u; r*=_dQ; r+=v; r*=_dQ; return r+=w;

}

The integer q can be chosen to be a power of 2 in a binary architecture. Then
the Horner like evaluation of a polynomial at q is just a left shift. One can then
compute this shift with exponent manipulations in floating point arithmetic
and use native shift operators (e.g., the << operator in C) as soon as values are
within the 32 (or 64 when available) bit range.

The motivation for this substitution is its use in multiplication.

Example 1. To multiply a = X + 1 by b = X + 2 in Z/3Z[X ] one can use the
substitution X = q := 100; compute 101× 102 = 10302; use radix conversion to
write 10302 = q2 +3q+2; reduce the coefficients modulo 3 to get a×b = X2+2.

More generally, if p is prime, a =
∑k−1

i=0 aiX
i and b =

∑k−1
i=0 biX

i are two
polynomials in Z/pZ[X ], then one can perform the polynomial multiplication ab

via Kronecker substitution. The product of ã =
∑k−1

i=0 aiq
i and b̃ =

∑k−1
i=0 biq

i
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is given by

ãb =

2k−2∑

j=0

(
j∑

i=0

aibj−i

)
qj . (2)

Now if q is large enough, the coefficient of qj does not exceed q−1. If moreover k
is not too large, the product fits in a machine number (floating point number or
integer). Thus in that case, it is possible to evaluate ã and b̃ as machine numbers,
compute the product of these evaluations, and convert back to polynomials by
radix conversion. There just remains to perform reductions of the coefficients
modulo p.

We show in Section 6 that one can also tabulate the evaluations at q, and
that one can access directly the required part of the machine words (using e.g.,
bit fields and unions in C) instead of performing a radix conversion.

2.2 Delayed Reduction

With current processors, machine division (as well as modular reduction) is still
much slower in general than machine addition and machine multiplication. It
is possible to replace the machine division by some other implementation, such
as floating point multiplication by the inverse (Shoup, 2007) or Montgomery
reduction (Montgomery, 1985); see e.g., (Dumas, 2004) and references therein
for more details.

It is also important to reduce the number of machine remainderings when
performing modular computations. This is achieved by using Kronecker sub-
stitution seldom and perform as many arithmetic operations as possible on the
transformed values.

2.3 Discrete Q-adic Transform

The idea of the Q-adic transform is to combine Kronecker substitution with
delayed reduction.

We call DQT the evaluation of polynomials modulo p at a sufficiently large
q. Since this is a ring morphism, products as well as additions can be performed
on the transformed values. We call DQT inverse the radix conversion of a q-adic
expansion followed by a modular reduction. For a given procedure ⋆(a1, . . . , am)
performing only ring operations, the idea is to compute the DQT of the ai’s,
perform ⋆ on these DQT’s and compute the inverse DQT at the end. For
appropriate choices of the parameters, this procedure recovers the exact value.
As an example, we recall the dot product of Dumas et al. (2002) in Algorithm 1.

The following bounds generalize those of (Gathen and Gerhard, 1999, §8.4):

Theorem 2. (Dumas et al., 2002) Let β be the number of mantissa bits available
within the machine numbers. If

q > nk(p− 1)2 and (2k − 1) log2(q) ≤ β, (3)
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Algorithm 1 Polynomial dot product by DQT

Input: Two vectors of polynomials v1 and v2 in Z/pZ[X ]n of degree less than
k;

Input: a sufficiently large integer q.
Output: R ∈ Z/pZ[X ], with R = vT

1 · v2.

Polynomial to q-adic conversion

1: Set ṽ1 and ṽ2 to the floating point vectors of the evaluations at q of the
elements of v1 and v2. {Using e.g., Horner’s formula}
One computation

2: Compute r̃ = ṽ1
T · ṽ2

Building the solution

3: r̃ =
∑2k−2

i=0 µ̃iq
i. {Using radix conversion}

4: For each i, set µi = µ̃i mod p
5: Return R =

∑2k−2
i=0 µiX

i

then Algorithm 1 is correct.

Dumas et al. (2002, Figures 5 & 6) show that this wrapping is already a
pretty good way to obtain high speed linear algebra over small extension fields.
They reach high peak performance, quite close to those obtained with prime
fields, namely 420 Millions of finite field operations per second (Mop/s) on a
Pentium III, 735 MHz, and more than 500 Mop/s on a 64-bit DEC alpha 500
MHz. This is roughly 20% below the pure floating point performance and 15%
below the prime field implementation. We show in Section 6 that the new
algorithms presented in this article enable to reduce this overhead to less than
4%.

3 REDQ: Modular Reduction in the DQT Do-

main

The first improvement we propose to the DQT is to replace the costly modular
reduction of the polynomial coefficients (e.g., in Step 4 of Algorithm 1) by a
single division by p followed by several shifts. In the next section, we replace
this division by a multiplication by an inverse.

3.1 Examples

We first illustrate the basic idea on a simple example.

Example 3. Let a = X2 +2X +3 and b = 4X2 +5X +6 be unreduced modulo
5, so that we want to compute a × b = 4X4 + 3X3 + 3X2 + 2X + 3. We are
free to choose the integer q at which the evaluation takes place in such a way
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that shifting by powers of q is cheap. For clarity we take here q = 10000. Thus,
we start from r̃ := ã × b̃ = 40013002800270018 for which we need to reduce
five coefficients modulo 5. In the direct approach, the coefficients would be
recovered by computing

4 = 0×5+4, 13 = 2×5+3, 28 = 5×5+3, 27 = 5×5+2, 18 = 3×5+3.

The trick is that we can recover all the quotients at once. Indeed, we compute
s := ⌊r̃/p⌋ = 08002600560054003 that contains all the quotients (in boldface).
The remainders (the coefficients) can then be recovered as ui := ⌊r̃/qi⌋−p⌊s/qi⌋,
for i = 0, . . . , 4.

Some more work is needed in order to make this idea correct in general.

Example 4. We now consider the polynomial R = 1234X3+5678X2+9123X+
4567, the prime p = 23 and use q = 106. Note that this time, p does not divide q.
The polynomial we want to recover is R mod p = 15X3 +20X2 +15X +13. We
start from r̃ = 1234005678009123004567 and the division gives s := ⌊r̃/p⌋ =
53652420783005348024. Proceeding as before, we get

u0 = 15, u1 = 8, u2 = 18, u3 = 15.

These coefficients are small, but they are not the correct ones except for u3.
Indeed, if C = αp + ui, then Cq = uiq 6= 0 mod p so that each coefficient needs
to be corrected to take into account the values of the preceding ones. We thus
consider this first computation as a compression stage and use a correction stage
that produces the correct values. The correction is obtained by taking µ3 = u3

and µi = ui − qui+1 mod p for i = 0, 1, 2 and returning the µi’s.

3.2 Algorithm

Theorem 5. Algorithm REDQ is correct.

The following lemma is probably classical. We state and prove it here for
completeness.

Lemma 6. For r ∈ N and a, b ∈ N∗,
⌊⌊

r
b

⌋

a

⌋
=
⌊ r

ab

⌋
=

⌊⌊
r
a

⌋

b

⌋
.

PROOF. Let k = ⌊r/ab⌋, so that kab ≤ r < (k + 1)ab. Then kb ≤ r/a <
(k + 1)b and since kb is an integer it follows that kb ≤ ⌊r/a⌋ < (k + 1)b.
Dividing by b yields ⌊⌊r/a⌋/b⌋ = k. The other side of the identity follows by
exchanging a and b.

PROOF. [of Theorem 5] First we prove that 0 ≤ ui < p. Let Ti = ⌊r̃/qi⌋.
By Lemma 6 ⌊s/qi⌋ = ⌊Ti/p⌋, so that ui = Ti − p⌊Ti/p⌋ which proves the
inequalities.
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Algorithm 2 REDQ

Input: Two integers p and q satisfying Conditions (3);

Input: r̃ =
∑d

i=0 µ̃iq
i ∈ Z.

Output: ρ ∈ Z, with ρ =
∑d

i=0 µiq
i where µi = µ̃i mod p.

REDQ COMPRESSION

1: s =
⌊

r̃
p

⌋
;

2: for i = 0 to d do

3: ui =
⌊

r̃
qi

⌋
− p

⌊
s
qi

⌋
;

4: end for

REDQ CORRECTION {when p ∤ q}
5: µd = ud

6: for i = 0 to d− 1 do

7: µi = ui − qui+1 mod p;
8: end for

9: Return ρ =
∑d

i=0 µiq
i;

Next we compute the value of ui by the following sequence of identities
modulo p:

ui = Ti =

⌊
r̃

qi

⌋
=

d∑

j=i

µ̃jq
j−i =

d∑

j=i

µjq
j−i mod p.

When q = 0 mod p, we thus have ui = µi mod p and the proof is complete.
Otherwise, in view of the previous identity, the correction step on Line 7 pro-
duces

ui − qui+1 =

d∑

j=i

µjq
j−i − q

d∑

j=i+1

µjq
j−i−1 = µi mod p.

Definition 7. We call REDQk a simultaneous reduction of k residues performed
by Algorithm 2 (in other words k = d + 1 if d is the degree of the Kronecker
substitution).

3.3 Binary Case

When q is a power of 2 and elements are represented using an integral type,
division by qi and flooring are a single operation, a right shift, or direct bit
fields extractions when available. Moreover, the remainders can be computed
independently and thus the loop of REDQ COMPRESSION can be performed
by only half of the required k axpy (combined addition and multiplication, or
fused-mac) as shown below:

Proposition 8. Let q be a power of two. Then, a REDQk COMPRESSION
requires ⌈k+1

2 ⌉ machine word multiplications and additions.
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2
r/q
r

r/q

Figure 1: REDQ3 COMPRESSION with 2 axpy

PROOF. We use the notations of Algorithm 2. Let bq = log2(q) be the number
of bits of q = 2bq and let β be the number of bits in the mantissa of a machine
word. If the REDQk is correct, we have qk ≤ 2β, or bqk ≤ β. The first
value u0 = r̃ − s × p requires the whole mantissa. Now both ⌊ r̃

qi ⌋ and ⌊ s
qi ⌋

can be stored on at most k × bq − i × bq bits. Moreover, by Theorem 5, 0 ≤
⌊ r̃

qi ⌋ − p× ⌊ s
qi ⌋ < ⌊ r̃

qi ⌋ so that the result does not overflow these (k − i)bq bits.
This proves that the operations can be done independently on the different parts
of the machine words. Now, the total number of bits required to perform the
loop of REDQ COMPRESSION is

bq

k−1∑

i=0

k − i = bq

k(k + 1)

2
≤ β

⌈
k + 1

2

⌉
.

This, combined with the non-overlapping of the operations, proves the proposi-
tion.

Here is an instance of a REDQ compression with 3 residues in C++, using
the syntactic sugar of bit field extraction:

inline void REDQ_COMP(UINT32_three& res,

const double r, // to be reduced

const double p){ // modulo

_ULL64_unions rll, tll; // union of 64, 17/34 or 34/17 bits

rll._64 = static_cast<UINT64>( r );

tll._64 = static_cast<UINT64>( r/p ); // One division

res.high = static_cast<UINT32>(rll._64-tll._64*p); // One axpy

rll._17_34.low = rll._34_17.high; // Packing

tll._17_34.low = tll._34_17.high; // Packing

rll._64 -= tll._64*p; // Two axpy in one

res.mid = static_cast<UINT32>(rll._17_34.high);

res.low = rll._17_34.low;

}

In general also the algorithm is efficient because one can precompute 1/p,
1/q, 1/q2 etc. The computation of each ui and µi can also be pipelined or
vectorized since they are independent. As is, the benefit when compared to
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direct remaindering by p is that the corrections occur on smaller integers. Thus
the remaindering by p can be faster. Actually, another major acceleration can
be added: the fact that the µi are much smaller than the initial µ̃i makes it
possible to tabulate the corrections as shown next.

3.4 Matrix Version of the Correction

In Example 4, the final correction can be written as a matrix vector product:

µ =




1 17 0 0
0 1 17 0
0 0 1 17
0 0 0 1


u mod p.

More generally, the corrections of lines 5 to 8 of Algorithm 2 are given by a
matrix-vector multiplication with an invertible matrix Qk:

Qk =




1 −q 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . −q

0 . . . . . . 0 1




.

3.5 Tabulations of the Matrix-Vector Product and Time-

Memory Trade-off

Tabulating fully the multiplication by Qk requires a table of size at least pk+1.
However, the matrices Qk can be decomposed recursively into smaller similar
matrices as follows:

1

0

0

=Qi+j

Qi

Qj

It is therefore easy to tabulate the product by Qk with an adjustable table
of size pj.

Proposition 9. Let q be a power of 2. Given a table of size pj (1 ≤ j ≤ k +1),
a REDQkCORRECTION can be performed with ⌊(k−1)/(j−1)⌋ table accesses.

When q is a power of 2, the computation of the ui in the first part of
Algorithm 2 requires 1 div and (k + 1)/2 axpy as shown in Proposition 8. Now,
the time memory trade-off enables to compute the second part efficiently.

Example 10. We compute the corrections for a degree 6 polynomial. One can
tabulate the multiplication by Q6, a 7× 7 matrix, or actually, by only the first
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6 rows of Q6, denoted by Q
6
, with therefore p7 entries, each of size 6 log2(p).

Instead, one can tabulate the multiplication by Q
2
, a 2× 3 matrix. To compute

[µ0, . . . , µ6]
T = Q6[u0 . . . , u6]

T = [Q
6
[u0 . . . , u6]

T , u6] it is sufficient to use three
multiplications by Q

2
as shown in the following algorithm:

Algorithm 3 Q6 with an extra memory of size p3

Input: [u0 . . . , u6] ∈ (Z/pZ)7;
Input: a table Q

2
of the associated 2×3 matrix-vector multiplication over Z/pZ.

Output: [µ0, . . . , µ6]
T = Q6[u0 . . . , u6]

T .
1: a0, a1 = Q

2
[u0, u1, u2]

T ;

2: b0, b1 = Q
2
[u2, u3, u4]

T ;

3: c0, c1 = Q
2
[u4, u5, u6]

T ;

4: Return [µ0, . . . , µ6]
T = [a0, a1, b0, b1, c0, c1, u6]

T ;

Note on Indexing. In practice, indexing by a tuple of integers mod p is made
by evaluating at p, as

∑
uip

i. If more memory is available, one can also directly

index in the binary format using
∑

ui

(
2⌈log2(p)⌉)i. On the one hand all the

multiplications by p are replaced by bit fields extraction. On the other hand,
this makes the table grow a little bit, from pk to 2⌈log2(p)⌉k.

In the rest of this article we restrict to the case when q is a power of two.

4 Euclidean Division by Floating Point Routines

In the implementation of REDQ above, there remains one machine division
(Line 1). Since exact division is rather time-consuming on modern processors,
it is natural to try and replace it by floating point operations. If r and p are
integers and we want to compute r/p, then computing r/p by a floating point
division with a rounding to nearest mode followed by flooring produces the
expected value (Lefèvre, 2005a, Theorem 1).

Instead of a division, a multiplication by a precomputed inverse of p can
be used (this is done e.g., in NTL (Shoup, 2005, Theorem 1.5)). However, in
that case, the correctness is not guaranteed for all representable r (see Lefèvre
(2005b) for details). Thus, as is done e.g. in NTL, one has to make some
additional tests and corrections. In this section we propose bounds on r for
which this correctness is guaranteed, taking the rounding modes into account.
Outside of these bounds, we show that a difference of (at most) 1 after the
flooring is possible for some values of r, p and the rounding modes. This can be
detected by two tests on the resulting residue (below 0 or above p) as is done by
Shoup (2007). We show that only one of these tests is mandatory if the rounding
modes can be mixed. The inverse of the prime can be precomputed for each
mode, which avoids the need for costly changes of modes. This is summarized
in Algorithm 5 at the end of this section.
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4.1 Rounding Modes

We assume that the floating-point arithmetic follows the IEEE 754 standard and
we denote by ulp(z) the unit in the last place of z for a floating-point number
z such that

2β−1 ≤ |z| ≤ 2β − 1.

For each operation three rounding modes are possible (up △(·), down ▽(·) and
nearest2 ⋄(·)). If two computations take place at different times, each of them
can be performed in a different rounding mode, so that we have 9 cases to
consider. It is worth investigating all cases since changing rounding modes is
a costly operation and the FPU may be in a particular rounding mode due to
constraints in the surrounding code, or some rounding modes are simply not
available in the particular computing environment. Also, computing the best
bounds enables to make the best of delayed reduction in modular computations.

4.2 Floating Point Division

Denoting by r = kp+u the Euclidean division of r by p where 0 ≤ r ≤ 2β−1 we
are interested to know under which conditions on r and p Algorithm 4 returns
the quotient k, depending on the rounding modes ◦1 and ◦2.

Algorithm 4 FDIV

Input: One integer r such that 0 ≤ r ≤ 2β − 1;
Input: one integer p such that 1 ≤ p ≤ 2β − 1;
Input: two choices of rounding-modes ◦1 and ◦2.
Output: ⌊ r

p
⌋.

1: invp← ◦1(1/p)
2: x← ◦2(r · invp)
3: Return ⌊x⌋.

4.3 Results

Our results are summarized in Table 1.
The column “Range” gives guaranteed bounds on the result. This shows

which tests and corrections may be needed in order to compute the expected
value k. The interval given in this column is optimal, in the sense that we have
examples where ⌊x⌋ 6= k in each possible direction.

The column “Bound on r” gives a strict upper bound on r under which
⌊x⌋ ≤ k, in those cases where the result could indeed overflow. We do not know
whether these bounds are optimal; for some cases we could find a systematic
family of examples indexed by β that reach the bounds asymptotically; other
bounds could be approached by exhaustive search on small β. These examples
are not included here. We believe that all bounds are optimal except for case 2

2How ties are broken is irrelevant here.
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where a value closer to 3
8 (instead of 1

3 ) could be reached (take β = 2n + 1 and
p = 2n − 1, r = (3 · 2n−2 + 3)p− 1). For our purpose 1

3 is close enough.
The column “Lost bits” gives a simplified version of this bound: if r fits in

β minus this number of bits, then ⌊x⌋ ≤ k.

Case ◦1 ◦2 Range Bound on r Lost bits

1 △(·) △(·) k ≤ ⌊x⌋ ≤ k + 1 2β/(4 + 22−β) 3

2 △(·) ⋄(·) k ≤ ⌊x⌋ ≤ k + 1 2β/(3 + 21−β) 2
3 △(·) ▽(·) k ≤ ⌊x⌋ ≤ k + 1 2β/2 1

4 ⋄(·) △(·) k ≤ ⌊x⌋ ≤ k + 1 2β/(3 + 21−β) 2

5 ⋄(·) ⋄(·) k − 1 ≤ ⌊x⌋ ≤ k + 1 2β−1/(1 + 2−1−β) 2
6 ⋄(·) ▽(·) k − 1 ≤ ⌊x⌋ ≤ k – 0
7 ▽(·) △(·) k − 1 ≤ ⌊x⌋ ≤ k + 1 2β/2 1
8 ▽(·) ⋄(·) k − 1 ≤ ⌊x⌋ ≤ k – 0
9 ▽(·) ▽(·) k − 1 ≤ ⌊x⌋ ≤ k – 0

Table 1: Possible values of ⌊x⌋ and bounds on r such that ⌊x⌋ ≤ k

4.4 Proof of the Bounds on ⌊x⌋
We denote by ǫ1 and ǫ2 the errors in rounding as follows:

invp =
1

p
(1 + ǫ1), x = (r · invp)(1 + ǫ2).

Thus the value that is computed is

x =
r

p
(1 + ǫ1)(1 + ǫ2)

= k +
u

p
+ (ǫ1 + ǫ2 + ǫ1ǫ2)

r

p
=: k + R (4)

where R is the term we want to bound. For example R < 1 means ⌊x⌋ ≤ k.
Bounds on ǫ1 and ǫ2 depend on the rounding mode, but in all cases we have

|ǫi| ≤ 21−β, i ∈ {1, 2}. (5)

Lemma 1. The result of Algorithm 4 is never off by more than one unit, that
is

k − 1 ≤ ⌊x⌋ ≤ k + 1.

Proof. First we show R < 2, which gives the upper bound. This is obtained by
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injecting the inequalities (5), in the definition (4) of R:

R ≤ p− 1

p
+ (22−β + 22−2β)

r

p
(6)

≤ 1− 1

p
+ (22−β + 22−2β)

2β − 1

p

= 1− 1

p
(3− 22−2β).

Thus R < 2 for p ≥ 3. In the special case p = 2, we have ǫ1 = 0 so that the
result still holds.

Similarly, in the other direction we have

R ≥ −(22−β + 22−2β)
r

p

≥ −1

p
(4 − 22−2β)

and R ≥ −1 for p ≥ 4. For p = 2, the results follows from ǫ1 = 0. For the last
case, p = 3, we first analyze more precisely the rounding error ǫ1. The binary
expansion of 1

3 = 0.01010101010 . . . implies that

◦(1

3
) =





1
3 (1 + 2−β−1) if β is even and ◦ (·) ∈ {△(·), ⋄(·)},
1
3 (1 + 2−β−1) if β is odd and ◦ (·) ∈ {⋄(·),▽(·)},
1
3 (1 + 2−β) otherwise.

Thus in all cases |ǫ1| ≤ 2−β. Using this better bound in the computation above
completes the proof.

Lemma 2. In cases 1, 2, 3 and 4, ⌊x⌋ ≥ k.

Proof. In the first three cases, invp is rounded up, and thus

r · invp = k(p · invp) + u · invp ≥ k.

This implies that ◦(r · invp) ≥ k because rounding modes are monotone and k
is exactly representable.

In case 4, since |ǫ1| ≤ 2−β, we have

invp > (1− 2−β)
1

p
.

Then
r · invp = (kp + u)invp ≥ kp · invp > k(1− 2−β).

Again, k is an integer thus exactly representable. Denote by k− the largest
floating-point number that is strictly less than k:

k− =

{
k − 1

2ulp(k) if k is a power of 2,

k − ulp(k) otherwise.

13



If k is a power of 2, then the way of rounding k(1− 2−β) is the same as that of
1−2−β since k only changes the exponent in the result. Since△(1−2−β+δ) ≥ 1
for any δ > 0 we get x = △(r · invp) ≥ k. If k is not a power of 2, then

k− = k − ulp(k) < k(1− 2−β) < r · invp

and thus again x = △(r · invp) ≥ k.

Lemma 3. In cases 6, 8 and 9, ⌊x⌋ ≤ k.

Proof. In case 6, we have |ǫ1| ≤ 2−β. This implies

r · invp =
r

p
(1 + ǫ1) ≤

r

p
(1 + 2−β) <

r

p
+

1

p
< k + 1

and therefore x = ▽(r · invp) < k + 1, whence ⌊x⌋ ≤ k.
In cases 8 and 9, since invp = ▽( 1

p
), we have

r · invp ≤ r

p
≤ k + 1− 1

p
. (7)

In case 9, this is sufficient to conclude. Otherwise, as in case 4 above, denote
by (k + 1)− the floating-point number that is just below k + 1 and let m be
the midpoint between k + 1 and (k + 1)−. If we show r · invp < m, then
⋄(r · invp) ≤ (k + 1)− and therefore ⌊x⌋ ≤ k.

First assume that k+1 is a power of 2. In this case ulp(k+1) = 21−β(k+1)
and m = k + 1− 1

4ulp(k + 1) = (k + 1)(1− 2−β−1). Since by assumption p < 2β

and r < 2β, so p(k + 1) ≤ r + p < 2β+1 and it follows that

1

p
> (k + 1)2−β−1.

Together with (7) this gives

r · invp < (k + 1)(1− 2−β−1) = m.

Assume now that k + 1 is not a power of 2 (and k 6= 0). Then ulp(k + 1) =
ulp(k) ≤ 21−βk, m = k + 1− 1

2ulp(k) and 1
p

> k2−β ≥ ulp(k)/2. Thus finally,

r · invp < k + 1− 1

2
ulp(k) ≤ m.

If k = 0 then 1
2ulp(k + 1) = 2−β < 1

p
and the result follows.

4.5 Bounds on r making the result exact

In cases 6, 8 and 9, the result of Algorithm 4 is smaller than k for all values
of r. We now proceed to a case-by-case proof of each remaining row of Table 1,
giving bounds on r such that this happens.

14



Case 1. In this case 0 ≤ ǫi ≤ 21−β for i ∈ {1, 2} and thus (6) becomes

R ≤ p− 1

p
+ (22−β + 22−2β)

r

p

so that |R| < 1 is implied by

r < 2β 1

4 + 22−β

that is close to 2β/4 and we lose less than 3 bits compared to the bound r < 2β

required to have no loss of precision on r.

Case 2. In this case |ǫ2| ≤ 2−β and (6) becomes

R ≤ p− 1

p
+ (3 · 2−β + 21−2β)

r

p

The condition R < 1 is implied by

3 · 2−β + 21−2β <
1

r

that is r < 2β/(3 + 21−β) which is close to 2β/3, and less that two bits are lost.

Case 3. In this case −21−β ≤ ǫ2 ≤ 0, |ǫ1 + ǫ2| ≤ 21−β and ǫ1ǫ2 ≤ 0. We get

R ≤ 1− 1

p
+

r

p
21−β

and the condition R < 1 is ensured by

r <
1

2
2β

which means we lose one bit.

Case 4. This is as in case 2 since △(·) and ⋄(·) play a symmetric role in the
analysis.

At this stage, we have obtained the following.

Proposition 11. In Cases 1–4, Algorithm 4 is correct for r obeying the bounds
of Table 1.

The remaining cases are proved similarly:

Case 5. We have |ǫ1| ≤ 2−β , |ǫ2| ≤ 2−β and |ǫ1 + ǫ2 + ǫ1ǫ2| ≤ 21−β + 2−2β.
Then (6) becomes

R ≤ 1 +
1

p
(1− 2−β − 2−2β).

The condition R < 1 is implied by r < 2β−1/(1 + 2−1−β) which is close to 1
22β.

15



Case 7. The bound on r follows from case 3 as ǫ1 and ǫ2 play a symmetric
role in the error analysis of case 3.

4.6 Using Algorithm 4

Algorithm 5 Applied FDIV

Input: r, integer such that 0 ≤ r ≤ 2β − 1;
Input: p, integer such that 1 ≤ p ≤ 2β − 1;
Output: ⌊ r

p
⌋.

Constants

1: B△ ← 2β/(3 + 21−β)
2: B⋄ ← 2β/(3 + 21−β)
3: B▽ ← 2β−1

Precomputation

4: invp△ ← ⋄(1/p)
5: invp⋄ ←△(1/p)
6: invp▽ ←△(1/p)

Division

7: x← ◦(r · invp◦)
8: y ← ⌊x⌋

Possible correction

9: if r ≥ B◦ then

10: z ← p · y
11: if z > r then

12: y ← y − 1
13: end if

14: end if

15: Return y.

Algorithm 5 demonstrates how to apply the results of Table 1 in a program.
We precompute 1/p in several rounding modes and use the best version in the
subsequent multiplication, depending on the current rounding mode ◦(·). The
strategy used here is to make sure ⌊x⌋ ≥ k after the multiplication so only one
test at most is needed for the correction. In addition we choose the version that
maximizes the bound B.

It should be noted that there is no strategy in the choice of ◦1(·) that guar-
antees ⌊x⌋ ≤ k for any choice of ◦2(·) (take ◦2(·) = △(·)), meaning that the
described strategy is indeed the only one than minimizes the number of tests
needed for the correction.

In a typical application of Algorithm 5 where r is the accumulation of several
products modulo p, the bound B can be interpreted in the numbers of operations
that can be performed before a reduction is necessary. If this number is not
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exceeded then the correction is never needed.

5 Application 1: Polynomial Multiplication

5.1 Delayed Reduction

A classical technique for modular polynomial multiplication is to use only de-
layed reductions. The idea is to compute each polynomial coefficient by a de-
layed dotproduct e.g., as in (Dumas, 2004): products of the form

∑
i aibk−i

are accumulated without reductions, and the overflow is dealt with in one final
pass. Thus, with a centered representation modulo p for instance (integers from
(1− p)/2 to (p− 1)/2), it is possible to accumulate at least nd products as long
as

nd(p− 1)2 < 2β+1. (8)

The final modular reduction can be performed in many different ways (e.g.,
classical division, floating point multiplication by the inverse, Montgomery re-
duction, etc.), we just call the best one REDC here. At worst, it is equivalent
to 1 machine division.

5.2 Fast Q-adic Transform

We represent modular polynomials of the form P =
∑N

i=0 aiX
i by P =

∑
Pi

(
Xd+1

)i

where the Pi’s are polynomials of degree d stored in a single integer in the q-adic
way.

Then a product PQ has the form

PQ =
∑(∑

PiQt−i

) (
Xd+1

)t
,

where each multiplication PiQt−i is computed by Algorithm 1 on a single ma-
chine integer. The final reduction is performed by a tabulated REDQ and can
also be delayed as long as conditions (3) are guaranteed.

5.3 Comparison

We use the following complexity model: multiplications and additions in the
field are counted as atomic operations while the machine divisions are counted
separately. For instance, we approximate REDC by one machine division and an
axpy. We recall that REDQk denotes a simultaneous reduction of k residues. In
this complexity model a REDQk thus requires 1 division and k/2 multiplications
and additions. A REDQ with k residues is a Kronecker substitution with a
polynomial of degree d = k − 1. We also call k-FQT the use of a polynomial of
degree d = k−1 for the q-adic substitution. Thus a multiplication PiQt−i in a k-
FQT requires the reduction of 2d+1 coefficients, i.e., a REDQ2d+1 =REDQ2k−1.
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Let P be a polynomial of degree N with indeterminate X . If we use a
(d+1)-FQT, it will then become a polynomial of degree Dq in the indeterminate
Y = Xd+1, with

Dq =

⌈
N + 1

d + 1

⌉
− 1.

Table 2 gives the respective complexities of both strategies. The values of nd

and nq are given by Equations (3,8):

nd =

⌊
2β+1

(p− 1)2

⌋
, nq =

⌊
q

(d + 1)(p− 1)2

⌋
with q = 2

m
2d+1 .

Mul & Add Reductions

Delayed (2N + 1)2 (2N + 1)
⌈

2N+1
nd

⌉
REDC

d-FQT (2Dq + 1)2 (2Dq + 1)
⌈

2Dq+1
nq

⌉
REDQ2d+1

Table 2: Modular polynomial multiplication complexities.

Example 12. With p = 3, N = 500, nd is much larger than 2N + 1 and thus
the classical delayed polynomial multiplication algorithm requires 106 multipli-
cations and additions and 103 remainderings.

If we choose a double floating point representation and a 4-FQT (i.e 4 co-
efficients in a word, or a degree 3 substitution), the fully tabulated FQT boils
down to 8.6 · 104 multiplications and additions and 5.7 · 103 divisions. On the
one hand, the number of operations is therefore reduced by a factor close to 11.
On the other hand the delayed code can compute every coefficient with a single
reduction in this case, while the FQT code has to compute less coefficients, but
breaks the pipeline.

Example 13. Even by switching to a larger mantissa, say e.g., 128 bits, so that
the DQT multiplications are roughly 4 times as costly as double floating point
operations, the FQT can still be useful.

Taking p = 1009 and choose d = 2, this still gives around 1.3 ·105 multiplica-
tions and additions over 128 bits and 7 ·103 divisions. The number of operations
is still reduced by a factor of 7. This should therefore still be faster than the
delayed multiplication over 32 bits.

On Figure 2, we compare our two implementations with that of NTL (Shoup,
2007). We see that the FQT is faster than NTL as long as the same algorithm
is used. This shows that our strategy is very useful for small degrees and small
primes; not only for the classical algorithm (left) but also for subquadratic ones
(right): the use of FQT leads to a gain of an order of magnitude. Note however
that in the special case p = 2, NTL offers a very optimized implementation which
is still an order of magnitude faster than our general purpose implementation:
specific binary routines, such as the ones proposed by (Weimerskirch et al.,
2003), enables to pack coefficients as bits of machine words.
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6 Application 2: Small Finite Field Extensions

The isomorphism between finite fields of equal sizes gives a canonical represen-
tation: any finite field extension is viewed as the set of polynomials modulo a
prime p and modulo an irreducible polynomial P of degree k. Clearly we can
thus convert any finite field element to its q-adic expansion; perform the FQT
between two elements and then reduce the polynomial thus obtained modulo P .
Furthermore, it is possible to use floating point routines to perform exact linear
algebra as demonstrated by Dumas et al. (2009).

We use the strategy of (Dumas et al., 2002, Algorithm 4.1): convert vectors
over Fpk to q-adic floating point; call a fast numerical linear algebra routine
(BLAS); convert the floating point result back to the usual field representation.
We improve all the conversion steps as follows:

1. replace the Horner evaluation of the polynomials, to form the q-adic ex-
pansion, by a single table look-up, recovering directly the floating point
representation;

2. replace the radix conversion and the costly modular reductions of each
polynomial coefficient, by a single REDQ operation;

3. replace the polynomial division by two table look-ups and a single field
operation.

This is presented in Algorithm 6. Line 1 is the table look-up of floating point
values associated to elements of the field; line 2 is the numerical computation;
line 3 is the first part of the REDQ reduction; lines 4 and 5 are a time-memory
trade-off with two table accesses for the corrections of REDQ, combined with
a conversion from polynomials to discrete logarithm representation; the last
line 6 combines the latter two results, inside the field. A variant of REDQ is
used in Algorithm 6, but ui still satisfies ui =

∑2k−2
j=i µjq

j−i mod p as shown

in Theorem 5. Therefore the representations of
∑

µiX
j in the field can be

precomputed and stored in two tables where the indexing will be made by
(u0, . . . , uk−1) and (uk−1, . . . , u2k−2) and not by the µi’s.
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Algorithm 6 Fast Dot product over Galois fields via FQT and FQT inverse

Input: A field Fpk with elements represented as exponents of a generator of the
field;

Input: two vectors v1 and v2 of elements of Fpk ;
Input: a sufficiently large integer q.
Output: R ∈ Fpk , with R = vT

1 · v2.

Tabulated q-adic conversion

{Use conversion tables from exponent to floating point evaluation}
1: Set ṽ1 and ṽ2 to the floating point vectors of the evaluations at q of the

elements of v1 and v2.

The floating point computation

2: Compute r̃ = ṽ1
T · ṽ2;

Computing a radix decomposition

3: r = REDQ COMPRESSION(r̃, p, q);

Variant of REDQ CORRECTION

{µi is such that µi = µ̃i mod p for r̃ =
∑2k−2

i=0 µ̃iq
i}

4: Set L = representation(
∑k−2

i=0 µiX
i).

5: Set H = representation(Xk−1 ×∑2k−2
i=k−1 µiX

i−k+1).

Reduction in the field

6: Return R = H + L ∈ Fpk ;

Thus, this algorithm approaches the performance of the prime field wrapping
also for small extension fields. Indeed, suppose the internal representation of the
extension field is already by discrete logarithms and uses conversion tables from
polynomial to index representations (see e.g., Dumas (2004) for details). Then
we choose a time-memory trade-off for the REDQ operation of the same order of
magnitude, that is to say pk. The overall memory required by these new tables
only doubles and the REDQ requires only 2 accesses. Moreover, in the small
extension, the polynomial multiplication must also be reduced by an irreducible
polynomial, P . This reduction can be precomputed in the REDQ table look-up
and is therefore almost free. Moreover, many things can be factorized if the
field representation is by discrete logarithms. For instance, the elements are
represented by their discrete logarithm with respect to a generator of the field,
instead of polynomials. In this case there are already some table accesses for
many arithmetic operations, see e.g., (Dumas, 2004, §2.4) for details.

Theorem 14. Algorithm 6 is correct.

PROOF. We have to prove that it is possible to compute L and H from the
ui’s. We have µ2k−2 = u2k−2 and µi = ui − qui+1 mod p, for i = 0, . . . , 2k − 3.
Therefore a precomputed table of pk entries, indexed by (u0, . . . , uk−1), can
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provide the representation of

L =

k−2∑

i=0

(ui − qui+1 mod p)X i.

Another table with pk entries, indexed by (uk−1, . . . , u2k−2), can provide the
representation of

H = u2k−2X
2k−2 +

2k−3∑

i=k−1

(ui − qui+1 mod p)X i.

Finally R = Xk−1 ×∑2k−2
i=k−1 µiX

i−k+1 +
∑k−2

i=0 µiX
i needs to be reduced

modulo the irreducible polynomial used to build the field. But, if we are given
the representations of H and L in the field, R is then equal to their sum inside
the field, directly using the internal representations.

Table 3 recalls the respective complexities of the conversion phase in both
algorithms. Here, q is a power of two and the REDQ division is computed via
the floating point routines of Section 4.

Alg. 1 Alg. 6

Memory 3pk 4pk + 21+k⌈log2 p⌉

Axpy 0 k
Div 2k − 1 0
Table 0 3
Red ≥ 5k 1

Table 3: Complexity of the back and forth conversion between extension field
and floating point numbers

Figure 3 shows the speed of the conversion after the floating point operations.
The log scales prove that for q ranging from 21 to 226 our new implementation
is two to three times as fast as the previous one3.

Furthermore, these improvements allow the extension field routines to reach
the speed of 7800 millions of F9 operations per second4 as shown on Figure 45.
The speed-up obtained with these new implementations in also shown on this
Figure. It represents a reduction from the 15% overhead of the previous imple-
mentation to less than 4% now, when compared over F11.

3On a 32 bit Xeon.
4On a XEON, 3.6 GHz, using Goto BLAS-1.09 dgemm as the numerical routine (Goto and

van de Geijn, 2002) and FFLAS fgemm for the fast prime field matrix multiplication (Dumas
et al., 2009).

5The FFLAS routines are available within the LinBox 1.1.4 library (LinBox Group, 2007)
and the FQT is in implemented in the givgfqext.h file of the Givaro 3.2.9 library (Dumas
et al., 2007).
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Figure 3: Small extension field conversion speed on a Xeon 3.6GHz

7 Application 3: Compressed Modular Matrix

Multiplication

We now extend the results of Dumas et al. (2008) with the REDQ algorithm.
The idea is to use Kronecker substitution to pack several matrix entries into a
single machine word. We explore the possibilities of packing on the left or on the
right only, together with packing on both matrices of a matrix multiplication.

7.1 Middle Product Algorithm

In this section, we show how a dot product of vectors of size d + 1 can be re-
covered from a polynomial multiplication performed by a single machine word
multiplication. This extends to matrix multiplication by compressing both ma-
trices first. We first illustrate the idea for 2 × 2 matrices and d = 1. The
product [

a b
c d

]
×
[
e f
g h

]
=

[
ae + bg af + bh
ce + dg cf + dh

]

is recovered from
[
Qa + b
Qc + d

]
×
[
e + Qg f + Qh

]
=

[
∗+ (ae + bg)Q + ∗Q2 ∗+ (af + bh)Q + ∗Q2

∗+ (ce + dg)Q + ∗Q2 ∗+ (cf + dh)Q + ∗Q2

]
,

where the character ∗ denotes other coefficients.
In general, A is an m × k matrix to be multiplied by a k × n matrix B,

the matrix A is first compressed into a m×⌈k/(d + 1)⌉ CompressedRowMatrix,
CA, and B is transformed into a ⌈k(d + 1)⌉×n CompressedColumnMatrix, CB.
The compressed matrices are then multiplied and the result can be extracted
from there. This is depicted on Fig. 5
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Figure 5: Compressed Matrix Multiplication (CMM)

In terms of number of arithmetic operations, the matrix multiplication CA×
CB can save a factor of d + 1 over the multiplication of A×B as shown on the
2× 2 case above.

The computation has three stages: compression, multiplication and extrac-
tion of the result. The compression and extraction are less demanding in terms
of asymptotic complexity, but can still be noticeable for moderate sizes. For
this reason, compressed matrices are often reused and it is more informative to
distinguish the three phases in an analysis. This is done in Section 7.6 (Table 5),
where the actual matrix multiplication algorithm is also taken into account.

Partial compression. Note that the last column of CA and the last row of
B might not have d + 1 elements if d + 1 does not divide k. Thus one has to
artificially append some zeroes to the converted values. On CB this means just
do nothing. On CA whose compression is reversed, this means multiplying by
Q several times.
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7.2 Available Mantissa and Upper Bound on Q for the

Middle Product

If the product CA × CB is performed with floating point arithmetic we just
need that the coefficient of degree d fits in the β bits of the mantissa. Writing
CA × CB = cHQd + cL, we see that this implies that cH , and only cH , must
have entries that remain smaller than 2β. It can then be recovered exactly by
multiplication of CA×CB with the correctly precomputed and rounded inverse
of Qd as shown e.g., in (Dumas, 2008, Lemma 2).

With delayed reduction this means that

d∑

i=0

k

d + 1
(i + 1)(p− 1)2Qd−i < 2β.

On the other hand, delay reduction requires (cf. Eq (3))

k(p− 1)2 < Q. (9)

Thus the recovery is possible if

Qd+1 < 2β. (10)

and a single reduction has to be made at the end of the dot product as follows:

Element& init( Element& rem, const double dp) const {

double r = dp;

// Multiply by the inverse of Q^d with correct rounding

r *= _inverseQto_d;

// Now we just need the part less than Q=2^t

unsigned long rl( static_cast<unsigned long>(r) );

rl &= _QMINUSONE;

// And we finally perform a single modular reduction

rl %= _modulus;

return rem = static_cast<Element>(rl);

}

Note that one can avoid the multiplication by the inverse of Q when Q is a
power of 2, say 2t: by adding Q2d+1 to the final result one is guaranteed that
the t(d + 1) high bits represent exactly the d + 1 high coefficients. On the one
hand, the floating point multiplication is then replaced by an addition. On the
other hand, this doubles the size of the dot product and thus reduces by a factor
of d+1

√
2 the largest possible dot product size k.

7.3 Middle Product Performance

On Figure 6 we compare our compression algorithm to the numerical double
floating point matrix multiplication dgemm of GotoBlas by Goto and van de
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Geijn (2002) and to the fgemm modular matrix multiplication of the FFLAS-
LinBox library by Dumas et al. (2002). For the latter we show timings using
dgemm and also sgemm over single floating points. This figure shows that the
compression (d + 1) is very effective for small primes: the gain over the double
floating point routine is quite close to d.

Observe that the curve of fgemm with underlying arithmetic on single floats
oscillates and drops sometimes. Indeed, the matrix begins to be too large and
modular reductions are now required between the recursive matrix multipli-
cation steps. Then the floating point BLAS routines are used only when the
sub-matrices are small enough. One can see the subsequent increase in the
number of classical arithmetic steps on the drops around 2048, 4096 and 8192.

Compression 2 3..4 5..8 8 7 6 5 4 3
Degree d 1 5 9 7 6 5 4 3 2
Q-adic 23 24 25 26 27 28 210 213 217

Dimensions 2 ≤ 4 ≤ 8 ≤ 16 ≤ 32 ≤ 64 ≤ 256 ≤ 2048 ≤ 32768

Table 4: Compression factors for different common matrix dimensions modulo 3,
with 53 bits of mantissa and Q a power of 2.

On Table 4, we show the compression factors modulo 3, with Q a power of 2
to speed up conversions. For a dimension n ≤ 256 the compression is at a factor
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of five and the time to perform a matrix multiplication is slightly more than a
millisecond. Then from dimensions from 257 to 2048 one has a factor of 4 and
the times are roughly 16 times the time of the four times smaller matrix. The
next stage, from 2048 to 32768 is the one that shows on Figure 5.

Figure 6 shows the dramatic impact of the compression dropping from 4
to 3 between n = 2048 and n = 2049. It would be interesting to compare the
multiplication of 3-compressed matrices of size 2049 with a decomposition of the
same matrix into matrices of sizes 1024 and 1025, thus enabling 4-compression
also for matrices larger than 2048, but with more modular reductions.

7.4 Right or Left Compressed Matrix Multiplication

Another way of performing compressed matrix multiplication is to multiply an
uncompressed m × k matrix to the right by a row-compressed k × n/(d + 1)
matrix. We illustrate the idea on 2× 2 matrices:

[
a b
c d

]
×
[
e + Qf
g + Qh

]
=

[
(ae + bg) + Q(af + bh)
(ce + dg) + Q(cf + dh)

]

The general case is depicted on Fig. 7, center. This is called Right Compressed
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Figure 7: Left, Right and Full Compressions

Matrix Multiplication. Left Compressed Matrix Multiplication is obtained by
transposition. Here also Q and d must satisfy Eqs. (9) and (10).

The major difference with the Compressed Matrix Multiplication lies in the
reductions. Indeed, now one needs to reduce simultaneously the d+1 coefficients
of the polynomial in Q in order to get the results. This simultaneous reduction
can be made by the REDQ algorithm.

When working over compressed matrices CA and CB, a first step is to un-
compress CA, which has to be taken into account when comparing methods.
Thus the whole right compressed matrix multiplication is the following algo-
rithm

A = Uncompress(CA); CC = A× CB; REDQ(CC) (11)
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We see on Figure 8 that the used of REDQ instead of the middle product
algorithm has a high benefit. Indeed for small matrices, the conversion can
represent 30% of the time and any improvement there has a high impact.

7.5 Full Compression

It is also possible to compress simultaneously both dimensions of the matrix
product (see Fig. 7, right). This is achieved by using polynomial multiplication
with two variables Q and Θ. Again, we start by an example in dimension 2:

[
a + Qc b + Qd

]
×
[
e + Θf
g + Θh

]
=
[
(ae + bg) + Q(ce + dg) + Θ(af + bh) + QΘ(cf + dh)

]
.

More generally, let dq be the degree in Q and dθ be the degree in Θ. Then, the
dot product is:

a · b = [

dq∑

i=0

ai0Q
i, . . . ,

dq∑

i=0

ainQi]× [

dθ∑

j=0

b0jΘ
j , . . . ,

dθ∑

j=0

bnjΘ
j],

=

k∑

l=0

(

dq∑

i=0

ail)(

dθ∑

j=0

blj)Q
iΘj =

dq∑

i=0

dθ∑

j=0

(

k∑

l=0

ailblj)Q
iΘj .

In order to guarantee that all the coefficients can be recovered independently,
Q must still satisfy Eq. (9) but then Θ must satisfy an additional constraint:

Qdq+1 ≤ Θ. (12)

This imposes restrictions on dq and dθ:

Q(dq+1)(dθ+1) < 2β . (13)

7.6 CMM Comparisons

In Table 5, we summarize the differences between the algorithms presented on
Figures 5 and 7. As usual, the exponent ω denotes the exponent in the complex-
ity of matrix multiplication. Thus, ω = 3 for the classical matrix multiplication,
while ω < 3 for faster matrix multiplications, as used in (Dumas et al., 2009,
§3.2). For products of rectangular matrices, we use the classical technique of
first decomposing the matrices into square blocks and then using fast matrix
multiplication on those blocks.

7.6.1 Compression Factor

The costs in Table 5 are expressed in terms of a compression factor e, that we
define as

e :=

⌊
β

log2(Q)

⌋
,

27



where, as above, β is the size of the mantissa and Q is the integer chosen
according to Eqs. (9) and (10), except for Full Compression where the more
constrained Eq. (13) is used.

Thus the degree of compression for the first three algorithms is just d = e−1,
while it becomes only d =

√
e−1 for the full compression algorithm (with equal

degrees dq = dθ = d for both variables Q and Θ).

Algorithm Operations Reductions Conversions

CMM O
(
mn

(
k
e

)ω−2
)

m× n REDC 1
e
mn INITe

Right Comp. O
(
mk

(
n
e

)ω−2
)

m× n
e

REDQe
1
e
mn EXTRACTe

Left Comp. O
(
nk
(

m
e

)ω−2
)

m
e
× n REDQe

1
e
mn EXTRACTe

Full Comp. O
(
k
(

mn
e

)ω−1

2

)
m√

e
× n√

e
REDQe

1
e
mn INITe

Table 5: Number of arithmetic operations for the different algorithms

7.6.2 Analysis

In terms of asymptotic complexity, the cost in number of arithmetic operations
is dominated by that of the product (column Operations in the table), while
reductions and conversions are linear in the dimensions. This is well reflected in
practice. For example, with algorithm Right Compression on matrices of sizes
10, 000×10, 000 it took 90.73 seconds to perform the matrix multiplication mod-
ulo 3 and 1.63 seconds to convert the resulting matrix. This is less than 2%. For
250 × 250 matrices it takes less than 0.00216 seconds to perform the multipli-
cation and roughly 0.0016 seconds for the conversions. There, the conversions
account for 43% of the time and it therefore of extremely high importance to
optimize the conversions.

In the case of rectangular matrices, the second column of Table 5 shows that
one should choose the algorithm depending on the largest dimension: CMM if
the common dimension k is the largest, Right Compression if n if the largest and
Left Compression if m dominates. The gain in terms of arithmetic operations

is eω−2 for the first three variants and e
ω−1

2 for full compression. This is not
only of theoretical interest but also of practical value, since the compressed
matrices are then less rectangular. This enables more locality for the matrix
computations and usually results in better performance. Thus, even if ω = 3,
i.e., classical multiplication is used, these considerations point to a source of
speed improvement.

The full compression algorithm seems to be the best candidate for locality
and use of fast matrix multiplication; however the compression factor is an

integer, depending on the flooring of either β
log2(Q) or

√
β

log2(Q) . Thus there are

matrix dimensions for which the compression factor of e.g., the right compression
will be larger than the square of the compression factor of the full compression.
There the right compression will have some advantage over the full compression.
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If the matrices are square (m = n = k) or if ω = 3, the products all
become the same, with similar constants implied in the O(), so that apart from
locality considerations, the difference between them lies in the time spent in
reductions and conversions. Since the REDQe reduction is faster than e classical
reductions (Dumas, 2008), and since INITe and EXTRACTe are roughly the
same operations, the best algorithm would then be one of the Left, Right or Full
compression. Further work would include implementing the Full compression
and comparing the actual timings of conversion overhead with that of the Right
algorithm and that of CMM.

8 Conclusion

We have proposed a new algorithm for simultaneous reduction of several residues
stored in a single machine word. For this algorithm we also give a time-memory
trade-off implementation enabling very fast running time if enough memory is
available.

We have shown very effective applications of this trick for packing residues in
large applications. This proves efficient for modular polynomial multiplication,
extension fields conversion to floating point and linear algebra routines over
small prime fields.

Further work is needed to compare of running times between different choices
for q. Indeed our experiments were made with q a power of two and large table
look-up. With q a multiple of p the table look-up is not needed but divisions by
qi will be more expensive. A possibility would be taking q in the form q = p2t,
then only divisions by p or pi would be made.

It would also be interesting to see in practice how this trick extends to larger
precision implementations: on the one hand the basic arithmetic slows down,
but on the other hand the trick enables a more compact packing of elements
(e.g., if an odd number of field elements can be stored inside two machine words,
etc.).
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Figure 8: Right Compression and CMM.
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