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1 LERMA/LRA, Observatoire de Paris & École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
2 Institut de Radio Astronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d’Hères, France

e-mail: pety@iram.fr; falgarone@lra.ens.fr

Received 10 April 2002 / Accepted 4 September 2003

Abstract. We report on a novel kind of small scale structure in molecular clouds found in IRAM-30m and CSO maps of 12CO
and 13CO lines around low mass starless dense cores. These structures come to light as the locus of the extrema of velocity
shears in the maps, computed as the increments at small scale (∼0.02 pc) of the line velocity centroids. These extrema populate
the non-Gaussian wings of the shear probability distribution function (shear-PDF) built for each map. They form elongated
structures of variable thickness, ranging from less than 0.02 pc for those unresolved, up to 0.08 pc. They are essentially pure
velocity structures. We propose that these small scale structures of velocity shear extrema trace the locations of enhanced
dissipation in interstellar turbulence. In this picture, we find that a significant fraction of the turbulent energy present in the field
would be dissipating in structures filling less than a few % of the cloud volume.
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1. Introduction

Star formation proceeds at vastly different rates, in space and
time, within a given galaxy and from one galaxy to another.
These rates are known to be governed by the local conditions
prevailing in dense and cold gas, but also depend on large scale
environments, up to extragalactic scales. The only two pro-
cesses, together with rotation, able to mitigate the effects of
gravity are magnetic fields and supersonic turbulence because
they involve energies of the same order of magnitude as the
gravitational energy in the densest phases of the interstellar
medium (ISM). More precisely, turbulent energy, because of
its steep power spectrum, can stabilize the largest masses, first
prone to gravitational instability, a property not shared by ther-
mal energy which is scale-free (Panis & Pérault 1998). On
the other hand, it has also been proposed that supersonic tur-
bulence might trigger star formation in shocks (Klessen et al.
2000). The possible role of turbulence in the star formation pro-
cess is the motivation behind the plethora of recent studies on
interstellar turbulence.

Important insights to the field have been provided by the de-
termination of the multi-scale properties of interstellar clouds
and their comparison to the scaling laws of turbulence. A broad
variety of statistical tools have been used: wavelet analy-
sis (Gill & Henriksen 1990; Langer et al. 1993), ∆–variance
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(Bensch et al. 2001), auto-correlation function (Kleiner &
Dickman 1984, 1985; Dickman & Kleiner 1985; Pérault et al.
1986), structure functions (Miesch & Bally 1994; Miesch &
Scalo 1995; Miesch et al. 1999; Padoan et al. 2003a), analysis
in terms of fractal structures (Bazell & Désert 1988; Falgarone
et al. 1991; Stutzki et al. 1998). The principal component
analysis has been used to diagnose the large-scale flows of
atomic gas into which turbulence in molecular clouds is em-
bedded (Brunt 2003). Observations of dense cores and their
environment have revealed a break of the scaling properties
of molecular clouds at the scale of the dense cores (Falgarone
et al. 1998; Goodman et al. 1998). Direct numerical simula-
tions of compressible turbulence have also been used to com-
pare the real observables of the interstellar clouds to those sim-
ulated. The first attempt by Falgarone et al. (1994), using the
high resolution simulations of midly compressible turbulence
of Porter et al. (1994) has been followed by more sophisticated
comparisons such as those based on the spectral correlation
function method (Rosolowsky et al. 1999). Numerical simu-
lations of turbulence including magnetic fields, e.g. Ostriker
et al. (2001), and self-gravity (Klessen et al. 2000; Heitsch et al.
2001) provided further support to the fact that interstellar tur-
bulence bears many of the statistical properties of supersonic
magneto–hydrodynamical (MHD) turbulence, as simulated.

One major surprise brought to the field by direct numerical
simulations of MHD turbulence has been that magnetic fields
do not delay the dissipation of supersonic turbulence (Mac Low
et al. 1998). This unexpected result calls for further numerical
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and observational approaches. The present paper is observa-
tional: it is an attempt to disclose kinematic signatures of tur-
bulent dissipation in molecular clouds.

To discuss what these kinematic signatures may be, we first
need to briefly recall the main drivers of dissipation in inter-
stellar turbulence, assuming infinite conductivity and thus ne-
glecting Ohmic dissipation. The primary source of dissipation
of supersonic turbulence is shocks, but shock interaction gen-
erates vorticity, as do non-planar shocks (Porter et al. 1994).
Since the divergence of the velocity field eludes direct detec-
tion in space, shocks cannot be detected by this kinematic sig-
nature, and remanent vorticity is a plausible signature of fossil
shocks. Viscous dissipation is also present and is due primarily
to elastic collisions. Dissipation due to neutral–neutral colli-
sions follows the shear of the velocity field, and therefore the
vorticity (Landau & Lifshitz 1987), and that due to ion–neutral
collisions increases with the drift velocity of the ions relative to
the neutrals (Kulsrud & Pearce 1969). This drift causes a force
on the ions which, over timescales longer than the ion–neutral
collision time (Zweibel 1988), is balanced by the Lorentz force
(∇ × B) × B. The dissipation driven by ion–neutral collisions
therefore involves J = ∇ × B, the current density.

Now, both vorticity, in hydrodynamical turbulence, and cur-
rent density, in plasma turbulence, are known to be intermittent
in space and time. Laboratory experiments of incompressible
turbulence show the formation of transient long and thin co-
herent vortices at the edge of which the velocity shear is so
large that a significant fraction of the viscous dissipation oc-
curs there (Douady et al. 1991). In plasma turbulence, intermit-
tency also exists and is at the origin of non-Gaussian probabil-
ity distribution functions (PDFs) of current density. It is seen in
Tokamak plasma turbulence (Wang et al. 1999). Observations
in the solar wind reveal an intermittent dissipation as well.
The intermittency of dissipation of plasma turbulence has been
modelled by Politano & Pouquet (1995), who propose that the
dissipative structures are sheetlike structures of intense cur-
rent density, in agreement with recent 3-dimensional numerical
simulations of MHD turbulence (Politano et al. 1995; Biskamp
& Müller 2000). A recent attempt at estimating the sizescales
of dissipation in incompressible MHD turbulence (Cho et al.
2002) shows that magnetic structures develop at scales much
smaller than the viscous damping scale.

Turbulence in molecular clouds is neither laboratory tur-
bulence nor plasma turbulence, but the above elements sug-
gest that dissipation follows the vorticity and the current den-
sity, and that these quantities are intermittent, i.e. exhibit large
fluctuations at small scales. The origin of currents in molec-
ular clouds is not known, but is likely associated to differen-
tial rotation within clouds at the origin of toroidal or helical
fields (Joulain et al. 1998). Such helical fields have been in-
ferred from various observations of molecular clouds (Hanawa
et al. 1993; Joulain et al. 1998; Carlqvist et al. 1998; Falgarone
et al. 2001; Matthews et al. 2002, 2001). These fields have been
invoked to explain the polarization patterns of the dust contin-
uum emission of filaments of matter (Harjunpää et al. 1999;
Fiege & Pudritz 2000c) and their gravitational stability (Fiege
& Pudritz 2000a,b). Enhanced vorticity in molecular clouds
should therefore be a good tracer of several major dissipative

processes of turbulence in weakly ionized molecular clouds.
Its kinematic signature, if available in spectral observations of
molecular clouds, is essential to search for because it may trace
fossil shocks, regions of large viscous dissipation in the neu-
trals, or local gas differential rotation at the origin of currents.

In this paper, we analyze the velocity structure of several
fields in molecular clouds in order to locate and characterize the
regions of enhanced vorticity, likely to be regions of enhanced
dissipation. We focus on the environment of low mass dense
cores almost thermally supported, where dissipation is antici-
pated to occur, or has occurred in a recent past. Section 2 gives
the method used to trace vorticity. Section 3 is a description of
the target fields. The statistical analysis of the velocity fields,
and the manifestations of their non-Gaussian features are given
in Sect. 4. The spatial distribution of these non-Gaussian events
is compared to that of the dense gas in Sect. 5. The possible bi-
ases of the method are discussed in Sect. 6. The implications
of this study in terms of turbulence dissipation are discussed
in Sect. 7.

2. Method for measuring vorticity

Measuring vorticity in interstellar turbulence is not straight-
forward because (1) the only velocity component accessible
to measurement is its projection on the line of sight (vx),
and (2) measured spatial variations are limited to those in the
plane of the sky (y, z). We thus have access only to incomplete
components of the vorticity (ωζ = ∂vx/∂ζ where ζ = y or z).
By analyzing the outputs of numerical simulations of midly su-
personic turbulence by Porter et al. (1994) and Lis et al. (1996)
have shown that vorticity extrema may be localized in a map of
molecular lines with high enough spectral resolution. Instead
of computing the vorticity (an essentially inaccessible quantity
in astronomy), they study statistical properties of line centroid
velocity increments. More precisely, the centroid velocity (C)
of a line is its first order moment

C =
∫

T (vx)vx dvx /
∫

T (vx) dvx. (1)

It is only in the optically thin case, that a line can be inter-
preted as the probability distribution function of the radial ve-
locity along the observed line of sight. In this case, the centroid
velocity is just the column density weighted average of the ve-
locity along the line of sight. Centroid velocity increments as-
sociated to a lag l, are the differences of centroid velocities for
any pair of lines of sight separated by the distance l in the plane
of sky. Thus, if r is the vector position and l is a vector of mod-
ulus l lying in the plane of sky, centroid velocity increments are
defined as

δC(r, l) ≡ C(r + l) −C(r). (2)

Lis et al. (1996) show that the PDFs of centroid velocity in-
crements have non-Gaussian wings at small lags, those wings
gradually disappearing when the lag increases. More interest-
ingly, they show that the spatial distribution of the positions
populating these non-Gaussian wings is the same as that of the
extrema of 〈(∇× u)y〉2 + 〈(∇× u)z〉2, where the brackets hold for
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Table 1. Characteristics of the maps: telescope, line observed, half-power beamwidth, sampling step (or pixel size) in arcsec and in AU at the
distance of the sources (150 pc), the effective resolution in pixels and in AU.

Telescope Line HPBW Pixel size Resolution

IRAM (30 m) CO (J = 1−0) 22′′ 7.5′′ (1125 AU) 3 pixels (3375 AU)

CSO (10.4 m) CO (J = 2−1) 28′′ 16′′ (2400 AU) 2 pixels (4800 AU)

Table 2. Characteristics of the mapped fields: sizes in pc, number of spectra and average signal-to-noise ratios in peak temperature and
integrated area (The associated uncertainties are the rms scatter of the values over the maps).

Source Line Field size (pc) Nb. Spectra S NR S NRa

Polaris 12CO (J = 1−0) 0.26 × 0.35 3300 11 ± 3 51 ± 13

Polaris 13CO (J = 1−0) 0.22 × 0.30 1650 12 ± 4 40 ± 12

L1512 12CO (J = 1−0) 0.22 × 0.44 3200 15 ± 3 46 ± 8

L1512 13CO (J = 1−0) 0.22 × 0.36 2560 23 ± 5 61 ± 13

L1512 12CO (J = 2−1) 1.05 × 1.12 8300 10 ± 4 27 ± 12

the line-of-sight average. In the optically thin case, this result
simply follows from the linearity of the operations of deriva-
tion, difference and summation along a line of sight. The largest
centroid increments thus trace a subset of the regions of largest
vorticity, integrated along the line of sight. It has to be appreci-
ated here that the averaging along the line of sight occurs first,
over vorticity components which have a sign. An extremum of
the above quantity means the occurrence along the line of sight
of one (or a few) events far above the average.

This method has been challenged by Klessen (2000) who
computes the PDFs of line centroid increments (∆v-PDFs) in
numerical simulations of compressible turbulence with and
without self-gravity. He finds that, when computed in simu-
lations of decaying turbulence, ∆v-PDFs have shapes in dis-
agreement with those observed. He shows that the inclusion of
self-gravity in the simulations leads to better agreement with
the ∆v-PDFs observed in molecular clouds. This discussion
is valuable but its bearing is somewhat limited by the small
size of the simulations (643). In addition, the confrontation
with the observations is restricted to star forming regions. It is
therefore not surprising that the agreement with the numerical
simulations be better when self-gravity is included in the simu-
lations. Klessen concludes that “one should not rely on analyz-
ing velocity PDFs alone to disentangle the different physical
processes influencing interstellar turbulence”. We fully agree
with him. Our scope here is far more limited. We search for
regions of enhanced vorticity in turbulent interstellar clouds
far from star forming regions, with the perspective of tracing
bursts of dissipation of turbulence and characterizing them, on
the basis of their statistical properties, spatial distribution and
morphology.

The spectral correlation function (SCF) introduced
by Rosolowsky et al. (1999) is a general tool that is able to
detect velocity and/or column density variations through an
analysis of line shape differences. The flexibility of the
SCF formalism makes it easy to use for direct comparison be-
tween observations and simulations (Padoan et al. 2003b). For
instance, Ballesteros-Paredes et al. (2002) use the local form of

the SCF to detect small scale velocity structures in H  observa-
tions of the north celestial pole loop. However, as recognized
by those authors, this method cannot disentangle between the
various origins of the small scale velocity variations (e.g. caus-
tics versus shocks). The method we propose here is comple-
mentary as centroid velocity increments directly relate to the
velocity shear (and thus vorticity) in the optically thin case.

3. Description of the observed fields

The fields analyzed in this paper fulfill several requirements:
(1) the observed maps are large enough to provide significant
statistics on the velocity field, (2) the fields are far from star
forming regions, in order not to include internal energy sources
(outflows, HII regions in expansion, ...) in the statistics, (3) they
comprise low mass, almost thermally supported dense cores.

The two fields are nearby regions of low average column
density, except in the small projection area of the dense cores.
One, MCLD123.5+24.9 (hereafter referred to as Polaris), is
located in the high latitude cirrus cloud of the Polaris Flare
and the other, (hereafter L1512), is located at the eastern edge
of the Taurus-Auriga complex. The average H2 column den-
sities (at the arcmin scale) deduced from 12CO observations
and/or star counts (Cambrésy et al. 2001) in these fields are
respectively N(H2) ∼ 1021 and 2.5 × 1020 cm−2 or about 1
and 0.25 mag of visual extinction, respectively. For com-
parison, the visual extinction in the Taurus molecular cloud
reaches 33 mag in the most opaque regions like TMC1 or
L1495 (Padoan et al. 2002), about one hundred times more
opaque than the transparent areas that we analyze in this paper.

These fields have been mapped in the two lowest rotational
transitions of 12CO and 13CO as well as in C18O (J = 1−0) at
the IRAM-30m telescope (Falgarone et al. 1998). A larger
field around L1512 has been mapped with the 10.4 m an-
tenna of the Caltech Submillimeter Observatory (CSO) in
the 12CO (J = 2−1) line and is described in Falgarone et al.
(2001). The characteristics of the observations are summarized
in Tables 1 and 2. Note that all the maps are Nyquist sampled
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Fig. 1. Maps of the Polaris (MCLD123+24.9) field in the
12CO(J = 1−0) (left) and 13CO(J = 1−0) (right) lines: (top) line inte-
grated areas, (bottom) line centroid velocities. The offsets are in arcsec
respectively to the (0,0) position: lII = 123.68◦, bII = 24.93◦. The two
upper-left corners of the 12CO and 13CO maps coincide. The dashed
contour level at 4 K km s−1 in the W13CO map is meant to localize the
region of largest column density and is reproduced in the W12CO map.
The black contour is the 0.6 K km s−1–level of the CS(3−2) map (see
Fig. 4) and is meant to localize the dense core in the rest of the paper.
The two crosses show the positions of the HC3N peaks (Heithausen
et al. 2002). The linear scale is shown.

or better. The average signal-to-noise ratios (and their rms dis-
persion within the maps) are given in the last two columns of
Table 2, for the line peak temperatures and the line integrated
areas. These numbers illustrate the high quality of the data.
The maps of the line integrated areas (zero order moment), and
line centroid velocities (first order moment) are displayed in
Figs. 1 through 3. We have inserted the high angular resolution
IRAM data at their relevant position in the large scale CSO
field of L1512 to illustrate the agreement between the two data
sets (Fig. 3).

In spite of their low average extinction, each field har-
bours a low mass dense core. The dense core in the Polaris
field has been mapped in the CS(2−1), (3−2) and (5−4) lines
(Heithausen 1999) and in a number of molecular species at a
few positions only by Gerin et al. (1997). Recent observations
of the dust thermal emission (Heithausen et al. 2002) show a
clear peak of submillimeter dust continuum emission coincid-
ing with the C18O peak of Falgarone et al. (1998). Well-defined
and barely resolved peaks of HC3N emission are found to
be clearly displaced relative to the dust continuum maximum.
They are indicated by two crosses in the 13CO map of Fig. 1.
H2 densities as large as a few 105 cm−3 in this dense core are
derived from the multi-line analysis of Heithausen et al. (2002)
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Fig. 2. Same as Fig. 1 for the L1512 field observed at IRAM-30m.
Offsets are in arcsec relative to the (0,0) position: RA(1950) =
05h00m54.5s, Dec(1950) = 32◦39′00′′. The dashed contour level
(3 K km s−1 in the W13CO map) is reproduced in the W12CO map and
helps localize the regions of largest column density. The dense core
here (black contour) is identified with the 0.15 K km s−1 contour of
the HCO+(3−2) emission (see Fig. 4) and is reproduced in the rest of
the figures. The linear scale is shown.

and Gerin et al. (1997). Our unpublished map of CS(3−2) in-
tegrated emission is displayed in Fig. 4 and delineates the re-
gion of largest density. The contour level at 0.6 K km s−1of the
CS(3−2) emission is shown in Fig. 1 to help localize the dense
core. The 13CO(J = 1−0) contour level of 4 K km s−1 is also
drawn in Fig. 1 to indicate the region of column density larger
than ∼4 × 1021 cm−2.

In L1512, the dense core has been mapped in CS(2−1)
by Fuller (1989) over several arcmin. Lee et al. (2001) have
mapped it over a more restricted area in the CS(2−1) and
N2H+ lines. A map of the HCO+(3−2) emission has been per-
formed at the CSO in November 2002. The HCO+(3−2) line
integrated emission is displayed in Fig. 4. As in other dense
cores, the N2H+ emission is more concentrated than the
CS emission and the N2H+ and HCO+(3−2) emissions have
very similar boundaries. Again, in the following, we adopt
the 0.15 K km s−1 contour of the HCO+(3−2) emission as
the boundary of the L1512 dense core. It is drawn in Figs. 2
and 3 to help locate the dense core. The maps of Figs. 1 to 3
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Fig. 3. Maps of the 12CO(J = 2−1) line integrated area W (top) and
line centroid velocities C (bottom) of the L1512 field observed at
the CSO. In both panels, a map of the same quantities computed
with the high angular resolution data of the IRAM-30m is inserted
in the CSO map at the relevant position. The dense core is identi-
fied as in Fig. 4 (black contour). The dashed contour corresponds to
W12CO = 2.5 K km s−1 and will be used in Fig. 11. The box is the
location of the spectra map shown in Fig. 5. The (0,0) position of
the CSO map is RA(1950) = 05h00m54.5s, Dec(1950) = 32◦36′00′′.
The linear scale is shown.

confirm that dense cores, as traced by molecular lines such
as CS, N2H+ or HCO+ at millimeter wavelengths, are embed-
ded in larger structures of moderate column density, traced by
the 13CO lines, and further down in column density, by the
12CO lines. Note that the 12CO integrated emission in both
fields is far from being isotropically distributed around the
dense cores.

The analysis presented in the next sections has been con-
ducted on the 12CO and 13CO data sets, when available. 12CO is
the only available tracer of molecular gas down to H2 column
densities as low as a few 1020 cm−2. Reaching these limits
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Fig. 4. Map of integrated emission of the dense cores: IRAM-30m map
of Polaris in the CS(3−2) line (top) and CSO map of L1512 in the
HCO+(3−2) line (bottom).

is mandatory in order to be able to make a link with statisti-
cal works performed on HI data (e.g. Miville-Deschênes et al.
2003; Brunt 2003), and to obtain large maps avoiding star form-
ing regions. However, the large opacity of the 12CO line pre-
vents the sampling of all the gas on the line of sight, most
severely in regions close to the dense cores. The 13CO lines
are thus used to analyze the gas in regions of intermediate col-
umn density between the transparent cloud edges traced by
12CO only and the dense cores. The areas available for statisti-
cal analysis in this line are smaller than those available in the
12CO line because of the different abundances of the two iso-
topomers. The two lines are therefore complementary.

4. Statistical analysis

4.1. Computation of line centroids and their
increments

Centroid velocities have been computed according to the al-
gorithm described in Pety (1999). The line window used to
compute the line centroid is critical (see Appendix A.1) and
we have adjusted it locally to maximize the signal-to-noise
ratio of the integrated area defined as S NRa = Σ

m
1 Ti/

√
mσ
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Table 3. Quantities used to normalize the δC–PDFs for each field and
line and for the lag l = 3 pixels: the offset applied to the increments to
get a centered PDF (Col. 3) and the standard deviation of the δC values
(Col. 4). The ratio of these two quantities is given in Col. 5.

Field Line 〈δC3〉 σδC3
〈δC3〉
σδC3

km s−1 km s−1

Polaris 12CO (J = 1−0) 8.3 × 10−3 0.11 0.07

Polaris 13CO (J = 1−0) 1.5 × 10−2 0.10 0.15

L1512 12CO (J = 1−0) 1.2 × 10−2 0.05 0.24

L1512 13CO (J = 1−0) 1.8 × 10−3 0.04 0.04

L1512 12CO (J = 2−1) 1.3 × 10−2 0.09 0.015

where Ti are the temperatures of the m channels within the
window and σ the rms noise level of the spectrum. As the op-
timal window is expected to vary softly from one position to
another, we smoothed the variations of the window edges with
a median, moving boxcar filter of size 5 × 5 pixels. The first
moment is then computed on each spectrum using the optimal
window found for its location. Figure 5 illustrates the optimal
windows found by this algorithm for a subset of the CSO map.
This method also ensures that there is no significant emission
out of the final optimal window. The line centroid increments
are then computed over a lag l expressed in pixels of the map.
These increments are computed only between spectra that (i)
have a S NRa greater than 10.0 and (ii) have at least 4 neigh-
bors with S NRa ≥ 10.0. We show in Appendix A.2 how this
threshold S NRa = 10.0 ensures that our statistical analysis of
velocity increments is not contaminated by thermal noise. For
a given lag l, the increments are computed for half the possi-
ble orientations of the lag vector because if all the orientations
are kept for each lag, each increment in the map appears twice
with opposite signs. In the case of l = 3 pixels, for instance,
there are 16 different orientations, defined by the 16 neighbors
of any position lying within the rings of radii 2.5 and 3.5 pix-
els. We kept only 9 different orientations for each position in
the maps. Note that the smallest significant lag is l = 2 pixels
for the CSO map and l = 3 pixels for the IRAM maps because
the maps are oversampled.

4.2. Non-Gaussian wings in the centroid
increment PDFs

We have built the PDFs of the computed centroid increments
for four different lags in each field and for each line. Hereafter,
the PDFs of centroid increments will be called δC–PDFs or
increment PDFs. They may also be seen as shear–PDFs since,
as said in Sect. 2, the measured projection of the velocity is
orthogonal to the plane in which displacements are measured
(i.e. the plane of the sky).

Figures 6 and 7 show the evolution of the δC–PDFs with
increasing values of the lags for each map. The PDFs are nor-
malized to zero mean and unit dispersion and a normalized
Gaussian PDF with the same dispersion is shown, for compari-
son, as a dotted line. The quantities used for this normalisation
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Fig. 6. PDFs of centroid velocity increments for increasing lag values l
given in arcsec and pixels within each frame. The PDFs have been
computed from a) the 12CO (J = 1−0) and b) 13CO (J = 1−0) spectra
maps of Polaris. The centroid increment scales have been normalized
so that 〈δC 〉 = 0 and σδC = 1. The actual velocity dispersion of each
distribution σδC is given in km s−1 in each frame. The dotted curves
represent a Gaussian of zero mean and unit standard deviation.

are given in Table 3 for each map and a lag of 3 pixels. 〈δC3〉
is the offset applied to the increments at lag l = 3 pixels to get
a centered PDF and σδC3 is the standard deviation of the incre-
ments, for the same lag. The ratios 〈δC3〉

σδC3
are given in Col. 5:

they are all significantly smaller than unity. We therefore feel
confident that the normalisation we apply does not affect the es-
timate of the δC–PDFs computed at small lags. The error bars
drawn simply reflect the number of elements in each bin of the
PDF. Note that the statistical significance of the largest incre-
ments is best for the CSO field because the number of indepen-
dent spectra available in this map is about nine times larger than
in the IRAM maps. This illustrates the importance of the size of
the maps for this kind of statistical study where departures from
Gaussianity are searched for and occur only with probabilities
close to 10−2 or below. In Appendix B, we compute the largest
statistically significant lags for each map and two values of the
numbers of bins in the PDFs, 30 and 8 bins. These numbers
confirm that PDFs built with 30 bins, as in Figs. 6 and 7, are sta-
tistically significant up to lags of ∼6 pixels for the small fields
and 12 pixels for the large one. They also show that the broad
features in the PDFs, such as non-Gaussian wings, spreading
over 4 bins or more, are significant up to lags of 12 pixels for
all the fields.

All the sets of increment–PDFs exhibit non-Gaussian wings
with departure from Gaussianity being more pronounced as the
lag becomes small. The effect is the most visible in the large
scale L1512 field, because the large number of independent
spectra in that field reduces effects due to the poor sampling
at large lags and makes the PDFs there the most symmetrical.
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Table 4. Influence of large scale velocity gradients. Difference between the observed extrema of line centroids in each map (Col. 3), the
associated scale s (Col. 4) and the corresponding observed large scale velocity gradients (Col. 5), the contribution of this large scale gradient to
a lag l = 3 pixels (Col. 6), the ratio of this contribution to the internal velocity dispersion at the same scale (Col. 7), the exponent of the scaling
of the standard deviation of the centroid increments with the lag at which they are computed (Col. 8), the velocity gradients at scale s inferred
from this scaling and ascribed to turbulence (Col. 9).

Field Line |Cmin −Cmax| s ∇vobs δv3
δv3
σδC3

ζ2 ∇vturb

km s−1 ′′/pc km s−1 pc−1 km s−1 km s−1 pc−1

Polaris 12CO(1–0) 1.1 500/0.37 3.0 0.04 0.35 0.45 3.8

Polaris 13CO(1–0) 1.0 400/0.29 3.4 0.06 0.60 0.5 4.5

L1512 12CO(1–0) 1.2 600/0.44 2.7 0.05 1.0 0.62 2.7

L1512 13CO(1–0) 0.4 300/0.22 1.8 0.03 0.77 0.7 3.5

L1512 12CO(2–1) 1.4 1200/0.9 1.5 0.03 0.33 0.5 1.6
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Fig. 7. Same as Fig. 6 for the L1512 field. The PDFs have been com-
puted from the a) 12CO(J = 1−0) and b) 13CO(J = 1−0) IRAM-30m
maps and c) 12CO (J = 2−1) CSO map.

4.3. The influence of large-scale velocity gradients

Large scale variations of the line centroid velocities are visi-
ble in Figs. 1 to 3. They most likely trace large scale velocity
gradients. The observed values are derived from the two ex-
treme values of the centroid velocity Cmin and Cmax and the
size scale over which they are measured s (Table 4). These
numbers provide an estimate of the observed velocity gradi-
ents ∇vobs ≈ |Cmax − Cmin| /s given in Col. 5 of Table 4. We

note here that the values derived from two different lines in the
same field are not necessarily the same because the lines do not
quite sample the same gas, as discussed above. Unlike in other
studies (Grosdidier et al. 2001; Miesch et al. 1999), we did not
remove the contribution of large scale velocity gradients in our
centroid increment computations. In this section, we explain
why.

In the analysis of turbulence in HII regions, the large scale
velocity gradients are related to the expansion of the warm ion-
ized gas, driven by the pressure gradient of the HII region rel-
ative to the surrounding medium. It is thus justified to remove
large scale gradients, prior to any statistical analysis of the tur-
bulence within HII regions, as done by Grosdidier et al. (2001),
because the HII region expansion is an ordered large scale mo-
tion and is not part of the inertial range of the turbulent cascade.

Miesch et al. (1999), who analyze the turbulence in molec-
ular clouds, have different goals from ours. Their goal is to ex-
tract an homogeneous and isotropic subset of interstellar tur-
bulence and compare it to laboratory experiments or direct nu-
merical simulations. Instead, we search for regions of enhanced
shear at small scales to localize bursts of dissipation. We show
below that we are not limited in our analysis by large scale
anisotropy. We first argue, following the results of numerical
simulations of Burkert & Bodenheimer (2000) that turbulence
itself with its steep power spectrum (i.e. most of the power is in
the large scales) generates velocity gradients which may be in-
terpreted as rotation at any scale. We show in Fig. 8 and Table 4
that this is indeed the case. The scaling of the standard devia-
tion of the line centroid increments σδCl with lag l is shown in
Fig. 8. Up to lags of ∼100 arcsec or about 12 pixels, σδCl ∝ lζ2 .
The values of ζ2 are given in Table 4. This scaling provides that
of the turbulent velocity shear ∇vturb ∝ lζ2−1 with l. The turbu-
lent velocity shear, ∇vturb, inferred from this scaling law at the
scale s of the largest centroid differences is given in Col. 9 of
Table 4. Comparison of Cols. 5 and 9 shows that in all cases:
∇vobs <∼ ∇vturb. The large scale observed velocity gradients are
therefore smaller than or comparable to those expected from
the turbulent shear at the same scale, suggesting that they are
part of the turbulent dynamics.

Last, we show that the large-scale gradients do not affect
the small scale statistics which are of importance to the present
analysis. The contribution of the large-scale gradients to the
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Fig. 8. Scaling of the standard deviations of centroid increments with
the lag l used to compute the increments for the five fields and lines.
Large symbols are used for the lags which give statistically mean-
ingful results as explained in Appendix B. The exponents ζ2 listed in
Table 4 have been determined for the range of lags which is statisti-
cally meaningful.

centroid velocity increments computed as δv3 = ∇vobs × l
for l = 3 pixels are given in Table 4 for each map (Col. 6).
These values are then compared to the standard deviation of the
δC–PDFs distribution (Col. 7). In all cases, the ratio δv3/σδC3

is smaller than or equal to unity. The contribution of the large-
scale gradients to the centroid increments at small scale is
therefore much smaller than the increments populating the non-
Gaussian wings which extend up to 4 or 5 σδC (see Figs. 6
and 7). Furthermore, the large scale gradient has a well-defined
direction and therefore preferentially affects the increments
computed along the same direction i.e. one increment out of 9
in the case of l = 3 pixels (out of more for larger lags). The
contribution of the large scale velocity gradient to increments
computed over lags of different orientations is further reduced
by the appropriate cosine. For these reasons, we are confident
that keeping the large scale velocity gradients in the maps does
not significantly distort the δC–PDFs of Figs. 6 and 7.

In summary, we did not remove large-scale velocity gradi-
ents prior to our statistical analysis for two reasons: (1) there is
evidence for the large-scale gradients to be part of the turbulent
dynamics we analyze and (2) their value is such that their con-
tamination of the small scale statistics on which we focus here,
is negligible.

5. Spatial distribution of the non-Gaussian
centroid increments: A new kind of small
scale structure

5.1. The positions populating the non-Gaussian wings
of the increments PDFs are not randomly
distributed: They form elongated structures

We have seen in the previous section that, in most cases, the de-
parture of the increment PDFs from a Gaussian distribution is
as large as the lag is small. We are here interested in tracing the
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Fig. 9. Top panels: Maps of the averaged centroid increments |δC | in
Polaris computed with a lag of 3 pixels from the 12CO(J = 1−0) lines
(left) and the 13CO(J = 1−0) lines (right). The solid contour localizes
the dense core (see Fig. 1). The bottom panels are sketches meant
to emphasize the relative orientation of the region of large column
density traced by 13CO (grey area), the dense core (dashed contour)
and regions of large centroid increments where |δC | > |δC0| (black
contours). The thresholds |δC0| are those listed in Table 5. The letters
are the labels used in the text.

locations of the positions for which the small scale increment
values build up the non-Gaussian wings. We display in Figs. 9
through 11 the spatial distribution of the increments computed
for lags of three pixels. The lag value l = 3 pixels is the smallest
significant lag in the IRAM maps because the maps are Nyquist
sampled or better: adjacent pixels are therefore not independent
(see Table 1).

The spatial distributions of the centroid increments are
shown as azimuthal averages over the 16 possible directions
because it allows a more compact presentation of the results.
In the rest of the paper, we note |δC | the azimuthal average of
the modulus of all the oriented centroid increments computed
at a given position, for lags of three pixels. The thresholds,
|δC0|, given in Table 5, have been chosen to isolate the regions
where more than half of the oriented increments belong to
the non-Gaussian wings of the δC–PDFs. These thresholds are
close to the standard deviations σδC3 of the increment–PDFs
for l = 3 pixels. Note that the averaging produces increment
values smaller by factors up to a few than the original values
used to build the PDFs. This effect is illustrated in the cuts of
Figs. 13–16 where the variations of the centroid and of the
centroid increments before and after azimuthal averaging are
shown as a function of position.

In Figs. 9–11, the uniform black areas (white in Fig. 3)
correspond to positions where increments are not computed
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Table 5. Characteristics of the maps of averaged centroid increments for each field and line: thresholds used to define the subsets of positions
populating the non-Gaussian wings of δC–PDFs (Col. 3), peak increment (Col. 4) and background (Col. 5) values, square of the contrast of
the peak to background value (Col. 6), average linewidth in each field (Col. 7), surface filling factor of regions where |δC | > |δC0| (Col. 8) and
fraction of dissipation in these regions (Col. 9, see Sect. 7).

Field Line |δC0| |δCmax|
∣∣∣δCbg

∣∣∣ (δCmax/δCbg)2 〈∆v〉 fs fε

km s−1 km s−1 km s−1 km s−1

Polaris 12CO (J = 1−0) 0.1 0.4 0.06 39 0.8 0.29 0.65

Polaris 13CO (J = 1−0) 0.1 0.4 0.05 82 0.4 0.20 0.62

L1512 12CO (J = 1−0) 0.05 0.1 0.03 15 0.3 0.29 0.61

L1512 13CO (J = 1−0) 0.03 0.08 0.02 17 0.2 0.39 0.74

L1512 12CO (J = 2−1) 0.09 0.4 0.06 45 0.3 0.18 0.53
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Fig. 10. Same as Fig. 9 for the L1512 field observed at IRAM.

because at least one of two spectra used either has a S NRa value
below 10.0 or is too isolated (i.e. with less that 4 contiguous
neighbors with S NRa > 10.0). The black contours drawn after
the CS(3−2) or HCO+(3−2) maps help locate the dense cores.

In the sketches of Figs. 9–11, the black contours labelled
by letters follow the thresholds |δC0|. These contours are there-
fore intended to trace the structures delineated by the posi-
tions where the original, non averaged, increments are larger
than a few σδC3 and belong to the non-Gaussian wings of
the δC–PDFs.

Two characteristics of these structures may be derived
from Figs. 9–11. Firstly, the spatial distribution of the largest
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Fig. 11. Same as Fig. 9 for the large scale L1512 field. The dot-dashed
contour is the same as in Fig. 3.

averaged increments is not random. They are concentrated in
specific regions and appear to form elongated structures, al-
most straight in several cases, and covering only a small frac-
tion of the maps. Secondly, the |δC | values in these structures
are well above the background fluctuations of the increments
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Fig. 12. Maps of average centroid increments of the same region of
the L1512 field computed from the IRAM-30m 12CO(J = 1−0) map
(left) and the CSO 12CO(J = 2−1) map (right). Note the remarkable
quantitative agreement between the two maps.

in the maps. Table 5 gives the background values
∣∣∣δCbg

∣∣∣ com-
puted as the median of all the values smaller than the thresholds
|δC0| and the largest values of increments |δCmax| in the maps.
It shows that the largest values are between 4 and 9 times above
the background values, far above statistical fluctuations.

Last, it is remarkable that similar spatial distributions are
found for the large increments computed in the same field
with two independent data sets i.e. from two different tele-
scopes and two different lines, 12CO (J = 1−0) and (J = 2−1).
Figure 12 allows a comparison of the patterns found for the
centroid increments in the L1512 field from the IRAM-30m
and CSO maps. The morphological and quantitative agreement
between the two maps fully supports the reality of these struc-
tures. In Sect. 6, we discuss why they do trace the shear of the
velocity field.

The smallest lags of three pixels introduce an effective res-
olution, ascribing a size of three pixels to unresolved variations
of the line centroid. But some of the structures traced by the
largest increments are resolved by the observations. This last
characteristic is also seen in the cuts of Figs. 13–16. In the
RA cut across the L1512 field, the peak of increment visible
at RA offset ∼200′′ is due to the steepening of the variation of
the line centroid over 6 consecutive pixels, from offset ∼300′′
to 200′′ or more than three CSO beamwidths. The half-power
width of this feature (above the background value), ∼0.05 pc,
is therefore resolved by the procedure of computing increments
over lags of 3 pixels. We illustrate with the other cuts that sev-
eral of these structures are actually resolved, with thicknesses
of the order of 0.05 pc, up to 0.08 pc.

5.2. Comparison with the results
of Miesch et al. (1999)

The non-random distribution of the largest centroid velocity
increments seems at odd with the spotty distribution found

by Miesch et al. (1999) in their maps of centroid velocity dif-
ferences of several star forming regions. However, we consider
that our results agree with theirs for the following reason. Their
method, as explained in Sect. 4.3, is different from ours because
they first remove a smoothed value from the line centroid val-
ues in their maps. The centroid velocity fluctuations they obtain
with this procedure are already of the same nature as a velocity
increment, as shown by Lis et al. (1996). It is therefore mean-
ingful to compare their maps of centroid fluctuations with our
maps of centroid increments. Their maps of centroid velocity
fluctuations (their Figs. 4 and 5) do indeed exhibit spatial struc-
tures. The largest values appear in several cases to form narrow
and elongated structures similar to those we find. The spotty
distribution is found only once they compute the increments
of these former maps of velocity fluctuations. What they call
centroid velocity differences cannot be compared to what we
compute.

A more detailed comparison of the two sets of results would
not be meaningful for several reasons. The signal-to-noise ra-
tios of our data given in Table 2 are significantly better than
those of Miesch et al. (1999). Their S NR values range be-
tween 4.5 and 8.9, except for HH83, which has S NR = 19.7 but
is their smallest field. The nature of the fields is also different.
While we analyze only quiescent fields in the present paper,
Miesch et al. have analyzed active star forming regions where
many shocks, driven by the young stars, interact and probably
generate considerable small scale structure in the patterns of
the vorticity. Last, most of the fields being at distances larger
that the nearby fields studied here, the angular characteristic
scales of the structures (if any) are expected to be smaller.

5.3. The regions of largest centroid increments are not
coinciding with density nor column density peaks

The sketches of Figs. 9–11 allow a comparison of the struc-
tures of largest increments with the concentrations of matter,
whether they are large column density or large density struc-
tures or both. The dotted contours delineate the dense cores
and the grey areas those where the 13CO(J = 1−0) integrated
emission is larger than 3 and 4 K km s−1, for L1512 and Polaris
respectively, which corresponds to N(H2) > a few 1021 cm−2,
about 10 times the average column density of the large scale en-
vironment. The main result visible in those figures is that none
of the regions of largest increments coincides, even in projec-
tion, with either a dense core (i.e. a density peak) or a column
density peak.

This result is better seen in the cuts of Figs. 13–16: the large
variations at small scale of the line centroid, at the origin of the
large increment values, do not coincide with column density
extrema. Such a coincidence would be expected if the line cen-
troid variations were due to the overlap on the line of sight of
unrelated gas components. In that case, an extremum of col-
umn density would coincide with the region of large centroid
increment, which is that over which the two components are
intercepted, producing a modified (locally broader) line pro-
file. This lack of correlation is also seen in the scatter plots of
Fig. 17 where the largest increments are in no case associated
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Fig. 16. Cuts in the 12CO line of the large scale L1512 field in RA,
averaged over the indicated Dec range. The histograms are the cuts
of increment centroids: raw values in the top panel, averaged in az-
imuth as explained in Sect. 5.1 in the bottom panel. The other cuts are
the centroid velocities (top) and integrated area (bottom). The letters
correspond to those of Fig. 9.

with extrema of column density. Conversely, the largest incre-
ments tend to occur at the positions were the integrated areas
are the smallest.

5.4. Link between the orientation of these structures
and that of density structures

The previous section shows that the structures traced by the re-
gions of largest centroid increments at small scale do not coin-
cide (in projection) with the dense cores nor the column density
extrema in the maps.

Nonetheless, this statement does not mean that these small
scale structures are unrelated to the dense cores. The orienta-
tion of the most elongated structures tend to be related with
that of the dense cores. In the Polaris field, the structure la-
belled C’ in the 12CO map, appears as a prolongation of the
bright 13CO structure, which seems to be an extension of the
dense core itself (see sketches of Fig. 9). The structures B
and D’ are adjacent and parallel to the edge of the dense
core, as is seen also in the cuts of Fig. 14. In the L1512
field (Fig. 11), similar patterns are visible. The two southern
structures A and A’ frame in projection the region of bright
12CO lines (dot-dashed contour), and the structure B is elon-
gated in the same direction as that of the filament of matter seen
in 13CO and 12CO and the orientation of the dense core itself as
mapped in HCO+. Since the velocity is continuous between the

structures of large increments and those of matter (see maps of
line centroids in Figs. 1–3), it is most likely that they are con-
nected in the 3-dimensional space.

5.5. Volume filling factor of the largest increment
structures

For each field, in addition to the maximum value of the incre-
ments in the map, |δCmax| and the background value

∣∣∣δCbg

∣∣∣ de-
fined in Sect. 5.1, Table 5 also gathers the fraction fs of pixels
in the map where the centroid increments are larger than the
thresholds |δC0|. fs may be understood as their surface filling
factor in the maps. From its values, one derives volume filling
factors of the regions of largest increments of at most a few %.
Assuming that the depth of the structures along the line of sight
is comparable to their projected thickness, d, and that the extent
of the cloud along the line of sight, L, is provided by the large
scale maps (Falgarone et al. 1998), fv ∼ fsd/L. For d ∼ 0.05 pc
and L ∼ 1 pc, fv ∼ a few % or less.

6. Discussion

The subset of spectra shown in Fig. 5 encompasses one of the
regions where the centroid increments are the largest. Figure 5
shows that the optimal window found to compute the line cen-
troids varies only by very small amounts from one spectrum to
the next. This illustrates that the measured centroid increments
are due to small variations in the shapes of the line profiles from
one line of sight to the next. These variations may have several
origins, unrelated to the structure of the velocity field: optical
depth effects, gas temperature or density fluctuations. We show
in the following section that our interpretation of these varia-
tions as tracers of small scale velocity shears is justified.

6.1. Optical depth effects

The optical depth of the lines used introduces a possible bias
in the sampling of the velocity field performed by the spectra.
Indeed, optically thick lines tend to sample preferentially fore-
ground material.

However, the maps of centroid increments built from
the 13CO and 12CO lines, although not exactly the same, are
reminiscent of each other, suggesting that the two lines sam-
ple about the same gas (see Figs. 9–10). This is also suggested
by the similarity of the maps obtained in L1512 with two dif-
ferent 12CO transitions of different optical depths (Fig. 12).
These results support the concept of low effective optical depth
of the 12CO lines discussed in Martin et al. (1984). Falgarone
et al. (1998) also inferred a low effective optical depth in the
12CO lines of the fields analyzed here (except in the projected
area of the dense cores), on the basis of the uniformity of the
excitation temperature. Note that a low effective optical depth
of the 12CO lines is to be expected in these fields (as opposed to
brighter molecular clouds) because a large velocity dispersion
of the gas, leading to a large escape probability of the photons
in velocity space, is combined with low gas column densities.
The same similarity is found between maps of centroid incre-
ments built from the 13CO and C18O spectra of the environment
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of the L1689B dense core (Pety et al. in preparation), suggest-
ing that optical depth effects are not seriously affecting the cen-
troid increment determinations.

This result illustrates a major strength of the line centroid
analysis. On the one hand, centroids are velocity moments and
as such provide more weight to velocities far from the line cen-
troids, i.e. the line wings. The wings are the parts of the line
profiles the least affected by optical depth effects. On the other
hand, our method which limits the range of velocities used to
compute the centroid (see Sect. 4.1), limits the noise contribu-
tion, particularly in the line wings. We thus argue that there is a
velocity range in spectrally well-sampled line profiles, neither
too far in the line wings (to avoid noise artefacts) nor too close
to the line centroid (to avoid optical depth artefacts), which car-
ries enough information on the velocity field to be used on sta-
tistical grounds.

Last, self-absorption is also unlikely in those low bright-
ness core environments because the excitation temperature of
the 12CO and 13CO lines is remarkably uniform as was shown
by the scatter plots of the (J = 1−0) to (J = 2−1) 12CO and
13CO lines (Falgarone et al. 1998). For self-absorption to occur
the optical depth must exceed unity and the foreground mate-
rial must have a lower excitation temperature.

6.2. Role of temperature fluctuations

It might be argued that the variations of line centroids traced
by the 12CO lines are due only to variations of the gas kinetic
temperature. This might be the case in bright sources where
the 12CO lines are thermalized. But it has to be appreciated that
in the fields under study here the 12CO lines are weak (less
than 5 K) while the gas is poorly shielded from the ambient
UV field (H2 column densities less than a few 1021 cm−2) and
thus likely to be much warmer than 5 K. It means that either the
lines are subthermally excited, in which case their excitation
is mostly radiative, or that they are thermally excited in small
structures with a large beam dilution factor. In either case, the
line profile variations are not determined by variations of the
gas kinetic temperature but by those of the radiative excitation
and/or beam filling factor, which both depend on the velocity
field (Falgarone et al. 1998).

6.3. Role of density fluctuations unrelated
to the velocity field

In this section, we discuss the influence of column density or
density variations, independent of the velocity field, on the ve-
locity increments that we measure. Under the optically thin hy-
pothesis, dN(u) ∝ T (u) du where dN(u) is the column density
of gas at the projected velocity u within du. The centroid ve-
locity defined in Eq. (1) is therefore also

C =

∫
u dN(u)

N
with N =

∫
dN(u). (3)

The centroid increment between lines of sight 1 and 2 can thus
be written

δC1−2 =


∫

u1dN1(u1)

N1

 −

∫

u2dN2(u2)

N2

 · (4)

From this expression, it is obvious that δC1−2 = 0 if the two
lines of sight differ only by their total column density, the ve-
locity structure being the same i.e. N2(u2) ∝ N1(u1) for all ve-
locities. In this case the two integrated line profiles are simply
homothetic.

Let us consider another simple case in which the total col-
umn density N along the two lines of sight is approximately
the same, the only difference being that a fraction of the gas
at projected velocity u1 on the first line of sight is at u2 on
the other. This is possible, for instance, in the perspective of
matter distributed in a large number of very small structures,
possibly virialized in the potential well of the cloud. Then
δC1−2 = (u1 − u2) δN/N where δN is the column density of
the gas which is at different projected velocities on each line
of sight. We estimate below the value of δN/N required to pro-
duce centroid increments of the order of |δCmax| in each field.
We assume that the velocity difference u1 − u2 is of the order
of magnitude of the average linewidth in each field 〈∆v〉 given
in Table 5, u1 − u2 ∼ 〈∆v〉. Therefore an estimate of the re-
quired column density fluctuations is: δN/N ∼ |δCmax| /〈∆v〉.
The latter ratio can be computed from the values in Table 5 and
is equal to 1.25, 0.5 and 1.05 for the three fields of Fig. 18, re-
spectively. Now, if we assume that the relative variations of the
line integrated areas trace those of gas column density, we can
check how the observed fluctuations of column density com-
pare with the above values. This may be seen in the scatter
plots of the averaged increments versus the relative variations
of the line integrated area, |δA| /A (Fig. 18). These scatter plots
are shown only for the three maps where the statistics are the
least affected by the dense core. The values of |δCmax| /〈∆v〉 and
of the threshold |δC0| are indicated for each field. The scatter
plots show that, except for a few lines of sight of the Polaris
13CO map, the observed relative variations of column density
(or |δA| /A) at the positions of increments populating the non-
Gaussian wings (i.e. increments above the thresholds |δC0|) are
smaller than the minimum value estimated above. In the large
scale L1512 field and the Polaris field as seen in 12CO, it is
therefore unlikely that the observed centroid increments trace
small scale column density fluctuations due for instance to ran-
domly distributed clumps. This is also supported by the fact
that the structures traced by the large centroid increments form
spatially coherent patterns and are not randomly distributed
as would be expected for randomly moving clumps. We thus
conclude that the contribution of small scale random column
density variations to the observed centroid increments is not
dominant.

These small scale column density fluctuations could trace
density fluctuations. They occur over lags of 3 pixels or l ∼
5000 AU (see Table 1). The corresponding density enhance-
ments are therefore expected to occur over the same small
scale l. Thus, δn/n ∼ (|δA| /A) (L/l) where L is the depth of
the cloud. For |δA| /A = 0.5 and L = 1 pc, δn/n = 25. These
might be supersonic shocks with Mach numbers of about 5,
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in which case the density and velocity fields are closely cor-
related. However, such large density enhancements would pro-
duce variations of the CO(J = 2−1)/CO(J = 1−0) line ratio in
the weak regions of the fields, variations which are not ob-
served (Falgarone et al. 1998).

The tenuous variations of the line profiles at the origin of
the large centroid increments at small scale are therefore most
likely ascribed to large velocity shears at small scale.

7. Possible link with the dissipation of turbulence

Our statistical analysis of the environment of two low mass
dense cores leads to two main results: (i) the PDFs of line cen-
troid increments (or velocity shears) have non-Gaussian wings
as more pronounced as the lag over which they are computed
is small, and (ii) the spatial distribution of the largest shears is
not random and reveals often resolved and elongated structures
not coinciding with density nor column density peaks. These
are predominantly velocity structures.

The first property is a characteristic shared by incompress-
ible turbulence, compressible turbulence and compressible,
magnetized turbulence and is a signature of the intermittency
of the velocity or current density fields. Our results therefore
suggest that the observed distributions of large shears may trace
regions of intense vorticity reminiscent of those responsible for
the intermittency of turbulence. Note that these regions of in-
tense vorticity are embedded in the bulk of the flow and that the
large centroid increments are only tracers of their presence in
the flow. In other words, a small scale structure of large vortic-
ity, embedded in the bulk of the flow, can be at the origin of a
small variation of the line centroids, along the boundary of two
large scale regions of more uniform centroid velocity, i.e. the
large eddies.

We have argued that the large shears are unlikely to trace
shocks but we cannot rule out the fact that the vorticity extrema
are fossil structures of shocks, already disrupted.

If the largest shears that we have detected trace local
enhancements of the vorticity and therefore dissipation, as
discussed in the Introduction, an estimate of the local en-
hancement of the dissipation rate in those regions is provided
by the ratio (δCmax/δCbg)2 (Table 5) because the dissipation
rate follows the square of the vorticity (or of the velocity
shear) (Landau & Lifshitz 1987). The local enhancements are
large, between 15 and 80 (Table 5). It is interesting to note
that the smallest values of (δCmax/δCbg)2 are obtained in the
close vicinity of the L1512 dense core (IRAM field) and the
largest in Polaris and in the large scale environment of L1512
(CSO field). This may reflect the fact that turbulent dissipation
is a less violent process within a dense core which is already
formed. We also note that even the weakest structures in the
maps of |δC | have a contrast larger than 2 above the background
and therefore correspond to a dissipation rate locally 4 times
larger than in the bulk of the field (see for instance the weak
structures, labelled B and C, in the North of the IRAM L1512
12CO map).

Last, the quantity fε =
∑
|δC | >|δC0 | |δC | 2/

∑
all |δC | 2

(Table 5) may be understood as the fraction of the dissipa-
tion taking place in the regions of large increments (those

populating the non-Gaussian wings). The underlying assump-
tion is that the ratio of the actual dissipation rate to |δC | 2 is
the same in the regions where the increments populate the
Gaussian cores of the PDFs (the bulk of the fields) as in those
populating the non-Gaussian wings. Under this assumption, the
values of Table 5 show that a significant fraction (more than
half) of the total dissipation takes place in the ensemble of
small scale structures filling a volume close to a few % of the
cloud volume, as estimated above.

8. Conclusion

We have found a new kind of small scale structure in the envi-
ronment of low mass starless dense cores.

They emerge in the maps of line centroid increments be-
tween adjacent spectra as regions between 4 and 9 times
brighter than the background fluctuations. They are essentially
velocity structures because they are not coinciding with any de-
tected sufficient increase in the column density or density. They
are small scale, often elongated, structures. A few are resolved
by the observations with thicknesses up to 0.08 pc. Most of
them are not resolved i.e. smaller than 0.02 pc, the effective
resolution due to the smallest lag available to compute the in-
crements.

The measured projected velocity being orthogonal to the
plane of the sky, in which lags are measured, the centroid ve-
locity increments trace one component of the shear of the ve-
locity field. The shear-PDFs exhibit non-Gaussian wings which
are the most prominent for the smallest lag. For this reason, we
ascribe these structures to turbulence by analogy with the be-
havior of such PDFs in laboratory flows or numerical simula-
tions of compressible turbulence. The new structures delineate
the locus of positions where the increments are the largest and
populate the non-Gaussian wings.

These structures therefore possibly trace regions of en-
hanced dissipation of turbulence in the observed fields. The
nature of the dissipation process is not determined by the ob-
servations: it could be either viscous dissipation, ion–neutral
collisions or enhanced current densities. These structures are
unlikely to trace shocks, but they may trace the remanent vor-
ticity generated by shocks already disrupted. In this picture, a
significant fraction of the turbulent energy present in the field
would be dissipating in those structures filling less than a few %
of the cloud volume.

Last, the structures display some connexion with the trac-
ers of dense gas, such as shared orientations and velocity and
space pattern continuity. Before we can make a link between
such structures and the formation of dense cores, we need to
investigate control fields i.e. molecular clouds without dense
cores (Hily-Blant et al. in preparation) and with moderate star
formation activity (Pety et al., in preparation).
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