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ABSTRACT

Context. An unexpectedly complex polyatomic chemistry exists in diffuse clouds, allowing detection of species such as C2H, C3H2,
H2CO, and NH3, which have relative abundances that are strikingly similar to those inferred toward the dark cloud TMC-1.
Aims. We probe the limits of complexity of diffuse cloud polyatomic chemistry.
Methods. We used the IRAM Plateau de Bure Interferometer to search for galactic absorption from low-lying J = 2–1 rotational
transitions of A- and E-CH3OH near 96.740 GHz and used the VLA to search for the J = 8–7 transition of HC5N at 21.3 GHz.
Results. Neither CH3OH nor HC5N were detected at column densities well below those of all polyatomics known in diffuse clouds
and somewhat below the levels expected from comparison with TMC-1. The HCN/HC5N ratio is at least 3–10 times higher in diffuse
gas than toward TMC-1.

Key words. ISM: molecules – astrochemistry – ISM: clouds

1. Introduction

As we have shown in a recent series of papers, local diffuse
clouds seen in cm-wave and mm-wave absorption against ex-
tragalactic background sources have an unexpectedly rich and
robust polyatomic chemistry (see Liszt et al. 2006 and refer-
ences given there). At lower column densities CO, OH, HCO+,
C2H and C3H2 are detected but when N(HCO+) >∼ 1012 cm−2 or
N(H2) >∼ 5 × 1020 cm−2, CS, HCN, NH3 and H2CO appear with
relative abundances like those inferred toward the canonical dark
cloud TMC-1 (Ohishi et al. 1992).

Some fairly complex species are seen in these absorption
studies, but the real limits of complexity within this chem-
istry are not known. Most of our work has been at mm-
wavelengths while larger astrophysically-important species are
generally heavier so that the bulk of their rotational population
resides in energy levels which are best observed at lower fre-
quencies.

An exception to this general scenario is methanol (CH3OH),
many of whose lowest rotational transitions (including the
ground-state E-type transition) occur near 96 740 MHz. These
lines were detected in TMC-1 by Friberg et al. (1988) and
the relative abundance of CH3OH with respect to HCO+ in
TMC-1 is N(CH3OH)/N(HCO+) ≈ 0.25 (Ohishi et al. 1992).
Although the generally-accepted chemical scheme for produc-
ing methanol in dark gas invokes progressive hydrogenation of
H2CO on grains and might not be expected to be a fertile source
of molecules in lightly-shielded regions, H2CO is widely seen
in diffuse clouds (Nash 1990; Liszt & Lucas 1995; Liszt et al.
2006). Furthermore, the environment is rich in atomic hydro-
gen in diffuse gas and models have been proposed in which

⋆ Based on observations obtained with the IRAM Plateau de Bure
Interferometer and the NRAO VLA telescope.

molecules are hydrogenated on grains and released into the am-
bient diffuse gas where high abundances persist for some time
(Viti et al. 2000; Price et al. 2003). Alternatively, material may
be cycled through a dense phase, with persistently high molecu-
lar abundances for quite some time thereafter in a more diffuse
state (Falgarone et al. 2006). This being the case, at the sug-
gestion of our colleagues, we undertook to search for CH3OH
absorption using the IRAM Plateau de Bure Interferometer.

An alternative approach to searching for heavier molecules
is simply to follow them to lower frequencies and, subsequent
to the CH3OH observations described here, we realized that the
cyanopolyynes HC3N and HC5N should be observable with high
sensitivity during the VLA-eVLA conversion. Given the simi-
larity in abundance between so many species in TMC-1 and dif-
fuse gas, and the high relative abundances of the cyanopolyynes
in TMC-1 (where N(HCN):N(HC3N):N(HC5N) = 20:6:3) it
seemed appropriate to search for just those species which are
the particular hallmark of the chemistry in TMC-1.

Section 2 of this work describes the observations and some
aspects of the spectroscopy of CH3OH. Section 3 describes the
cyanopolyyne work and Sect. 4 presents our upper limits on the
CH3OH and HC5N abundances and briefly summarizes our ab-
sorption line work to date as well as the physical conditions un-
der which the diffuse cloud chemistry operates.

2. CH3OH observations and data

2.1. Observed sources and technical details

The data were acquired at the Plateau de Bure Interferometer
in May and July 2006 with 5 or 6 antennas. Table 1 sum-
marizes the observed sightlines, observing dates, approximate
quasar fluxes, integration times (the on-source time equivalent
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Table 1. Background sources observed in CH3OH .

Source l b Date Flux Time σ1
l/c

◦ ◦ 2006 Jy hours2 ×10−3

B0355+508 150.4 −1.6 July 2.8 3.5 8.5
B0415+379 161.7 −8.8 July 2.6 4.2 14.5
B2200+420 92.6 −10.4 May 2.5 8.2 6.5

1 σl/c = rms error in the line/continuum ratio; 2 Integration time on-
source equivalent to using 6 antennas.

Table 2. CH3OH spectroscopy and column density.

Line ν A21 f 1
low

q2

MHz 10−6 s−1 cm−2/km s−1

A 20 − 10 96741.38 5.5 0.472 2.39 × 1013

E 2−1 − 1−1 96739.39 3.3 0.678 2.77 × 1013

E 20 − 10 96744.55 5.5 0.042 2.68 × 1014

1 flow is the fraction of A- or E-type CH3OH in the lower, J = 1, level
of the transition in equilibrium with the 2.73 K background; 2 N(X-
CH3OH) = qX

∫
τ2−1dv for either the A- or E-state.

to having 6 antennas simultaneously observing), and the
empirically-determined rms error in line/continuum ratio in the
final, reduced spectra.

Six correlator bands of 20 MHz were concatenated to cover
frequencies from 97 600 to 97 800 MHz (or a ∼150 km s−1 band-
width) with a channel spacing of 39.06 kHz or 0.121 km s−1 and
a channel width of 70 kHz. Two additional correlator bands of
320 MHz were used to measure the 3 mm continuum over the
580 MHz instantaneous IF-bandwidth available with this gen-
eration of receivers. The fluxes of the quasar continuum were
determined relative to the primary flux calibrator used at Plateau
de Bure, i.e. MWC349. The resulting flux accuracy is ∼15%.

The data were processed inside the GILDAS/CLIC software1

(Pety 2005). After a standard RF bandpass calibration, the time-
dependent amplitude and phase gains were computed per base-
line on the continuum data, assuming a point source. Those gains
were then applied to the line data taken simultaneously and spec-
tra were computed as a weighted temporal average of the visi-
bility amplitudes.

2.2. Spectroscopy and observed transitions

Rest frequencies for the CH3OH transitions (Table 2) were
taken from the NIST list of recommended rest frequen-
cies, found online at http://physics.nist.gov/cgi-bin/
micro/table5/start.pl. Although the spectroscopic con-
stants have changed slightly, helpful energy level diagrams and
related information for CH3OH are given by Lees (1973); Nagai
et al. (1979) and Friberg et al. (1988); Lees (1973) tabulates
line strengths and spontaneous emission coefficients. As noted
in Table 2, we observed several J = 2K–1K transitions of A- and
E-type CH3OH around 96 740 MHz. For E-CH3OH the J = 0
level of the K = −1 ladder is absent owing to symmetry con-
cerns and the J = 2−1 − 1−1 transition is actually the ground-
state E-CH3OH line. The fourth column of Table 2 gives the
fraction of all A- or E-CH3OH which resides in the 1K level
of the various transitions when the rotational populations are in

1 See http://www.iram.fr/IRAMFR/GILDAS for more information
about the GILDAS software.

Table 3. Background sources observed in HC5N J = 8–7.

Source l b Time σ1
l/c

σ
∫
τdv2

◦ ◦ h ×10−3 10−3 km s−1

B0212+735 128.9 12.0 1.1 1.5 2.2
B0355+508 150.4 −1.6 1.2 1.4 2.0
B0415+379 161.7 −8.8 1.2 1.3 2.5
B2200+420 92.6 −10.4 1.1 1.6 3.2

1 σl/c = rms error in the line/continuum ratio; 2σ
∫
τdv = rms error in

integrated optical depth.

equilibrium with the 2.73 K cosmic microwave background. The
total column density of CH3OH is the sum of all A- and E-
CH3OH.

According to Lees (1973), the transitions observed are all of
a-type, with dipole moment of 0.885 D, leading to the sponta-
neous emission rates A21 shown in Table 2. From standard for-
mulae, given the assumed excitation and level populations, we
may write for either the X = A or X = E configurations N(X-

CH3OH) = qX

∫
τ2−1dv , where the observed optical depth inte-

gral over any of the J = 2K–1K lines is expressed in km s−1 and
values of qX are given in the last column of Table 2.

3. Cyanopolyyne observations and data

We observed the J = 5–4 HC3N and J = 8–7 HC5N transitions
at 45.4 and 21.3 GHz at the VLA on 2007 December 16–17
using a correlator setup with 128 channels of width 24.4 kHz
and 12.2 kHz, respectively (0.161 km s−1 and 0.172 km s−1). We
bandpass calibrated and then observed the background sources
fixedly without the need for other phase calibrators, given the
strong emission and point-like nature of the sources (all of
which are calibrators for other experiments). We used reference
pointing on all sources. After applying the bandpass calibra-
tion, we used the AIPS task UVLSD which forms and averages
line/continuum spectra during individual correlator integration
intervals. The final spectra were then formed with vector averag-
ing in the POSSM task and exported for reduction and analysis.
The fluxes of the background sources were not needed to form
the absorption spectra and were not separately determined.

Although unforseen, it has not been possible to correlate
baselines with both VLA and eVLA antennas at the narrow
IF bandwidths used in this work. Given the makeup of the
VLA during our observations, it was necessary to discard nearly
half of the the baselines. Additionally, the Q-band HC3N ob-
servations were corrupted by an unexplained IF instability or
other problem which made passband calibration problematic and
rendered the noise levels several times higher than expected.
Although some portions of some passbands appeared to be us-
able for some sources, we do not trust these results and we will
not discuss them further. Results for the HC5N transition toward
four sources (those observed in CH3OH as well as B0212+735)
are summarized in Table 3.

Given the relatively large mass and high dipole moments of
the cyanopolyynes, 3.6 and 4.33 Debye for HC3N and HC5N,
respectively, maximizing the sensitivity of the detection exper-
iment required consideration of the populations of the rota-
tional ladder. Although the density of neutral particles is too
low to produce significant departures from rotational equilib-
rium with the cosmic background (see Sect. 4.3), excitation by
electrons is non-negligible. Figure 1 shows the integrated optical
depths expected for various rotational transitions as a function

http://physics.nist.gov/cgi-bin/micro/table5/start.pl
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Fig. 1. Excitation of cyanopolyynes by electrons in diffuse gas. Shown are the integrated optical depths for Ju → Ju − 1 transitions as a function of
H2-number density when X(e) = n(e)/n(H2) = 4×10−4. At left are shown results for N(HC3N) = 1012 cm−2 and at right for N(HC5N) = 1012 cm−2.
For each transition, calculations at TK = 20, 40, and 60 K are shown but only for lower-J transitions are they clearly separated. In each case the
curve for the highest TK-value lies lowest. The transitions observed in this work are shown as dashed (red) lines.

of the assumed temperature and density of molecular hydrogen,
under the assumption that n(e)/n(H2) = 4 × 10−4 represent-
ing a fully ionized component of moderately-depleted carbon,
n(C) = 3 × 10−4n(H2), along with a smaller contribution by
H+. We solved the rate equations determining the level popula-
tions for a total column density 1012 cm−2 of absorbers, includ-
ing collisional excitation by electrons using the rate constants of
Dickinson & Flower (1981).

Technical details aside, the transitions having the great-
est integrated optical depth are those which most sensitively
probe the actual molecular abundance. The J = 5–4 HC3N and
J = 8–7 HC5N transitions are the first or second-most sensitive
transitions over the range of density indicated. The calculated
optical depth of the J = 8–7 HC5N transition is insensitive to
temperature but declines slightly with increasing density. Given
the behaviour shown in Fig. 1, it is conservative to assert that∫
τ8−7dv = 10−14 km s−1 N(HC5N) and the upper limits on the

J = 8–7 line profile optical depth integrals given in Table 3 have
been converted to HC5N column density in Table 4 using this
value.

4. Results and comparison with dark cloud

abundances

4.1. CH3OH

The bottom row of Table 4 gives limits on the total CH3OH
column density toward B0415+479 (3C 111) and B2200+420
(BL Lac) and for the –10.5 km s−1 component toward
B0355+508 (NRAO150), which has the highest column densi-
ties and is chemically the most complex feature along that sight-
line (Liszt et al. 2006). These are 2σ statistical upper limits at the
empirically-determined channel-to-channel rms levels tabulated
in Table 1, over the expected velocity span determined by our
deep HCO+ profiles for each line. The features toward 3C111
and BL Lac have blended velocity substructure, but this

distinction is ignored here. Spectra of the various species in the
directions discussed are given in the references cited in Table 4.

Table 4 also compares these limits on the CH3OH column
density with values for the column densities of a variety of
molecules previously observed toward the various features in our
earlier work. To compare with dark cloud values, the right-most
column of Table 4 gives the abundances of the various species
seen in TMC-1.

Our upper limits on the CH3OH column density are in all
cases quite low compared to those of the other species shown in
Table 4, and are generally at or modestly below the abundance
ratios seen in TMC-1, especially toward 3C111. For instance
N(CH3OH)/CS < 0.2, 0.1, and 0.13 for BL Lac, NRAO150, and
3C111, respectively, compared with a value 0.2 toward TMC-1.

4.2. HC5N

As noted in Sect. 3, the upper limits on the line profile
integral of HC5N absorption in Table 3 were converted to
column density for inclusion in Table 4 using N(HC5N) =

1014 cm−2
∫
τdv, following the excitation calculations shown in

Fig. 1. The HCN/HC5N ratio, approximately 7 in TMC-1, is at
least 3–10 times higher than this toward B2200 and B0415+379.

4.3. Chemical abundances and physical conditions in diffuse
clouds

Table 4 serves as a summary of our absorption line chemistry
work to date, for sightlines and clouds with somewhat higher
column density N(HCO+) > 1012 cm−2 which have the richest
chemistry. These patterns are not universal: the abundances of
CO and all other detected species listed beneath C3H2 in the ta-
ble increase dramatically with respect to HCO+ for N(HCO+)
>∼ 1012, as shown for instance in Fig. 3 of Liszt & Lucas (2001).
CO, which is found in nearly all features identified in HCO+,
even at N(HCO+) < 1012, is a special case, varying widely due

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809851&pdf_id=1
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Table 4. Column densities and relative abundances.

Species B2200 B0355 B0415 TMC-16

1012 cm−2 1012 cm−2 1012 cm−2 1013 cm−2

OH7 68 34 360 300

CO8 1.9 × 104 0.5 × 104 5–8 × 104 8 × 104

HCO+1 2.0 1.2 11.6 8

C2H2 31 23 75 50–100

C3H2
2 5.0 3.7 13.3 10

H2CO3 6.2 6.9 20.5 20

CS4 2.7 4.3 10.1 10

HCS+4 0.76 0.6

SO4 3.43 1.66 13.0 5

H2S4 0.52 0.76 1.66 <0.5

NH3
3

2.5 12.2 20

CN5 32.9 41 158 30

HCN5 4.5 3.6 24.8 20

HNC5 0.74 1.1 5.54 20

HC5N5 <0.20 <0.25 <0.32 3
CH3OH <0.52 <0.43 <1.3 2

1 Lucas & Liszt (1996); 2 Lucas & Liszt (2000); 3 Liszt et al. (2006);
4 Lucas & Liszt (2002); 5 Liszt & Lucas (2001); 6 Ohishi et al. (1992);
7 Liszt & Lucas (2000); 8 Liszt & Lucas (1998).

to the influence of photodissocation and self-shielding (Liszt
2007). It can however be understood as the electron recombi-
nation product of HCO+ when N(HCO+)/N(H2) = 2 × 10−9, as
observed (ibid).

Despite the overall similarity in relative abundances of many
species with the TMC-1 patterns, some differences with TMC-1
are also apparent, even beyond the absence of CH3OH and
HC5N. In particular, the low HNC/HCN ratio in diffuse clouds
is characteristic of warmer gas, consistent with the observed
HOC+/HCO+ ratio (Liszt & Lucas 2001; Liszt et al. 2004). The
HCN/HNC and HOC+/HCO+ ratios are important clues to the
diffuse nature of the host gas. Previous indications that diffuse
gas was being observed were the low reddening (0.32 mag)
known to exist toward B2200+420 (BL Lac), the weakness of
mm-wave emission from species other than CO – only HCO+ is
detected (Liszt & Lucas 1994; Lucas & Liszt 1996) – and finding
that N(OH) and N(CO) were comparable to the column densities
observed in uv absorption toward ζ Oph and some other bright
stars.

The general properties of diffuse gas are summarized by
Snow & McCall (2006). In the context of our work, the kinetic
temperature and the density and thermal partial pressure of H2

are indicated in various ways by the chemistry, fractionation and
rotational excitation of CO (Liszt & Lucas 1998; Liszt 2007),
and are typical of the diffuse ISM. The partial thermal pressures
n(H2) TK ≈ 1–5 × 103 cm−3 K are comparable to those derived
for the bulk of the gas from C I fine-structure excitation seen in
uv absorption (Jenkins & Tripp 2001). N(12CO)/N(13CO) ratios
may be as low as 15–20 in clouds with N(CO) <∼ 1016 cm−2, from
which it may be inferred that the kinetic temperature of lines of
sight like those summarized in Table 4 is 25–50 K, somewhat

below the mean kinetic temperature inferred from obsevation of
H2 itself (70–80 K, see Rachford et al. 2002) but consistent with
formation and rotational excitation of CO at n(H2) ≈ 100 cm−3.
The very weak mm-wave emission of optically-thick HCO+ is
consistent with such n(H2) if n(e)/n(H2) ≈ 4 × 10−4 as expect-
edfor diffuse gas in which only a small fraction (<∼1–5%) of the
free gas-phase carbon resides in CO and the rest is in the form
of C+.

Despite the consistency of these arguments, it is the case
that no quiescent ion-molecule chemistry will reproduce the ob-
served abundances at such low n(H2). Some recent models of
the diffuse cloud chemistry regard these conditions as a general
background against which transient processes may operate
(Falgarone et al. 2006; Smith et al. 2004), affecting the ob-
served chemical abundance patterns without necessarily imprint-
ing themselves observably on the internal degrees of freedom in
the molecules themselves.
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