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APPLICATION TO DATA RECONCILIATION AND DIAGNOSIS
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Abstract. We are concerned here with dynamical processes whose states and inputs are measured
or partially measured. Due to the noise which corrupt the measurements, we want to simulta-
neously estimate the states and the inputs. For the case where all the measurements are available,
the estimation may be considered as a filtering technique; otherwise, the problem is more compli-
cated as we want also to obtain an estimation of the unmeasured variables. In the very particular
but difficult situation where not any inputs is measured, the problem may be linked to those in-
volving unknown input observers; in signal processing, when the system is time-invariant, this
problem is often referred  to as deconvolution. The proposed technique is applied for measure-
ments corrupted by noise which generally gives bad estimations of the unknown inputs. In order
to obtain smooth estimations, additional constraints are proposed. Copyright © 2000 IFAC.

1. INTRODUCTION

For purpose of simulation, control and optimisation
of process, the reliability of data is of great
significance. Data reconciliation can be defined as the
estimation of measured process data variables to
reduce measurement error through the use of temporal
and functionnal redundancies. Mathematically, the
optipal estimates can be defined as the optimal
solution to a constrained least-squares or maximum
likelihood objective function. The problem of data re-
conciliation, in respect to a given model, has been the
subject of many works; for specific fields in
engineering sciences, data reconciliation is also well
known as mass balance or energy balance
equilibration. With a general point of view, the
underlying techniques deal with constrained opti-
mization theory. However, some others tools are nee-
ded, specially observability analysis when only some
measurement are available and fault detection proce-
dure where the available data may be corrupted by
gross errors [Albuquerque, 1996]. Additionally, va-
riance estimation is somewhat difficult to estimate and
the issue of the probability distribution of data cannot
be addressed satisfactorily from the observations.
In the specific literature, many reconciliation tech-
niques have been proposed in the steady-state situation
with different statistical techniques aiming at the iden-
tifications of bias and gross errors. The obvious alter-
native to steady-state models is to rely on reconcilia-
tion methods based on dynamic models. The case of
linear systems has been extensively analysed, many of
the proposed techniques being rooted on Kalman filte-
ring. However, these methods, probably because they
used one-step procedure, at  best ameliorate the fluc-

tuations of the measured data, but rarely produce a
smooth profile of estimation. Some responses to this
problem have been presented by using for example
successive linearized horizon and/or neural networks.
Despite of these efforts, all the proposed methods have
the same aforementioned lack of smoothness. And, as
it is well known, this fact is more crucious when an
estimation of the input of a process is performed
through its measured outputs.  One exception has to
be formulated concerning the paper of Bagajewicz
(1997) which uses an integral approach for dynamic
data reconciliation ; this technique allows to obtain,
for particular classes of systems, a smoothing effect on
the estimated data.

Our paper focuses on presenting a method allowing to
estimate the input and the output of a process, in such
a way that the estimation satisfy the model of the pro-
cess, and preserving a smooth profile of the estima-
tions. It is shown that an observer for the process may
be designed which works as a sliding-window convo-
lution operator. This kind of observer has also been
proposed in [Medvedev 1996], in the case where all
the measurements of the process inputs were available.

The paper is organized as follows. First, we formulate
the problem of functional estimation. Then, the afore-
mentioned problem is solved by means of a finite
memory estimator. Furthermore, the particular case of
unknown input is considered. Finally, simulation
examples illustrating the proposed estimation proce-
dure are given, one of the example being devoted to
diagnosis and fault detection.

2. PROBLEM FORMULATION



In the continuous case, the models of the physical pro-
cess and of its measurement device are taken as fol-
lows:

˙ x (t) = Ax(t) + Bu(t)

xm (t) = Hx x(t) + bx (t )

um (t ) = Huu(t) + bu (t)
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(1)

where x  is the state vector, u  and xm  and um  are

respectively the input and the output vectors. Thus,

we take into account two measurement equations, the

first one for the state and the second one for the input.

As particular situation, it is possible to consider the

following definitions: Hx = I  and/or Hu = I . In the

following of the paper, one may consider that the

matrices Hx  and Hu  allow to select which

components of the state or the input are measured.

Thus, the problem consists in finding the estimations
ˆ x (t )  and ˆ u (t ) of the states and the inputs from the

available measurements on the time window t0 ,  t1[ ].
The system is supposed to be estimable and the

corresponding conditions will be given further.

Assuming a normal distribution for the measurement

errors with variance matrices Vu  and Vx , it is possible

to simultaneously estimate the states and the inputs

by using the likelihood maximum principle, that

consists in minimizing in respect to ˆ x  and ˆ u  the

quadratic criterion:
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under the linear constraints:

ˆ x 

.

(t ) ! Aˆ x (t ) ! B ˆ u (t ) = 0     t ! t0 ,  t1[ ] (2b)

The associated cost function may be expressed as:
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(3)

and the optimality conditions:
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In order to be able to solve these equations, they have
to be completed with boundary conditions on the
states. Thus we are involved with a classical but diffi-
cult problem with two side conditions. Generally, the
resolution may be obtained only through a numerical
approach due to the fact that the measurements are gi-
ven with a sampling period.

3. ESTIMATION PROCEDURE

Finding the optimum of the estimation criterion (2a)
being more easier with a discrete representation, the
formulation of the problem is now adapted to the case
of sampled data. For that, the following models are
used:

x(k +1) =!x(k ) +"u(k )

xm(k) = Hxx (k )+ bx(k)

um (k ) = Huu(k) + bu(k)
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On the observation window 1,  N[ ] , the model (5)

may be written more compactly:

A
ˆ 
X + B

ˆ 
U = 0

Xm = CX + Ex

Um = DU + Eu
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where ˆ 
X  and ˆ 

U  are formed, by piling according to
the time the different states and inputs:
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Assuming a normal distribution of the measurement

errors, the criterion to be minimized in respect to ˆ 
X 

and ˆ 
U  may be expressed:

! ˆ 
X , ˆ 

U ( ) = C
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X " Xm

V
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W
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(7)

where V  and W  directly depend on Vx  and Vu . In

order to reduce the influence of noise and to stabilise
the solution, a regularized-least-squares method has
been used in this study [Tu, 1997]. This is also
motivated to the necessity of satisfying a certain level
of smoothness for the inputs and states estimations.
Therefore, to find a solution which is also consistent
with all the measurement data, the following expres-
sion must be minimized :
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This form shows that a compromise is considered

between the fidelity to the data and the roughness of

the estimate. The structure of the !  function has to be



selected by the user. Here are two convenient

examples:
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(8a)
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 (8b)

The matrices E  and F  are chosen in order to intro-

duce a filtering effect between two (or more) consecu-

tive data. The values of !  and !  (the so-called regula-

rization parameters) determine the relative weight bet-

ween the fidelity to experimental data and the smooth-

ness of the solution. If they are too small, the regulari-

zation effect vanishes and an ill-conditioned solution

is approached. On the other hand, too large values pro-

duce smooth estimates that may be unable to track

sharp variations in the true inputs and states (a discus-

sion about the choice of these parameters may be

found in Twomey, 1965) and interpretation of the

regularization scheme has been examined in

(Commenges, 1984). Specific applications in the filed

of physiological systems arev reported in [Nicolao,

1997]. When roughness is measured by the sum of

squared second differences, one just uses
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In some cases, penalizing the second difference leads
to solutions that are excessively smooth, and better re-
sults are obtained by penalizing the estimated itself or
its first difference. In such case one may choose E = I
or

E =

1 0
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The choice of the regularization parameters have been
the subject of several studies that have been reported
in the literature on spline approximation ; however,
many ideas from spline-approximation resultas can be
extended, more or less directly, to the input-output
problem. The well known technique of Lagrange's
multipliers is used in order to obtain the estimation;
with the regularisation (8a), it can be easily establi-
shed the following optimality equations:
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X + B
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U = 0 (9c)

This set of equations being linear in respect to

!,  ˆ 
X ,  ˆ 

U ( ) , its numerical resolution is straightfor-

ward. In order to expressed an analytical solution, an

elimination procedure of the Lagrange parameters may

be used. First, let us define the matrices:
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 are full column rank,

then the matrices P  and Q  are regular. Thus, after

some calculations, it is possible to express the estima-
tions as:

ˆ X = R!1P!1 CT V!1 ! AT I ! TB( )H!1Gx( )( )Xm
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Thus, the expressions (11), with the help of defini-

tions (10) and (12), allow to estimate, from the avai-

lable measurements, the states and the inputs of the

considered process. Despite of the apparent complexity

of the results, eq. (11) clearly shows that the proposed

structure looks like a finite memory observer. The ob-

tained estimations may be used either on a fixed time

window, or a sliding time window (in this last case, it

should be point out that the gain of the filter between

the measurements and the estimated has to be compu-

ted in a preliminary step and is constant). Moreover,

one can say that the expressions (11) are those of a

fixed memory filter whose design parameters, besides

the length of the time window, are the filtering coeffi-

cients !  and ! ; the last ones are left to the user and

may be chosen according to the noise level.

It is clear that the size of the optimization problem in-

creases linearly with the number of measurements. For

on line diagnosis purpose, an estimation technique has

to computationally feasible and a consequently we

must be able to bound the number of variables to be

estimated. This motivate to use a fixed-size moving

window in which the number of measurements that we

base our estimate on (and, hence the size of the opti-

mization) remains constant. Considering eq. (11), it

appears that the gains of the observer remain constant

and be computed off line. Concerning the size of the

window, a compromise has to be performed. The win-



dow has to contain enough information to obtain sui-

table estimates of the states ; however, for on-line ap-

plications, low signal-to-noise ratios, there is a need

to reduce the computational requirements (i.e.  the ho-

rizon size). An additional advantage to the moving

window approach is the memory effect : since the win-

dow only extends backwards in time for a finite length

of time, data collected long before the current time

does not enter into the estimation for the current time.

4. THE UNMEASURED INPUTS CASE

It is an extreme situation where the input of a process

has to be reconstructed only from its output. However,

it is a common situation in the field of automatic

control and also in signal processing. For that pur-

pose, the proposed technique may be directly applied

when considering the limit case where W  tends to-

ward infinity.

ˆ X = R
!1

P
!1

C
T

V
!1 !

A
T

I ! BQ
!1

B
T( )H

!1
Gx

" 

# 

$ 
$ 

% 

& 

' 
' 

" 

# 

$ 
$ 

% 

& 

' 
' 

Xm

ˆ U = ! S
!1

Q
!1

B
T

AP
!1

C
T
V
!1

+

B
T

I ! AP
!1

A
T( )H

!1
Gx

" 

# 

$ 
$ 

% 

& 

' 
' 

" 

# 

$ 
$ 

% 

& 

' 
' 

Xm

with the new definition of the Q matrix :

Q = !F
T
F + B

T
B

5. EXAMPLES

Let us consider the first order system :

xk+1 = 0. 9xk + 0.1uk

x
m,k = x

k
+ b

k

! 
" 
# 

.

where only the state has been measured. The test data
obtained from this process are shown in figure 1. The
figure shows the following results (from top to bot-
tom):

the measured input (is not used in the estimation
procedure)

the measured output (corrupted by noise)
the estimated input  and the measured input
the estimated state and the measured state
the estimated input and the true input
the estimated state and the true state

As it can be seen, although the measurement input has
not been taken into account, a very good reconstruc-
tion of the input has been obtained.

Application to process diagnosis
In order to detect faults affecting a process, the well-
known technique of residual structuration may be
considered Analogous to the employment of analytical
observers in fault detection and isolation [Patton,
1989], the proposed finite memory observer (FMO) is
able to serve as a substitute in the case where no com-
plete information is available or used.  Finite Memory
observer scheme (FMDOS) and Finite Memory
Generalized Observer Scheme (FMGOS) may be used
to isolate faults. In FMDOS each estimation is driven
by an output from a different single sensor, and all the

variables (input, state, output) are estimated. In
FMGOS, an estimator is dedicated to a certain sensor
and is driven by all outputs except that of the respec-
tive sensor. The same technique may be defined and
applied to actuator fault detection and isolation. The
following process has been used to simulate data :
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Figure 1. Unknow input estimation

During the simulation, faults have been added. Two
constant actuators faults were simulated between
sample time 116 and 118 for the first actuator and
between samples time 56 and 62 for the second actua-
tor. The sensor faults are also constant and appear
between sample time 84 and 90 for the first sensor and
between 28 and 34 for the second.
All the inputs and the outputs are measured, but ac-
cording to the FMDOS and FMGOS schemes, diffe-
rent selections of measurement will be considered. We
have examined five estimators depending on this
selection :

Inp. 1 Inp. 2 Out. 1 Out. 2

case 1 x x x x

case 2 x x x 0

case 3 x x 0 x

case 4 x 0 x x

case 5 0 x x x

Table 1.



On the figures 2 to 6, corresponding to the five cases
of table 1, the results are organized as follows. The
two first parts of each figure show the measured inputs
and their estimations allowing to generate two resi-
duals ; the two last parts are related to the outputs (or
state variables) and their estimations, allowing to ge-
nerate two other residuals. The vertical dashed lines
indicate the time duration of the faults.

It can be observed the following results. When all the
measurements are used (fig. 2), the residuals are affec-
ted by the four faults. However, the sensitivity of the
residuals to the faults are different (see for example,
the residual on input 2 which is very sensitive to fault
on actuator 2, while the other residuals have very
small variations according to this fault). As a general
result, it can be seen and proved that a residual is
mostly affected by the fault on its corresponding
variables.
When only a part of the measurements is used, the re-
sults have the following interpretation. For example,
when using all the measurements except the first state
(fig. 3), the residual on input 2 is sensitive to the fault
on this input ; the other residuals and more or less
sensitive to this fault. Same constatation and justifica-
tion may be given in the other situations (fig. 4, 5 and
6). As it is well known in fault detection and isolation
techniques with infinite memory observer, a decision
table may be established in order to isolate the faults.
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Figure 2. Estimation. Case 1.

CONCLUSION

This paper has presented a global approach to dynamic
data reconciliation of linear systems ; by comparison

with approaches taking into account only the output
measurements, the propose technique performs an es-
timation of both input, output and state variables.
Two applications have been pointed out : the estima-
tion of an unknown input and the detection-localisa-
tion of faults. Among the further works is now being
undertaken the analysis of the parameters of the obser-
ver : the length of the sliding window, the weight al-
lowing to adjust the smoothing effect of the estima-
tions.
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Figure 3.  Estimation. Case 2.
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