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ANALYSIS OF GENERALIZED BILINEAR SYSTEMS
APPLICATION TO DIAGNOSIS
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In this survey, the authors try to summarize the various aspects of data reconcibation,
point out the maiwlifficulties and to present the state of the art in this field specially for
systems described by generalized bilinear models. In pratttessse models are used to
describeconservation of material in total flow and partial flows for different chemical or
minerallurgical species. The authors present the steps of the data recongitiatiem in
thefollowing order : techniques of data reconciliation, classification of the data by the
observability conceptgross error detection and localisation, variance of measurement
error estimation, sensor positioning.

KEYWORDS

Data reconciliation, analytical redundancy, observability, gevssr detection, variance
estimation, model based fault detection.

1. INTRODUCTION

Before improving the contradf a plant, we must make sure of information coherency
issued from sensors. In fathjs information can be corrupted by errors and can also
deviate fromthe optimum functioning range. Consequently the operator must take
precautions not to be outside of this range. The detection of errors is yesok tout the
deviations. The detection, the location, the different error characterizadotsthe
estimation of true values are the main steps in the data reconciliation problem.

Process measurements are subject to two tyfpesors : firstly random errors generally
taken to be independent and gaussian with zero mean and secondly gross errasawhich
caused by non-random events suchmadfunctioning sensors, instrument biases and
inexact process models.

Various methods for the detection dadation of gross errors in process data have been
proposed in recent years including the parity space approach, the standsdited
squareresiduals approach and the standardized imbalance residuals approach. Process
data reconciliation and its relationship to process monitoring have been the sdibject
many publications. For recent ones, see for example, Mah [8] or Ragot [12].

The different steps of data reconciliation will be illustratgth the support of a single
example issued frorminera-lurgical applications. The corresponding flowsheet is pre
sented at figure 1 ; four nodes and nine strearasconside-red with measurements of
flow (X) and concentrations in three components (cuppetedd Yo, zinc Y3) ; table 1
summarizes, for the differerdtreams (Str.) the measure-ments and their respective
variances (var.).



Str. 1 2 3 4 5 6 7 8 9

X 149.0 150.0 130.0 100.0 90.0 9.0 49.0 29.0 20.0
var. (222 225 169 100 81 1 24 8 4

Y1 8.00 9.00 9.22 14.00 7.97 9.98 5.98 13.40 9.92
var. 0.60 0.80 0.80 2.00 0.60 1.00 040 1.80 1.00

Y2 13.30 9.90 12.28 13.96 23.30 19.90 20.10 6.67 20.00
var. 1.80 1.00 150 190 5.20 4.00 4.10 0.40 4.00

Y3 6.60 6.00 6.15 5.99 555 10.00 8.02 11.70 4.95
var. 0.40 040 040 040 0.30 1.00 0.60 140 O0.20

Table 1 : raw data and their variances
Let us now consider component balance equations around unit k of the following form :

\Y
—zl mgj X; =0 (1a)
JV
21 mgj Xj Y¢j=0 c=1,..,p (1b)
J:

where X is the flow rate of stream j andyis the molar or mass fraction of the
considered component c in the jth stream and where the coefficigritave thevalues 0,
+1 or -1 in agreement with the streams connected to this unit.

In matrix notation, equations (1) can be written as follows :

MX=0 (2a)
MXOYe=0 c=1,..,p (2b)

where M is the n.v incidence matrix of the process, Xheés flow vector and ¥ the
concentration vector of the component ¢ and where the opéfagivesthe product of
two vectors component by component.

2. DATA RECONCILIATION

The data reconciliation problem can f@mulated in very simple terms. A set of
measurements does not check process functioning equationanbipwne correct (or
reconcile) the measurements in order to force them to verify this set of equetichs
are supposed to be structurally exact ? With such a formulatiorredatziliation can be
expressed as the research of the optimum of a function subject to constraints.



In practice, the formulation of the problem is not so easy. Indeedis faced with the
choice ofhypothesis about the statistical distribution of the measurement errors, the
system dimension (number of variables and constraints), the radtuhe® constraints
(static or not, linear or not), the process state (steady-state or not)yjcangplete or
imperfect knowledge of the model structure or of the parameéles.presentation is
limited here to steady-state systems but there are no theoretical difficulties to tveend
formulation to dynamical systems.

The true values estimation or data reconciliation must be carried out tatongccount
the distribution and nature of the measurement erf@rass errors which are caused by
non-random events such as malfunctioning sensors, instrubi@sgs and inexact
process models must be localised #vedamplitude of these errors estimated. This point
will be developed further. The data reconciliation, whiad present now, supposes that
measurement errors are independent, gaussian with zero mean and known variance.

Let us assume that each measurement is independent and nafis@ibuted with
unknown mean ankinown variance ; the data validation problem is then reduced to a

minimum search problem. The vectdtsndY of the estimated data is obtairfedm the
measurements X andcYby minimizing, under the constraints (2Jritten for the
estimations, the criterion J :

2= KX+ § e-velf ) 3)

where V and Y are the variance-covariance matrices of the measurement errors.

We can solve this problem by classical seaitlhe stationary point of the associated
lagrangian. It is clear that the dimension of the obtasyedem after minimizing the
lagrangian can be veiynportant and moreover the different equations are non-linear ;
however, its formulation points out the advantages of a resolution usingethknown
principles of decomposition and coordination of tteculus. Other principles of
resolutioncan be applied, in particular the complete linearisation of the constraint
equations ; in fact, in the case of bilinear equations it seems thadritieples of
hierarchical calculus are more powerful and take more advantafe structure of the
equationsAn elegant formulation of this hierarchical calculus involves a direct search
algorithm :

X =[1-VMT(MVMTYTM] [X -V § NI (4)
c=1
Yo = [1- VANT(NVNTIN ] Y, (5)
with :
Ac=(NVNT)SIN Y¢ (6)
N'=M A (7)
NC =M /\C (8)

where thediagonal matriceg\ and/\. have diagonal elements which are the components
N N\
of same order of andY.

Then each level of calculus (eq. 5 and 6) uga®jpection matrix (progressively modified

by the estimationef the preceding levels). The equations (5) and (6) are directly solved
with the measuress initial choice of the estimations ; the convergence of the calculus is
always obtained by a proper chomfea relaxation filter between the different levels. The
iterations are stoppeshen, between two iterations, the numerical values of the estimates
do not significatively vary. For the given data and flowslveztobtain the reconciliated
data of table 2. Examination of these data indicates that smndata have been strongly
corrected (by example flow X for stream 2) ;iaterpretation of these corrections will be
given in the section 3 which concerns gross error detection.



Str.| 1 2 3 4 5 6 7 8 9

X 11549 106.7 135.3 1059 969 89 483 294 196
Y1184 95 96 88 86 102 59 127 10.1
Y2 |13.7 109 129 147 142 196 199 65 209

Y3 | 7 6.6 6.6 55 51 10 78 106 5

Table 2 : reconciled data

3. OBSERVABILITY

The reconciliation technique which has been previously presented can be applied
systems described by algebraic linear or non linear equationsallhttie variables are
measured. Technological and economical constraints genprailgnt the measurement

of all the variables. The fragmentary character of informapiarhibits the immediate
usage of the previousiethods. It is then necessary to do a preliminary quantitative
analysiof all the available information in order to determine, before any calculus, those
which canbe corrected or deduced. This concept of observability is extremely important
both for methods of solving the reconciliation problem and for the design aadahesis

of systems.

Observability is based on two elementary rules derived from the analysssngble node
of a process. Let us consider the equations of a node with v streams :

yXit+taXo+...+gXy=0
a X1Yer+ta XoYeo+ ... +  XyYey=0 9)
o4l X1ij_+ aQXZYp2+ .ot @xVYpV: 0

Some of the streams are measured in X gaNd wewant to know if the unmeasured
streams can be deduced. Roughly speaking, (9kystem of equations with a certain
number of unknowns. The system d¢ensolved depending on the number of unknowns
and also on theipositions in the equations. The discussion can be state using two
fundamental rules.

rule 1 : if the variable¥X; are all known and if the cth bilinear equation has only one
unknown Y; variable, this variable can be deduced.

rule 2: if k variables X (with k<v) are unknown they can be deduced if k-1 bilinear
equations have their variables ig;ompletely known.

These two rules must be applied to single nodes but also to aggreafatiodes. It is
then necessary to detect in the flowsheet nodes with complete measureeint ¥,

Ys...

The so-called procedure BILINEAR is now given foree components but can be easily
extended for a number ¢ of components. The procedure BILINEAR is dintedwo
major steps. The first one, nametEAR, is concerned with the linear observability for
which an extended presentaticem be found in Maquin [9] : we detect the nodes which
have streams completely observed in X and the nodes which have st@apistely
observed in Y, Y2 and Y3. The second step is devotedihe deduction of unmeasured
streams by using the mutual informations given by the p{2¥and Y3 variables.



Procedur&8ILINEAR

Initialization : the lists SOBSX, SOBSY1, SOBSY2 aB®BSY3 are filled with the
numbers of the measured streams in X, Yo and Y3 ; the lists NOBSXNOBSY1,
NOBSY2 and NOBSY3 are formed with the numbers of the corresponding nodes.
Step 1:

la - apply procedure LINEAR to classify the X variables

if some X variables are deducible, complete the list SOBSX

complete the list NOBSX of the nodes with streams completely observed in X

1b - apply procedure LINEAR to classify the, Y2, Y3 variables

complete the list NOBSY1 of the nodes with streams completely observad in Y
complete the list NOBSY?2 of the nodes with streams completely observed in Y
complete the list NOBSY3 of the nodes with streams completely observed in Y

Step 2.

2a - find thenodes in NOBSX with one unobserved ¥tream ; as this value can be
deduced, complete the lists SOBSY1 and NOBSY1

find the nodes in NOBSX with one unobservegistteam ; as this value can be deduced,
complete the lists SOBSY2 and NOBSY2

find the nodes in NOBSX with one unobserveglstteam ; as this value can be deduced,
complete the lists SOBSY3 and NOBSY3

2b - find the nodes INOBSY1 with two unobserved X streams ; as these values can be
deduced, complete the lists SOBSX and NOBSX

find the nodes in NOBSY2 with two unobservedsieams ; as these values can be
deduced, complete the lists SOBSX and NOBSX

find the nodes in NOBSY3 with two unobservedsieams ; as these values can be
deduced, complete the lists SOBSX and NOBSX

2c - find the nodes in NOBSY1 and NOBSY2 with three unobserved X streaths
complete the lists SOBSX and NOBSX (take care of the case of wittlesnly two and
three streamssimilar remark as the one given in step 2 of BILINEAR1 algorithm). Do
the same work for the lists NOBSY2 and NOBSY3, then NOBSY3 and NOBSY1.

2d - find the nodes in NOBSY1, NOBSY2 and NOBSY3 with four unobserved X
streams and complete the lists SOBSX HQBSX (take care of the case of nodes with

only two and three streams).

if SOBSX, SOBSY1, SOBSY2 or SOBSY3 have changed, go to step 1.

Note that in the cases 2b, 2c and 2d we must have at least one measured stream in X.

For the flowsheet ofigure 1, consider the following measurements for flow X and
components ¥, Yo and Y3 :

measured streams "X" :5,9

measured streamsiyY :1,2,3,6,8
measured streams %Y :2,3,5,6,7,8
measured streams3Y :1,3,5,6,7,8

The readershould verify that the application of the BILINEAR procedure gives the
observable sets :

X=1[2,3,4,5,6,8,p
Y1=[1,2,3,4,5,6,8,9]
Y5=[2,3,4,5,6,7,8,9]
Y3=[1,3,4,5,6,7,8]



It is also possible to obtathe observation equations which would be useful to reconcile
all the observable measurements.

4. GROSSERROR DETECTION

This part of the paper presents methods of detection and looatmeasurement failures
which are also called gross large errors. We assume that all variables are measured
(redundant system), that the measurement eaogsruled by a zero mean normal
distribution with known variances, and that the process model is correct.

There are different ways to identify a large erraith a theoretical analysis of all effects
leading to this erronwith hardware redundancy by measuring a given process variable
with different sensors, byhecking the consistency of the raw data. This third alternative
is selected here ; it is based on analytical redundancy bythgingodel equations of the
process. Many publications may be consulted for poapose, by example Jongelenen
[5], Narasimhan [11], Serth [16].

The general procedure of error detection is divided into two parts :

the generation of so-called residuals, whach func-tions of measurements that
are accentuated by the errors,
the detection, the isolation and the estimation of the errors.

In the following, we use thebalance residuals analysis (known as method of
pseudonodes) and the analysis of residuals (known as method of measurement test).
Let us return to theesults given in section 2 about data reconciliation and try to analyse
the data.

We first define an extended incidence matrix. For the given flowsheesupplementary
equation residuals are generated ; these equatiombt@ieed by linear aggregation of
the basic equations (equation five results from the aggregation of equateasd three,
equation six from the aggregation efuations two and three, equation seven from the
aggregation oéquations two and four, equation eight from the aggregation of equations
three and four).

Stream| 1 2 3 4 5 6 7 8 9
Node
1 1 -1 ) ) -1
2 . 1 -1 . -1
3 1 -1 . . 1 1
4 . 1 -1 -1
5 1 -1 1 -1 1
6 1 . -1 ) 1 . -1 1
7 . 1 . -1 -1 ) -1 .
8 1 -1 1 -1 . . . 1

Table 3 : extended incidence matrix

As just said, these supplementary equatians linear combinations of the basic
equations ; however each of theontain specific variables which will allow gross errors
detection. According to the supplementary equationsxtended incidence matrix of the
flowsheet is then presented in table 3 (lines 1 to 4 concern the basic nodes and lihes 5 to
the aggregated nodes).



Table 4 gives for each node (colunore to four) and aggregated node (columns five to
eight) the values of the normalized residuals (equation residaats|ated from raw data,
divided by their standard deviation).

Node 1 2 3 4 5 6 7 8

X -23 01 25 0.1]-00 2.7 0.1 21
Y1 -1.7 -22 1.7 2.7|-0.0 -0.5 0.0 3.0
Y2 -1.3 00 15-25|-01 16 -2.3 -0.9
Y3 -15 -09 1.7 0.1|-01 09 -09 14

Table 4 : equation residuals for the table 1 data

For a given threshold (2 by example) we can detecstispicious residuals due to the
presence in the raw data of gross error measurements. The residual -2.3 corresponds
the flow equation of node one which uses the measurement valhesfdws 1, 2 and 7

; then we can suspect the presencegbas error in one of these measurements. As the
residual -0.0 of the equation five is "correct”, the flow measurenoéstseams 1, 3, 6, 7,

9 used to calculate this residual dexlared correct. Combining these two conclusions
gives as suspicious the flow of the streams 2.

This analysis must be completed fortak residuals and may be presented with the help
of the technique of residusignature. First let us define the extended residual vector ER
formed with the components the residual vector for total flow and the residual vectors
for partial flow (in the given example the dimension of this extended vector iS#)en
Define the logical extended residual vector R obtained from ER by the following rule :

R(i) = 0 if DER(i)0 < threshold
R(i) = 1 if OER(i)D > threshold

Following the values in table 4 we obtain here :

R=(1010010101010001
0001001000000000)

For a single error on a variable (flow or chemical concentra-tion) it is easy to cotistruct
theoretical signature by only examiniifgthis variable appears in the different balance
equations. By example if flow 6 is faulty the balarmpiations (for total and partial
flows) of nodes 3, 4, 5, 6, 7 daulty (see column 6 of table 3) and therefore the corres
ponding signature is :

Sx6:(0011111000111110
0011111000111110)

If concentration of component 2 in stream 4aslty the balance equations (for partial
flow of component 2) of nodes 2, 4a6d 8 are faulty (see column 4 of table 3) and
therefore the corresponding signature is :

Sy24: (0000000000000

00
0101010100000000)

oo



The localisation of the suspicious data may be achieved by comparisahe of
experimental signature Rith the 36 pre-established signatures S. This comparison is
achieved by evaluating thlistances" between the vector R and the vectors S ; the
smallest distance enables the determination of the suspicious data. The priscedsily
extended to the localisation of two (or more) suspictaia ; in that case the R vector is
compared to the vectors obtained by logical addition of two (or more) S vectors.

The table 5 gives the values of the relative corrections of the data after recongiliation
relative correction ithe absolute difference between the measurement and the estimation
divided by the measurement. It clear appearsiwdtibitive corrections have been done ;
unfortunately itis difficult to locate with a great precision the corresponding faulty data.
The application of the gross error detection procedure (by distances evalpatids)out
different suspicious data : stream 2 in X, stream 4qinstfeam 5 in ¥ and streams 2 and

8 in Y3. We then delete variables 2 in X, 4 iq,¥% in Y2 and in order to have a mininsét

of suspiciousensors we delete only one variable i ;Yhe two possibilities have been
tested andhe more significative has been retained. The table 6 gives the relative
corrections of the datafter reconciliation (note that the symbol _ is due to the impo
ssibility to calculate the relative corrections) ; it can be seen that the relatreetions are

kept in a "correct" range.

Str. 1 2 3 4 5 6 7 8 9

X 4 29 4 6 8 1 2 1 2
Y1 5 5 4 37 8 2 1 5 2
Y2 3 10 5 5 39 1 1 2 4
Y3 | 76 10 7 8 9 0 2 10 2

Table 5 : corrections (in %), before gros error elimination

Str. 1 2 3 4 5 6 7 8 9

X|lo _ 1 o0 1 0 0 0 O
Yr{o 1 o _ 1 0 0 1 o0
Y210 1 0o 1 _ 0 0 0 O
Y31 o 1 o 0 0 0 _ 0

Table 6 : corrections (in %), after gros error elimination
5. VARIANCE MEASURESESTIMATION

Most ofthe reconciliation techniques are based on the assumption that the measurement
errorsare random variables obeying a known statistical distribution. Almost without
exception the techniques start withgwen known covariance matrix of measurement
errors. Almasy [1] haproposed a method of estimating this matrix which makes use of
available data and takes into accountroncilia-tion point of view ; some additional
illustrations are given in Darouach [3]. Recently, Ragot [13] plsposed a method
which allows simultaneously the estimation of the variance matrixtendeconciliation

of the data on several time intervals.



We limit this presentation of one time interval. In tlimse interval the process is running

near around the "functioning point" marked by *. Letasmsider X and Y. the
vectors of the true values which have been measured m times\eBiseirement equations
may be expressed as :

|
=

Xi =X +gy i=1,..,m (10a)

Yei =Y¢ + &y i=1,..,m (10b)
c=1,..,p

According to thehypothesis of normal error distribution the probability density function
of the measurements is expressed :

_vm _m p _m
Fle)=(2m 2 V[ 2 1 |V 2
c=1
10 P
exp(; = (llexi G2+ Z llevei §-0) (11)

Maximizing this function, irrespect to X, Y’;, V and \; and under the two constraints
of balance, gives the following results :

m N N

V=1 diag(E K-x%) K-x)7 (12a)
i=1

13y " T _

Vo= mdiag(Z (e-Yo) Ge-Ya))  c=1,.p (12b)
i=

N _ p

X = (I, - VYMT(MVvM T)tm) (X - % Y, c§1 NeA) (13a)

Ye=(y - VNTNVNTYIN) Y, c=1,...p (13b)

with the definitions :

_ 1 M
X=2 i:zl X; (14a)
1 m
Ye== 2 Yy 14b
¢~m 5 'c (14b)
Ac=m (NVNT)INY, c=1,..p (15)
N=MA (16)
NC: M /\C (17)

where the diagonal matricésand/\. have elements which are the componentsashe
N N
order of XandY.



This algorithm has been applied to the process described by figure 1 with tbé taaila

7. These datare given for three measurements around a steady-state of the process and
concern theflows and the three components. The table 8 gives the obtained results
concerning the estimatioof the flows and the component concentrations and also the
corresponding standard deviations (S.d.) directly computedtfrerastimated covariance
matrices. It should be noted that we obtain a good estimatforthe variance
measurements although only a few data have been used.

Str. 1 2 3 4 5 6 7 8 9

X 139.0 1035 1250 858 854 9.2 564 300 199
161.5 99.2 1352 107.2 96.3 9.1 402 289 2%9
157.4 109.5 1447 1114 935 9.4 414 274 245

Y1 73 82 94 79 73 104 5.7 13.7 10{3
74 7.8 9.1 9.0 81 96 58 128 113

75 95 8.2 83 74 95 55 127 10f

Y2 135 8.6 96 126 139 194 222 7.2 201
151 9.7 101 154 133 16.7 166 6.1 194

111 104 118 125 143 179 201 6.5 2Q.7

Y3 59 55 6.3 4.8 54 106 88 6.1 5P

74 71 6.5 6.7 46 79 89 72 4p

66 58 6.5 6.2 68 104 80 6.2 5P

Table 7 : flow and composition measurements

Str. 1 2 3 4 5 6 7 8 9

X 154.8 105.8 1279 989 89.6 9.2 49.0 29.0 12.8
S.d. 10.02 457 10.72 11.50 5.07 0.12 7.95 1.09 10.90
Y1 744 828 865 740 7.15 9.85 5.64 12.91 1Q.83
Sd. 009 0.76 057 1.10 057 040 0.13 047 0.42
Y2 13.57 10.86 12.30 13.99 13.58 17.93 19.43 6.54 20.09
Sd. 168 149 203 143 048 111 232 046 0.53
Y3 699 6.28 641 636 6.01 980 853 6.57 H.08
Sd. 071 071 0.10 093 1.00 1.24 0.40 0.50 0.69

Table 8 : flow, components and standard deviations estimations

6. SENSOR POSITIONING

Data validation, as previously described, is considered as an analysis staggeasdthe

user coherent statistical information. Additionally, the above Ineagompleted by a more
ambitious study introducing modifications tie instrumental scheme. Firstly, it is
necessary to analyse the lack of information and to make the user awéne of
instrumental inadequacy of certain parts of the process. Secandiyjer to make the

process information fuller, an understandingitef deficiency enables the satisfactory
localization of sensors. However, in practice, thieoduc-tion of such supplementary



sources of information must take into accoeconomic and technical constraints. It is
importantto propose amongst the range of possible choices, taking restrictions into
account, the one which minimizes the number of further sensors.

For thesake of brevity, we restricted ourselves to the presentation of an original method
which can beused for the placement of sensors in systems described by 3-bilinear
equations.

MX=0 [18a]
MX OYe=0 1,2, 3 [18D]

Some variables are measured, others can not be measdrdide remaining are free. For
the network of figure 1 let usonsider the following vectors of variables, where the

subscripts m, M, andn relate to the streams whidre measured, measurable and
unmeasured :

Xm =(X1 X5 Xo)T
XM =(Xa Xe X7)T
Xm = (X2 X3 Xg)T

Yim =(Y11 Y15 Y18)T
Yim = (Y13 Y16)T
Yim =(Y12 Y14 Y17 Y19)T

Yom =(Y22)T
Yom = (Y23 Y26 Y29)T
Yom = (Y21 Y24 Y25 Y27Y28)T

Yam =(Y31 Y39)T
Yam = (Y33 Y36 Y39)T
Yam =(Y32 Y35 Y37 Y39)T

As this example is simple enough it would be possible to analyse bythamlifferent
situations. However we directly examine this analysis for a general process.

In systems described by linear equations the method uspthéong of sensors is based
onthe identification of equations with more than one unknown. According to the nature
of these unknowns (whether measurable or unmea-surable) we may ootnieyable to
place additional sensors to make the system observable.

The generalized bilinear case can be treated by this methodsuatore complicated due
to the interactions between the variables X agdThat isdeductions on X depend not
only on the X variables but also tre Y. variables which are in the bilinear equations in
X and Y. This implies that placing an additional sensor on a stregor X simulta
neously modifies the observability of X and.Y

For a proper understanding of thaésteractions the elemen-tary rules of observability of
linear equations in X anfilinear in X and ¥ should be remembered referring to Crowe
[2] and Ragot [14].

1 - An equation (or group of equations) with only one unknown inobsgrvable :
the X variable can be deduced directly from a linear equation.

2 - An equation (or group of equations) having all its variables in X knowolgd
one unknown in a vector oYis observable : the unknown varialie Y; can be
deduced from the bilinear equation.



3 - An equation (or group of equations) with only k unknown variablasdXall its
variables in (k-1) vectors ¢yknown is observablélhe p unknown variables in X
can be deduced from a linear equation and (k-1) bilinear equations.

The principle for locating sensors is basi@@ctly on this analysis. An additional sensor
(the generalisation to more than one is obvious) which is added to maystean
completly observable should be placed according toafnie three situations given
below.

1 - For an equation (or group of equations) with two unknown variables in X and
one unknown variable in a vectoi,Ytwo types of action can be taken. Placing a
sensor on an X stream leads to situatiomle remaining X variable becomes
deducible. This leads to situation 2 and thev&riable becomes deducible.itifis
possible to place a sensor on g Stream this leadt situation 3. The two X
variables are then deducible.

2 - For an equation (or group of equations) with all the variables in X known and
two variables in a vector yunknown,the placing of a sensor on one of the two
unmeasured variablés Y streams leads to situation 2. The remaining/atiable

can be deduced.

3 - For an equation (or group of equations) Withnknown variables in X and k-2
vector Yc with all their variables known, the placing of a sensor on an X stieszahs

to situation 3. The two X other streatvscome deductible. If it is possible to place
a sensor on a Y stream in orderdiotain a supplementary vectore Yomplety
known, this also leads to situation 3.

4 - For arequation (or group of equations) with k+1 unknown variables in X and
k-1 vector Yc with all their variableknown, we may adopt the same conclusions as
in case 3.

The general algorithm for placing sensors makes an intensive wme aforithm of
linear observability as related Maquin [9, 10] and of the algorithm for placing sensors
issued from the analysis of the incidence matrix. It should be notetth¢hpartitioning is
first done for the X variablethen for the Y variables. Partitioning by X variables is used
directly for placing additional X sensors. On the otha&nd partitioning by Y variables
which are linked to the X variables in the bilinear equations camnatsed directly for
placing additional sensor. It onlyives the list of bilinear equations with completely
measured Y variables and those equations with all measured streams except one.

For the given configuration, the reader can verify that the usemjlementary sensors
defined in the lists XY1s,Y2s,Y3s:

(Xa)T Y1s = (Y13 Y16)T
(Y23 Y26)T Y3s = (Y33 Y36)T

allows the deduction of other data defined in the ligtY X4.Y2d,Y34:

Xs
Yos

Xd = (X2 X3 Xe X7 Xg)T  Yid = (Y14)T
Yod = (Y29)T Y3d = (Y35 Y3g)T

and one notice that some sensors, which could be higeel ,not been : X X7 Yog Y3g
(moreover these last variables are deducible).



CONCLUSION

For the class of processes described by biligeaeralized equations, we have illustrated
through a given example the different steps of data reconcilidttun.application to n
linear generalized equations could be a straightforward extension.
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