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ANALYSIS OF GENERALIZED BILINEAR SYSTEMS
APPLICATION TO DIAGNOSIS

José RAGOT, Didier MAQUIN, Mohamed DAROUACH
Centre de Recherche en Automatique de Nancy
Centre de Recherche sur la Valorisation des Minerais
Rue du doyen Marcel Roubault - BP 40 - 54501 Vandoeuvre Cedex - FRANCE

In this survey, the authors try to summarize the various aspects of data reconciliation, to
point out the main difficulties and to present the state of the art in this field specially for
systems described by generalized bilinear models. In practise, these models are used to
describe conservation of material in total flow and partial flows for different chemical or
minerallurgical species. The authors present the steps of the data reconciliation problem in
the following order : techniques of data reconciliation, classification of the data by the
observability concept, gross error detection and localisation, variance of measurement
error estimation, sensor positioning.
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1.   INTRODUCTION

Before improving the control of a plant, we must make sure of information coherency
issued from sensors. In fact, this information can be corrupted by errors and can also
deviate from the optimum functioning range. Consequently the operator must take
precautions not to be outside of this range. The detection of errors is used to point out the
deviations. The detection, the location, the different error characterizations and the
estimation of true values are the main steps in the data reconciliation problem.

Process measurements are subject to two types of errors : firstly random errors generally
taken to be independent and gaussian with zero mean and secondly gross errors which are
caused by non-random events such as malfunctioning sensors, instrument biases and
inexact process models.

Various methods for the detection and location of gross errors in process data have been
proposed in recent years including the parity space approach, the standardized least
square residuals approach and the standardized imbalance residuals approach. Process
data reconciliation and its relationship to process monitoring have been the subject of
many publications. For recent ones, see for example, Mah [8] or Ragot [12].

The different steps of data reconciliation will be illustrated with the support of a single
example issued from minera-lurgical applications. The corresponding flowsheet is pre-
sented at figure 1 ; four nodes and nine streams are conside-red with measurements of
flow (X) and concentrations in three components (cupper Y1, lead Y2, zinc Y3) ;  table 1
summarizes, for the different streams (Str.) the measure-ments and their respective
variances (var.).
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Figure 1 : a flotation process

 Str. 1 2 3 4 5 6 7 8 9

 X 149.0 150.0 130.0 100.0 90.0 9.0 49.0 29.0 20.0
 var. 222 225 169 100 81 1 24 8 4

 Y1 8.00 9.00 9.22 14.00 7.97 9.98 5.98 13.40 9.92
 var. 0.60 0.80 0.80 2.00 0.60 1.00 0.40 1.80 1.00

 Y2 13.30 9.90 12.28 13.96 23.30 19.90 20.10 6.67 20.00
 var. 1.80 1.00 1.50 1.90 5.20 4.00 4.10 0.40 4.00

 Y3 6.60 6.00 6.15 5.99 5.55 10.00 8.02 11.70 4.95
 var. 0.40 0.40 0.40 0.40 0.30 1.00 0.60 1.40 0.20

Table 1 : raw data and their variances

Let us now consider component balance equations around unit k of the following form :

∑
v

j=1
 mkj Xj  = 0 (1a)

∑
v

j=1
 mkj Xj Ycj = 0                 c = 1, ..., p (1b)

where Xj is the flow rate of stream j and Ycj is the molar or mass fraction of the
considered component c in the jth stream and where the coefficients mkj have the values 0,
+1 or -1 in agreement with the streams connected to this unit.

In matrix notation, equations (1) can be written as follows :

M X = 0 (2a)
M X ⊗  Yc = 0                      c = 1, ..., p (2b)

where M is the n.v incidence matrix of the process, X is the flow vector and Yc the
concentration vector of the component c and where the operator ⊗  gives the product of
two vectors component by component.

2.   DATA RECONCILIATION

The data reconciliation problem can be formulated in very simple terms. A set of
measurements does not check process functioning equations. How may one correct (or
reconcile) the measurements in order to force them to verify this set of equations which
are supposed to be structurally exact ? With such a formulation, data reconciliation can be
expressed as the research of the optimum of a function subject to constraints.



In practice, the formulation of the problem is not so easy. Indeed one is faced with the
choice of hypothesis about the statistical distribution of the measurement errors, the
system dimension (number of variables and constraints), the nature of the constraints
(static or not, linear or not), the process state (steady-state or not), and incomplete or
imperfect knowledge of the model structure or of the parameters. The presentation is
limited here to steady-state systems but there are no theoretical difficulties to extend the
formulation to dynamical systems.

The true values estimation or data reconciliation must be carried out taking into account
the distribution and nature of the measurement errors.  Gross errors which are caused by
non-random events such as malfunctioning sensors, instrument biases and inexact
process models must be localised and the amplitude of these errors estimated. This point
will be developed further. The data reconciliation, which we present now, supposes that
measurement errors are independent, gaussian with zero mean and known variance.

Let us assume that each measurement is independent and normally distributed with
unknown mean and known variance ; the data validation problem is then reduced to a
minimum search problem. The vectors X̂ and Ŷc of the estimated data is obtained from the
measurements X and Yc by minimizing, under the constraints (2) written for the
estimations, the criterion J :

J =  
1
2 ( ||X̂ - X||2

V  -1 + ∑
c=1

p
 ||Ŷc - Yc||

2
V c

-1 ) (3)

where V and Vc are the variance-covariance matrices of the measurement errors.

We can solve this problem by classical search of the stationary point of the associated
lagrangian. It is clear that the dimension of the obtained system after minimizing the
lagrangian can be very important and moreover the different equations are non-linear ;
however, its formulation points out the advantages of a resolution using the well known
principles of decomposition and coordination of the calculus. Other principles of
resolution can be applied, in particular the complete linearisation of the constraint
equations ; in fact, in the case of bilinear equations it seems that the principles of
hierarchical calculus are more powerful and take more advantage of the structure of the
equations. An elegant formulation of this hierarchical calculus involves a direct search
algorithm :

X̂  = [I - VMT (MVM T)-1 M] [X - V ∑
c=1

p
 NT

c λc] (4)

Ŷc  =  [I - VcNT (NVcNT)-1 N ] Yc (5)

with :

λc = (NVcNT)-1 N  Yc (6)
N = M Λ (7)
Nc = M Λc (8)

where the diagonal matrices Λ and Λc have diagonal elements which are the components

of same order of X^  and Ŷc.

Then each level of calculus (eq. 5 and 6) uses a projection matrix (progressively modified
by the estimations of the preceding levels). The equations (5) and (6) are directly solved
with the measures as initial choice of the estimations ; the convergence of the calculus is
always obtained by a proper choice of a relaxation filter between the different levels. The
iterations are stopped when, between two iterations, the numerical values of the estimates
do not significatively vary. For the given data and flowsheet we obtain the reconciliated
data of table 2. Examination of these data indicates that some raw data have been strongly
corrected (by example flow X for stream 2) ; an interpretation of these corrections will be
given in the section 3 which concerns gross error detection.



Str. 1 2 3 4 5 6 7 8 9

X 154.9 106.7 135.3 105.9 96.9 8.9 48.3 29.4 19.6

Y1 8.4 9.5 9.6 8.8 8.6 10.2 5.9 12.7 10.1

Y2 13.7 10.9 12.9 14.7 14.2 19.6 19.9 6.5 20.9

Y3 7 6.6 6.6 5.5 5.1 10 7.8 10.6 5

Table 2 : reconciled data

3.   OBSERVABILITY

The reconciliation technique which has been previously presented can be applied to
systems described by algebraic linear or non linear equations when all the variables are
measured. Technological and economical constraints generally prevent the measurement
of all the variables. The fragmentary character of information prohibits the immediate
usage of the previous methods. It is then necessary to do a preliminary quantitative
analysis of all the available information in order to determine, before any calculus, those
which can be corrected or deduced. This concept of observability is extremely important
both for methods of solving the reconciliation problem and for the design and the analysis
of systems.

Observability is based on two elementary rules derived from the analysis of a simple node
of a process. Let us consider the equations of a node with v streams :

a1 X1 + a2 X2 + ... + av Xv = 0
...
a1 X1Yc1 + a2 X2Yc2 + ... + av XvYcv = 0 (9)
...
a1 X1Yp1 + a2 X2Yp2 + ... + av XvYpv = 0

Some of the streams are measured in X or Yc and we want to know if the unmeasured
streams can be deduced. Roughly speaking, (9) is a system of equations with a certain
number of unknowns. The system can be solved depending on the number of unknowns
and also on their positions in the equations. The discussion can be state using two
fundamental rules.

rule 1 : if the variables Xj are all known and if the cth bilinear equation has only one
unknown Ycj variable, this variable can be deduced.

rule 2 : if k variables Xj (with k<v) are unknown they can be deduced if k-1 bilinear
equations have their variables in Ycj completely known.

These two rules must be applied to single nodes but also to aggregation of nodes. It is
then necessary to detect in the flowsheet nodes with complete measurement in X, in Y1,
Y2...

The so-called procedure BILINEAR is now given for three components but can be easily
extended for a number c of components. The procedure BILINEAR is divided into two
major steps. The first one, named LINEAR, is concerned with the linear observability for
which an extended presentation can be found in Maquin [9] : we detect the nodes which
have streams completely observed in X and the nodes which have streams completely
observed in Y1, Y2 and Y3. The second step is devoted to the deduction of unmeasured
streams by using the mutual informations given by the X, Y1,Y2 and Y3 variables.



Procedure BILINEAR

Initialization : the lists SOBSX, SOBSY1, SOBSY2 and SOBSY3 are filled with the
numbers of the measured streams in X, Y1, Y2 and Y3 ; the lists NOBSX, NOBSY1,
NOBSY2 and NOBSY3 are formed with the numbers of the corresponding nodes.
Step 1 :
1a - apply procedure LINEAR to classify the X variables
if some X variables are deducible, complete the list SOBSX
complete the list NOBSX of the nodes with streams completely observed in X

1b - apply procedure LINEAR to classify the Y1, Y2, Y3 variables
complete the list NOBSY1 of the nodes with streams completely observed in Y1
complete the list NOBSY2 of the nodes with streams completely observed in Y2
complete the list NOBSY3 of the nodes with streams completely observed in Y3

Step 2 :
2a - find the nodes in NOBSX with one unobserved Y1 stream ; as this value can be
deduced, complete the lists SOBSY1 and NOBSY1
find the nodes in NOBSX with one unobserved Y2 stream ; as this value can be deduced,
complete the lists SOBSY2 and NOBSY2
find the nodes in NOBSX with one unobserved Y3 stream ; as this value can be deduced,
complete the lists SOBSY3 and NOBSY3

2b - find the nodes in NOBSY1 with two unobserved X streams ; as these values can be
deduced, complete the lists SOBSX and NOBSX
find the nodes in NOBSY2 with two unobserved X streams ; as these values can be
deduced, complete the lists SOBSX and NOBSX
find the nodes in NOBSY3 with two unobserved X streams ; as these values can be
deduced, complete the lists SOBSX and NOBSX

2c - find the nodes in NOBSY1 and NOBSY2 with three unobserved X streams and
complete the lists SOBSX and NOBSX (take care of the case of nodes with only two and
three streams ; similar remark as the one given in step 2 of BILINEAR1 algorithm). Do
the same work for the lists NOBSY2 and NOBSY3, then NOBSY3 and NOBSY1.

2d - find the nodes in NOBSY1, NOBSY2 and NOBSY3 with four unobserved X
streams and complete the lists SOBSX and NOBSX (take care of the case of nodes with
only two and three streams).

if SOBSX, SOBSY1, SOBSY2 or SOBSY3 have changed, go to step 1.

Note that in the cases 2b, 2c and 2d we must have at least one measured stream in X.

For the flowsheet of figure 1, consider the following measurements for flow X and
components Y1, Y2 and Y3 :

measured streams "X" : 5 , 9
measured streams "Y1" : 1 , 2 , 3 , 6 , 8
measured streams "Y2" : 2 , 3 , 5 , 6 , 7 , 8
measured streams "Y3" : 1 , 3 , 5 , 6 , 7 , 8

The reader should verify that the application of the BILINEAR procedure gives the
observable sets :

X =  [ 2 , 3 , 4 , 5 , 6 , 8 , 9 ]
Y1 = [ 1 , 2 , 3 , 4 , 5 , 6 , 8 , 9 ]
Y2 = [ 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ]
Y3 = [ 1 , 3 , 4 , 5 , 6 , 7 , 8 ]



It is also possible to obtain the observation equations which would be useful to reconcile
all the observable measurements.

4.   GROSS ERROR DETECTION

This part of the paper presents methods of detection and location of measurement failures
which are also called gross or large errors. We assume that all variables are measured
(redundant system), that the measurement errors are ruled by a zero mean normal
distribution with known variances, and that the process model is correct.

There are different ways to identify a large error : with a theoretical analysis of all effects
leading to this error, with hardware redundancy by measuring a given process variable
with different sensors, by checking the consistency of the raw data. This third alternative
is selected here ; it is based on analytical redundancy by using the model equations of the
process. Many publications may be consulted for that purpose, by example Jongelenen
[5], Narasimhan [11], Serth [16].

The general procedure of error detection is divided into two parts :

the generation of so-called residuals, which are func-tions of measurements that
are accentuated by the errors,

the detection, the isolation and the estimation of the errors.

In the following, we use the balance residuals analysis (known as method of
pseudonodes) and the analysis of residuals (known as method of measurement test).
Let us return to the results given in section 2 about data reconciliation and try to analyse
the data.

We first define an extended incidence matrix. For the given flowsheet four supplementary
equation residuals are generated ; these equations are obtained by linear aggregation of
the basic equations (equation five results from the aggregation of equations one and three,
equation six from the aggregation of equations two and three, equation seven from the
aggregation of equations two and four, equation eight from the aggregation of equations
three and four).

Stream 1 2 3 4 5 6 7 8 9

 Node
   1 1 -1 . . . . -1 . .
   2 . . 1 -1 . . . -1 .
   3 . 1 -1 . . 1 . . 1

4 . . . 1 -1 -1 . . .

5 1 . -1 . . 1 -1 . 1
   6 . 1 . -1 . 1 . -1 1
   7 . . 1 . -1 -1 . -1 .
   8 . 1 -1 1 -1 . . . 1

                Table 3 : extended incidence matrix

As just said, these supplementary equations are linear combinations of the basic
equations ; however each of them contain specific variables which will allow gross errors
detection. According to the supplementary equations the extended incidence matrix of the
flowsheet is then presented in table 3 (lines 1 to 4 concern the basic nodes and lines 5 to 8
the aggregated nodes).



Table 4 gives for each node (columns one to four) and aggregated node (columns five to
eight) the values of the normalized residuals (equation residuals, calculated from raw data,
divided by their standard deviation).

  Node 1 2 3 4 5 6 7 8

X -2.3 0.1 2.5 0.1 -0.0 2.7 0.1 2.1

Y1 -1.7 -2.2 1.7 2.7 -0.0 -0.5 0.0 3.0

Y2 -1.3 0.0 1.5 -2.5 -0.1 1.6 -2.3 -0.9

Y3 -1.5 -0.9 1.7 0.1 -0.1 0.9 -0.9 1.4

    Table 4 : equation residuals for the table 1 data

For a given threshold (2 by example) we can detect the suspicious residuals due to the
presence in the raw data of gross error measurements. The residual -2.3 corresponds to
the flow equation of node one which uses the measurement values of the flows 1, 2 and 7
; then we can suspect the presence of a gross error in one of these measurements. As the
residual -0.0 of the equation five is "correct", the flow measurements of streams 1, 3, 6, 7,
9 used to calculate this residual are declared correct. Combining these two conclusions
gives as suspicious the flow of the streams 2.

This analysis must be completed for all the residuals and may be presented with the help
of the technique of residual signature. First let us define the extended residual vector ER
formed with the components of the residual vector for total flow and the residual vectors
for partial flow (in the given example the dimension of this extended vector is then 32).
Define the logical extended residual vector R obtained from ER by the following rule :

R(i) = 0 if  ER(i)  < threshold
R(i) = 1 if  ER(i)  > threshold

Following the values in table 4 we obtain here :

R = ( 1  0  1  0  0  1  0  1  0  1  0  1  0  0  0  1
         0  0  0  1  0  0  1  0  0  0  0  0  0  0  0  0 )

For a single error on a variable (flow or chemical concentra-tion) it is easy to construct the
theoretical signature by only examining if this variable appears in the different balance
equations. By example if flow 6 is faulty the balance equations (for total and partial
flows) of nodes 3, 4, 5, 6, 7 are faulty (see column 6 of table 3) and therefore the corres-
ponding signature is :

SX6 : ( 0  0  1  1  1  1  1  0  0  0  1  1  1  1  1  0
            0  0  1  1  1  1  1  0  0  0  1  1  1  1  1  0 )

If concentration of component 2 in stream 4 is faulty the balance equations (for partial
flow of component 2) of nodes 2, 4, 6 and 8 are faulty (see column 4 of table 3) and
therefore the corresponding signature is :

SY24 : ( 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
             0  1  0  1  0  1  0  1  0  0  0  0  0  0  0  0 )



The localisation of the suspicious data may be achieved by comparison of the
experimental signature R with the 36 pre-established signatures S. This comparison is
achieved by evaluating the "distances" between the vector R and the vectors S ; the
smallest distance enables the determination of the suspicious data. The procedure is easily
extended to the localisation of two (or more) suspicious data ; in that case the R vector is
compared to the vectors obtained by logical addition of two (or more) S vectors.

The table 5 gives the values of the relative corrections of the data after reconciliation ; a
relative correction is the absolute difference between the measurement and the estimation
divided by the measurement. It clear appears that prohibitive corrections have been done ;
unfortunately it is difficult to locate with a great precision the corresponding faulty data.
The application of the gross error detection procedure (by distances evaluation) points out
different suspicious data : stream 2 in X, stream 4 in Y1, stream 5 in Y2 and streams 2 and
8 in Y3. We then delete variables 2 in X, 4 in Y1, 5 in Y2 and in order to have a minimal set
of suspicious sensors we delete only one variable in Y3 ; the two possibilities have been
tested and the more significative has been retained. The table 6 gives the relative
corrections of the data after reconciliation (note that the symbol _ is due to the impo-
ssibility to calculate the relative corrections) ; it can be seen that the relative corrections are
kept in a "correct" range.

 Str. 1 2 3 4 5 6 7 8 9

X 4 29 4 6 8 1 2 1 2

Y1 5 5 4 37 8 2 1 5 2

Y2 3 10 5 5 39 1 1 2 4

Y3 76 10 7 8 9 0 2 10 2

Table 5 : corrections (in %), before gros error elimination

 Str. 1 2 3 4 5 6 7 8 9

X 0 _ 1 0 1 0 0 0 0

Y1 0 1 0 _ 1 0 0 1 0

Y2 0 1 0 1 _ 0 0 0 0

Y3 1 0 1 0 0 0 0 _ 0

  Table 6 : corrections (in %), after gros error elimination

5.   VARIANCE MEASURES ESTIMATION

Most of the reconciliation techniques are based on the assumption that the measurement
errors are random variables obeying a known statistical distribution. Almost without
exception the techniques start with a given known covariance matrix of measurement
errors. Almasy [1] has proposed a method of estimating this matrix which makes use of
available data and takes into account the reconcilia-tion point of view ; some additional
illustrations are given in Darouach [3]. Recently, Ragot [13] also proposed a method
which allows simultaneously the estimation of the variance matrix and the reconciliation
of the data on several time intervals.



We limit this presentation of one time interval. In this time interval the process is running
near around the "functioning point" marked by *. Let us consider X*  and  Yc*  the
vectors of the true values which have been measured m times. The measurement equations
may be expressed as :

Xi = X*  + εXi             i = 1, ..., m (10a)

Yci = Yc*  + εYci          i = 1, ..., m (10b)
                                 c = 1, ..., p

According to the hypothesis of normal error distribution the probability density function
of the measurements is expressed :

F(ε) = (2π)
- vm

2  |V|
- m2  Π

p

c=1
 |Vc|

- m2

          exp(- 
1
2  Σ

m

i=1
  ( || εXi  ||

2
V-1 + Σ

p

c=1
 || εYci ||

2
V c

-1)) (11)

Maximizing this function, in respect to  X* , Y*
c , V and Vc and under the two constraints

of balance, gives the following results :

V = 
1
m diag( Σ

m

i=1
 (X̂ - Xi) (X̂ - Xi)

T) (12a)

Vc = 
1
m diag( Σ

m

i=1
 (Ŷc - Yci) (Ŷc - Yci)

T)       c = 1, ..., p (12b)

X̂ = (Iv - VMT(MVM T)-1M) (X
_

 - 
1
m V Σ

p

c=1
 ΝT

c λ c) (13a)

Ŷc = (Iv - VcN
T(NVcN

T)-1N) Y
_

c       c = 1, ..., p (13b)

with the definitions :

X
_

 = 
1
m  Σ

m

i=1
 Xi (14a)

Y
_

c = 
1
m  Σ

m

i=1
 Yci (14b)

λc = m (NVcN
T)-1 N Y

_
c            c = 1, ..., p (15)

N = M Λ (16)
Nc = M Λc (17)

where the diagonal matrices Λ and Λc have elements which are the components of same

order of X̂ and Ŷc.



This algorithm has been applied to the process described by figure 1 with the data of table
7. These data are given for three measurements around a steady-state of the process and
concern the flows and the three components. The table 8 gives the obtained results
concerning the estimation of the flows and the component concentrations and also the
corresponding standard deviations (S.d.) directly computed from the estimated covariance
matrices. It should be noted that we obtain a good estimation of the variance
measurements although only a few data have been used.

 Str. 1 2 3 4 5 6 7 8 9

 X 139.0 103.5 125.0 85.8 85.4 9.2 56.4 30.0 19.9
161.5 99.2 135.2 107.2 96.3 9.1 40.2 28.9 25.9
157.4 109.5 144.7 111.4 93.5 9.4 41.4 27.4 24.5

 Y1 7.3 8.2 9.4 7.9 7.3 10.4 5.7 13.7 10.3
7.4 7.8 9.1 9.0 8.1 9.6 5.8 12.8 11.3
7.5 9.5 8.2 8.3 7.4 9.5 5.5 12.7 10.7

 Y2 13.5 8.6 9.6 12.6 13.9 19.4 22.2 7.2 20.1
15.1 9.7 10.1 15.4 13.3 16.7 16.6 6.1 19.4
11.1 10.4 11.8 12.5 14.3 17.9 20.1 6.5 20.7

 Y3 5.9 5.5 6.3 4.8 5.4 10.6 8.8 6.1 5.9
7.4 7.1 6.5 6.7 4.6 7.9 8.9 7.2 4.2
6.6 5.8 6.5 6.2 6.8 10.4 8.0 6.2 5.0

         Table 7 : flow and composition measurements

 Str. 1 2 3 4 5 6 7 8 9

 X 154.8 105.8 127.9 98.9 89.6 9.2 49.0 29.0 12.8
 S.d. 10.02 4.57 10.72 11.50 5.07 0.12 7.95 1.09 10.90

 Y1 7.44 8.28 8.65 7.40 7.15 9.85 5.64 12.91 10.83
 S.d. 0.09 0.76 0.57 1.10 0.57 0.40 0.13 0.47 0.42

 Y2 13.57 10.86 12.30 13.99 13.58 17.93 19.43 6.54 20.09
 S.d. 1.68 1.49 2.03 1.43 0.48 1.11 2.32 0.46 0.53

 Y3 6.99 6.28 6.41 6.36 6.01 9.80 8.53 6.57 5.08
 S.d. 0.71 0.71 0.10 0.93 1.00 1.24 0.40 0.50 0.69

Table 8 : flow, components and standard deviations estimations

6.   SENSOR POSITIONING

Data validation, as previously described, is considered as an analysis stage and it gives the
user coherent statistical information. Additionally, the above may be completed by a more
ambitious study introducing modifications of the instrumental scheme. Firstly, it is
necessary to analyse the lack of information and to make the user aware of the
instrumental inadequacy of certain parts of the process. Secondly, in order to make the
process information fuller, an understanding of its deficiency enables the satisfactory
localization of sensors. However, in practice, the introduc-tion of such supplementary



sources of information must take into account economic and technical constraints. It is
important to propose amongst the range of possible choices, taking restrictions into
account, the one which minimizes the number of further sensors.

For the sake of brevity, we restricted ourselves to the presentation of an original method
which can be used for the placement of sensors in systems described by 3-bilinear
equations.

M X = 0 [18a]
M X ⊗ Yc = 0             c =1, 2, 3 [18b]

Some variables are measured, others can not be measured and the remaining are free. For
the network of figure 1 let us consider the following vectors of variables, where the

subscripts m, M, and m
_

 relate to the streams which are measured, measurable and
unmeasured :

Xm = ( X1  X5  X9 )T

XM = ( X4  X6  X7 )T

Xm
_ = ( X2  X3  X8)T

Y1m = ( Y11  Y15  Y18 )T

Y1M = ( Y13  Y16 )T

Y1m
_ = ( Y12  Y14  Y17  Y19)T

Y2m = ( Y22 )T

Y2M = ( Y23  Y26  Y29)T

Y2m
_ = ( Y21  Y24  Y25  Y27 Y28)T

Y3m = ( Y31  Y34)T

Y3M = ( Y33  Y36  Y38)T

Y3m
_ = ( Y32  Y35  Y37  Y39)T

As this example is simple enough it would be possible to analyse by hand the different
situations. However we directly examine this analysis for a general process.

In systems described by linear equations the method used for placing of sensors is based
on the identification of equations with more than one unknown. According to the nature
of these unknowns (whether measurable or unmea-surable) we may or may not be able to
place additional sensors to make the system observable.

The generalized bilinear case can be treated by this method but it is more complicated due
to the interactions between the variables X and Yc. That is deductions on X depend not
only on the X variables but also on the Yc variables which are in the bilinear equations in
X and Yc. This implies that placing an additional sensor on a stream X (or Yc) simulta-
neously modifies the observability of X and Yc.
For a proper understanding of these interactions the elemen-tary rules of observability of
linear equations in X and bilinear in X and Yc should be remembered referring to Crowe
[2] and Ragot [14].

1 - An equation (or group of equations) with only one unknown in X is observable :
the X variable can be deduced directly from a linear equation.

2 - An equation (or group of equations) having all its variables in X known and only
one unknown in a vector Yc is observable : the unknown variable in Yc can be
deduced from the bilinear equation.



3 - An equation (or group of equations) with only k unknown variables X and all its
variables in (k-1) vectors Yc known is observable. The p unknown variables in X
can be deduced from a linear equation and (k-1) bilinear equations.

The principle for locating sensors is based directly on this analysis. An additional sensor
(the generalisation to more than one is obvious) which is added to make a system
completly observable should be placed according to one of the three situations given
below.

1 - For an equation (or group of equations) with two unknown variables in X and
one unknown variable in a vector Yc, two types of action can be taken. Placing a
sensor on an X stream leads to situation 1. The remaining X variable becomes
deducible. This leads to situation 2 and the Yc variable becomes deducible. If it is
possible to place a sensor on a Yc stream this leads to situation 3. The two X
variables are then deducible.

2 - For an equation (or group of equations) with all the variables in X known and
two variables in a vector Yc unknown, the placing of a sensor on one of the two
unmeasured variables in Yc streams leads to situation 2. The remaining Yc variable
can be deduced.

3 - For an equation (or group of equations) with k unknown variables in X and k-2
vector Yc with all their variables known, the placing of a sensor on an X stream leads
to situation 3. The two X other streams become deductible. If it is possible to place
a sensor on a Y stream in order to obtain a supplementary vector Yc complety
known, this also leads to situation 3.

4 - For an equation (or group of equations) with k+1 unknown variables in X and
k-1 vector Yc with all their variables known, we may adopt the same conclusions as
in case 3.

The general algorithm for placing sensors makes an intensive use of an algorithm of
linear observability as related in Maquin [9, 10] and of the algorithm for placing sensors
issued from the analysis of the incidence matrix. It should be noted that the partitioning is
first done for the X variables then for the Y variables. Partitioning by X variables is used
directly for placing additional X sensors. On the other hand partitioning by Y variables
which are linked to the X variables in the bilinear equations cannot be used directly for
placing additional sensor. It only gives the list of bilinear equations with completely
measured Y variables and those equations with all measured streams except one.

For the given configuration, the reader can verify that the use of supplementary sensors
defined in the lists Xs, Y1s ,Y2s ,Y3s :

Xs =  ( X4 )T Y1s  =  ( Y13  Y16 )T

Y2s =  ( Y23  Y26 )T Y3s  =  ( Y33  Y36 )T

allows the deduction of other data defined in the lists Xd, Y1d ,Y2d ,Y3d :

Xd =  ( X2  X3  X6  X7  X8 )T Y1d  =  ( Y14 )T

Y2d =  ( Y29 )T Y3d  =  ( Y35  Y38 )T

and one notice that some sensors, which could be used, have not been : X6  X7  Y29  Y38
(moreover these last variables are deducible).



CONCLUSION

For the class of processes described by bilinear generalized equations, we have illustrated
through a given example the different steps of data reconciliation. The application to n-
linear generalized equations could be a straightforward extension.
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