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Abstract :

Data ré]iabﬂity is of fundamental importance for process diagnosis,
identification and control. Measurements having large, random or biased
errors which go undetected lead to poor control of processes. Detection of
such errors is therefore very important, but can only be carried out on the
basis of a certain knowledge of the process, of its structure, of the
location of the data sources (observations), and a certain degree of
redundancy. Here we present a method of classifying the variables of steady
state linear systems into ; observable, unobservable, redundant and
no-redundant variables, This classif‘icatién gives information on the state of
the system, the consistancy of the data and leads to a way of validating
the observable part of the process. A recurrent estimator is developed on
the basis of an estimation of the maximum likelihood. An application of the

method to material balance Is presented.

1 ~ Introduction

Data collected from a process is the basis for any evaluation of the
performance of the process, of the strategy for its control and in general
for any decision to be taken about the process. If the information contains
errors, any decision made will lead to poor operation. Data validation is

therefore situated between the process measurements aquisition and the

decision to be taken.



This validation poses several problems amongst which are the following :

- Process models are non-linear and inaccurate.
- Process models are very large.

~ Measuring devices may be defective.

= Measur'ements are subject to errors.

~ Not all variables are measured.

This study is limited to the case of linear systems operating at steady
state. Even though this hypothesis seems restrictive this class of system is
frequently encountered in industrial applications. In addition the study of the
steady state can be considered to be a preliminary to the study of system

dynamics.

Process operation models are exact as they are based on mass and
energie balances, However measurements and data available are subject to
errors wich may be divided into the folllowing two groups:

-~ random errors are generally taken to be independent, gaussian,
with a zero mean value and a "small" variance.
— gross errors are caused by norandom events such as biased

instruments, defective transducers, incomplete or imprecise models.,

Correct data validation (by making balances) can only be carried out
if the parameters have been classified. This allows determination of the
redundant and no-redundant measurements, the variables which are not

measured and those which can or cén not be determinated. Once this

classification has been made it is possible to:

- detect gross errors
- diagnose errors

~ validate measurements

The complete data validation strategy can be schematized by the block
diagram of figure 1.

Before presenting a strategy for data validation we first present some

definitions and concepts for linear systems under steady state conditions.



2 - Concepts and definitions

A linear system under steady state condition is defined by :
- A set of constraints (known process model)
F e txer" /ax-b=0} m

in which A is an (n . v) matrix of coefficients
x is the vector of the state

- A measurement vector
Z = Hx + ¢ (2)

in which Z € R™, H is an (m . v) matrix of coefficients and

€ is a (n . 1) vector of measurement errors.

The system S, described by the pair (H, A), is said to be globally

observable if the state x is uniquely determined by the observation Z and

the constriants (1).

Observability of linear system under steady state conditions [1], [2], [3]

Observability is independent of measurement errors and is

considered on the basis of exact noise free data (e = 0).
The system to be considered for observability is :

¢ .x =d (3)

H .
where (. = (A) is the ((m+n) . v) observability matrix of the system (1),(2)

Z

and d = (b) € jr*M,



a) Partial observability [4]

By analogy whith the dynamic of linear systems the partial
observability of linear systems under steady state conditions is defined as
follows : | ’

Let 2, ={x€ER / Gx=4d}

and. T : RV = E be a linear operator

E is a linear vector space and we wish to determine a neccessary and

sufficient conditions under which :

V(x, x, ) € ﬂ: ) T(xl) - ’S'(xz)

X, * X,

I ? is a one to one operator, then (5) indicates the uniqueness solution of

(3) and therefore the overall observability of the linear system (1), (2),

However for an arbitrary Twe say that (5) is a condition for partial
observability with respect to T’ . We may then state the following
proposition [4]

Let P be the operator matrix of T
The system is partially observable with respect to T if and only if

rank (¢ = rank (g’)

b) Global observability

A linear system under steady state conditions is said to be globally
observable when the state x is unique. This correspond to P = I for partial
observability and from (6) we may say that :

The system (1), (2) is completly or globally observable if and only if :

rank (O- = rank (2) = prank (%) = vy

)]

(5)

(6)

(N



If rank ¢ < rank (g“) = v the system described by (1), (2) is not
globally observable. In this case as for dynamics systems, the system (1),(2)
can be decomposed on the basis of the concept of observability.

c) Decomposition by observability

If rank ¢ =-q < v then there is an (v . v) non singular matrix T

such that, for the change of coordinates x = Ty :

- H,
a=a'r=(a,|o)-(A|0) (8)

1

where (-, is a matrix with q columns and

Hl
rank (G, = rank ( ) =q 9)
1

In addition, in the new coordinates y = (i‘) in which y,; corresponds to
2
0, , the subsystem
0y y, = d (10)

is observable in Rq and the remaining subsystem of dimension (v - q) is

unobservable.

This result can be shown by orthogonal transformation or decomposition into

singular values [5], [61].

d) Redundancy in linear systems under steady state conditions

Definition :
Linear system under steady state conditions (1), (2), -is said to be

redundant when the data available exceeds the minimum neccessary for

a unique determination of the system state.

This definition indicates that measurements are redundant if their
suppressions causes no loss of observability. The result for the decomposition

by observability can be extended to that of measurements redundancy.



In this case we say that :

The linear steady state system described by the pair (H, A) such that
(n + m) > v and rank (E) = rank & = q < v (therefore globally

unobservable) has a redundancy of r = (n + m - q) and in addition can be
decomposed into an observable and an unobservable parts. The observable
part can itself be decomposed into redundant and no—redundant parts. These

results will be used later in data validation by mass balances.

3 = Data validation

Let us consider a steady state linear system S described by (1),(2)

for which we are to estimate its state x.

Hypotheses :

- The system S is globally observable, that is rank (IZ) = v,

& Rank A = n

= The errors e are normally distributed with a zero mean and

known covariance matrix V .

Estimator :

With these hypotheses the best estimator, in the sense of the
maximum likelihood, is that which maximises the probability density function
of the measurements errors subject to the constrainsts (1) of the model,

That is m1n¢=}g||z—ufc||3h1

subject to the constrainst AR =D
The assoclate lagrangian L is :
L=¢+AT(A2~b)

where ) is the vector of lagrange parameters of dimension n.

(12)

(13)



This is stationary when :

L -

A oWy (2 -z + aTh =0
2%
-?-P—: - Ai“‘b =0
oA

This system of equations (14) is equivalent to :

1

Tv gy g+ aTa = uTv'z (15.1)

( uiy™

AR = b (15.2)

T - -
In general ( H'V ‘H )1 does not exist, however as the system is

observable, by premultiplying (15.2) by AT and by adding the result to
(15.1), we obtain :

R7'% + aTh = #Tv'z + 2T

where R = H vV 'H + ATa

which can be inverted.
From (16) we have :

g =R (HW 'z + 2% - aTh)
which replaced in (15.2) gives :

» = ¢ ARATY Y aruTv 'z + (1 - aRADHH b

since rank A = n (hypothesis 2)
Finally

2 = PPRHTV"‘Z + RATC ARATY T

with P=1- RAT(C arRaAT) 2

aw

(15)

(16)

amn

(18)

(19

(20)

(21)



Statistical properties of the estimator

According to hypothesis (3), we have e ~ #1(0,V) for the measurement

errors.
As Z = Hx + € , we deduce that :

E(Z) = Hx
Var(Z) = E(eeT) =V

From (21), (22), and (23), we deduce the following properties :

ER) = PPRHTVﬂHx + RATC ARAD T b
Var® = P.R ( R' - AAT) RP !
r r
a T T T
Expression (25) can also be written as : Var(X) = Pr'RPr - PrRA ARPr
Since PPRA'r = 0
o T
Then Var(®) = P RP° = PR = [
r r r

A

From (21) and (26), the estimate X can also be written as :

2 = tHv 'z + RATC aRAD ' b

Supplementary linear constrainsts

Here we consider the estimation of the state variables in linear
system under steady state conditions subject to additional linear constrainsts.
From knowledge of the estimate without the constrainsts, we establish a

recurrence formula which gives a new estimation of the state variables,

Given the globally observable linear system

(8,)

(22)
(23)

(2u)

(25)

(26)

@mn

(28)



The estimation of the state of the system is (27) :

%, = z,HTv’1z + RlAT(A,RlA,T)"1 b, (29)
Where Z, = Var(®,) = Pp R,

- T,*~1 T -1
And R, = (H'V 'H + A;A,)  (exists since S, observable)

. T T,-1
Poy =I=R,A;( AJR,A,) A,
When an additionnal linear constrainst is added, the system S, becomes :
Hx + € = Z
S, A,x = b, (30)

A,x = b,

The problem of estimating the state x of the system S, can then be posed

as : »
min ¢ = % ||l z - HR, ||V4
X2
subject to the constrainsts : A,%, = b, (31)
A,%, = b,

The Lagrangian associated with this problem is :

Lo=o+ AT (AR, =b, )+ ul (A%, - by) (32)

This is stationary when :

L . Ty oz - HR, )+ AT+ ATy =0

9%,

L = A%, = b, = 0 (33)
A

aL = Azﬁz - bz = 0

ou




Which can also be written as :

CHIV'H )y g, + ATa + aJw = HV 'z (34.1)
AR, - b, (34.2)
Aziz = bz (3”'3)

Using expression (27)- the solution of the system (34.1), (34.2) leads to :

%, = LHTV'Z + RAT (ALRLA, )b, - Ay
where £, = (I-R,AY ( A,R,AT ) A, ) R,

From expression (35) and (34.3) we obtain :

T

1 T
Z + A,R,A,( A,R,A, )) Db, - Db,

- b
b= (A5 Al )T (AL HTY

& T = -
and Ry = (D= LAL (AL, A0 ) A, ) Ry + LA (A,I,A; ) b,

in which &, is expressed by (29).
Statistical properties of the estimations X, and R,

We have :
E(®,) = £ Hv T Hx + R,AL (A R,AT y b,

and Var(®,) = I,

From which, using (37), we deduce the following :
a T T +~1 n T T ~1
E(xz) = ( I - X]Az ( AzzlAz ) Az ) E(xl) + zxA-z ( AzzlAz ) bz

. T T -1
Var(®,) = Z, = L, - LA, ( A,I,A, ) A,I,

Generalisation

More generally, if we call )’Ek the estimation and Ek the variance of
the estimation in presence of the constrainst Ak)’t = bk , the changes in

the estimation and in its variance can be explicited in terms of the

additional constrainst Ak+1x = ka.

(34)

(35)

(36)

(37N

(38)

(39

(40)

(41)



A N T T '_l ~ T T "-1

Rewp = @ = Z AL (A A L) A ) R+ B GG B R ) Dy (42)

Var@ ) =z . =1 -~ AL (o .t Al )V a1 (u3)
K+1 K+1 k7 TPt e I k+1 K

This recurrence formula is especially useful if the matrix Ak+1
reduces to a row vector. In this case, calculation of £k+1 and consequently

X only requires the inversion of a scalar.

k+1

Application to mass balances

The case of mass balances corresponds to a system represented by a
directed graph. Its arcs represent the process streams and its nodes
represent the unit operations (tanks, flotation cells, reactors, etc ... )e

With this system, we associate an (n . v) incidence matrix A defined Dby :

A = (an)

1 if the flow j enters in the unit i,
-1 if the flow j leaves the unit i,
0 if the unit 1 has no connection with the flow Jj.

Y]
L}

and rank A = n

We will limit this discussion to overall mass balances, so that only
mass flow rates are considered. Furthermore measurements are direct, as its

is generally the case in practice.

The system (1), (2) becomes :
- Overall mass balance :

Ax = 0 (44)

= Measurement equation :

Z=(I]l0)x + ¢ (45)

In this, I is the (m . m) identity matrix.



Partitionning x by components of ( I | 0 ) gives :

X m X =
m di m m

X = with
X = . dim xa = m

According to the same criterion for classification, the incidence

matrix is partitioned in the form
A= (A | A=)

with dim Am =n., m and dim A[-ﬁ =n.(v-m

After these partitionings, equation (44) becomes :

A x + A-x-= =20 (46)
m-m m' m

or Ar;xi.r-l s - Amxm un
The observability of the system (44), (46) is determined from that of

system (47). The procedure (8) used previously can be applied to (47) as, if

r is the rank of Am' there then exist orthogonal transformations S and T

such that :

T (48)

where R is an upper triangular matrix of rank r,
S and T are (n . m) and (v . v) orthogonal matrices.

This very general procedurev will not be used for the particular case
of mass balances as the structure of the incident matrices is sparse, only
and where a echelon form transformation is more
a permutation of the rows

containing +1's and -1's,
suitable. Thus if r is the rank of block AE ’
and columns of AE] allows the regular part of Afﬁ12 to be isolated.



r“A b b ]
m1i | m | mi2 r
N S Lol
Ao 1 Aot 1 Paae n—r
L [ I N
L e R -y . o
m v-m-r r

As A‘am is regular an equivalent form (echelon form) is :
B -1 1 -1 1 .
Amiz Ay b ApppAgn |
| |
A - o I~ T
A2 ' A2t ' Ano2
n l l .

[ - \J - 2 |
Am12Am1 I Am12Am11 | I
A s e e = —_—— —
y S
-1
Am2 Am22 Am12 Am1 : 0 i 0 )

Examination of this matrix allows the observability and the redundancy of

all the variables to be explicited :

- Block U4 concerns the equations of redundancy as it only includes

measured variables. The corresponding incidence matrix is :

-1
A= Ao ™ Booo Apio Ry

~ If block 2 contains rows of zeros then rows of the same rank in

block 3 which can be

determined.

give the indices of the unmeasured variables

~ The measured variables, which can not be estimated correspond to

the indice of columns of block 4 composed of all zero elements.

- The decision variables of the global observability are the no zero

elements of block 2.

(49)

(50)

(51)



" The procedure using these results to validate data by mass balance

can be schematized by figure 2.
This diagram demonstrates the decomposition of the initial problem (47),(48)
into two smaller sub-problems which can be solved sequentially.

First sub-problem

subject to A, g =0 (52)

is solved in a recurrent fashion using the procedure (28)-(46). Taking into
account that H = I and b = 0 we obtain :

% =(I'~VAT(AVAT)-1A)Z (53)
m r r r r
and
% vasCava ylav 4
Varl(xm) a V ALCAVA ) A (54)
-V
m
thus
R ~ -
R o=V V.2 (54)

g, 0= V.V Z : (56)

with v, = Var®)



Adding the constrainst corresponding to the matrix A1+-1, we obtain the new

estimation given by :

Rivp = VyoqV 2 (57)
with Vi, = Var,,)

Vg =y - ;’1A11;1(A1+1;’1A1];1)-1 Ay (58)
and Vo= v - VAL VADT AV (59)

In this case when the partitioning is performed according to the
nodes of the system, each block A1 becomes a row vector of v elements,
Matrix Vm can therefore be calculated in n iterations each of which only

requires the inversion of a scalar.

We apply (58) for i=1,n with Vj =V and Vp4 m
Second sub-problem

Once the level 1 validation is completed the estimation of the
observable part of the unmeasured variables is made by direct deduction
from the estimate variables of the first level and the relationships
corresponding to the rows of the elements in the matrix Ar:n112 AE;H'

Conclusion

The method of data validation presented here takes into account the
topology of a process (its structure) and the data which is available (the
measurements .made, their location and their precision ). It involves
decomposing the problem of validation in two smaller sub-problems, In the
case of large scale systems a recurrence formula provides an estimation of
the redundant variables.

There are a great number of practical applications of this method.
Particular mention may be made of the diagnosis of industrial systems in
which the process configuration and the location of the measurement points

change with time. The extension to the case of bi-linear systems will be

treated in a later study.
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Figure 2 :

Schematic diagram of the procedure for data

valldation by linear mass balances



Numerical example : Mass balance of flotation circuit

~The cicuit considered in this example i3 described by the flowsheet

of figure 3, it consists of 19 nodes and 32 streams. The measurements
The results of the data

location of the flow rates are indicated by x.

validation are sumarized in tables (1-2)

>

x

1
g
| fl l
i ~ : n'
_{2.——.—-———1

legend :

O conditioner
Ej cell

on line analyser .

Figure 3 : Flotation circuit
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Table 1 : Result of variables classification

! ! ! | ESTIMATED |
STREAM | MEASUREMENTS | ESTIMATIONS | STANDART | STANDART |
! ! | DEVIATION | DEVIATION !
! ! ! ! !
+ + + + |
! ! ! ! !
1 ! 4.683 | 4.595 | 0.234 | 0.096 |
6 | | 2.242 | | 0.322 |
2] ! 0.531 | 0.531 | 0.027 | 0.027 |
2 | 1 7.368 | ! 0.310 |
3 | 6.166 | 6.166 | 0.308 | 0.308 |
S ! I 1.202 | | 0.036 1.
4 | 4.000 | 3.924 | 0.200 | 0.094 !
10 | 0.300 | 0.295 | 0.015 | 0.014 |
7 ! ! 1.497 | | 0.037 |
9 | 0.917 | 0.966 | 0.046 1 0.026 |
13 ! 0.264 | 0.271 | 0.013 | 0.013 |
33 ! | 1.237 1 ! 0.028 |
12 | . 1.050 | 0.942 | 0.053 | 0.026 |
14 I~ . 0.652 | 0.671 | 0.033 | 0.024 |
a5 ! ! ! | !
20 | ! .. ! ! . !
17 ! | 1.115 1 . ! 0.042 |
19 | 0.756 | 0.756 1 0.028 | 0.038 |
34 | 0.359 | 0.359 | 0.018 | 0.018 |
18 | | ! ! !
a9 ! 0.550 | 0.550 | 0.028 | 0.028 |
21 | | : | | |
36 | ! | ! !
37 . ! ! ! ! !
22 ! 3.700 | 3.924 | 0.185 | 0.094 |
27 ! | A ! ' |
29 | ! ! ! !
23 | ! ! | !
24 ! ! ! | !
26 | ! ! ! !
20 ! 3.000 | 2.932 | 0.150 ! 0.097 |
32 ! 1.000 | 0.992 | 0.050 : 0.048 :
! ! !

Table 2 : Flotation mass balanc-e results



