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Abstract. In this work, we study the Dirichlet problem for a class of semi-linear sub-
elliptic equations on the Heisenberg group with a singular potential. The singularity
is controlled by Hardy’s inequality, and the nonlinearity is controlled by Sobolev’s in-
equality. We prove the existence of a nontrivial solution for a homogenous Dirichlet
problem.
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1. Introduction

In this work, we study the partial differential equations on the Heisenberg group Hd.
Let us recall that the Heisenberg group is the space R2d+1 of the (non commutative) law
of product

(x, y, s) · (x′, y′, s′) =
(
x+ x′, y + y′, s+ s′ + 2

(
(y|x′)− (y′|x)

))
.

The left invariant vector fields are

Xj = ∂xj + 2yj∂s, Yj = ∂yj − 2xj∂s, j = 1, · · · , d and S = ∂s =
1
4

[Yj , Xj ].

In all that follows, we shall denote by Zj = Xj and Zj+d = Yj for j ∈ {1, · · · , d}. We fix
here some notations :

z = (x, y) ∈ R2d, w = (z, s) ∈ Hd, ρ(z, s) =
(
|z|4 + |s|2

)1/4
where ρ is the Heisenberg distance. Moreover, the Laplacian-Kohn operator on Hd and
Heisenberg gradient is given by

∆Hd =
n∑
j=1

X2
j + Y 2

j ; ∇Hd = (Z1, · · · , Z2d).

Let Ω be an open and bounded domain of Hd, we define thus the associated Sobolev
space as following

H1(Ω,Hd) =
{
f ∈ L2(Ω) ; ∇Hdf ∈ L2(Ω)

}
and H1

0 (Ω,Hd) is the closure of C∞0 (Ω) in H1(Ω,Hd).
1
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We consider the following semi-linear Dirichlet problem

(1.1)

{
−∆Hdu− µV u = λu+ | u |p−2 u in Ω,
u
∣∣∣
∂Ω

= 0

where V is a positive potential function which admits the singularity on Ω, λ is a real
constant and 2 < p < 2+ 2

d ; the index 2∗ = 2+ 2
d is the critical index of Sobolev’s inequality

on the Heisenberg group [9, 15, 16, 17, 22]

(1.2) ‖u‖L2∗ (Ω) ≤ CΩ‖u‖H1(Ω,Hd),

for all u ∈ H1
0 (Ω,Hd).

The potential function V is controlled by the following Hardy’s inequality,

(1.3)
∫

Ω
V (w)|u(w)|2dw ≤ ‖∇Hdu‖2L2(Ω),

for all u ∈ H1
0 (Ω,Hd).

We will prove in the next section the following results
• If 0 ∈ Ω, Hardy’s inequality (1.3) holds for

V (z, s) =
d4

(d+ 1)2
ρ(z, s)−2.

• If 0 ∈ Ω, Hardy’s inequality (1.3) also holds for a softer potential

V (z, s) = d2 |z|2

ρ(z, s)4
,

see also [12, 18].
• In the Lemma 2.7, we prove that Hardy’s inequality (1.3) holds for

V (z, s) = µ̄ρc(z, s)−2,

where ρc defined in (2.8) is the distance to a sub-manifold Σc of codimension ≥ 2
and µ̄ is a constant.

Theorem 1.1. Assume that the potential function V satisfies (1.3), then for any λ > 0
and any 0 ≤ µ < 1, the Dirichlet problem (1.1) admits a nontrivial solution in H1

0 (Ω,Hd).

The Dirichlet problem (1.1) on the Heisenberg group is a natural generalization of the
classical problem on Rd, see [5, 7, 8, 10, 11, 14, 20] and their references. The subellipticity
of the operator ∆Hd implies that any weak solution of the Dirichlet problem (1.1) belongs
to C∞(Ω \Σc) (see [25]). The issue of regularity of a weak solution near ∂Ω∪Σc is a very
delicate problem.

This paper is organized as follows. In section 2, we recall Poincaré’s inequality and
prove Hardy’s inequality on the Heisenberg group; Section 3 deals with the study of the
eigenvalue problem; finally, we prove the existence of a weak solution in Sections 4 and 5
by using Rabinowitz’s Theorem and the Palais-Smale Theorem.

2. Hardy’s inequalities on Hd

The following density theorem is very useful. Let us give here an other simple proof
than [2] (see also [3]),

Theorem 2.1. We have that C∞0 (Ω \ {(0, 0)}) is dense in H1
0 (Ω,Hd) for d ≥ 1.
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Proof : By definition of H1
0 (Ω,Hd), it suffices to show that

C∞0 (Ω) ⊂ C∞0 (Ω \ {(0, 0)},Hd)
‖.‖H1

.

Let ϕ be a cut-off function for which

(2.1) ϕ(η) =
{

0 if 0 < η ≤ 1,
1 if η ≥ 2.

For u ∈ C∞0 (Ω,Hd), let ε > 0 small enough, and we set uε(z, s) = ϕ(1
ερ(z, s)) u(z, s). So

uε ∈ C∞0 (Ω \ {(0, 0)},Hd) and we have

‖ uε − u ‖2H1(Ω)=‖ ∇Hd(uε − u) ‖2L2(Ω) + ‖ uε − u ‖2L2(Ω) .

Dominated convergence theorem implies that

‖ uε − u ‖2L2(Ω)→ 0,

and∫
Ω
| ϕ(

1
ε
ρ(z, s))− 1 |2| ∇Hdu(z, s) |2 dzds→ 0, when ε→ 0.

On the other hand, we have∫
Ω
| ∇Hd(

1
ε
ρ(z, s)) |2| ϕ′(1

ε
ρ(z, s)) |2| u(z, s) |2 dzds

=
1
ε2

∫
Ω

| z |2

ρ(z, s)2
| ϕ′(1

ε
ρ(z, s)) |2| u(z, s) |2 dzds

≤ 1
ε2
‖ u ‖2L∞(Ω)‖ ϕ

′ ‖2L∞(Ω)

∫
{(z,s);ε≤ρ(z,s)≤2ε}

dzds

≤ C 1
ε2

ε2d+2 → 0, as ε→ 0.

Remark that this proof also show that the density theorem is not true for classical
Sobolev space in a 2 dimensional case.

Now, we state the following precise Poincaré inequality,

Theorem 2.2. Let Ω be a sub-domain of Hd bounded in some direction of (z1, · · · , z2d),
that is, there exist R > 0 and 1 ≤ j0 ≤ 2d such that 0 < r =| zj0 |≤ R for all (z, s) ∈ Ω.
Then for any u ∈ H1

0 (Ω,Hd),∫
Ω
| u |2 dzds ≤ 4R2

∫
Ω
| ∇Hdu |2 dzds.(2.2)

Remark : By using the inequality (2.2), we can use ‖∇Hdu‖L2(Ω) as a norm on H1
0 (Ω,Hd).

The Poincaré inequality (2.2) holds for any Ω ⊂ {(z, s) ∈ Hd; ρ(z, s) ≤ R}. We can also
obtain the Poincaré inequality from Bony’s maximum principle for general Hörmander’s
vector fields but with a non-precise constant (see [6, 21]). The proof given here is a
modification of L. D’Ambrosio [13].
Proof : Using the density results of Theorem 2.1, take u ∈ C∞0 (Ω \ {(0, 0)}) and let
T (z, s) = (T1(z, s), · · · , T2d(z, s)) be a C1 vector function on Ω. Denote by

divHd T =
2d∑
j=1

Zj Tj ,
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we have ∫
Ω

(divHd T ) | u |2 dzds = −2
∫

Ω
〈T,∇Hdu〉u dzds

≤ 2
∫

Ω
| 〈T,∇Hdu〉u | dzds

≤ 2[
∫

Ω
| ∇Hdu |2 dzds]

1
2 [
∫

Ω
| T |2| u |2 dzds]

1
2

≤
∫

Ω
| ∇Hdu |2 dzds+

∫
Ω
| T |2| u |2 dzds.

Thus ∫
Ω

(
divHd T− | T |2

)
| u |2 dzds ≤

∫
Ω
| ∇Hdu |2 dzds.

For ε > 0, let us choose T := Tε = −1
2

∇Hd rε
rε

where rε =
(
r2 + ε2

) 1
2 and r = |zj0 |. Then

divHd Tε = −1
2

1
r2
ε

[rε∆Hd rε− | ∇Hd rε |2]

divHd Tε− | Tε |2= −1
2

∆Hd rε
rε

+
1
4
| ∇Hd rε |2

r2
ε

since

∇Hdrε =
∇Hdr

2

2rε
=

r

rε
, | ∇Hdrε |2=

r2

r2
ε

∆Hdrε =
∆Hdr

2

2rε
− ∇Hdr

2

2r2
ε

∇Hdrε =
1
rε
− r2

r3
ε

.

So,

divHdTε− | Tε |2= − 1
2r2
ε

+
3r2

4r4
ε

,

and for any (z, s) ∈ Ω,

lim
ε→0

divHdTε− | Tε |2=
1
4

1
r2
≥ 1

4
1
R2

.

From the dominated convergence theorem, we have

lim
ε→0

∫
Ω

[divHdTε− | Tε |2] | u |2 dzds ≥ 1
4

1
R2

∫
Ω
| u |2 dzds,

thus
1
4

1
R2

∫
Ω
| u |2 dzds ≤

∫
Ω
| ∇Hdu |2 dzds.

Let us give a very easy proof of the classical Hardy inequality by using a radial vector
field. Let U be a bounded domain of Rd, d > 2, H1

0 (U) is the usual Sobolev space.

Lemma 2.3. We have, for any u ∈ H1
0 (U),

(2.3)
(
d

2
− 1
)2 ∫

U

u2

|x|2
dx ≤ ‖∇xu‖2L2(U).
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Proof : As C∞0 (U \ {0}) is dense H1
0 (U), we have restricted ourselves to a function u in

C∞0 (U \ {0}). The proof mainly consists of an integration by parts with respect to the
radial vector field R,

R =
d∑
j=1

xj∂xj .

We notice that R(| x |−2) = −2 | x |−2 and divR = d, so∫
U

u2

| x |2
dx = −1

2

∫
U
R(| x |−2) dx

=
1
2

∫
U
div(R)

u2

| x |2
dx+

1
2

∫
Ω

1
| x |2

R(u2) dx(
1− d

2

)∫
U

u2

| x |2
dx =

1
2

∫
U

1
| x |2

R(u2) dx =
∫
U

d∑
j=1

u

| x |
xj
| x |

∂xju dx.

By Cauchy-Schwarz,(d
2
− 1
)∫

U

| u |2

| x |2
dx ≤

(∫
U

d∑
j=1

| ∂xju |2 dx
) 1

2
(∫

U

| u |2

| x |2
dx
) 1

2
.

On the Heisenberg group, if we introduce the radial vector field

R =
d∑
j=1

(xj∂xj + yj∂yj ) =
d∑
j=1

(xjXj + yjYj),

then we immediately obtain for d > 1,

(d− 1)2

∫
Ω

u2

ρ(z, s)2
dzds ≤ (d− 1)2

∫
Ω

u2

|z|2
dzds ≤ ‖∇Hdu‖2L2(Ω)

for any u ∈ H1
0 (Ω,Hd).

By using the idea inspired from the radial vector field, we now prove the following Hardy
inequality.

Lemma 2.4. For d ≥ 1, we have that

(2.4)
( d2

d+ 1

)2
∫

Ω

u2

ρ2
dzds ≤ ‖∇Hdu‖2L2(Ω),

for any u ∈ H1
0 (Ω,Hd).

Proof : By using the density theorem, we prove the inequality (2.4) for the function
u ∈ C∞0 (Ω \ {(0, 0)}). Then the proof mainly consists of an integration by parts with
respect to the radial vector field RHd adapted to the structure of Hd, namely

RHd = 2s∂s +
d∑
j=1

(xj∂xj + yj∂yj ) =
s

2d

d∑
j=1

[Yj , Xj ] +
d∑
j=1

(xjXj + yjYj).
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We notice that RHd
(
ρ−2
)

= −2ρ−2 and divRHd = 2d+ 2. We have∫
Ω

u2

ρ(z, s)2
dzds = −1

2

∫
Ω
RHd

(
ρ(z, s)−2

)
u2 dzds

=
1
2

∫
Ω
ρ−2RHd

(
u2
)
dzds+

1
2

∫
Ω
ρ−2u2divRHd dzds.

This gives

−d
∫

Ω

u2

ρ2
dzds =

∫
Ω

d∑
j=1

u

ρ

(xj
ρ
Xj +

yj
ρ
Yj

)
u dzds− 1

2d

∫
Ω
Yj

( s
ρ2

)
u(Xju) dzds

+
1
2d

∫
Ω
Xj

( s
ρ2

)
u(Yju) dzds

=
(

1 +
1
d

)∫
Ω

d∑
j=1

(xju
ρ2

Xju+
yju

ρ2
Yju
)
dzds

+
1
d

∫
Ω

d∑
j=1

s

ρ6

[
| z |2 yj − sxj

]
uXju dzds

− 1
d

∫
Ω

d∑
j=1

s

ρ6

[
| z |2 xj + syj

]
uYju dzds,

then

−d2

∫
Ω

u2

ρ2
dzds =

∫
Ω

d∑
j=1

[
(d+ 1)− s2

ρ4

](xju
ρ2

Xju+
yju

ρ2
Yju
)
dzds

+
∫

Ω

d∑
j=1

s | z |2

ρ4

[
yju

ρ2
Xju−

xju

ρ2
Yju

]
dzds

=
∫

Ω

d∑
j=1

[
((d+ 1)− s2

ρ4
)
xj
ρ

+
s | z |2

ρ4

yj
ρ

]u
ρ
Xju dzds

+
∫

Ω

d∑
j=1

[
((d+ 1)− s2

ρ4
)
yj
ρ
− s | z |2

ρ4

xj
ρ

]u
ρ
Yju dzds.

Setting

A(z, s) =
d∑
j=1

{ [
( (d+ 1)− s2

ρ4
)
xj
ρ

+
s | z |2

ρ4

yj
ρ

]2
+
[
( (d+ 1)− s2

ρ4
)
yj
ρ
− s | z |2

ρ4

xj
ρ

]2 }
,

Cauchy-Schwarz inequality implies

d2

∫
Ω

| u |2

ρ2
dzds ≤

(∫
Ω
A(z, s)

| u |2

ρ2
dzds

) 1
2
(∫

Ω

d∑
j=1

(
| Xju |2 + | Yju |2

)
dzds

) 1
2
.
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For A(z, s), we have

A(z, s) =
(

(d+ 1)− s2

ρ4

)2 | z |2
ρ2

+
s2 | z |4

ρ8

| z |2

ρ2

=
| z |2

ρ2

[
(d+ 1)2 − (2d+ 1)

s2

ρ4

]
=
| z |2

ρ6

[
(d+ 1)2 | z |4 + d2s2

]
=
| z |2

ρ6

[
(2d+ 1) | z |4 + d2(| z |4 +s2)

]
≤ (d+ 1)2 | z |2

ρ2
≤ (d+ 1)2.

So, we deduce the inequality (2.4).
The Hardy inequality on the Heisenberg group Hd is first proven in [18, 12] for a softer

potential.

Lemma 2.5. We have, for any u ∈ H1
0 (Ω,Hd),

d2

∫
Ω

| z |2

| z |4 +s2
| u |2 dzds ≤ ‖∇Hdu‖2L2(Ω).(2.5)

The singularity of potential in the Hardy inequalities (2.3), (2.4) and (2.5) is a isolate
point of domain. We consider now the general case when the singularity is on a sub-
manifold. We have first the following density result:

Lemma 2.6. Let Ω be a bounded domain of R2d+1 and Σc a sub-manifold of Ω such that
dim Σc ≤ 2d− 1. Then C∞0 (Ω \ Σc) is dense in the space H1

0 (Ω,Hd).

Proof : As H1
0 (Ω,Hd) is a Hilbert space, it is enough to prove that the orthogonal

of C∞0 (Ω \ Σc) in H1
0 (Ω,Hd) is {0}. Let u be in this space. For any v in C∞0 (Ω \ Σc), we

have
(u, v)L2 + (∇Hdu, ∇Hdv)L2 = 0.

By integration by part,

∀v ∈ C∞0 (Ω \ Σc) , 〈u−∆Hdu, v〉 = 0,

this implies that, as a distribution,

Supp
(
u−∆Hdu

)
⊂ Σc.

Since u−∆Hdu belong to the classical Sobolev space H−1(Ω) and except 0, no distribution
of H−1(Ω) can be supported in a submanifold of dimension ≤ (2d+1)−2. Thus u−∆Hdu =
0 on Ω. Taking the L2 scalar product with u ∈ H1

0 (Ω,Hd) implies that u ≡ 0. This
completes the proof of Lemma 2.6.

We consider now the hyper-surface Σ = {(x, y, s) ∈ Ω : g(x, y, s) = s + f(x, y) = 0}
where Ω is a neighborhood of 0 in Hd. Assume that

(2.6) Σc = {w ∈ Ω : g(w) = 0, ∇Hdg(w) = 0} ,

is a sub-manifold of dimension (2d+ 1)− r − 1, r ≥ 1.
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Lemma 2.7. Assume that Σc is a sub-manifold of dimension 2d − r and r ≥ 1. Then,
there exists µ̄ > 0 such that for any u ∈ H1

0 (Ω,Hd),

(2.7) µ̄

∫
Ω

u2

ρ2
c

dw ≤ ‖∇Hdu‖2L2(Ω)

with

(2.8) ρc(w) =
(
g2(w) + |∇Hdg(w)|4

)1/4
.

We refer to the proof of this lemma to [4] and also [2]. The constant µ̄ depends, of
course on Σc, but in many interesting cases, it depends only on the dimension of Σc.

Here we present a proof for a model case in H1 to precise the constant µ̄. We take
g(x, y, s) = s+ 2xy, then

Σ = {(x, y, s) ∈ H1 : s+ 2xy = 0},
Σc = {(x, 0, 0), x ∈ R}.(2.9)

Lemma 2.8. Let Σc as in (2.9), then, we have for any u ∈ H1(H1),

(2.10)
22

5 + 28

∫
H1

u2

ρ2
c

dw ≤ ‖∇H1u‖2L2(H1)

Proof : We rectify Σ by setting x′ = x, y′ = y, s′ = s+ 2xy, so the vector fields X and
Y change to X ′ = ∂x′ + 4y′∂s′ , Y ′ = ∂y′ and

ρc(x′, y′, s′) =
(
(4y′)4 + s′2

)1/4
.

Let R be a radial vector field

R = X ′(s′)Y ′ + 23 s′∂s′

= 4y′Y ′ + 23 s′∂s′

= 4y′Y ′ + 2s′[Y ′, X ′],

where R(ρ−2
c ) = −8ρ−2

c and divR = 12. Using the density Lemma 2.6, we have for
u ∈ C∞0 (H1 \ {(0, 0)}),∫

H1

u2

ρ2
c

dz′ds′ = −1
8

∫
H1

u2R(ρ−2
c )dz′ds′

−1
2

∫
H1

u2

ρ2
c

dz′ds′ =
∫

H1

y′

ρ2
c

u Y ′u dz′ds′ − 1
2

∫
H1

Y ′(
s′

ρ2
c

)u X ′u dz′ds′

+
1
2

∫
H1

X ′(
s′

ρ2
c

)u Y ′u dz′ds′

=
∫

H1

y′

ρ2
c

u Y ′u dz′ds′ +
∫

H1

28 y
′3s′

ρ6
c

u X ′u dz′ds′

+
∫

H1

[2y′

ρ2
c

− 2y′s′2

ρ6
c

]
u Y ′u dz′ds′

=
∫

H1

[3y′

ρc
− 2y′s′2

ρ5
c

] u
ρc

Y ′u dz′ds′ +
∫

H1

28 y
′3s′

ρ5
c

u

ρc
X ′u dz′ds′
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We then obtain
1
2

∫
H1

| u |2

ρ2
c

dz′ds′ ≤
(∫

H1

A(z′, s′)
| u |2

ρ2
dz′ds′

) 1
2 ‖∇H1u‖L2(H1),

with

A(z′, s′) =
[3y′

ρc
− 2

y′s′2

ρ5
c

]2
+ 216 y

′6s′2

ρ10
c

= 32 y′2

ρ2
c

− 12
y′2(ρ4

c − 28y′4)
ρ6
c

+ 4
y′2(ρ4

c − 28y′4)2

ρ10
c

+ 216 y′6(ρ4
c − 28y′4)
ρ10
c

=
y′2

ρ2
c

[
1 + 28(4 + 28)

y′4

ρ4
c

+ 28(210 − 216)
y′8

ρ8
c

]
≤ 1

24

[
1 +

1
28

28(4 + 28)
]

≤ 1
24

(5 + 28).

3. Variational formulation and eigenvalue problem

Thanks to Hardy’s inequality (1.3) and Poincaré’s inequality (2.2),

‖ u ‖µ= (
∫

Ω
[ | ∇Hdu(z, s) |2 −µV (z, s) | u(z, s) |2 ] dzds)

1
2(3.1)

is equivalent to the norm on H1
0 (Ω,Hd) for all 0 ≤ µ < 1, so that we will use ‖ · ‖µ as the

norm of H1
0 (Ω,Hd).

We will use the variational method to study the Dirichlet problem (1.1). We define the
following energy functional on H1

0 (Ω,Hd) :

(3.2) Iµ,λ(u) =
1
2

∫
Ω

[
| ∇Hdu |2 −µV | u |2

]
dzds− 1

p

∫
Ω
| u |p dzds− λ

2

∫
Ω
| u |2 dzds.

Similar to the classical case, Iµ,λ( · ) is well-defined onH1
0 (Ω,Hd) and belongs to C1(H1

0 (Ω,Hd); R).
We say that u ∈ H1

0 (Ω,Hd) is a weak solution of the Dirichlet problem (1.1), if for any
v ∈ C∞0 (Ω), there holds∫

Ω

[
∇Hdu∇Hdv − µV u v̄

]
dzds−

∫
Ω
| u |p−2 u v̄ dzds− λ

∫
Ω
u v̄ dzds = 0

So a weak solution u ∈ H1
0 (Ω,Hd) of the Dirichlet problem (1.1) is a critical point of Iµ,λ.

The Euler-Lagrange equation of the variational problem (3.2) is exactly the semilinear
equation in (1.1), and we have

〈I ′µ,λ(u), v〉 =
∫

Ω

[
∇Hdu∇Hdv − µV u v̄− | u |p−2 u v̄ − λuv̄

]
dzds = 0

for any v ∈ H1
0 (Ω,Hd).

Since we consider the Dirichlet problem (1.1) for any λ > 0, we cannot use the direct
method to prove the existence of the critical point for Iµ,λ. We need to use the Mountain
Pass Theorem and the Linking Theorem of Rabinowitz (see [23, 24, 26]).

Thusthat we study firstly the spectral decomposition of H1
0 (Ω,Hd) with respect to the

operator −∆Hd−µV where the singular potential V satisfies Hardy’s inequality (1.3). This
eigenvalue problem has also its independent interest. We have the following proposition.
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Proposition 3.1. Let 0 ≤ µ < 1. Then there exist 0 < λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ ... →
+∞, such that for each k ≥ 1, the following Dirichlet problem

(3.3)
{
−∆Hdφk − µV φk = λkφk, in Ω
φk|∂Ω = 0

admits a nontrivial solution in H1
0 (Ω,Hd). Moreover, {φk}k≥1 constitutes an orthonormal

basis of Hilbert space H1
0 (Ω,Hd).

Remark that the first eigenvalue λ1 is characterized by the following Poincaré inequality

(3.4) ‖u‖2L2(Ω) ≤
1
λ1

∫
Ω

(
|∇Hdu|2 − µV |u|2

)
dzds

for all u ∈ H1
0 (Ω,Hd).

The first step of the proof is the following compact embedding result

Lemma 3.2. Let Ω ∈ Hd be a bounded open domain. Then H1
0 (Ω,Hd) is compactly

embedded to L2(Ω).

We can prove this result by the continuous embedding of H1
0 (Ω,Hd) into usual the

Sobolev space H1/2
0 (Ω), then the compact embedding of H1/2(Ω) into L2(Ω). But the first

embedding requires some careful extension results. We refer to [19] for a complete and
elegant proof of this compact embedding result.
Proof of Proposition 3.1
Denote by Lµ = −∆Hd − µV the operator defined on the Hilbert space H1

0 (Ω,Hd) with
the norm ‖∇Hdu‖L2(Ω), then Hardy’s inequality (1.3) implies

(Lµu, u)L2(Ω) ≥ (1− µ)‖∇Hdu‖2L2(Ω) > 0, ∀ u ∈ H1
0 (Ω,Hd),

and
(Lµu, v) = (u, Lµv), ∀ u, v ∈ H1

0 (Ω,Hd).

Hence it is positive, definite and self-adjoint on H1
0 (Ω,Hd). The Lax-Milgram Theorem

implies that for any g ∈ H−1(Ω; Hd), the following Dirichlet problem{
Lµu = g in Ω
u = 0 on ∂Ω

admits a unique solution u belonging to H1
0 (Ω,Hd), where H−1(Ω; Hd) is the dual space

of H1
0 (Ω,Hd), g ∈ H−1(Ω; Hd) if g ∈ D ′(Ω) and there exists C > 0 such that

|〈g, ϕ〉| ≤ C‖ϕ‖H1
0 (Ω,Hd)

for all ϕ ∈ C∞0 (Ω) with the norm

‖g‖H−1(Ω,Hd) = sup
ϕ∈C∞0 (Ω)

|〈g, ϕ〉|
‖ϕ‖H1

0 (Ω,Hd)

.

Then

∇Hd : L2(Ω) → H−1(Ω; Hd) and ∆Hd : H1
0 (Ω,Hd) → H−1(Ω; Hd)

are continuous. The inverse operator L−1
µ of Lµ is well defined and it is a continuous map

from H−1(Ω,Hd) into H1
0 (Ω,Hd).

The compact embedding i : H1
0 (Ω,Hd) → L2(Ω) and the continuous embedding i∗ :

L2(Ω)→ H−1(Ω,Hd) imply that Kµ = L−1
µ ◦ i∗ ◦ i : H1

0 (Ω,Hd)→ H1
0 (Ω,Hd) is a compact
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and self adjoint operator. So the spectrum of the compact operator Kµ is {ηk} such that
ηk > 0, k ≥ 1 and ηk → 0. If {φk} are the associated normal eigenvectors, we have that

Kµφk = ηkφk, ∀ k ≥ 1,

and {φk} form a complete basis of Hilbert space H1
0 (Ω,Hd), which completes the proof of

Proposition 3.1.

4. Existence of critical points

We prove now the following existence result of critical points for the variational func-
tional Iµ,λ which gives the weak solution for the Dirichlet problem (1.1).

Theorem 4.1. Let 0 ≤ µ < 1, λ > 0, then Iµ,λ admits at last one nontrivial critical point
on H1

0 (Ω,Hd).

We recall now the well-known Palais-Smale condition.

Definition 4.2. Let E be a Banach space, I ∈ C1(E,R) and c ∈ R. We say that I
satisfies the (PS)c condition, if for any sequence {un} ⊂ E with the properties :

I(un)→ c and ‖ I ′(un) ‖E′ (Ω)→ 0,

there exists a subsequence which is convergent, where I ′( · ) is the Frechet differentiation
of I and E′ is the dual space of E. If this holds for any c ∈ R, we say that I satisfies the
(PS) condition.

We will prove in the next section the following result

Theorem 4.3. Let 0 ≤ µ < 1, λ > 0, then Iµ,λ satisfies the (PS) condition on H1
0 (Ω,Hd).

Let 0 < λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ ... → +∞ be the eigenvalues of −∆Hd − µV
in Proposition 3.1. We consider firstly the case 0 < λ < λ1 and we use the following
Mountain Pass Theorem to prove the existence of a critical point for Iµ,λ :

Theorem 4.4. (see [1, 23])
Let E be a Banach space and I ∈ C1(E,R). We suppose that I(0) = 0 and satisfies that
(i) there exist R > 0, a > 0 such that if ‖ u ‖E= R, then I(u) ≥ a;
(ii) there exists e ∈ E such that ‖ e ‖> R and I(e) < a. If I satisfies the (PS)c

condition with

c = inf
h∈Γ

max
t∈[0,1]

I(h(t)), where Γ = { h ∈ C([0, 1];E); h(0) = 0 and h(1) = e},

then c is a critical value of I and c ≥ a.

We check the above conditions for I = Iµ,λ on E = H1
0 (Ω,Hd). We have Iµ,λ(0) = 0.

For u ∈ H1
0 (Ω,Hd), Sobolev’s inequality (1.2) and Hardy’s inequality imply that

‖u‖Lp(Ω) ≤ CΩ‖∇Hdu‖L2(Ω) ≤
CΩ

(1− µ)1/2
‖ u ‖µ .

Then, for 0 < λ < λ1

Iµ,λ(u) ≥ 1
2

(1− λ

λ1
) ‖ u ‖2µ −

C1

p
‖ u ‖pµ≥ C1 ‖ u ‖2µ

( 1
2C1

(1− λ

λ1
) − 1

p
‖ u ‖p−2

µ

)(4.1)
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where

C1 =
(

CΩ

(1− µ)1/2

)p
> 1.

Let

R0 =
(

p

2C1
(1− λ

λ1
)
) 1
p−2

> 0.

Then for any 0 < R < R0,

(4.2) inf
‖u‖µ=R

Iµ,λ(u) = a(R) > 0.

So Iµ,λ satisfies condition (i) of Theorem 4.4.
For condition (ii) of Theorem 4.4, take u ∈ H1

0 (Ω,Hd) such that ‖ u ‖µ= R > 0, then
for θ ≥ 0,

Iµ,λ(θu) =
θ2

2

∫
Ω

[ | ∇Hdu |2 −µV (z, s) | u |2 ] dzds(4.3)

− θp

p

∫
Ω
| u |p dzds− λθ2

2

∫
Ω
| u |2 dzds.(4.4)

Since p > 2, thus

lim
θ→+∞

Iµ,λ(θu) = −∞.

Then, there exists θ1 > 0 large enough such that for e = θ1u, we have ‖ e ‖µ> R and
Iµ(θ1u) < 0 < a(R). Set now

Γ = { h ∈ C([0, 1];H1
0 (Ω,Hd)); h(0) = 0 and h(1) = e},

then by continuity, we have

c = inf
h∈Γ

max
t∈[0,1]

Iµ,λ(h(t)) ≥ a(R) > 0,

and c is a local minimum. Theorem 4.3 implies that the (PS)c condition is satisfied. So
c > 0 is a critical value by using Theorem 4.4 and the critical point is u ∈ H1

0 (Ω,Hd),
which is nontrivial. We have proved Theorem 4.4 for 0 < λ < λ1.

We need now the following Linking theorem from Rabinowitz [23].

Theorem 4.5. Let E be a Banach space with E = Y ⊕X, where dimY < ∞. Suppose
that I ∈ C1(E,R) and satisfies

(i)there exist ρ, α > 0 such that I|∂Bρ∩X ≥ α;
(ii) there exist e ∈ ∂B1 ∩X and R > ρ such that if A ≡ (B̄R ∩ Y )⊕ {r e, 0 < r < R},

then I|∂A ≤ 0.
If I satisfies the (PS)c condition with

c = inf
h∈Γ

max
u∈A

I(h(u)), where Γ = {h ∈ C(Ā, E); h|∂A = id},

then c is a critical value of I and c ≥ α.

Remark 4.6. Suppose I|Y ≤ 0 and there are an e ∈ ∂B1 ∩ X and R̄ > ρ such that
I(u) ≤ 0 for u ∈ Y ⊕ span{e} and ‖ u ‖≥ R̄, then for any large R, we have I|∂A ≤ 0
where A = (B̄R ∩ Y )⊕ {re, 0 < r < R}.
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We assume now that there is k such that λk ≤ λ < λk+1, where λk is the k-th eigenvalue
of the operator −∆Hd − µV . Let Y = span {φ1, ..., φk}, where φk is the eigenfunction
corresponding to λk. Then Proposition 3.1 implies that H1

0 (Ω,Hd) = Y
⊕
X where X =

span {φl; l > k}. Thus we have∫
Ω
| ∇Hdy |2 −µ | y |2 dzds ≤ λk

∫
Ω
| y |2 dzds, ∀ y ∈ Y(4.5)

and ∫
Ω
| ∇Hdu |2 −µV | u |2 dzds ≥ λk+1

∫
Ω
| u |2 dzds, ∀ u ∈ X.(4.6)

We will show that Iµ,λ satisfies the conditions (i), (ii) of Theorem 4.5 on H1
0 (Ω,Hd).

Proposition 4.7. Assume that 0 ≤ µ < 1 and λk ≤ λ < λk+1. There exist ρ, α > 0 such
that Iµ,λ|∂Bρ∩X ≥ α where X = span {φl; l > k}.

Proof : For any u ∈ X, λk ≤ λ < λk+1, we obtain from equation (4.6), Hardy’s inequality
and Poincaré’s inequality that

Iµ,λ(u) =
1
2

∫
Ω

[ | ∇Hdu |2 −µV | u |2 ] dzds

− 1
p

∫
Ω
| u |p dzds− λ

2

∫
Ω
| u |2 dzds

≥ 1
2
λk+1 − λ
λk+1

‖ u ‖2µ −
C1

p
‖ u ‖pµ

≥ C1 ‖ u ‖2µ
(

1
2C1

λk+1 − λ
λk+1

− 1
p
‖ u ‖p−2

µ

)
.

Let

ρ0 =
(

p

2C1

(
1− λ

λk+1

)) 1
p−2

> 0.

Then for any 0 < ρ < ρ0,

(4.7) inf
u∈X;‖u‖µ=ρ

Iµ,λ(u) = α(ρ) > 0.

Thus Iµ,λ satisfies the condition (i) of Theorem 4.5.

Proposition 4.8. Assume that 0 ≤ µ < 1 and λk ≤ λ < λk+1. Then Iµ,λ verifies (ii) of
Theorem 4.5 with e = φk+1 and Y = span {φ1, · · · , φk}.

Proof : We prove Proposition 4.8 using Remark 4.6. For any y ∈ Y , we have from (4.5)
that

Iµ,λ(y) =
1
2

∫
Ω

[ | ∇Hdy |2 −µV | y |2 ] dzds

− 1
p

∫
Ω
| y |p dzds− λ

2

∫
Ω
| y |2 dzds

≤ 1
2
λk − λ
λk

‖ y ‖2µ −
1
p
‖ y ‖pLp(Ω) .

≤ 0

Let e = φk+1 the (k + 1)-th eigenfunction of Lµ and y ∈ Y , let us the following claim

(4.8) Iµ,λ(y + θφk+1)→ −∞ as θ → +∞,
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which will prove Remark 4.6.
Since {φj} is an orthonormal basis of H1

0 (Ω,Hd), we have for all i, j ∈ N, i 6= j∫
Ω

[ ∇Hdφi ∇Hdφj − µV φiφj ] dzds = λi

∫
Ω
φiφj dzds = 0.(4.9)

Let y =
∑k

i=1 αiφi ∈ Y , then for θ ≥ 1,

Iµ,λ(y + θφk+1) = Iµ,λ(y) + Iµ,λ(θφk+1) +
∫

Ω

[
∇Hdy ∇Hd(θφk+1)− µV y (θφk+1)

]
dzds

− λ
∫

Ω
y (θφk+1) dzds−

1
p

∫
Ω
| y + θφk+1 |p dzds

+
1
p

∫
Ω
| y |p dzds+

1
p

∫
Ω
| θφk+1 |p dzds

= Iµ,λ(y) + Iµ,λ(θφk+1)− 1
p

∫
Ω
| y + θφk+1 |p dzds

+
1
p

∫
Ω
| y |p dzds+

1
p

∫
Ω
| θφk+1 |p dzds.

By using the following inequality

| a+ b |p≥| a |p + | b |p −cp(| a |p−1| b | + | a || b |p−1), ∀ a, b ∈ R, p > 1,(4.10)

and from the fact Iµ,λ(y) ≤ 0, we have

Iµ,λ(y + θφk+1) ≤ Iµ,λ(θφk+1) + cp

∫
Ω

(| y |p−1| θφk+1 | + | y | | θφk+1 |p−1) dzds

≤ θ2

2

(
‖φk+1‖2µ − λ‖φk+1‖2L2(Ω)

)
− θp

p
‖φk+1‖pLp(Ω)

+ cp

∫
Ω

(
| y |p−1| θφk+1 | + | y | | θφk+1 |p−1

)
dzds

≤ θ2

2

{(
λk+1 − λ

)
‖φk+1‖2L2(Ω) −

2θp−2

p
‖φk+1‖pLp(Ω)

+ 2cp
∫

Ω
(θ−1 | y |p−1| φk+1 | +θp−3 | y | | φk+1 |p−1) dzds

}
.

Now p > 2 and ‖φk+1‖pLp(Ω) > 0 imply

Iµ,λ(y + θφk+1)→ −∞ as θ → +∞.

We have proved Proposition 4.8.

Now Proposition 4.7 and Proposition 4.8 imply that, if 0 ≤ µ < 1 and λk ≤ λ < λk+1,
Iµ,λ satisfies the assumptions of Theorem 4.5 and the Palais-Smale condition with

c = inf
h∈Γ

max
u∈A

Iµ,λ(h(u)),

and A ≡ (B̄T ∩ Y )⊕ {θe, 0 < θ < T} > 0.

Then Iµ,λ has a critical value c and a nontrivial critical point u ∈ H1
0 (Ω,Hd), since

Iµ,λ(u) = c ≥ α > 0. We have proved Theorem 4.1.
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5. The Palais-Smale condition

We prove now Theorem 4.3, i.e. we verify the (PS) condition for Iµ,λ on H1
0 (Ω,Hd).

Lemma 5.1. Let 0 ≤ µ < 1, λ > 0, c ∈ R, then any sequence {un} ∈ H1
0 (Ω,Hd) satisfying

Iµ,λ(un)→ c and ‖ I ′µ,λ(un) ‖H−1(Ω,Hd)→ 0,(5.1)

is bounded in H1
0 (Ω,Hd).

Proof : We use

‖u ‖µ =
(∫

Ω

[
| ∇Hdu |2 −µV (z, s) | u |2

]
dzds

)1/2

≈ ‖ ∇Hdu ‖L2(Ω)

as norm of H1
0 (Ω,Hd). Let {un} ∈ H1

0 (Ω,Hd) be the sequence of Lemma 5.1, then

1
2
‖u ‖2µ −

1
p
‖un‖pLp(Ω) −

λ

2
‖un‖2L2(Ω) → c,(5.2)

and

〈I ′µ,λ(un), ϕ〉 =
∫

Ω

[
∇Hdun ∇Hdϕ−

(
µV (z, s)un+ | un |p−2 un + λun

)
ϕ
]
dzds(5.3)

= ◦(1) ‖ ϕ ‖H1
0 (Ω,Hd) .

We suppose that {un} is not bounded in H1
0 (Ω,Hd), i. e.

‖ ∇Hdun ‖L2(Ω) → +∞,

and let wn = un
‖∇Hdun‖L2(Ω)

, then ‖ ∇Hdwn ‖L2(Ω)= 1. So, there exist w ∈ H1
0 (Ω,Hd) and a

subsequence still denoted by {wn} such that

wn ⇀ w in H1
0 (Ω,Hd).

Now, for any q = ν 2 + (1− ν) 2∗ with 0 < ν < 1, we have

‖wn − w‖qLq(Ω) ≤ ‖wn − w‖
ν 2
L2(Ω)‖wn − w‖

(1−ν) 2∗

L2∗ (Ω)
.

Then, Sobolev’s inequality (1.2) and the compact embedding result of Lemma 3.2 imply
the following strong limit

wn → w in Lq(Ω) for 1 ≤ q < 2∗,

which implies also the weak limit, for 2 < p < 2∗,∫
Ω
| wn |p−2 wn ϕ dzds →

∫
Ω
| w |p−2 w ϕ dzds,

for any ϕ ∈ C∞0 (Ω). Divide (5.3) by ‖ ∇Hdun ‖L2(Ω), we get for any ϕ ∈ C∞0 (Ω),∫
Ω

[
∇Hdwn ∇Hdϕ− µV (z, s)wn ϕ

]
dzds(5.4)

−
∫

Ω
| un |p−2 wn ϕ dzds− λ

∫
Ω
wn ϕ dzds

=
◦(1)

‖ ∇Hdun ‖L2(Ω)
‖ ϕ ‖H1

0 (Ω,Hd) .
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Passing to the limit, we obtain for any ϕ ∈ C∞0 (Ω),∫
Ω

[
∇Hdw ∇Hdϕ− µV (z, s)w ϕ

]
dzds− λ

∫
Ω
w ϕ dzds

= lim
n→∞

∫
Ω
| un |p−2 wn ϕ dzds

= lim
n→∞

‖ ∇Hdun ‖
p−2
L2(Ω)

∫
Ω
| wn |p−2 wn ϕ dzds,

which implies that ∫
Ω
| w |p−2 w ϕ dzds = 0 ∀ ϕ ∈ C∞0 (Ω).

Then w = 0 a.e. in Ω and so

lim
n→∞

∫
Ω
| wn |2 dzds =

∫
Ω
| w |2 dzds = 0.

Divide (5.2) by ‖ ∇Hdun ‖2L2(Ω), we obtain

1
2

∫
Ω

[ | ∇Hdwn |2 −µV (z, s) | wn |2 ] dzds(5.5)

− 1
p

∫
Ω
| un |p−2| wn |2 dzds− λ

2

∫
Ω
| wn |2 dzds = ◦(1),

where

◦(1) =
c

‖ ∇Hdun ‖2L2(Ω)

.

Passing to the limit in (5.5),

1
2
− 1

2
lim

n→+∞

∫
µV (z, s) | wn |2 dzds =

1
p

lim
n→+∞

∫
Ω
| un |p−2| wn |2 dzds,(5.6)

and taking ϕ = wn in (5.4), we have

1− lim
n→+∞

∫
µV (z, s) | wn |2 dzds = lim

n→+∞

∫
Ω
| un |p−2| wn |2 dzds.(5.7)

We multiply (5.6) by p, we obtain from (5.7) and Hardy’s inequality that

p

2
− 1 = (

p

2
− 1) lim

n→+∞

∫
µV (z, s) | wn |2 dzds

≤ (
p

2
− 1) lim

n→+∞
µ

∫
| ∇Hdwn |2 dzds

≤ (
p

2
− 1)µ.

That is impossible since µ < 1, p > 2 and this implies that {un} is bounded in H1
0 (Ω,Hd).

Lemma 5.2. Under the assumption of Lemma 5.1, {un} possesses a convergent subse-
quence in H1

0 (Ω,Hd).
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Proof : Since {un} is a bounded sequence in H1
0 (Ω,Hd), there exists u ∈ H1

0 (Ω,Hd) such
that for any 2 < p < 2∗,

un ⇀ u in H1
0 (Ω,Hd),

un → u in Lp(Ω),

| un |p−2 un →| u |p−2 u in L
p
p−1 (Ω).

By passing to the limit in (5.3), we have

〈I ′µ,λ(u), ϕ〉 = 0

for any ϕ ∈ C∞0 (Ω) which is dense in H1
0 (Ω,Hd). Then

I ′µ,λ(un) → 0 in H−1(Ω,Hd)

implies that

lim
n→∞

〈I ′µ,λ(un)− I ′µ,λ(u), un − u〉 = 0.

We rewrite the norm of H1
0 (Ω,Hd)

‖ un − u ‖2µ = 〈I ′µ,λ(un)− I ′µ,λ(u), un − u〉

+
∫

Ω

[
| un |p−2 un− | u |p−2 u

] (
un − u

)
dzds+ λ

∫
Ω
| un − u |2 dzds.

From Hölder’s inequality, we have∫
Ω
|
[
| un |p−2 un− | u |p−2 u

] (
un − u

)
| dzds

≤ ‖ | un |p−2 un− | u |p−2 u ‖
L

p
p−1 (Ω)

‖ un − u ‖Lp(Ω),

so we can deduce that ‖ un − u ‖2µ→ 0, n→∞.
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