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In this work, we study the Dirichlet problem for a class of semi-linear subelliptic equations on the Heisenberg group with a singular potential. The singularity is controlled by Hardy's inequality, and the nonlinearity is controlled by Sobolev's inequality. We prove the existence of a nontrivial solution for a homogenous Dirichlet problem.

Introduction

In this work, we study the partial differential equations on the Heisenberg group H d . Let us recall that the Heisenberg group is the space R 2d+1 of the (non commutative) law of product (x, y, s) • (x , y , s ) = x + x , y + y , s + s + 2 (y|x ) -(y |x) .

The left invariant vector fields are

X j = ∂ x j + 2y j ∂ s , Y j = ∂ y j -2x j ∂ s , j = 1, • • • , d and S = ∂ s = 1 4 [Y j , X j ].
In all that follows, we shall denote by Z j = X j and Z j+d = Y j for j ∈ {1, • • • , d}. We fix here some notations :

z = (x, y) ∈ R 2d , w = (z, s) ∈ H d , ρ(z, s) = |z| 4 + |s| 2 1/4
where ρ is the Heisenberg distance. Moreover, the Laplacian-Kohn operator on H d and Heisenberg gradient is given by

∆ H d = n j=1 X 2 j + Y 2 j ; ∇ H d = (Z 1 , • • • , Z 2d ).
Let Ω be an open and bounded domain of H d , we define thus the associated Sobolev space as following

H 1 (Ω, H d ) = f ∈ L 2 (Ω) ; ∇ H d f ∈ L 2 (Ω)
and

H 1 0 (Ω, H d ) is the closure of C ∞ 0 (Ω) in H 1 (Ω, H d ).
We consider the following semi-linear Dirichlet problem

(1.1) -∆ H d u -µV u = λu+ | u | p-2 u in Ω, u ∂Ω = 0
where V is a positive potential function which admits the singularity on Ω, λ is a real constant and 2 < p < 2+ 2 d ; the index 2 * = 2+ 2 d is the critical index of Sobolev's inequality on the Heisenberg group [START_REF] Chemin | Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques[END_REF][START_REF] Folland | Estimates for the ∂b complex and analysis on the Heisenberg group[END_REF][START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF][START_REF] Loiudice | Improved inequalities on the Heisenberg group[END_REF][START_REF] Jerison | Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem[END_REF] (1.2)

u L 2 * (Ω) ≤ C Ω u H 1 (Ω, H d ) ,
for all u ∈ H 1 0 (Ω, H d ). The potential function V is controlled by the following Hardy's inequality, (1.3)

Ω V (w)|u(w)| 2 dw ≤ ∇ H d u 2 L 2 (Ω) ,
for all u ∈ H 1 0 (Ω, H d ). We will prove in the next section the following results

• If 0 ∈ Ω, Hardy's inequality (1.3) holds for

V (z, s) = d 4 (d + 1) 2 ρ(z, s) -2 .
• If 0 ∈ Ω, Hardy's inequality (1.3) also holds for a softer potential

V (z, s) = d 2 |z| 2
ρ(z, s) 4 , see also [START_REF]Some Hardy Inequalities on the Heisenberg Group[END_REF][START_REF] Garofalo | Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation[END_REF]. • In the Lemma 2.7, we prove that Hardy's inequality (1.3) holds for V (z, s) = μρ c (z, s) -2 , where ρ c defined in (2.8) is the distance to a sub-manifold Σ c of codimension ≥ 2 and μ is a constant. Theorem 1.1. Assume that the potential function V satisfies (1.3), then for any λ > 0 and any 0 ≤ µ < 1, the Dirichlet problem (1.1) admits a nontrivial solution in H 1 0 (Ω, H d ). The Dirichlet problem (1.1) on the Heisenberg group is a natural generalization of the classical problem on R d , see [START_REF] Benci | Existence of positive solutions of the equation -∆u + a(x)u = u N +2 N -2 in R n[END_REF][START_REF] Cerami | Some existence results for superlinear elliptic boundary values problems involving critical exponents[END_REF][START_REF] Chaudhuri | Existence of positive solutions of some semilinear elliptic equations with singular coefficients[END_REF][START_REF] Chen | Existence of solutions for a nonlinear PDE with an inverse square potential[END_REF][START_REF] Chen | On a semilinear elliptic equation with singular term and Hardy-Sobolev critical growth[END_REF][START_REF] Ferrero | Existence of solutions for singular critical growth semilinear elliptic equations[END_REF][START_REF] Ghoussoub | Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponants[END_REF] and their references. The subellipticity of the operator ∆ H d implies that any weak solution of the Dirichlet problem (1.1) belongs to C ∞ (Ω \ Σ c ) (see [START_REF] Xu | The Dirichlet problems for a class of semilinear sub-elliptic equations[END_REF]). The issue of regularity of a weak solution near ∂Ω ∪ Σ c is a very delicate problem.

This paper is organized as follows. In section 2, we recall Poincaré's inequality and prove Hardy's inequality on the Heisenberg group; Section 3 deals with the study of the eigenvalue problem; finally, we prove the existence of a weak solution in Sections 4 and 5 by using Rabinowitz's Theorem and the Palais-Smale Theorem.

Hardy's inequalities on H d

The following density theorem is very useful. Let us give here an other simple proof than [START_REF] Bahouri | Precised Hardy inequalities on R d and on the Heisenberg group H d[END_REF] (see also [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev spaces[END_REF]),

Theorem 2.1. We have that C ∞ 0 (Ω \ {(0, 0)}) is dense in H 1 0 (Ω, H d ) for d ≥ 1.
Proof : By definition of H 1 0 (Ω, H d ), it suffices to show that

C ∞ 0 (Ω) ⊂ C ∞ 0 (Ω \ {(0, 0)}, H d ) . H 1 .
Let ϕ be a cut-off function for which

(2.1) ϕ(η) = 0 if 0 < η ≤ 1, 1 if η ≥ 2.
For u ∈ C ∞ 0 (Ω, H d ), let ε > 0 small enough, and we set

u ε (z, s) = ϕ( 1 ε ρ(z, s)) u(z, s). So u ε ∈ C ∞ 0 (Ω \ {(0, 0)}, H d ) and we have u ε -u 2 H 1 (Ω) = ∇ H d (u ε -u) 2 L 2 (Ω) + u ε -u 2 L 2 (Ω) . Dominated convergence theorem implies that u ε -u 2 L 2
(Ω) → 0, and

Ω | ϕ( 1 ε ρ(z, s)) -1 | 2 | ∇ H d u(z, s) | 2 dzds → 0, when ε → 0.
On the other hand, we have

Ω | ∇ H d ( 1 ε ρ(z, s)) | 2 | ϕ ( 1 ε ρ(z, s)) | 2 | u(z, s) | 2 dzds = 1 ε 2 Ω | z | 2 ρ(z, s) 2 | ϕ ( 1 ε ρ(z, s)) | 2 | u(z, s) | 2 dzds ≤ 1 ε 2 u 2 L ∞ (Ω) ϕ 2 L ∞ (Ω) {(z,s);ε≤ρ(z,s)≤2ε} dzds ≤ C 1 ε 2 ε 2d+2 → 0, as ε → 0.
Remark that this proof also show that the density theorem is not true for classical Sobolev space in a 2 dimensional case. Now, we state the following precise Poincaré inequality, Theorem 2.2. Let Ω be a sub-domain of H d bounded in some direction of (z 1 , • • • , z 2d ), that is, there exist R > 0 and 1 ≤ j 0 ≤ 2d such that 0 < r =| z j 0 |≤ R for all (z, s) ∈ Ω.

Then for any u ∈ H 1 0 (Ω, H d ),

Ω | u | 2 dzds ≤ 4R 2 Ω | ∇ H d u | 2 dzds. (2.

2)

Remark : By using the inequality (2.2), we can use ∇ H d u L 2 (Ω) as a norm on H 1 0 (Ω, H d ). The Poincaré inequality (2.2) holds for any Ω ⊂ {(z, s) ∈ H d ; ρ(z, s) ≤ R}. We can also obtain the Poincaré inequality from Bony's maximum principle for general Hörmander's vector fields but with a non-precise constant (see [START_REF] Bony | Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF][START_REF] Jerison | The Poincaré inequality for vector fields satisfying Hömander's condition[END_REF]). The proof given here is a modification of L. D'Ambrosio [START_REF]Hardy-type inequalities related to degenerate elliptic differential operators[END_REF]. Proof : Using the density results of Theorem 2.1, take u ∈ C ∞ 0 (Ω \ {(0, 0)}) and let T (z, s) = (T 1 (z, s), • • • , T 2d (z, s)) be a C 1 vector function on Ω. Denote by

div H d T = 2d j=1 Z j T j , we have Ω (div H d T ) | u | 2 dzds = -2 Ω T, ∇ H d u u dzds ≤ 2 Ω | T, ∇ H d u u | dzds ≤ 2[ Ω | ∇ H d u | 2 dzds] 1 2 [ Ω | T | 2 | u | 2 dzds] 1 2 ≤ Ω | ∇ H d u | 2 dzds + Ω | T | 2 | u | 2 dzds. Thus Ω div H d T -| T | 2 | u | 2 dzds ≤ Ω | ∇ H d u | 2 dzds. For ε > 0, let us choose T := T ε = -1 2 ∇ H d rε rε
where

r ε = r 2 + ε 2 1 2 and r = |z j 0 |. Then div H d T ε = - 1 2 1 r 2 ε [r ε ∆ H d r ε -| ∇ H d r ε | 2 ] div H d T ε -| T ε | 2 = - 1 2 ∆ H d r ε r ε + 1 4 | ∇ H d r ε | 2 r 2 ε since ∇ H d r ε = ∇ H d r 2 2r ε = r r ε , | ∇ H d r ε | 2 = r 2 r 2 ε ∆ H d r ε = ∆ H d r 2 2r ε - ∇ H d r 2 2r 2 ε ∇ H d r ε = 1 r ε - r 2 r 3 ε . So, div H d T ε -| T ε | 2 = - 1 2r 2 ε + 3r 2 4r 4 ε ,
and for any (z, s) ∈ Ω,

lim ε→0 div H d T ε -| T ε | 2 = 1 4 1 r 2 ≥ 1 4 1 R 2 . From the dominated convergence theorem, we have lim ε→0 Ω [div H d T ε -| T ε | 2 ] | u | 2 dzds ≥ 1 4 1 R 2 Ω | u | 2 dzds, thus 1 4 1 R 2 Ω | u | 2 dzds ≤ Ω | ∇ H d u | 2 dzds.
Let us give a very easy proof of the classical Hardy inequality by using a radial vector field. Let U be a bounded domain of R d , d > 2, H 1 0 (U ) is the usual Sobolev space. Lemma 2.3. We have, for any u ∈ H 1 0 (U ),

(2.3) d 2 -1 2 U u 2 |x| 2 dx ≤ ∇ x u 2 L 2 (U ) . Proof : As C ∞ 0 (U \ {0}) is dense H 1 0 (U ), we have restricted ourselves to a function u in C ∞ 0 (U \ {0}).
The proof mainly consists of an integration by parts with respect to the radial vector field R,

R = d j=1 x j ∂ x j . We notice that R(| x | -2 ) = -2 | x | -2 and divR = d, so U u 2 | x | 2 dx = - 1 2 U R(| x | -2 ) dx = 1 2 U div(R) u 2 | x | 2 dx + 1 2 Ω 1 | x | 2 R(u 2 ) dx 1 - d 2 U u 2 | x | 2 dx = 1 2 U 1 | x | 2 R(u 2 ) dx = U d j=1 u | x | x j | x | ∂ x j u dx.
By Cauchy-Schwarz,

d 2 -1 U | u | 2 | x | 2 dx ≤ U d j=1 | ∂ x j u | 2 dx 1 2 U | u | 2 | x | 2 dx 1 2 .
On the Heisenberg group, if we introduce the radial vector field

R = d j=1 (x j ∂ x j + y j ∂ y j ) = d j=1 (x j X j + y j Y j ),
then we immediately obtain for d > 1,

(d -1) 2 Ω u 2 ρ(z, s) 2 dzds ≤ (d -1) 2 Ω u 2 |z| 2 dzds ≤ ∇ H d u 2 L 2 (Ω) for any u ∈ H 1 0 (Ω, H d ).
By using the idea inspired from the radial vector field, we now prove the following Hardy inequality.

Lemma 2.4. For d ≥ 1, we have that

(2.4) d 2 d + 1 2 Ω u 2 ρ 2 dzds ≤ ∇ H d u 2 L 2 (Ω) , for any u ∈ H 1 0 (Ω, H d ).
Proof : By using the density theorem, we prove the inequality (2.4) for the function u ∈ C ∞ 0 (Ω \ {(0, 0)}). Then the proof mainly consists of an integration by parts with respect to the radial vector field R H d adapted to the structure of H d , namely

R H d = 2s∂ s + d j=1 (x j ∂ x j + y j ∂ y j ) = s 2d d j=1 [Y j , X j ] + d j=1 (x j X j + y j Y j ).
We notice that R H d ρ -2 = -2ρ -2 and div R H d = 2d + 2. We have

Ω u 2 ρ(z, s) 2 dzds = - 1 2 Ω R H d ρ(z, s) -2 u 2 dzds = 1 2 Ω ρ -2 R H d u 2 dzds + 1 2 Ω ρ -2 u 2 div R H d dzds.
This gives

-d Ω u 2 ρ 2 dzds = Ω d j=1 u ρ x j ρ X j + y j ρ Y j u dzds - 1 2d Ω Y j s ρ 2 u(X j u) dzds + 1 2d Ω X j s ρ 2 u(Y j u) dzds = 1 + 1 d Ω d j=1 x j u ρ 2 X j u + y j u ρ 2 Y j u dzds + 1 d Ω d j=1 s ρ 6 | z | 2 y j -sx j uX j u dzds - 1 d Ω d j=1 s ρ 6 | z | 2 x j + sy j uY j u dzds, then -d 2 Ω u 2 ρ 2 dzds = Ω d j=1 (d + 1) - s 2 ρ 4 x j u ρ 2 X j u + y j u ρ 2 Y j u dzds + Ω d j=1 s | z | 2 ρ 4 y j u ρ 2 X j u - x j u ρ 2 Y j u dzds = Ω d j=1 ((d + 1) - s 2 ρ 4 ) x j ρ + s | z | 2 ρ 4 y j ρ u ρ X j u dzds + Ω d j=1 ((d + 1) - s 2 ρ 4 ) y j ρ - s | z | 2 ρ 4 x j ρ u ρ Y j u dzds. Setting A(z, s) = d j=1 ( (d + 1) - s 2 ρ 4 ) x j ρ + s | z | 2 ρ 4 y j ρ 2 + ( (d + 1) - s 2 ρ 4 ) y j ρ - s | z | 2 ρ 4 x j ρ 2 ,
Cauchy-Schwarz inequality implies

d 2 Ω | u | 2 ρ 2 dzds ≤ Ω A(z, s) | u | 2 ρ 2 dzds 1 2 Ω d j=1 | X j u | 2 + | Y j u | 2 dzds 1 2 .
For A(z, s), we have

A(z, s) = (d + 1) - s 2 ρ 4 2 | z | 2 ρ 2 + s 2 | z | 4 ρ 8 | z | 2 ρ 2 = | z | 2 ρ 2 (d + 1) 2 -(2d + 1) s 2 ρ 4 = | z | 2 ρ 6 (d + 1) 2 | z | 4 + d 2 s 2 = | z | 2 ρ 6 (2d + 1) | z | 4 + d 2 (| z | 4 +s 2 ) ≤ (d + 1) 2 | z | 2 ρ 2 ≤ (d + 1) 2 .
So, we deduce the inequality (2.4).

The Hardy inequality on the Heisenberg group H d is first proven in [START_REF] Garofalo | Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation[END_REF][START_REF]Some Hardy Inequalities on the Heisenberg Group[END_REF] for a softer potential.

Lemma 2.5. We have, for any u ∈ H 1 0 (Ω, H d ),

d 2 Ω | z | 2 | z | 4 +s 2 | u | 2 dzds ≤ ∇ H d u 2 L 2 (Ω) . (2.5)
The singularity of potential in the Hardy inequalities (2.3), (2.4) and (2.5) is a isolate point of domain. We consider now the general case when the singularity is on a submanifold. We have first the following density result: Lemma 2.6. Let Ω be a bounded domain of R 2d+1 and Σ c a sub-manifold of

Ω such that dim Σ c ≤ 2d -1. Then C ∞ 0 (Ω \ Σ c ) is dense in the space H 1 0 (Ω, H d ). Proof : As H 1 0 (Ω, H d ) is a Hilbert space, it is enough to prove that the orthogonal of C ∞ 0 (Ω \ Σ c ) in H 1 0 (Ω, H d ) is {0}. Let u be in this space. For any v in C ∞ 0 (Ω \ Σ c ), we have (u, v) L 2 + (∇ H d u, ∇ H d v) L 2 = 0.
By integration by part,

∀v ∈ C ∞ 0 (Ω \ Σ c ) , u -∆ H d u, v = 0, this implies that, as a distribution, Supp u -∆ H d u ⊂ Σ c .
Since u-∆ H d u belong to the classical Sobolev space H -1 (Ω) and except 0, no distribution of H -1 (Ω) can be supported in a submanifold of dimension ≤ (2d+1)-2. Thus u-∆ H d u = 0 on Ω. Taking the L 2 scalar product with u ∈ H 1 0 (Ω, H d ) implies that u ≡ 0. This completes the proof of Lemma 2.6.

We consider now the hyper-surface Σ = {(x, y, s) ∈ Ω : g(x, y, s

) = s + f (x, y) = 0}
where Ω is a neighborhood of 0 in H d . Assume that

(2.6) Σ c = {w ∈ Ω : g(w) = 0, ∇ H d g(w) = 0} , is a sub-manifold of dimension (2d + 1) -r -1, r ≥ 1.
Lemma 2.7. Assume that Σ c is a sub-manifold of dimension 2d -r and r ≥ 1. Then, there exists μ > 0 such that for any u ∈ H 1 0 (Ω, H d ),

(2.7) μ

Ω u 2 ρ 2 c dw ≤ ∇ H d u 2 L 2 (Ω) with (2.8) ρ c (w) = g 2 (w) + |∇ H d g(w)| 4 1/4 .
We refer to the proof of this lemma to [START_REF] Bahouri | Trace theorem on the Heisenberg group[END_REF] and also [START_REF] Bahouri | Precised Hardy inequalities on R d and on the Heisenberg group H d[END_REF]. The constant μ depends, of course on Σ c , but in many interesting cases, it depends only on the dimension of Σ c .

Here we present a proof for a model case in H 1 to precise the constant μ. We take g(x, y, s) = s + 2xy, then

Σ = {(x, y, s) ∈ H 1 : s + 2xy = 0}, Σ c = {(x, 0, 0), x ∈ R}.
(2.9) Lemma 2.8. Let Σ c as in (2.9), then, we have for any u ∈ H 1 (H 1 ), (2.10)

2 2 5 + 2 8 H 1 u 2 ρ 2 c dw ≤ ∇ H 1 u 2 L 2 (H 1 )
Proof : We rectify Σ by setting x = x, y = y, s = s + 2xy, so the vector fields X and Y change to

X = ∂ x + 4y ∂ s , Y = ∂ y and ρ c (x , y , s ) = (4y ) 4 + s 2 1/4 .
Let R be a radial vector field

R = X (s )Y + 2 3 s ∂ s = 4y Y + 2 3 s ∂ s = 4y Y + 2s [Y , X ],
where R(ρ -2 c ) = -8ρ -2 c and divR = 12. Using the density Lemma 2.6, we have for 

u ∈ C ∞ 0 (H 1 \ {(0, 0)}), H 1 u 2 ρ 2 c dz ds = - 1 8 H 1 u 2 R(ρ -2 c )dz ds - 1 2 H 1 u 2 ρ 2 c dz ds = H 1 y ρ 2 c u Y u dz ds - 1 2 H 1 Y ( s ρ 2 c )u X u dz ds + 1 2 H 1 X ( s ρ 2 c )u Y u dz ds = H 1 y ρ 2 c u Y u dz ds + H 1 2 8 y 3 s ρ 6 c u X u dz ds + H 1 2y ρ 2 c - 2y s 2 ρ 6 c u Y u dz ds = H 1 3y ρ c - 2y s 2 ρ 5 c u ρ c Y u dz ds + H 1 2 8 y 3 s ρ 5 c u ρ c X u dz ds We then obtain 1 2 H 1 | u | 2 ρ 2 c dz ds ≤ H 1 A(z , s ) | u | 2 ρ 2 dz ds 1 2 ∇ H 1 u L 2 (H 1 ) , with A(z , s ) = 3y ρ c - 2 
u µ = ( Ω [ | ∇ H d u(z, s) | 2 -µV (z, s) | u(z, s) | 2 ] dzds) 1 2 (3.1) 
is equivalent to the norm on H 1 0 (Ω, H d ) for all 0 ≤ µ < 1, so that we will use • µ as the norm of H 1 0 (Ω, H d ).

We will use the variational method to study the Dirichlet problem (1.1). We define the following energy functional on H 1 0 (Ω, H d ) :

(3.2) I µ,λ (u) = 1 2 Ω | ∇ H d u | 2 -µV | u | 2 dzds - 1 p Ω | u | p dzds - λ 2 Ω | u | 2 dzds.
Similar to the classical case, I µ,λ ( • ) is well-defined on H 1 0 (Ω, H d ) and belongs to C 1 (H 1 0 (Ω, H d ); R). We say that u ∈ H 1 0 (Ω, H d ) is a weak solution of the Dirichlet problem (1.1), if for any v ∈ C ∞ 0 (Ω), there holds 

Ω ∇ H d u∇ H d v -µV u v dzds - Ω | u | p-2 u v dzds -λ Ω u v dzds = 0 So a weak solution u ∈ H 1 0 (Ω, H d )
I µ,λ (u), v = Ω ∇ H d u∇ H d v -µV u v-| u | p-2 u v -λuv dzds = 0 for any v ∈ H 1 0 (Ω, H d ).
Since we consider the Dirichlet problem (1.1) for any λ > 0, we cannot use the direct method to prove the existence of the critical point for I µ,λ . We need to use the Mountain Pass Theorem and the Linking Theorem of Rabinowitz (see [START_REF] Rabinowitz | Minimaux methods in critical points theory with aplications to differential equation[END_REF][START_REF] Struwe | Variational methods. Application to nonlinear partial differential equations and Hamiltonian systems[END_REF][START_REF] Willem | Minimax Theorems[END_REF]).

Thusthat we study firstly the spectral decomposition of H 1 0 (Ω, H d ) with respect to the operator -∆ H d -µV where the singular potential V satisfies Hardy's inequality (1.3). This eigenvalue problem has also its independent interest. We have the following proposition. and self adjoint operator. So the spectrum of the compact operator K µ is {η k } such that η k > 0, k ≥ 1 and η k → 0. If {φ k } are the associated normal eigenvectors, we have that

K µ φ k = η k φ k , ∀ k ≥ 1,
and {φ k } form a complete basis of Hilbert space H 1 0 (Ω, H d ), which completes the proof of Proposition 3.1.

Existence of critical points

We prove now the following existence result of critical points for the variational functional I µ,λ which gives the weak solution for the Dirichlet problem (1.1).

Theorem 4.1. Let 0 ≤ µ < 1, λ > 0, then I µ,λ admits at last one nontrivial critical point on H 1 0 (Ω, H d ). We recall now the well-known Palais-Smale condition. Definition 4.2. Let E be a Banach space, I ∈ C 1 (E, R) and c ∈ R. We say that I satisfies the (P S) c condition, if for any sequence {u n } ⊂ E with the properties :

I(u n ) → c and I (u n ) E (Ω) → 0,
there exists a subsequence which is convergent, where I ( • ) is the Frechet differentiation of I and E is the dual space of E. If this holds for any c ∈ R, we say that I satisfies the (P S) condition.

We will prove in the next section the following result Theorem 4.3. Let 0 ≤ µ < 1, λ > 0, then I µ,λ satisfies the (P S) condition on H 1 0 (Ω, H d ). Let 0 < λ 1 < λ 2 ≤ λ 3 ≤ ... ≤ λ k ≤ ... → +∞ be the eigenvalues of -∆ H d -µV in Proposition 3.1. We consider firstly the case 0 < λ < λ 1 and we use the following Mountain Pass Theorem to prove the existence of a critical point for I µ,λ : Theorem 4.4. (see [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF][START_REF] Rabinowitz | Minimaux methods in critical points theory with aplications to differential equation[END_REF])

Let E be a Banach space and I ∈ C 1 (E, R). We suppose that I(0) = 0 and satisfies that (i) there exist R > 0, a > 0 such that if u E = R, then I(u) ≥ a;

(ii) there exists e ∈ E such that e > R and I(e) < a. If I satisfies the (P S) c condition with

c = inf h∈Γ max t∈[0,1] I(h(t)), where Γ = { h ∈ C([0, 1]; E); h(0) = 0 and h(1) = e},
then c is a critical value of I and c ≥ a.

We check the above conditions for

I = I µ,λ on E = H 1 0 (Ω, H d ). We have I µ,λ (0) = 0. For u ∈ H 1 0 (Ω, H d ), Sobolev's inequality (1.
2) and Hardy's inequality imply that

u L p (Ω) ≤ C Ω ∇ H d u L 2 (Ω) ≤ C Ω (1 -µ) 1/2 u µ .
Then, for 0 < λ < λ 1

I µ,λ (u) ≥ 1 2 (1 - λ λ 1 ) u 2 µ - C 1 p u p µ ≥ C 1 u 2 µ 1 2C 1 (1 - λ λ 1 ) - 1 p u p-2 µ (4.1)
where

C 1 = C Ω (1 -µ) 1/2 p > 1. Let R 0 = p 2C 1 (1 - λ λ 1 ) 1 p-2 > 0.
Then for any 0 < R < R 0 , (4.2) inf

u µ=R I µ,λ (u) = a(R) > 0.
So I µ,λ satisfies condition (i) of Theorem 4.4.

For condition (ii) of Theorem 4.4, take u ∈ H 1 0 (Ω, H d ) such that u µ = R > 0, then for θ ≥ 0,

I µ,λ (θu) = θ 2 2 Ω [ | ∇ H d u | 2 -µV (z, s) | u | 2 ] dzds (4.3) - θ p p Ω | u | p dzds - λθ 2 2 Ω | u | 2 dzds. (4.4) Since p > 2, thus lim θ→+∞ I µ,λ (θu) = -∞.
Then, there exists θ 1 > 0 large enough such that for e = θ 1 u, we have e µ > R and 

I µ (θ 1 u) < 0 < a(R). Set now Γ = { h ∈ C([0, 1]; H 1 0 (Ω,
I µ,λ (h(t)) ≥ a(R) > 0,
and c is a local minimum. Theorem 4.3 implies that the (P S) c condition is satisfied. So c > 0 is a critical value by using Theorem 4.4 and the critical point is u ∈ H 1 0 (Ω, H d ), which is nontrivial. We have proved Theorem 4.4 for 0 < λ < λ 1 .

We need now the following Linking theorem from Rabinowitz [START_REF] Rabinowitz | Minimaux methods in critical points theory with aplications to differential equation[END_REF]. We assume now that there is k such that λ k ≤ λ < λ k+1 , where λ k is the k-th eigenvalue of the operator -∆ H d -µV . Let Y = span {φ 1 , ..., φ k }, where φ k is the eigenfunction corresponding to λ k . Then Proposition 3.1 implies that H 1 0 (Ω, H d ) = Y X where X = span {φ l ; l > k}. Thus we have

Ω | ∇ H d y | 2 -µ | y | 2 dzds ≤ λ k Ω | y | 2 dzds, ∀ y ∈ Y (4.5)
and

Ω | ∇ H d u | 2 -µV | u | 2 dzds ≥ λ k+1 Ω | u | 2 dzds, ∀ u ∈ X. (4.6)
We will show that I µ,λ satisfies the conditions (i), (ii) of Theorem 4.5 on H 1 0 (Ω, H d ). Proposition 4.7. Assume that 0 ≤ µ < 1 and λ k ≤ λ < λ k+1 . There exist ρ, α > 0 such that I µ,λ | ∂Bρ∩X ≥ α where X = span {φ l ; l > k}.

Proof : For any u ∈ X, λ k ≤ λ < λ k+1 , we obtain from equation (4.6), Hardy's inequality and Poincaré's inequality that

I µ,λ (u) = 1 2 Ω [ | ∇ H d u | 2 -µV | u | 2 ] dzds - 1 p Ω | u | p dzds - λ 2 Ω | u | 2 dzds ≥ 1 2 λ k+1 -λ λ k+1 u 2 µ - C 1 p u p µ ≥ C 1 u 2 µ 1 2C 1 λ k+1 -λ λ k+1 - 1 p u p-2 µ . Let ρ 0 = p 2C 1 1 - λ λ k+1 1 p-2 > 0.
Then for any 0 < ρ < ρ 0 , Proof : We prove Proposition 4.8 using Remark 4.6. For any y ∈ Y , we have from (4.5) that I µ,λ (y + θφ k+1 ) → -∞ as θ → +∞, which will prove Remark 4.6. Since {φ j } is an orthonormal basis of H 1 0 (Ω, H d ), we have for all i, j ∈ N, i = j

I µ,λ (y) = 1 2 Ω [ | ∇ H d y | 2 -µV | y | 2 ] dzds - 1 p Ω | y | p dzds - λ 2 Ω | y | 2 dzds ≤ 1 2 λ k -λ λ k y 2 µ - 1 p y p L p ( 
Ω [ ∇ H d φ i ∇ H d φ j -µV φ i φ j ] dzds = λ i Ω φ i φ j dzds = 0. (4.9) Let y = k i=1 α i φ i ∈ Y , then for θ ≥ 1, I µ,λ (y + θφ k+1 ) = I µ,λ (y) + I µ,λ (θφ k+1 ) + Ω ∇ H d y ∇ H d (θφ k+1 ) -µV y (θφ k+1 ) dzds -λ Ω y (θφ k+1) dzds - 1 p Ω | y + θφ k+1 | p dzds + 1 p Ω | y | p dzds + 1 p Ω | θφ k+1 | p dzds = I µ,λ (y) + I µ,λ (θφ k+1 ) - 1 p Ω | y + θφ k+1 | p dzds + 1 p Ω | y | p dzds + 1 p Ω | θφ k+1 | p dzds.
By using the following inequality

| a + b | p ≥| a | p + | b | p -c p (| a | p-1 | b | + | a || b | p-1 ), ∀ a, b ∈ R, p > 1, (4.10) 
and from the fact I µ,λ (y) ≤ 0, we have That is impossible since µ < 1, p > 2 and this implies that {u n } is bounded in H 1 0 (Ω, H d ).

I µ,λ (y + θφ k+1 ) ≤ I µ,λ (θφ k+1 ) + c p Ω (| y | p-1 | θφ k+1 | + | y | | θφ k+1 | p-1 ) dzds ≤ θ 2 2 φ k+1 2 µ -λ φ k+1 2 
Lemma 5.2. Under the assumption of Lemma 5.1, {u n } possesses a convergent subsequence in H 1 0 (Ω, H d ).

  of the Dirichlet problem (1.1) is a critical point of I µ,λ . The Euler-Lagrange equation of the variational problem (3.2) is exactly the semilinear equation in (1.1), and we have

  H d )); h(0) = 0 and h(1) = e}, then by continuity, we have c = inf h∈Γ max t∈[0,1]

Theorem 4 . 5 .Remark 4 . 6 .

 4546 Let E be a Banach space with E = Y ⊕ X, where dim Y < ∞. Suppose that I ∈ C 1 (E, R) and satisfies (i)there exist ρ, α > 0 such that I| ∂Bρ∩X ≥ α;(ii) there exist e ∈ ∂B 1 ∩ X and R > ρ such that if A ≡ ( BR ∩ Y ) ⊕ {r e, 0 < r < R}, then I| ∂A ≤ 0.If I satisfies the (P S) c condition with c = inf h∈Γ max u∈A I(h(u)), where Γ = {h ∈ C( Ā, E); h| ∂A = id}, then c is a critical value of I and c ≥ α. Suppose I| Y ≤ 0 and there are an e ∈ ∂B 1 ∩ X and R > ρ such that I(u) ≤ 0 for u ∈ Y ⊕ span{e} and u ≥ R, then for any large R, we have I| ∂A ≤ 0 where A = ( BR ∩ Y ) ⊕ {re, 0 < r < R}.

5 . 4 . 8 .

 548 µ=ρ I µ,λ (u) = α(ρ) > 0. Thus I µ,λ satisfies the condition (i) of Theorem 4.Proposition Assume that 0 ≤ µ < 1 and λ k ≤ λ < λ k+1 . Then I µ,λ verifies (ii) of Theorem 4.5 with e = φ k+1 and Y = span {φ 1 , • • • , φ k }.

Ω) . ≤ 0

 0 Let e = φ k+1 the (k + 1)-th eigenfunction of L µ and y ∈ Y , let us the following claim(4.8) 

L 2 (| y | p- 1 |θ 2 2 λ k+1 -λ φ k+1 2 L 2 (Ω| 2 L 2 2 Ω 2 L 2 2 -

 2122222222 θφ k+1 | + | y | | θφ k+1 | p-1 dzds ≤ 1 | y | p-1 | φ k+1 | +θ p-3 | y | | φ k+1 | p-1 ) dzds . Now p > 2 and φ k+1 p L p (Ω) > 0 imply I µ,λ (y + θφ k+1 ) → -∞ as θ → +∞. We have proved Proposition 4.8. Now Proposition 4.7 and Proposition 4.8 imply that, if 0 ≤ µ < 1 and λ k ≤ λ < λ k+1 , I µ,λ satisfies the assumptions of Theorem 4.5 and the Palais-Smale condition with c = inf h∈Γ max u∈A I µ,λ (h(u)), and A ≡ ( BT ∩ Y ) ⊕ {θe, 0 < θ < T } > 0.Then I µ,λ has a critical value c and a nontrivial critical point u ∈ H 1 0 (Ω, H d ), since I µ,λ (u) = c ≥ α > 0. We have proved Theorem 4.1.Passing to the limit, we obtain for any ϕ ∈ C ∞ 0 (Ω),Ω ∇ H d w ∇ H d ϕ -µV (z, s)w ϕ dzds -λ w n | p-2 w n ϕ dzds, which implies that Ω | w | p-2 w ϕ dzds = 0 ∀ ϕ ∈ C ∞ 0 (Ω).Then w = 0 a.e. in Ω and solim n→∞ Ω | w n | 2 dzds = Ω | w | 2 dzds = 0. Divide (5.2) by ∇ H d u n (Ω) , we obtain 1 [ | ∇ H d w n | 2 -µV (z, s) | w n | 2 ] dzds (5.5) -1 p Ω | u n | p-2 | w n | 2 dzds -λ 2 Ω | w n | 2 dzds = •(1),where•(1) = c ∇ H d u n s) | w n | 2 dzds = 1 p lim n→+∞ Ω | u n | p-2 | w n | 2 dzds, (5.6) and taking ϕ = w n in (5.4), we have 1 -lim n→+∞ µV (z, s) | w n | 2 dzds = lim n→+∞ Ω | u n | p-2 | w n | 2 dzds. (5.7) We multiply (5.6) by p, we obtain from (5.7) and Hardy's inequality that p

Proposition 3.1. Let 0 ≤ µ < 1. Then there exist 0 < λ 1 < λ 2 ≤ λ 3 ≤ ... ≤ λ k ≤ ... → +∞, such that for each k ≥ 1, the following Dirichlet problem

admits a nontrivial solution in H 1 0 (Ω, H d ). Moreover, {φ k } k≥1 constitutes an orthonormal basis of Hilbert space H 1 0 (Ω, H d ). Remark that the first eigenvalue λ 1 is characterized by the following Poincaré inequality

The first step of the proof is the following compact embedding result

We can prove this result by the continuous embedding of H 1 0 (Ω, H d ) into usual the Sobolev space H 1/2 0 (Ω), then the compact embedding of H 1/2 (Ω) into L 2 (Ω). But the first embedding requires some careful extension results. We refer to [START_REF] Garofalo | Existence and non existence results for semilinear equations on the Heisenberg group[END_REF] for a complete and elegant proof of this compact embedding result. Proof of Proposition 3.1 Denote by L µ = -∆ H d -µV the operator defined on the Hilbert space

Hence it is positive, definite and self-adjoint on H 1 0 (Ω, H d ). The Lax-Milgram Theorem implies that for any g ∈ H -1 (Ω; H d ), the following Dirichlet problem

.

Then

(Ω) and the continuous embedding i * :

The Palais-Smale condition

We prove now Theorem 4.3, i.e. we verify the (P S) condition for I µ,λ on H 1 0 (Ω, H d ).

Lemma 5.1.

, then ∇ H d w n L 2 (Ω) = 1. So, there exist w ∈ H 1 0 (Ω, H d ) and a subsequence still denoted by {w n } such that w n w in H 1 0 (Ω, H d ). Now, for any q = ν 2 + (1 -ν) 2 * with 0 < ν < 1, we have

. Then, Sobolev's inequality (1.2) and the compact embedding result of Lemma 3.2 imply the following strong limit w n → w in L q (Ω) f or 1 ≤ q < 2 * , which implies also the weak limit, for 2 < p < 2 * ,

By passing to the limit in (5.3), we have

We rewrite the norm of H 1 0 (Ω, H d ) u n -u 2 µ = I µ,λ (u n ) -I µ,λ (u), u n -u

From Hölder's inequality, we have

u n -u L p (Ω) , so we can deduce that u n -u 2 µ → 0, n → ∞.