

# Fonctions L d'Artin et nombre de Tamagawa motiviques David Bourqui

#### ▶ To cite this version:

David Bourqui. Fonctions L d'Artin et nombre de Tamagawa motiviques. New York Journal of Mathematics, 2010, 16, pp.179-233. hal-00315608

HAL Id: hal-00315608

https://hal.science/hal-00315608

Submitted on 29 Aug 2008

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## FONCTIONS L D'ARTIN ET NOMBRE DE TAMAGAWA MOTIVIQUES

par

#### David Bourqui

 $\it Résumé.$  — Dans la première partie de ce texte, nous définissons des fonctions  $\it L$  d'Artin motivique à l'aide d'un produit eulerien motivique, et montrons qu'elles coïncident avec les fonctions introduites par Dhillon et Minac dans [DM06]. Dans la seconde partie, nous définissons, sous certaines conditions, un nombre de Tamagawa motivique et montrons qu'il se spécialise sur le nombre de Tamagawa usuel défini par Peyre dans le cadre des conjectures de Manin sur le nombre de points de hauteur bornée des variétés de Fano.

#### Abstract (Motivic Artin L-functions and a motivic Tamagawa number)

In the first part of this text, we define motivic Artin L-fonctions via a motivic Euler product, and show that they coincide with the functions introduced by Dhillon and Minac dans [DM06]. In the second part, we define under some assumptions a motivic Tamagawa number and show that it specializes to the Tamagawa number introduced by Peyre in the context of Manin's conjectures about rational points of bounded height on Fano varieties.

#### 1. Introduction

Comme l'ont illustré Denef et Loeser dans [**DL04**], les propriétés de nombre de séries rationnelles issues de la géométrie arithmétique sont de nature motivique : elles s'obtiennent naturellement par spécialisation de séries à coefficients dans un anneau de Grothendieck de motifs et leur propriétés se lisent déjà (au moins conjecturalement) sur ces séries motiviques. Dans la même veine, on peut se demander si les propriétés des fonctions zêta des hauteurs, étudiées dans le cadre des conjectures de Manin sur les points de hauteur bornée (cf. par exemple [**Pey03**b] et [**Pey02**]) sont de nature

Classification mathématique par sujets (2000). — 14G10 14G35 (11M41 12E30 14J45). Mots clefs. — Fonction L d'Artin motivique, nombre de Tamagawa, nombre de Tamagawa motivique, produit eulerien motivique, fonction zeta des hauteurs.

Je remercie Florian Ivorra pour de très utiles discussions.

motivique. Il est à noter qu'en général on ne s'attend pas à ce que de telles séries soient rationnelles (cf. [BT95, in fine]).

Dans ce texte, nous montrons que l'on peut, dans certains cas, donner une version motivique naturelle du nombre de Tamagawa défini par Peyre qui apparaît conjecturalement dans la partie principale de la fonction zêta des hauteurs. Dans le cas classique, le volume adélique définissant ce nombre de Tamagawa peut s'exprimer comme un produit eulerien. L'analogue motivique que nous proposons s'exprime comme un « produit eulerien motivique » (notion qui apparaît dans un précédent travail [Bou06] consacré aux fonctions zêta des hauteurs motiviques des variétés toriques), dont on montre la convergence dans une certaine complétion de l'anneau de Grothendieck des motifs (théorème 5.17). Cette complétion est basée sur la filtration par le degré du polynôme de Poincaré virtuel l-adique (i.e. par le poids). Un de ses intérêts est que la réalisation « comptage des points » s'étend à certains éléments de la complétion. Nous remarquons qu'une approche similaire est utilisée dans [BD07] et [Eke07]. Dans le cas d'un corps global, nous montrons que le nombre de Tamagawa motivique se spécialise en presque toute place sur le nombre de Tamagawa classique (théorème 5.20). Dans le cas d'un corps fini, nous montrons que le nombre de Tamagawa motivique se spécialise sur le nombre de Tamagawa classique (modulo une hypothèse malhereusement peu naturelle cf. théorème 5.21 et remarque 5.22). Enfin dans le cas d'une surface, utilisant un résultat de Kahn, Murre et Pedrini nous donnons une version purement motivique du nombre de Tamagawa motivique, c'est-à-dire que sa convergence est définie à l'aide d'un polynôme de Poincaré virtuel absolu et non pas  $\ell$ -adique (théorème 5.34).

La définition de Peyre fait intervenir des facteurs de convergence qui sont les facteurs locaux de la fonction L d'Artin associée au module de Neron-Severi de X. Nous avons besoin d'un analogue motivique de ces facteurs locaux. Une version motivique des fonctions L d'Artin a été proposée par Dhillon et Minac dans  $[\mathbf{DM06}]$ . Leur construction, quoique compacte et élégante, présente vis-à-vis de notre objectif le défaut de ne justement pas faire intervenir de facteurs locaux. C'est pourquoi nous donnons, dans la première partie de ce texte, une définition alternative des fonctions L motivique via un produit eulerien motivique. Nous rappelons et précisons les propriétés de la fonction L de Dhillon et Minac à la section 3. Dans la section 4, nous définissons notre fonction L. Nous montrons qu'elle coïncide avec la fonction L de Dhillon et Minac et dans le cas d'un corps de nombres se spécialise en presque toute place sur la fonction L usuelle. Il est à noter que, stricto sensu, les résultats de la première partie ne sont pas utilisés dans la seconde (pour la plupart, ils ne sont d'ailleurs valables a priori qu'en caractéristique zéro, à cause notamment de l'utilisation du résultat de Denef et Loeser permettant d'associer de manière canonique un motif virtuel à une telle formule, cf. théorème 4.1). Cependant : 1) ils justifient moralement le fait que les facteurs locaux utilisés dans la définition du nombre de Tamagawa motivique sont

les facteurs « naturels »; 2) ils donnent une interprétation arithmétique de la fonction L d'Artin motivique (pour un corps de caractéristique zéro quelconque) et 3) ils permettent de décrire précisément les « pôles » de la fonction L motivique, ce qui est utile pour une formulation d'une version motivique de la conjecture de Manin (cf. les remarques 5.12 et la section 5.9).

Pour conclure cette introduction, il faut remarquer que la définition proposée du nombre de Tamagawa n'est pas entièrement satisfaisante conceptuellement : une « bonne » définition devrait certainement utiliser une (hypothétique) version globale de l'intégration motivique (comme le remarquent les auteurs de  $[\mathbf{BD07}]$  à propos d'une version motivique du nombre de Tamagawa d'un groupe algébrique).

#### Table des matières

| 1. | Introduction                                                      | 1       |
|----|-------------------------------------------------------------------|---------|
| 2. | Quelques rappels et notations                                     | 4       |
|    | 2.1. Anneaux de Grothendieck de variétés et de motifs             | 4       |
|    | 2.2. Caractéristique d'Euler-Poincaré $\ell$ -adique et nombre de |         |
|    | points modulo p                                                   | 5       |
|    | 2.3. Objets de dimension finie et rationnalité                    | 5       |
|    | 2.4. Fonctions zêta de Hasse-Weil géométrique et motivique        | 6       |
|    | 2.5. Motifs d'Artin                                               | 8       |
|    | 2.6. Formule de MacDonald motivique                               | 8       |
| 3. | La fonction $L$ d'Artin motivique de Dhillon et Minac             | 10      |
|    | 3.1. Une remarque sur les actions de groupes sur les motifs       | 10      |
|    | 3.2. Définition et propriétés de la fonction $L$ motivique        | 11      |
| 4. | La fonction $L$ d'Artin motivique définie comme produit eulerien  |         |
|    | motivique                                                         | 15      |
|    | 4.1. Motif virtuel associé à une formule                          | 15      |
|    | 4.2. Le motif virtuel des points fermés de degré $n$              | 17      |
|    | 4.3. Motif virtuel associé à un symbole d'Artin                   | 19      |
|    | 4.4. Définition via le produit eulérien motivique                 | 22      |
|    | 4.5. Propriétés                                                   | $^{24}$ |
|    | 4.6. Formules et motifs virtuels associés aux symboles d'Artin    | 28      |
| 5. | Le volume de Tamagawa motivique                                   | 32      |
|    | 5.1. Le volume de Tamagawa classique                              | 32      |
|    | 5.2. Vers un analogue motivique du volume de Tamagawa             | 35      |
|    | 5.3. Topologie utilisée                                           | 38      |
|    | 5.4. Énoncé du résultat                                           | 39      |
|    | 5.5. Quelques lemmes                                              | 40      |
|    | 5.6. Démonstration du théorème 5.17                               | 42      |
|    | 5.7. Démonstration du théorème 5.20                               | 43      |

| 5.8. Démonstration du théorème 5.21 4                                  | 17    |
|------------------------------------------------------------------------|-------|
| 5.9. Lien conjectural avec la fonction zêta des hauteurs anticanonique | es 48 |
| 5.10. Une vraie version motivique 5                                    | 0     |
| áfárancas<br>5                                                         | (1    |

#### 2. Quelques rappels et notations

**2.1.** Anneaux de Grothendieck de variétés et de motifs. — Dans tout ce texte, les actions de groupes sont des actions à gauche. Si G est un groupe, on note  $G^{op}$  le groupe opposé. Soit k un corps. On note  $\operatorname{Var}_k$  (respectivement G- $\operatorname{Var}_k$ ) la catégorie des variétés algébriques quasi-projectives définies sur k (respectivement munie d'une action algébrique d'un groupe fini G) et  $K_0(\operatorname{Var}_k)$  (respectivement  $K_0(G$ - $\operatorname{Var}_k)$ ) son anneau de Grothendieck (cf. [And04, 13.1.1]). Si F est un anneau, on note  $\operatorname{CHM}(k)_F$  la catégorie des motifs de Chow définis sur k à coefficients dans F (cf. [And04, Chapitre 4]) et  $K_0(\operatorname{CHM}(k)_F)$  son anneau de Grothendieck (cf. [And04, 13.2.1]). La classe du motif de Lefschetz  $\mathbf{1}(-1)$  dans  $K_0(\operatorname{CHM}(k)_F)$  est notée  $\mathbf{L}$ . Pour  $d \in \mathbf{Z}$ , on note  $M(-d) \stackrel{\text{def}}{=} M \otimes \mathbf{1}(-1)^{\otimes d}$  la d-ème torsion de Tate de M.

#### Théorème 2.1 (Gillet-Soulé, Guillen-Navarro-Aznar, Bittner)

Soit k un corps de caractéristique zéro. Il existe un unique morphisme d'anneaux

$$\chi_{\text{var}} : K_0(\text{Var}_k) \longrightarrow K_0(\text{CHM}(k)_F)$$
(2.1.1)

qui envoie la classe d'une variété projective et lisse X sur la classe de son motif de  $Chow\ h(X)$ .

L'image de  $K_0(\operatorname{Var}_k)$  par  $\chi_{\operatorname{var}}$  sera notée  $K_0^{\operatorname{var}}(\operatorname{CHM}(k)_F)$ .

Notons  $\mathcal{C}(G, \mathbf{Q})$  le  $\mathbf{Q}$ -espace vectoriel des fonctions  $\mathbf{Q}$ -centrales de G dans  $\mathbf{Q}$  (i.e les fonctions  $\alpha: G \to \mathbf{Q}$  qui vérifient  $\alpha(x) = \alpha(y)$  dès que les sous-groupes  $\langle x \rangle$  et  $\langle y \rangle$  sont conjugués. On rappelle à présent un cas particulier d'une version équivariante du théorème 2.1, due à Denef, Loeser, del Baño et Navarro-Aznar (cf. [dBRNA98, theorem 6.1]).

**Théorème 2.2**. — Soit k un corps de caractéristique zéro et G un groupe fini. Il existe une unique famille de morphismes d'anneaux

$$\chi_{\text{eq}}(-,\alpha): K_0(G\text{-Var}_k) \to K_0\left(\text{CHM}(k)_{\mathbf{Q}}\right) \otimes \mathbf{Q}$$
 (2.1.2)

indexée par  $\alpha \in \mathcal{C}(G, \mathbf{Q})$  ayant les propriétés suivantes :

1. si X est une k-G-variété projective et lisse,  $\rho$  une  $\mathbf{Q}$ -représentation linéaire de dimension finie irréductible de G et  $p_{\rho} \stackrel{\text{déf}}{=} \frac{1}{|G|} \sum_{g \in G} \rho(g^{-1}) \otimes [g]$  l'idempotent de  $V_{\rho} \otimes h(X)$  associé, alors on a

$$\chi_{\text{eq}}(X, \chi_{\rho}) = [\text{Im}(p_{\rho})]; \qquad (2.1.3)$$

2. l'application  $\alpha \mapsto \chi_{eq}(X, \alpha)$  est un morphisme de groupe.

**Définition 2.3.** — Si k est un corps de caractéristique non nulle, G un groupe fini et X une k-G-variété projective et lisse, on définit  $\chi_{\rm eq}(X,\chi_{\rho})$  via la relation (2.1.3) puis par linéarité  $\chi_{\rm eq}(X,\alpha)$  pour tout élément  $\alpha$  de  $\mathcal{C}(G,\mathbf{Q})$ .

**Théorème 2.4 ([dBRNA98]).** — Soit k un corps de caractéristique zéro, G un groupe fini et X une k-G-variété projective et lisse. Alors on a

$$\chi_{\text{var}}(X/G) = \left[h(X)^G\right]. \tag{2.1.4}$$

2.2. Caractéristique d'Euler-Poincaré  $\ell$ -adique et nombre de points modulo  $\mathfrak{p}$ . — Pour tout corps k, on note  $k^s$  une clôture séparable de k et  $\mathfrak{G}_k = \operatorname{Gal}(k^s/k)$  le groupe de Galois absolu de k. Pour tout nombre premier  $\ell$ , on note  $K_0(\mathfrak{G}_k-\mathbf{Q}_\ell)$  l'anneau de Grothendieck de la catégorie des  $\mathbf{Q}_\ell$ -espaces vectoriels de dimension finie munis d'une action continue de  $\mathfrak{G}_k$ . On supposera toujours  $\ell$  distinct de la caractéristique de k, et on fixera un plongement  $\mathbf{Q}_\ell \hookrightarrow \mathbf{C}$ . La caractéristique d'Euler-Poincaré  $\ell$ -adique est le morphisme d'anneaux

$$\chi_{\ell}: K_0(\operatorname{Var}_k) \longrightarrow K_0(\mathfrak{G}_k - \mathbf{Q}_{\ell})$$
(2.2.1)

défini par  $\chi_{\ell}([X]) = \sum_{i} (-1)^{i} \left[ H_{c}^{i}(X^{s}, \mathbf{Q}_{\ell}) \right]$ , où  $X^{s} \stackrel{\text{def}}{=} X \times_{k} k^{s}$ . Si k est de caractéristique zéro,  $\chi_{\ell}$  se factorise par  $\chi_{\text{var}}$ .

On suppose à présent que k est un corps global. Soit  $\mathfrak p$  une place finie de k. On note  $\kappa_{\mathfrak p}$  son corps résiduel,  $I_{\mathfrak p} \subset \mathcal G_k$  un groupe d'inertie en  $\mathfrak p$  et  $\mathrm{Fr}_{\mathfrak p}$  un Frobenius en  $\mathfrak p$ . Le nombre de points modulo  $\mathfrak p$  d'un élément V de  $K_0(\mathcal G_k-\mathbf Q_\ell)$  est  $\mathrm{Tr}(\mathrm{Fr}_{\mathfrak p}\,|V^{I_{\mathfrak p}})$ . On le notera  $\mathrm{Tr}_{\mathfrak p}(V)$ . Si X est une k-variété, pour presque tout  $\mathfrak p$  on a

$$\operatorname{Tr}_{\mathfrak{p}}(\chi_{\ell}(X)) = |X(\kappa_{\mathfrak{p}})|, \qquad (2.2.2)$$

où  $X(\kappa_{\mathfrak{p}})$  désigne (abusivement) l'ensemble des  $\kappa_{\mathfrak{p}}$ -points d'un modèle de X (ainsi  $|X(\kappa_{\mathfrak{p}})|$  est bien défini « modulo un nombre fini de  $\mathfrak{p}$  » ).

**2.3.** Objets de dimension finie et rationnalité. — Pour tout anneau A, on note  $1 + A[[t]]^+$  le sous-groupe de  $A[[t]]^\times$  formé des éléments de terme constant égal à 1 et  $1 + A[t]^+$  le sous-monoïde des polynômes de  $1 + A[[t]]^+$ . On dit qu'un élément f de  $1 + A[[t]]^+$  est rationnel s'il existe  $g \in 1 + A[t]^+$  tel que  $g f \in 1 + A[t]^+$ .

Soit  $\mathscr{A}$  une catégorie tensorielle pseudo-abélienne F-linéaire, où F est une  $\mathbf{Q}$ -algèbre. Soit G un groupe fini, M un objet de  $\mathscr{A}$  muni d'une action de G et  $\rho$  une F-représentation linéaire de dimension finie de G. On note  $(M \otimes V_{\rho})^G$  l'image dans  $M \otimes V_{\rho}$  du projecteur  $\frac{1}{|G|} \sum_{g \in G} g \otimes \rho(g)$ . Dans le cas particulier de l'action de  $\mathfrak{S}_n$  sur  $M^{\otimes n}$  et  $\rho$  est la représentation triviale (respectivement la signature), cette image est notée  $\operatorname{Sym}^n M$  (respectivement  $\operatorname{Alt}^n M$ ). Suivant la terminologie de  $[\mathbf{And05}]$ , un objet M de  $\mathscr{A}$  est dit  $\operatorname{pair}$  (respectivement  $\operatorname{impair}$ ) s'il vérifie  $\operatorname{Alt}^n M = 0$  pour  $n \gg 0$  (respectivement  $\operatorname{Sym}^n M = 0$  pour  $n \gg 0$ . Un objet M de  $\mathscr{A}$  est dit  $\operatorname{de}$  dimension

finie s'il s'écrit comme somme directe d'un objet pair et d'un objet impair. Pour tout objet M, on pose

$$Z_{\mathscr{A}}(M,t) \stackrel{\text{def}}{=} \sum_{n>0} [\operatorname{Sym}^n M] t^n \in 1 + K_0(\mathscr{A})[[t]]^+.$$
 (2.3.1)

On a dans  $K_0(\mathscr{A})[[t]]$  la formule (cf. eg [**Hei07**, Lemma 4.1])

$$Z_{\mathscr{A}}(M,t) \left( \sum_{n \geqslant 0} \left[ \text{Alt}^n M \right] (-1)^n t^n \right) = 1$$
 (2.3.2)

d'où découle la proposition suivante.

**Proposition 2.5** (André). — Soit M un objet de  $\mathscr{A}$ . Si M est pair (respectivement impair) alors  $Z_{\mathscr{A}}(M,t) \in 1 + \mathscr{A}[t]^+$  (respectivement  $Z_{\mathscr{A}}(M,t)^{-1} \in 1 + \mathscr{A}[t]^+$ ). En particulier, pour tout objet M de dimension finie,  $Z_{\mathscr{A}}(M,t)$  est rationnelle.

2.4. Fonctions zêta de Hasse-Weil géométrique et motivique. — Soit k un corps et X une k-variété quasi-projective. On définit, suivant Kapranov, la fonction zêta de Hasse-Weil géométrique de X

$$Z_{\text{var}}(X,t) \stackrel{\text{def}}{=} \sum_{n \ge 0} [\text{Sym}^n X] t^n \in 1 + K_0(\text{Var}_k)[[t]]^+.$$
 (2.4.1)

Il existe un unique morphisme de groupes

$$Z_{\text{var}}(.,t): K_0(\text{Var}_k) \longrightarrow 1 + K_0(\text{Var}_k)[[t]]^+$$
 (2.4.2)

qui envoie la classe d'une variété quasi-projective X sur  $Z_{\text{var}}(X,t)$ .

Soit F un corps de caractéristique zéro. Pour tout objet M de  $\mathrm{CHM}(k)_F$  on définit, suivant André, la fonction zêta de Hasse-Weil motivique de M

$$Z_{\text{mot}}(M,t) \stackrel{\text{def}}{=} Z_{\text{CHM}(k)_F}(M,t) = \sum_{n \geqslant 0} \left[ \text{Sym}^n(M) \right] t^n \in 1 + K_0 \left( \text{CHM}(k)_F \right) \left[ [t] \right]^+.$$
(2.4.3)

On a en particulier, pour tout entier d,

$$Z_{\text{mot}}(M(-d), t) = Z_{\text{mot}}(M, \mathbf{L}^d t).$$
 (2.4.4)

Il existe un unique morphisme de groupes

$$Z_{\text{mot}}(.,t) : K_0(\text{CHM}(k)_F) \longrightarrow 1 + K_0(\text{CHM}(k)_F)[[t]]^+$$
 (2.4.5)

qui envoie la classe d'un motif M sur  $Z_{\text{mot}}(M,t)$ .

Si X est une variété projective et lisse, on pose  $Z_{\text{mot}}(X,t) \stackrel{\text{déf}}{=} Z_{\text{mot}}(h(X),t)$ . Si k est de caractéristique zéro, on a d'après le théorème 2.4

$$\chi_{\text{var}} \circ Z_{\text{var}}(.,t) = Z_{\text{mot}}(\chi_{\text{var}}(.),t). \tag{2.4.6}$$

Dans ce cas, il existe un unique morphisme de groupes

$$Z_{\text{mot}}: K_0(\text{Var}_k) \longrightarrow 1 + K_0\left(\text{CHM}(k)_F\right)[[t]]^+$$
 (2.4.7)

qui envoie la classe d'une variété projective et lisse X sur  $Z_{\text{mot}}(X,t)$ .

**Définition 2.6**. — Soit M un élément de  $K_0(\operatorname{CHM}(k)_F)$ . On définit la famille de motifs virtuels  $(\Phi_n(M))_{n\geqslant 1}$  par la relation

$$\sum_{n>1} \Phi_n(M) \frac{t^n}{n} = t \frac{d \log}{dt} Z_{\text{mot}}(M, t). \tag{2.4.8}$$

Si X est une k-variété projective et lisse, on pose  $\Phi_n(X) \stackrel{\text{def}}{=} \Phi_n(h(X))$ . Si X est un élément de  $K_0(\operatorname{Var}_k)$ , on définit la famille de variétés virtuelles  $(\Phi_{n,\operatorname{var}}(X))_{n\geqslant 1}$  par la relation

$$\sum_{n\geq 1} \Phi_{n,\text{var}}(X) \frac{t^n}{n} = t \frac{d \log}{dt} Z_{\text{var}}(X, t). \tag{2.4.9}$$

Remarque 2.7. — D'après (2.4.6), si k est de caractéristique zéro, on a

$$\chi_{\text{var}} \circ \Phi_{n,\text{var}} = \Phi_n \circ \chi_{\text{var}}. \tag{2.4.10}$$

Par ailleurs, si k est un corps fini et X une k-variété quasi-projective, le morphisme « nombre de k-points »  $K_0(\operatorname{Var}_k) \to \mathbf{Z}$  envoie  $Z_{\operatorname{var}}(X,t)$  sur la fonction zêta de Hasse-Weil classique  $Z_{\operatorname{HW}}(X)$ . D'après (2.4.9), le nombre de k-points de  $\Phi_{n,\operatorname{var}}(X)$  est donc égal au nombre de points de X à valeurs dans  $k_n$ , où  $k_n$  est une extension de degré n de k. Une remarque similaire vaut pour  $\Phi_n(X)$  si X est projective et lisse.

Comme on a  $|X \times Y(k_n)| = |X(k_n)| \cdot |Y(k_n)|$  pour tout n, on peut se demander plus généralement (sur un corps k quelconque) si les morphismes de groupes  $\Phi_n$  (respectivement  $\Phi_{n,\text{var}}$ ) ne sont pas en fait des morphismes d'anneaux.

Ceci vaut pour  $\Phi_n$ . Je tiens à remercier Evgeny Gorsky qui m'a indiqué l'argument qui suit<sup>(1)</sup>. Dans le langage de la théorie des  $\lambda$ -anneaux, les  $\Phi_n$  (respectivement les  $\Phi_{n,\text{var}}$ ) sont les opérations de Adams associées à la structure opposée à la  $\lambda$  structure définie par le morphisme  $Z_{\text{mot}}(\,\cdot\,,t)$  (respectivement  $Z_{\text{var}}(\,\cdot\,t)$ ). Par ailleurs, Heinloth montre dans [Hei07] que la structure opposée à la  $\lambda$ -structure définie par  $Z_{\text{mot}}$  est spéciale. D'après [AT69, Proposition 5.1], ceci entraîne que les  $\Phi_n$  sont des morphismes de  $\lambda$ -anneaux, donc en particulier d'anneaux.

Le même type d'argument permet de montrer, au moins si le corps de base est  $\mathbf{C}$ , que  $\Phi_{n,\mathrm{var}}$  ne peut pas toujours être un morphisme d'anneaux. Ceci est implicitement contenu dans la remarque du début la section 8 de [**LL04**]. Indiquons les arguments. Soit  $\mathscr{C}$  une courbe projective, lisse et connexe de genre supérieur à 1. Les auteurs de [**LL04**] construisent un corps  $\mathcal{H}$  de caractéristique zéro et un morphisme d'anneaux  $\mu: K_0(\mathrm{Var}_{\mathbf{C}}) \to \mathcal{H}$  tel que  $\mu(Z_{\mathrm{var}}(\mathscr{C} \times \mathscr{C}, t))$  n'est pas rationnelle (cf. [**LL03**, Section 3]). Supposons alors que l'on ait

$$\forall n \geqslant 1, \quad \Phi_{n,\text{var}}(\mathscr{C} \times \mathscr{C}) = \Phi_{n,\text{var}}(\mathscr{C})^2.$$
 (2.4.11)

<sup>&</sup>lt;sup>(1)</sup>Dans [**Bou06**], nous montrons que  $\Phi_n \circ \chi_{var}$  est un morphisme d'anneaux par une preuve « arithmétique » utilisant le théorème de Denef et Loeser 4.1.

Comme  $\mathcal{H}$  est sans torsion, ceci entraı̂ne (cf. [Knu73, Theorem, p. 49]) que le morphisme

$$\mu \circ Z_{\text{var}}^{-1}(.,-t) : K_0(\text{Var}_{\mathbf{C}}) \longrightarrow 1 + \mathcal{H}[[t]]^+$$
 (2.4.12)

envoie  $\mathscr{C} \times \mathscr{C}$  sur le carré de l'image de  $\mathscr{C}$ . Rappelons la structure d'anneau mise en jeu sur  $1 + \mathcal{H}[[t]]^+$ : la loi de groupe additif sur  $1 + \mathcal{H}[[t]]^+$  est induite par la multiplication dans  $\mathcal{H}[[t]]$  et la multiplication est alors entièrement déterminée par la règle

$$\forall a, b \in \mathcal{H}, \quad (1+at) \bullet (1+bt) = 1+abt.$$
 (2.4.13)

En particulier si A et B sont deux éléments de  $1 + \mathcal{H}[[t]]^+$  qui sont rationnelles, alors  $A \bullet B$  l'est encore. Or, d'après un résultat de Kapranov (cf. [And04, proposition 13.3.1.2]),  $Z_{\text{var}}(\mathscr{C}, t)$  est rationnelle. Ainsi  $\mu(Z_{\text{var}}(\mathscr{C} \times \mathscr{C}, t)) = \mu(Z_{\text{var}}(\mathscr{C}, t)) \bullet \mu(Z_{\text{var}}(\mathscr{C}, t))$  est rationnelle, d'où une contradiction.

**2.5.** Motifs d'Artin. — On note  $MA(k)_F$  la catégorie des motifs d'Artin, i.e. la sous-catégorie de  $CHM(k)_F$  engendrée par les motifs des k-variétés de dimension zéro. Rappelons que le foncteur qui au spectre d'une k-algèbre étale K associe le  $\mathcal{G}_k$ -module discret  $F^{Hom_k(K,k^s)}$  induit une équivalence de catégories

$$MA(k)_F \xrightarrow{\sim} \mathcal{G}_k F$$
 (2.5.1)

où  $\mathcal{G}_k$ -F est la catégories des  $\mathcal{G}_k$ -représentations discrètes à valeurs dans des F-espaces vectoriels de dimension finie. On a donc un isomorphisme d'anneaux canonique  $K_0\left(\mathrm{MA}(k)_F\right) \xrightarrow{\sim} K_0(\mathcal{G}_k$ -F) au moyen duquel nous identifierons désormais ces deux anneaux de Grothendieck.

2.6. Formule de MacDonald motivique. — Soit F un anneau, K un corps contenant F,  $\operatorname{GrVect}_K$  la catégorie des K-espaces vectoriels gradués de dimension finie et  $H:\operatorname{CHM}(k)_F\longrightarrow\operatorname{GrVect}_K$  une réalisation cohomologique de Weil (avec éventuellement des structures supplémentaires sur les objets  $\operatorname{GrVect}_K$  par exemple l'action du groupe de Galois absolu dans le cas de la réalisation  $\ell$ -adique) (cf. [And04, §4.2.5 et 7.1.1]). L'application  $\operatorname{Poinc}_H:K_0(\operatorname{CHM}(k)_F)\longrightarrow K_0(\operatorname{Vect}_K)[u,u^{-1}]$  qui à M associe  $\sum_{i\in\mathbf{Z}}\left[H^i(M)\right]u^i$  est alors un morphisme d'anneaux, que l'on appelle polynôme de Poincaré virtuel (associé à la réalisation cohomologique H).

Dans la suite, on ne considérera que des réalisations cohomologiques classiques, au sens de [And04, §3.4]. Pour  $i \in \mathbb{Z}$ , on notera  $b_i(M)$  le i-ème nombre de Betti de M, i.e. la dimension du K-espace vectoriel  $H^i(M)$  (qui ne dépend pas du choix de la cohomologie classique H d'après [And04, Théorème 4.2.5.2]).

Le résultat suivant, dû à del Baño, généralise la formule de MacDonald calculant les nombres de Betti d'un produit symétrique ([Mac62]).

**Théorème 2.8** (del Baño). — Pour tout objet M de  $CHM(k)_F$ , on a

$$\operatorname{Poinc}_{H}(Z_{\operatorname{mot}}(M,t)) = \frac{\prod\limits_{i \in \mathbf{Z}, i \ impair} \sum\limits_{n \geqslant 0} \left[ \stackrel{n}{\wedge} H^{i}(M) \right] u^{i n} t^{n}}{\prod\limits_{i \in \mathbf{Z}, i \ pair} \sum\limits_{n \geqslant 0} \left[ \stackrel{n}{\wedge} H^{i}(M) \right] (-1)^{n} u^{i n} t^{n}}$$
(2.6.1)

 $D\'{e}monstration$ . — Ceci découle de la proposition 3.8 de [dBR01], compte tenu de la formule (2.3.2).

Corollaire 2.9. — Supposons que k soit un corps global. Soit X une k-variété, supposée en outre projective et lisse si k est de caractéristique non nulle. Pour presque tout  $\mathfrak{p}$ , on a  $\mathrm{Tr}_{\mathfrak{p}}(\chi_{\ell}(Z_{\mathrm{mot}}(X,t))) = Z_{HW}(X_{\mathfrak{p}},t)$ , où  $Z_{HW}$  est la fonction zêta de Hasse-Weil classique de la  $\kappa_{\mathfrak{p}}$ -variété  $X_{\mathfrak{p}}$ .

Le théorème 2.8 va nous permettre de donner une formule pour  $\operatorname{Poinc}_H(\Phi_d(M))$ , qui nous sera utile pour montrer la convergence du volume de Tamagawa motivique (cf. théorème 5.17).

**Notation 2.10**. — Pour  $n \ge 1$ , soit  $(P_{n,m})_{m \ge 1}$  la famille d'éléments de  $\mathbf{Z}[T_1, \dots, T_n]$  définie par la relation

$$t \frac{d \log}{dt} \left( 1 + \sum_{1 \le i \le n} T_i t^i \right) = \sum_{m \ge 1} P_{n,m}(T_1, \dots, T_n) t^m.$$
 (2.6.2)

**Remarque 2.11**. — Si V est un K-espace vectoriel de dimension finie et  $f \in \text{End}(V)$  on a donc l'égalité

$$\operatorname{Tr}(f|P_{\dim(V),m}(\overset{j}{\wedge}V)_{j=1,\dots,\dim(V)}) = \operatorname{Tr}(f^n|V) \tag{2.6.3}$$

Des relations (2.4.8) et (2.6.2) et du théorème 2.8 on déduit aussitôt la proposition suivante.

**Proposition 2.12.** — Soit  $n \ge 1$ . Pour tout objet M de  $CHM(k)_F$ , on a

$$Poinc_{H}(\Phi_{n}(M)) = \sum_{i \in \mathbb{Z}} P_{b_{i}(M), n} \left( \left[ \bigwedge^{j} H^{i}(M) \right] \right)_{1 \leq j \leq b_{i}(M)} (-1)^{(n+1)i} u^{ni}$$
 (2.6.4)

En particulier, pour toute k-variété projective et lisse X on a

$$\operatorname{Poinc}_{H}(\Phi_{n}(X)) = \sum_{i=0}^{2 \operatorname{dim}(X)} P_{b_{i}(X), n} \left( \left[ \bigwedge^{j} H^{i}(X) \right] \right)_{1 \leq j \leq b_{i}(X)} (-1)^{(n+1)i} u^{n i} \quad (2.6.5)$$

**Remarque 2.13**. — Si k est un corps fini et H est la réalisation  $\ell$ -adique, en prenant la trace du Frobenius et en faisant u = -1 dans la relation (2.6.5), on obtient, d'après la remarque 2.11, la formule liant le nombre de points de X à valeurs dans une extension de degré n de k et la somme alternée des traces de la puissance n-ème du

Frobenius agissant sur les groupes de cohomologie  $\ell$ -adique. La formule (2.6.5) peut donc être vue comme une généralisation de cette formule de trace.

#### 3. La fonction L d'Artin motivique de Dhillon et Minac

**3.1.** Une remarque sur les actions de groupes sur les motifs. — Afin de préciser les résultats de rationalité de [**DM06**], nous aurons besoin de la proposition 3.4 ci-dessous, qui est certainement bien connue des spécialistes, mais pour laquelle nous n'avons pas trouvé de référence. Soit M un objet d'une catégorie pseudo-abélienne, G un groupe agissant sur M et p un idempotent de M. On dit que l'action de G est compatible à p si la relation p g p h p = p g h p vaut pour tous g, h de G. Dans ce cas l'action de G sur M induit naturellement une action de G sur Im(p), donnée par le morphisme  $g \mapsto p g p$ . Les deux lemmes ci-dessous sont élémentaires.

**Lemme 3.1.** — Soit M et N des objets d'une catégorie pseudo-abélienne, M étant muni de l'action d'un groupe G.

- On suppose qu'il existe i ∈ Hom(N, M) et r ∈ Hom(M, N) tels que r i = Id<sub>N</sub>. Soit N' le facteur direct de M définit par la rétraction r, i.e. l'image du projecteur i r. On suppose que l'application ψ : G → End(N) qui à g associe r g i vérifie ψ(g h) = ψ(g) ψ(h), ce qui induit une action de G sur N. Alors l'action de G sur M est compatible à i r et l'isomorphisme naturel i : N → N' est G-équivariant.
- 2. On suppose qu'il existe p ∈ Hom(M, N) et s ∈ Hom(N, M) tels que p s = Id<sub>N</sub>. Soit N' le facteur direct de M définit par la section s, i.e. l'image du projecteur s p. On suppose que l'application ψ : G → End(N) qui à g associe p g s vérifie ψ(g h) = ψ(g) ψ(h), ce qui induit une action de G sur N. Alors l'action de G sur M est compatible à s p et l'isomorphisme naturel s : N → N' est G-équivariant.

**Lemme 3.2.** — Soit M un objet d'une catégorie tensorielle pseudo-abélienne F-linéaire, où F est une  $\mathbf{Q}$ -algèbre. Soit G un groupe fini agissant sur M. Soit  $p_1, \ldots, p_r$  un système complet d'idempotents othogonaux de M. Pour tout i, on suppose que l'action de G est compatible à  $p_i$ . On a alors un isomorphisme canonique

$$M^G \xrightarrow{\sim} \bigoplus_{1 \le i \le r} \operatorname{Im}(p_i)^G$$
 (3.1.1)

**Notations 3.3.** — Soit X une k-variété projective, lisse et intègre de dimension d. Le corps des constantes de X est  $k' \stackrel{\text{def}}{=} H^0(X, \mathcal{O}_X)$ . Soit  $\pi: X \to \operatorname{Spec}(k')$  le morphisme naturel. Soit  $i: k' \to k''$  une extension finie séparable de degré n telle que X(k'') soit non vide, et  $x: \operatorname{Spec}(k'') \to X$ . On a alors ([Sch94, §1.11])  $i_*x^*\pi^* = n$ . et  $\pi_*x_*i^* = n$ . Ainsi  $\frac{1}{n}i_*x^*$  est une rétraction de  $\pi^*: h(\operatorname{Spec}(k')) \to h(X)$ , et induit donc un isomorphisme  $\iota_x$  de  $h(\operatorname{Spec}(k'))$  sur un facteur direct X, à savoir l'image du projecteur  $p_x \stackrel{\text{def}}{=} \frac{1}{n}\pi^*i_*x^*$  qui sera notée  $h^0(X)$ . De même  $\frac{1}{n}x_*i^*(-d)$  est une section de

 $\pi_*: h(X) \to h(\operatorname{Spec}(k'))(-d)$  et induit donc un isomorphisme  $\iota_x'$  de  $h(\operatorname{Spec}(k'))(-d)$  sur un facteur direct de X, à savoir l'image du projecteur  $p_x' \stackrel{\text{def}}{=} \frac{1}{n} x^* i^* (-d) \pi_*$ , qui sera notée  $h^{2d}(X)$ .

Supposons à présent qu'un groupe G agisse sur X par k-automorphismes. Cette action induit par composition à gauche une action de G sur  $\text{Hom}(X, \text{Spec}(k')) = \text{Aut}_k(\text{Spec}(k'))$ , i.e. un morphisme de groupe  $\psi: G \to \text{Aut}_k(\text{Spec}(k'))$  d'où par fonctorialité une action de  $G^{\text{op}}$  sur h(Spec(k')) et h(Spec(k'))(-d).

**Proposition 3.4.** — L'action de  $G^{op}$  sur h(X) déduite par fonctorialité de l'action de G sur X est compatible aux projecteurs  $p_x$  et  $p'_x$ . L'action induite de  $G^{op}$  sur  $h^0(X)$  (respectivement  $h^{2d}(X)$ ) coı̈ncide modulo identification naturelle avec l'action de  $G^{op}$  sur  $h(\operatorname{Spec}(k'))$  (respectivement  $h(\operatorname{Spec}(k'))$ ) induite par  $\psi$ .

En particulier, si X est géométriquement intègre l'action induite de  $G^{op}$  sur  $h^0(X)$  et  $h^{2d}(X)$  est triviale. Si X n'est pas géométriquement intègre, l'action de  $G^{op}$  sur  $h^0(X)$  et  $h^{2d}(X)$  n'est pas nécessairement triviale.

Démonstration. — Compte tenu du lemme 3.1, il suffit de montrer pour tout  $g \in G$  les relations

$$\frac{1}{n}i_* \, x^* \, g^* \, \pi^* = \psi(g)^* \tag{3.1.2}$$

et

$$\frac{1}{n}\pi_* g^* x_* i^* = \psi(g)^*. \tag{3.1.3}$$

La relation (3.1.2) est immédiate compte tenu des égalités  $\pi g = \psi(g) \pi$  et  $i_* x^* \pi^* = n$ . Pour montrer la relation (3.1.3), on utilise les égalités  $g_* g^* = \operatorname{Id}_{h(X)}$  et  $\psi(g)_* \psi(g)^* = \operatorname{Id}_{h(\operatorname{Spec}(k'))}$  ([Sch94, §1.10]) d'où  $g^* = (g^{-1})_*$  et  $\psi(g^{-1})_* = \psi(g)^*$ . Compte tenu de  $\pi g^{-1} = \psi(g^{-1}) \pi$ , il s'ensuit

$$\frac{1}{n}\pi_* g^* x_* i^* = \frac{1}{n}\psi(g^{-1})_* \pi_* x_* i^* = \psi(g)^*. \tag{3.1.4}$$

Si X est géométriquement intègre, on a k'=k et  $\psi$  est trivial, d'où la seconde assertion. Pour montrer la dernière assertion, il suffit de considérer la variété  $X \times_{\operatorname{Spec}(k)} \operatorname{Spec}(k')$ , où X est projective, lisse et intègre, k'/k est une extension finie telle que  $\operatorname{Aut}_k(k')$  est non trivial et  $G=\operatorname{Aut}_k(k')^{\operatorname{op}}$  agit sur  $X \times_{\operatorname{Spec}(k)} \operatorname{Spec}(k')$  via l'action naturelle sur le deuxième facteur.

#### 3.2. Définition et propriétés de la fonction L motivique. —

Notation 3.5. — Si G est un groupe fini et F un corps, on appellera Freprésentation de G toute représentation linéaire de dimension finie de G définie sur F. Si  $\rho$  est une F-représentation on note  $V_{\rho}$  son espace de représentation et  $\chi_{\rho}$  son caractère.

Soit G un groupe fini et  $\rho$  une F-représentation de G. Les auteurs de  $[\mathbf{DM06}]$  associent alors à tout objet M de  $\mathrm{CHM}(k)_F$  muni d'une action de G une fonction L d'Artin motivique

$$L_{\text{mot}}^{\text{DM}}(M, G, \rho, t) \stackrel{\text{def}}{=} Z_{\text{mot}}((M \otimes V_{\rho})^{G}, t) \in 1 + K_{0}\left(\text{CHM}(k)_{F}\right)[[t]]^{+}$$
 (3.2.1)

et à toute k-G-variété projective et lisse X la fonction

$$L_{\text{mot}}^{\text{DM}}(X, G, \rho, t) \stackrel{\text{def}}{=} L_{\text{mot}}^{\text{DM}}(h(X), G^{\text{op}}, \rho^{\text{op}}, t)$$
(3.2.2)

où  $\rho^{\text{op}}$  est la représentation opposée de  $\rho$ . Notons que pour  $d \in \mathbf{Z}$ , on a un isomorphisme  $(M(-d) \otimes V)^G \xrightarrow{\sim} (M \otimes V)^G (-d)$ , d'où, d'après (2.4.4),

$$L_{\text{mot}}^{\text{DM}}(M(-d), G, \rho, t) = L_{\text{mot}}^{\text{DM}}(M, G, \rho, \mathbf{L}^d t).$$
 (3.2.3)

Si k est de caractéristique zéro, la proposition 2.7 de  $[\mathbf{DM06}]$  et le lemme 7.1 de  $[\mathbf{Bit04}]$  montrent qu'il existe un unique morphisme de groupes

$$L_{\text{mot}}^{\text{DM}}(., G, \rho, t) : K_0(G\text{-Var}_k) \to 1 + K_0(\text{CHM}(k)_F)[[t]]^+$$
 (3.2.4)

qui envoie la classe d'une G-variété projective et lisse X sur  $L_{\text{mat}}^{\text{DM}}(X, G, \rho, t)$ .

Remarque 3.6. — Les auteurs de  $[\mathbf{DM06}]$  supposent dans tout leur article que le corps F des coefficients des motifs contient toutes les racines de l'unité, mais cette hypothèse est inutile pour la définition de  $L_{\mathrm{mot}}^{\mathrm{DM}}$  et les résultats de  $[\mathbf{DM06}]$  utilisés dans la présente section. Ils n'utilisent cette hypothèse qu'à partir de la section 5 de leur article.

**Remarque 3.7.** — D'après [And04, §4.2.2.], si  $E \to F$  est une extension, il existe un morphisme d'anneaux naturel  $K_0$  (CHM $(k)_E$ )  $\to K_0$  (CHM $(k)_F$ ) et la formation de  $L_{\text{mot}}^{\text{DM}}$  est compatible à ce changement de coefficients, i.e. si  $\rho$  est une F-représentation, l'image de  $L_{\text{mot}}^{\text{DM}}(X, G, \rho, t)$  par ce morphisme coïncide avec  $L_{\text{mot}}^{\text{DM}}(X, G, \rho \otimes_E F, t)$ .

**Lemme 3.8.** — Si k est de caractéristique zéro et si  $\rho$  = triv est la représentation triviale, on a pour toute G-k-variété quasi-projective X

$$L_{\text{mot}}^{DM}(X, G, \text{triv}, t) = Z_{\text{mot}}(X/G, t). \tag{3.2.5}$$

 $D\'{e}monstration$ . — Il suffit de le montrer pour X projective et lisse. On a alors, par définition,

$$L_{\text{mot}}^{\text{DM}}(X, G, \text{triv}, t) = Z_{\text{mot}}(h(X)^G, t)$$
(3.2.6)

D'après le théorème 2.4, on a 
$$Z_{\text{mot}}(h(X)^G,t)=Z_{\text{mot}}(X/G,t)$$
.

**Proposition 3.9.** — Si M est pair (respectivement impair),  $(M \otimes V)^G$  est pair (respectivement impair). Si M est de dimension finie,  $(M \otimes V)^G$  est de dimension finie; en particulier  $L^{DM}_{\text{mot}}(M,G,\rho,t)$  est rationnelle.

Démonstration. — On a des isomorphismes  $\operatorname{Sym}^n(M \otimes V) \xrightarrow{\sim} \operatorname{Sym}^n(M) \otimes \operatorname{Sym}^n(V)$  et  $\operatorname{Alt}^n(M \otimes V) \xrightarrow{\sim} \operatorname{Alt}^n(M) \otimes \operatorname{Alt}^n(V)$ . Ainsi si M est pair (repectivement impair) il en est de même pour  $M \otimes V$ . En particulier si M est de dimension finie,  $M \otimes V$  est de dimension finie. Or  $(M \otimes V)^G$  est un facteur direct de  $M \otimes V$ , et un facteur direct d'un objet de dimension finie est de dimension finie.  $\square$ 

**Proposition 3.10.** — Si M est un motif d'Artin muni d'une action de G et  $\rho$  une F-représentation de G, alors  $(M \otimes V_{\rho})^{G}$  est encore un motif d'Artin. En particulier  $L_{\text{mot}}^{DM}(M, G, \rho, t)^{-1}$  est un élément de  $1 + K_{0}(\text{MA}(k)_{F})[t]^{+}$ .

 $D\'{e}monstration$ . — La première assertion est immédiate. Compte tenu du fait que les motifs d'Artin sont pairs et de la formule (2.3.2), la deuxième en découle.

Lemme 3.11. — Soit G un groupe fini et  $\rho$  une F-représentation de G. On considère la structure de G-module sur  $W \stackrel{\text{déf}}{=} F[G] \otimes V_{\rho}$  donnée par la régulière gauche sur F[G] et l'action triviale sur  $V_{\rho}$ . Alors l'endomorphisme  $\pi_{G,\rho} \stackrel{\text{déf}}{=} \frac{1}{|G|} \sum_{g \in G} \rho_d(g) \otimes \rho(g)$  ( $\rho_d$  désignant la régulière droite) est un projecteur G-équivariant de W, d'image G-isomorphe à  $V_{\rho}$ .

Démonstration. — On vérifie que l'application

$$\begin{array}{ccc}
V_{\rho} & \longrightarrow & \operatorname{Im}(\pi_{G,\rho}) \\
v & \longmapsto & \sum_{g \in G} g \otimes \rho(g)v
\end{array} \tag{3.2.7}$$

est un isomorphisme G-équivariant.

La proposition suivante précise les propositions 13.3.1.2 de [And04] et 4.5 de [DM06]. Remarquons que dans ces deux derniers énoncés, il est nécessaire de supposer la courbe géométriquement intègre.

**Proposition 3.12**. — Soit & une k-courbe projective et lisse.

1.  $Z_{\text{mot}}(\mathcal{C},t)$  est rationnelle. Plus précisément, si  $\mathcal{C}$  est irréductible et k' est le corps des constantes de  $\mathcal{C}$ , la série formelle<sup>(2)</sup>

$$Z_{\text{mot}}(k',t)^{-1} Z_{\text{mot}}(k',\mathbf{L}t)^{-1} Z_{\text{mot}}(\mathscr{C},t)$$
 (3.2.8)

est un élément de  $1+K_0\left(\mathrm{CHM}(k)_F\right)[t]^+$ . En particulier, si  $\mathscr C$  est géométriquement intègre on a

$$(1-t)(1-\mathbf{L}\,t)\,Z_{\text{mot}}(\mathscr{C},t) \in 1+K_0\left(\text{CHM}(k)_F\right)[t]^+$$
 (3.2.9)

On suppose à présent que  $\mathscr{C}$  est irréductible et qu'un goupe fini G agit sur  $\mathscr{C}$ . Rappelons (cf. proposition 3.4) que  $G^{op}$  agit alors naturellement sur  $h^0(\mathscr{C})$  et  $h^2(\mathscr{C})$ . Soit  $\rho$  une F-représentation de G.

 $<sup>^{(2)}</sup>$ La proposition 3.10 montre que  $Z_{\text{mot}}(k',t)^{-1}$  est dans  $1+K_0\left(\text{CHM}(k)_F\right)[t]^+$ .

2.  $L_{\text{mot}}^{DM}(\mathscr{C}, G, \rho, t)$  est rationnelle. Plus précisément<sup>(3)</sup>, on a

$$Z_{\text{mot}}((h^{0}(\mathscr{C}) \otimes V_{\rho^{\circ p}})^{G^{\circ p}}, t)^{-1} Z_{\text{mot}}((h^{0}(\mathscr{C}) \otimes V_{\rho^{\circ p}})^{G^{\circ p}}, \mathbf{L} t)^{-1} L_{\text{mot}}^{DM}(\mathscr{C}, G, \rho, t)$$

$$\in 1 + K_{0} \left( \operatorname{CHM}(k)_{F} \right) [t]^{+} \quad (3.2.10)$$

- 3. On suppose que l'action de  $G^{op}$  sur  $h^0(\mathscr{C})$  et  $h^2(\mathscr{C})$  est triviale.
  - (a) Pour toute F-représentation  $\rho$  irréductible non triviale,  $L^{DM}_{mot}(\mathscr{C}, G, \rho, t)$  est un polynôme.
  - (b) Pour toute F-représentation  $\rho$ , on a

$$\left[Z_{\text{mot}}(k',t)^{-1} Z_{\text{mot}}(k',\mathbf{L}t)^{-1}\right]^{\text{rg}(V_{\rho}^{G})} L_{\text{mot}}^{DM}(\mathscr{C},G,\rho,t) \in 1 + K_{0}\left(\text{CHM}(k)_{F}\right)[t]^{+}.$$
(3.2.11)

En particulier, si  $\mathscr C$  est géométriquement intègre on a

$$[(1-t)(1-\mathbf{L}t)]^{\operatorname{rg}(V_{\rho}^{G})} L_{\operatorname{mot}}^{DM}(\mathscr{C}, G, \rho, t) \in 1 + K_{0}(\operatorname{CHM}(k)_{F})[t]^{+}. \tag{3.2.12}$$

4. On suppose que  $\mathscr{C} = Y \times_k k'$ , où Y est géométriquement intègre,  $G^{op} = \operatorname{Gal}(k'/k)$  et G agit sur  $Y \times_k k'$  via l'action naturelle sur le deuxième facteur. Pour toute F-représentation  $\rho$  de G, on a alors

$$\left[Z_{\text{mot}}(V_{\rho^{op}}, t)^{-1} Z_{\text{mot}}(V_{\rho^{op}}, \mathbf{L} t)^{-1}\right] L_{\text{mot}}^{DM}(\mathscr{C}, G, \rho, t) \in 1 + K_0 \left(\text{CHM}(k)_F\right) [t]^+.$$
(3.2.13)

Démonstration. — On reprend les notations 3.3. Soit  $h^1(\mathscr{C})$  l'image du projecteur  $\mathrm{Id} - p_x - p_x'$ . Alors  $h^1(\mathscr{C})$  est impair ([**Kim05**, Theorem 4.2]), donc (proposition 2.5)  $Z_{\mathrm{mot}}(h^1(\mathscr{C}), t)$  est dans  $1 + K_0(\mathrm{CHM}(k)_{\mathbf{Q}})[t]^+$ . La décomposition

$$h(\mathscr{C}) = h^0(\mathscr{C}) \oplus h^1(\mathscr{C}) \oplus h^2(\mathscr{C}) \tag{3.2.14}$$

induit la décomposition

$$Z_{\text{mot}}(\mathscr{C}, t) = Z_{\text{mot}}(h^0(\mathscr{C}), t) Z_{\text{mot}}(h^1(\mathscr{C}), t) Z_{\text{mot}}(h^2(\mathscr{C}), t). \tag{3.2.15}$$

Des isomorphismes  $h^0(\mathscr{C}) \xrightarrow{\sim} h(\operatorname{Spec}(k'))$  et  $h^2(\mathscr{C}) \xrightarrow{\sim} h(\operatorname{Spec}(k'))(-1)$  on déduit le point 1.

Comme  $p_x$  et  $p'_x$  sont compatibles à l'action de  $G^{op}$  (proposition 3.4),  $\operatorname{Id} -p_x - p'_x$  l'est également et on a (lemme 3.2)

$$(h(\mathscr{C}) \otimes V_{\rho})^{G^{\text{op}}} = \left(h^{0}(\mathscr{C}) \otimes V_{\rho}\right)^{G^{\text{op}}} \oplus \left(h^{1}(\mathscr{C}) \otimes V_{\rho}\right)^{G^{\text{op}}} \oplus \left(h^{0}(\mathscr{C}) \otimes V_{\rho}\right)^{G^{\text{op}}}$$
(3.2.16) d'où une décomposition

$$L^{ ext{DM}}_{ ext{mot}}(\mathscr{C},G,
ho,t)$$

$$= Z_{\mathrm{mot}}((h^{0}(\mathscr{C}) \otimes V_{\rho})^{G^{\mathrm{op}}}, t) Z_{\mathrm{mot}}((h^{1}(\mathscr{C}) \otimes V_{\rho})^{G^{\mathrm{op}}}, t) Z_{\mathrm{mot}}((h^{2}(\mathscr{C}) \otimes V_{\rho})^{G^{\mathrm{op}}}, t).$$

$$(3.2.17)$$

<sup>(3)</sup> La proposition 3.10 montre que  $Z_{\text{mot}}((h^0(\mathscr{C}) \otimes V_{\rho^{\text{op}}})^{G^{\text{op}}}, t)^{-1}$  est dans  $1 + K_0(\text{CHM}(k)_F)[t]^+$ .

Comme  $h^1(\mathscr{C})$  est impair,  $(h^1(\mathscr{C}) \otimes V_{\rho})^{G^{op}}$  l'est également (proposition 3.9) et  $Z_{\text{mot}}((h^1(\mathscr{C}) \otimes V_{\rho})^{G^{op}}, t)$  est un élément de  $1 + K_0 (\text{CHM}(k)_F)[t]^+$ . Par ailleurs, on a

$$Z_{\text{mot}}((h^2(\mathscr{C}) \otimes V_{\rho})^{G^{\text{op}}}, t) = Z_{\text{mot}}((h^0(\mathscr{C})(-1) \otimes V_{\rho})^{G^{\text{op}}}, t)$$
(3.2.18)

$$= Z_{\text{mot}}((h^0(\mathscr{C}) \otimes V_{\rho})^{G^{\text{op}}}(-1), t)$$
 (3.2.19)

$$= Z_{\text{mot}}((h^0(\mathscr{C}) \otimes V_{\varrho})^{G^{\text{op}}}, \mathbf{L} t). \tag{3.2.20}$$

Ceci montre le point 2.

Pour montrer le point 3, on remarque que si l'action de  $G^{\text{op}}$  sur  $h^0(\mathscr{C}) \xrightarrow{\sim} h(\operatorname{Spec}(k'))$  est triviale, et si  $\rho$  est irréductible, on a  $\left(h^0(\mathscr{C}) \otimes V_{\rho^{\text{op}}}\right)^{G^{\text{op}}} = h^0(\mathscr{C}) \otimes V_{\rho^{\text{op}}}^{G^{\text{op}}} = 0$  Si  $\rho$  est quelconque, on obtient donc en décomposant  $V_{\rho}$  en somme de G-représentations irréductibles un isomorphisme de F- $\mathcal{G}_k$ -représentations discrètes

$$\left(h^0(\mathscr{C}) \otimes V_{\rho^{\mathrm{op}}}\right)^{G^{\mathrm{op}}} \stackrel{\sim}{\to} h^0(\mathscr{C})^{\dim(V_{\rho}^G)} \stackrel{\sim}{\to} h(\operatorname{Spec}(k'))^{\dim(V_{\rho}^G)} \tag{3.2.21}$$

et on applique le point 2.

Montrons a présent le point 4. Via l'équivalence de catégories (2.5.1), le motif d'Artin  $h(\operatorname{Spec}(k'))$  s'identifie à la représentation régulière gauche de  $\operatorname{Gal}(k'/k)$ . D'après la proposition 3.4, l'action de  $\operatorname{Gal}(k'/k)$  sur  $h^0(\mathscr{C}) \xrightarrow{\sim} h(\operatorname{Spec}(k')) \xrightarrow{\sim} F[\operatorname{Gal}(k'/k)]$  induite par l'action de  $\operatorname{Gal}(k'/k)^{\operatorname{op}}$  sur  $Y \times_k k'$  est la représentation régulière droite. On applique alors le point 2 et le lemme 3.11.

### 4. La fonction L d'Artin motivique définie comme produit eulerien motivique

Dans cette section, nous allons donner, pour un corps k de caractéristique zéro, une autre définition de la fonction L d'Artin motivique attachée à une k-G-variété quasi-projective et une  $\mathbf{Q}$ -représentation de G, sous forme d'un « produit eulérien motivique », et montrer que la fonction obtenue coïncide avec celle de Dhillon et Minac.

**4.1.** Motif virtuel associé à une formule. — Concernant les rappels que contient cette sous-section, on renvoie à [DL01], [DL02] ou [Nic07] pour plus de détails. Dans toute la suite, on appelle k-formule une formule logique du premier ordre dans le langage des anneaux à coefficients dans un corps k. Pour toute formule  $\varphi$  en n variables libres et toute extension K de k on notera  $\varphi(K)$  le sous-ensemble de  $K^n$  constitué des éléments de  $K^n$  satisfaisant  $\varphi$ . Si X est une k-variété quasi-affine, on appellera formule sur X toute formule en n variables libres de la forme  $\varphi \wedge \varphi_X$  où  $\varphi$  est une formule en n variables libres et  $\varphi_X$  la formule définissant les équations d'un plongement de X dans l'espace affine  $\mathbf{A}^n$ .

Un corps pseudo-fini est un corps parfait K vérifiant les propriétés suivantes :

1. toute variété géométriquement irréductible sur K a un point rationnel dans K;

2. une clôture algébrique de K étant fixée, pour tout  $n \ge 1$ , K admet une unique extension de degré n dans cette clôture algébrique.

Tout corps admet une extension qui est un corps pseudo-fini.

Soient  $\varphi$  et  $\psi$  des formules à coefficients dans k en les variables libres  $(x_1,\ldots,x_m)$  et  $(y_1,\ldots,y_n)$ , respectivement. On dit que  $\varphi$  est un d-revêtement de  $\psi$  s'il existe une formule  $\theta$  en les variables libres  $(x_1,\ldots,x_m,y_1,\ldots,y_n)$  tel que pour tout corps pseudofini K contenant k, l'ensemble  $\theta(K) \subset K^n \times K^m$  est le graphe d'une application d pour 1 de  $\varphi(K)$  vers  $\psi(K)$ . Les formules  $\varphi$  et  $\psi$  sont dites  $\log iquement$   $\acute{e}quivalentes$  si  $\varphi$  est un 1-revêtement de  $\psi$ .

L'anneau de Grothendieck de la théorie des corps pseudo-finis sur k, noté  $K_0(\operatorname{PFF}_k)$ , est engendré comme groupe par les symboles  $[\varphi]$ , où  $\varphi$  est une k-formule, et les relations  $[\varphi] = [\psi]$  si  $\varphi$  et  $\psi$  sont logiquement équivalentes, ainsi que  $[\varphi \vee \psi] + [\varphi \wedge \psi] = [\varphi] + [\psi]$  si  $\varphi$  et  $\psi$  ont les mêmes variables libres. Le produit est défini par  $[\varphi].[\psi] \stackrel{\text{def}}{=} [\varphi \wedge \psi]$ .

Si k est de caractéristique zéro, Denef et Loeser ont montré dans  $[\mathbf{DL01}]$  et  $[\mathbf{DL02}]$  comment associer de manière canonique à toute k-formule un motif de Chow virtuel « avec dénominateur », i.e. un élément de  $K_0$  (CHM $(k)_{\mathbf{Q}}) \otimes \mathbf{Q}$ . Dans  $[\mathbf{Nic07}]$  cette construction est étendue à un cadre relatif. Pour démontrer ces résultats, une utilisation cruciale est faite de la théorie de l'élimination des quantificateurs dans les corps pseudo-finis en termes de formules galoisiennes, dûe à Fried, Jarden et Sacerdote. Rappelons ce qu'est une formule galoisienne : soit X une variété affine normale munie d'une action libre d'un groupe fini G. Si  $\mathcal C$  est une classe de conjugaison de sous-groupes cycliques de G, on note  $\varphi_{X,G,\mathcal C}$  une formule sur X/G telle que, pour toute k-extension pseudo-finie K,  $\varphi_{X,G,\mathcal C}(K)$  s'identifie à l'ensemble des éléments de (X/G)(K) qui admette les éléments de  $\mathcal C$  comme groupes de décomposition dans  $X \to X/G$ . Si C est un élément de  $\mathcal C$ , ce dernier ensemble coïncide avec l'ensemble des éléments de (X/G)(K) qui se relèvent à un élément de (X/C)(K) mais pas à un élément de (X/D)(K) pour tout sous-groupe strict D de C, ce qui montre l'existence d'une telle formule d'anneau.

On a alors le résultat suivant (cf. [DL02, Theorem 2.1] et [Nic07, Lemma 8.5]).

Théorème 4.1 (Denef-Loeser, Nicaise). — Soit k un corps de caractéristique zéro. Il existe un unique morphisme d'anneaux

$$\chi_{\text{form}} : K_0(PFF_k) \longrightarrow K_0^{\text{var}}(\text{CHM}(k)_{\mathbf{Q}})_{\mathbf{Q}}$$
(4.1.1)

qui envoie la classe d'une formule qui est une conjonction d'équations polynômiale sur la classe de la variété affine définie par ces équations et qui satisfait, pour toutes formules  $\varphi$  et  $\psi$  telle que  $\varphi$  est un d-revêtement de  $\psi$ ,

$$\chi_{\text{form}}(\varphi) = d\chi_{\text{form}}(\psi).$$
 (4.1.2)

Ce morphisme possède en outre les propriétés suivantes :

1.  $si\ X$  est une k-variété affine normale munie d'une action libre de G et C est une classe de conjugaison de sous-groupes cycliques de G, on a (cf. théorème 2.2)

$$\chi_{\text{form}} \left( \varphi_{X,G,\mathcal{C}} \right) = \chi_{\text{eq}}(X, \theta_{\mathcal{C}})$$
(4.1.3)

 $o\grave{u}$   $\theta_{\mathcal{C}}$  est la fonction

$$\theta_{\mathcal{C}}: g \mapsto \begin{cases} 1 & si \ le \ groupe \ engendr\'e \ par \ g \ est \ dans \ \mathcal{C} \\ 0 & sinon. \end{cases}$$
 (4.1.4)

2. Supposons que k soit un corps de nombres. Soit  $\ell$  un nombre premier. Soit  $\varphi \in K_0(PFF_k)$ . Alors pour presque tout idéal premier non nul  $\mathfrak p$  de k on a  $\mathrm{Tr}_{\mathfrak p}(\chi_\ell(\chi_{\mathrm{form}}(\varphi))) = |\varphi(\kappa_{\mathfrak p})|$ .

**Définition 4.2.** — Soit k un corps quelconque, G un groupe fini et X une k-variété quasi-projective munie d'une action libre de G. Si X est projective et lisse, on définit  $\chi_{\text{form}}(\varphi_{X,G,\mathcal{C}}) \in K_0\left(\text{CHM}(k)_{\mathbf{Q}}\right) \otimes \mathbf{Q}$  par la relation (4.1.3) (cf. la définition 2.3). Dans le cas général, on définit  $\left[\varphi_{X,G,\mathcal{C}}\right]_{\text{var}} \in K_0(\text{Var}_k) \otimes \mathbf{Q}$  comme suit : si G est cyclique, on définit  $\left[\varphi_{X,G,\mathcal{G}}\right]_{\text{var}}$  par récurrence sur |G| en utilisant la relation

$$|G| [X/G] = \sum_{C \le G} |C| [\varphi_{X,C,C}]_{\text{var}}; \qquad (4.1.5)$$

pour G quelconque et  $\mathcal C$  une classe de conjugaison de sous-groupes cycliques de G, on pose  $\left[\varphi_{X,G,\mathcal C}\right]_{\mathrm{var}} = \frac{|C|}{|N_G(C)|} \left[\varphi_{X,C,\mathcal C}\right]_{\mathrm{var}}$  où C est un élément de  $\mathcal C$ .

**Remarque 4.3**. — Supposons X projective et lisse. Si k est un corps global, en raisonnant comme dans la preuve du lemme 3.3.2 de [**DL01**], on voit que pour presque toute place finie  $\mathfrak p$  de k la quantité  $\mathrm{Tr}_{\mathfrak p}(\chi_\ell(\chi_{\mathrm{form}}(\varphi_{X,G,\mathcal C})))$  est égale au cardinal de l'ensemble des éléments de  $(X/G)(\kappa_{\mathfrak p})$  ayant décomposition  $\mathcal C$  dans le revêtement  $X \to X/G$ .

Supposons à présent k fini. Soit  $F_k \in \mathcal{G}_k$  le Frobenius géométrique. Pour  $r \geqslant 1$ , on note  $k_r$  l'extension de degré r de k. Toujours en raisonnant comme dans la preuve du lemme 3.3.2 de [**DL01**], on voit que, pour tout entier  $r \geqslant 1$ ,  $\operatorname{Tr}(F_k^r|\chi_\ell(\chi_{\text{form}}(\varphi_{X,G,\mathcal{C}})))$  est égal au cardinal de l'ensemble des éléments de  $(X/G)(k_r)$  ayant décomposition  $\mathcal{C}$  dans le revêtement  $X \to X/G$ .

Par ailleurs, si k est de caractéristique zéro et X est affine normale, le théorème précédent montre que, par construction, on a

$$\chi_{\mathrm{var}}(\left[\varphi_{\scriptscriptstyle X,G,\mathcal{C}}\right]_{\mathrm{var}}) = \chi_{\mathrm{form}}(\varphi_{\scriptscriptstyle X,G,\mathcal{C}}). \tag{4.1.6}$$

**4.2.** Le motif virtuel des points fermés de degré n. — Nous rappelons dans cette sous-section la construction du paragraphe 2.5 de [Bou06]. Soit k un corps de caractéristique zéro et X une k-variété quasi-projective. Pour tout entier  $n \ge 1$ , on note  $\operatorname{Sym}^n(X)_0$  l'ouvert de  $\operatorname{Sym}^n(X)$  constitué des ensembles de n points deux à deux distincts. Le morphisme  $\pi_n: X^n \to \operatorname{Sym}^n(X)$  induit donc un  $\mathfrak{S}_n$ -revêtement étale

$$\pi_n: \pi_n^{-1}(\operatorname{Sym}^n(X)_0) \longrightarrow \operatorname{Sym}^n(X)_0$$
 (4.2.1)

Supposons à présent X affine. Soit  $\mathcal{C}_n$  est la classe des sous-groupes de  $\mathfrak{S}_n$  engendré par un n-cycle. On note  $\psi_n(X)$  la formule galoisienne  $\varphi_{\pi_n^{-1}(\operatorname{Sym}^n(X)_0),\mathfrak{S}_n,c_n}$ .

**Remarque 4.4.** — Pour toute k-extension pseudo-finie K, l'application qui a un élément de  $\{x_1, \ldots, x_n\}$  de  $\psi_n(X)(K)$  associe le zéro-cycle K-rationnel  $\sum x_i$  induit donc une bijection de  $\psi_n(X)(K)$  sur l'ensemble des points fermés de degré n de  $X_K$ .

La classe de  $\psi_n(X)$  dans  $K_0(PFF_k)$  ne dépend pas du choix du plongement affine de X, on la note encore  $\psi_n(X)$ .

**Remarque 4.5**. — Si L est une k-extension finie séparable, on a  $\psi_n(\operatorname{Spec}(L)) = 0$  si n > [L:k].

Comme  $K_0(\operatorname{Var}_k)$  est engendré par les classes de variétés affines et que pour tout ouvert affine U d'une variété affine X on a la relation  $\psi_n(X) = \psi_n(U) + \psi_n(X \setminus U)$  (cf. [Bou06, Lemme 3.7]) il existe un unique morphisme de groupes

$$K_0(\operatorname{Var}_k) \to K_0(\operatorname{PFF}_k)$$
 (4.2.2)

qui envoie la classe d'une variété affine X sur  $\psi_n(X)$ . On note encore  $\psi_n(.)$  le morphisme de groupes  $K_0(\operatorname{Var}_k) \to K_0(\operatorname{CHM}(k)_{\mathbf{Q}}) \otimes \mathbf{Q}$  obtenu par composition avec le morphisme  $\chi_{\text{form}}$  du théorème 4.1. Rappelons l'énoncé de la proposition 2.17 de  $[\mathbf{Bou06}]$ .

**Proposition 4.6**. — Soit k un corps de caractéristique zéro. Pour toute k-variété X, on a la relation

$$\sum_{n\geqslant 1} \left( \sum_{d\mid n} d\,\psi_d(X) \right) \frac{t^n}{n} = t \, \frac{d\log}{dt} Z_{\text{mot}}(X, t) \tag{4.2.3}$$

soit de manière équivalente

$$\forall n \geqslant 1, \quad \Phi_n(X) = \sum_{d|n} d\,\psi_d(X). \tag{4.2.4}$$

**Définition 4.7.** — Si k est de caractéristique non nulle et X est une k-variété projective et lisse, on définit  $\psi_n(X) \in K_0\left(\operatorname{CHM}(k)_{\mathbf{Q}}\right)_{\mathbf{Q}}$  par la relation (4.2.4). De même si k est quelconque et X est une k-variété quasi-projective, on définit  $\psi_{n,\mathrm{var}}(X) \in K_0(\operatorname{Var}_k) \otimes \mathbf{Q}$  par la relation

$$\forall n \geqslant 1, \quad \Phi_{n, \text{var}}(X) = \sum_{d|n} d \psi_{d, \text{var}}(X)$$
 (4.2.5)

(de sorte que si k est de caractéristique nulle, on a  $\chi_{\text{var}}(\psi_{n,\text{var}}(X)) = \psi_n(X)$ ).

**Remarque 4.8**. — Une autre possibilité pour définir  $\psi_{n,\text{var}}(X)$  serait bien sûr de poser (cf. définition 4.2)  $\psi_{n,\text{var}}(X) \stackrel{\text{déf}}{=} \left[ \varphi_{\pi_n^{-1}(\text{Sym}^n(X)_0),\mathfrak{S}_n,\mathcal{C}_n} \right]_{\text{var}}$ . D'après (4.1.6), si k

est de caractéristique 0 on a encore  $\chi_{\text{var}}(\psi_{n,\text{var}}(X)) = \psi_n(X)$ . Mais il n'est pas clair que la relation (4.2.5) soit alors vérifiée.

Corollaire 4.9. — Supposons que k soit un corps de nombres. Soit X une k-variété. Pour presque toute place finie  $\mathfrak p$  de k, on a la propriété suivante : pour tout  $n \ge 1$ , le nombre de points de  $\Phi_n(X)$  (respectivement  $\psi_n(X)$ ) modulo  $\mathfrak p$  est égal au nombre de points de  $X_{\mathfrak p}$  à valeurs dans une extension de degré n de  $\kappa_{\mathfrak p}$  (respectivement au nombre de points fermés de degré n de  $X_{\mathfrak p}$ ).

Démonstration. — Ceci découle du corollaire 2.9, de la relation (4.2.3) et des relations classiques liant fonction zêta de Hasse-Weil, nombre de points fermés de degré n et nombre de points à valeurs dans une extension de degré n.

**4.3.** Motif virtuel associé à un symbole d'Artin. — Utilisant toujours la construction de Denef et Loeser, nous définissons dans cette sous-section des motifs virtuels associé naturellement aux symboles d'Artin (cf. la proposition 4.14). Nous verrons à la section 4.6 qu'en un certain sens, ils coïncident avec les motifs virtuels analogues définis par Dhillon et Minac dans [**DM06**]. Le lemme élémentaire suivant nous sera utile.

Lemme 4.10. — Soit  $\pi: X \longrightarrow Y$  un morphisme de k-variétés affines. Soit K une k-extension pseudo-finie de k, dont on fixe une clôture algébrique. Soit  $n \ge 1$  un entier,  $\operatorname{Sym}^n \pi: \operatorname{Sym}^n X \to \operatorname{Sym}^n Y$  le morphisme induit par  $\pi$  et  $K_n$  l'unique extension de degré n de K. Soit  $y \in \psi_n(K) \subset (\operatorname{Sym}^n Y)(K)$ , soit  $\widetilde{y}$  le point fermé de degré n de  $X_K$  associé, et soit  $\overline{y}$  un élément de  $Y(K_n)$  ayant pour image  $\widetilde{y}$ . Alors y se relève via  $\operatorname{Sym}^n \pi$  en un point de  $(\operatorname{Sym}^n X)(K)$  si et seulement si  $\overline{y}$  se relève via  $\pi$  en un point de  $X(K_n)$ .

**Notation 4.11.** — Soit G un groupe fini. On note  $\operatorname{Irr}_{\mathbf{Q}}(G)$  l'ensemble des classes d'isomorphismes de  $\mathbf{Q}$ -représentations irréductibles de G et  $\mathbf{Conj}_{\mathbf{c}}(G)$  l'ensemble des classes de conjugaison de sous-groupes cycliques de G.

Soit  $\rho$  une **Q**-représentation de G,  $\mathcal{C}$  un élément de  $\operatorname{Conj_c}(G)$  et g un générateur d'un élément de  $\mathcal{C}$ . La valeur de  $\chi_{\rho}(g)$  ne dépend pas du choix d'un tel g: on la note  $\chi_{\rho}(\mathcal{C})$ .

Soit G un groupe fini, X une k-G-variété affine sur k et  $Y \stackrel{\text{def}}{=} X/G$ . Soit  $\mathcal{I}$  une classe de conjugaison de sous-groupes de G. On note  $Y_{\mathcal{I}}$  le sous-ensemble contructible de Y formé des points ayant un groupe d'inertie dans  $\mathcal{I}$ . Soit  $\mathcal{D}$  une classe de conjugaison de sous-groupes de G vérifiant la propriété suivante : il existe des éléments I de  $\mathcal{I}$  et D de  $\mathcal{D}$  tels que  $I \subset D \subset N_G(I)$  et D/I est cyclique.

Soit  $n \ge 1$  un entier. On note  $\operatorname{Sym}^n(Y_{\mathcal{I}})_0$  le sous-ensemble constructible de  $\operatorname{Sym}^n(Y)$  formé de l'intersection de  $\operatorname{Sym}(Y)_0^n$  avec l'image de  $Y_{\mathcal{I}}^n$  dans  $\operatorname{Sym}^n(Y)$ .

On note  $\psi_{X,G,\mathcal{I},\mathcal{D},n}$  une formule dont l'interprétation dans toute k-extension pseudofinie K est l'ensemble des éléments de  $\operatorname{Sym}^n(Y_{\mathcal{I}})_0(K)$ , satisfaisant  $\psi_n(Y)$ , qui se relèvent en un point K-rationnel de  $\operatorname{Sym}^n(X/D)$  mais pas à un point K-rationnel de  $\operatorname{Sym}^n(X/D')$  pour tout sous-groupe strict D' de D.

Remarque 4.12. — D'après le lemme 4.10, la bijection naturelle entre  $\psi_n(K)$  et les points fermés de degré n de  $Y_K$  (cf. la remarque 4.4) met en correspondance les éléments de  $\psi_{X,G,\mathcal{I},\mathcal{D},n}(K)$  et les points fermés de degré n de  $Y_K$  ayant dans le G-revêtement  $X_K \to Y_K$  un groupe d'inertie dans  $\mathcal{I}$  et un groupe de décomposition dans  $\mathcal{D}$ .

On suppose à présent k de caractéristique zéro. L'image de  $\psi_{X,G,\mathcal{I},\mathcal{D},n}$  par le morphisme  $\chi_{\text{form}}$  du théorème 4.1 ne dépend pas du choix du plongement affine de X, on la note encore  $\psi_{X,G,\mathcal{I},\mathcal{D},n}$ . On vérifie que si U est un ouvert affine G-stable de X, on a la relation

$$\psi_{X,G,\mathcal{I},\mathcal{D},n} = \psi_{U,G,\mathcal{I},\mathcal{D},n} + \psi_{X \setminus U,G,\mathcal{I},\mathcal{D},n} \tag{4.3.1}$$

ce qui permet de définir, à G,  $\mathcal{I}$ ,  $\mathcal{C}$  et n fixés, un morphisme de groupes

$$\psi_{.,G,\mathcal{I},\mathcal{D},n} : K_0(G\text{-Var}_k) \longrightarrow K_0^{\text{var}}(\text{CHM}(k)_{\mathbf{Q}})_{\mathbf{Q}}.$$
 (4.3.2)

**Remarque 4.13**. — Soit G un groupe fini, L une extension finie de k et  $\pi: G \to \operatorname{Aut}_k(\operatorname{Spec}(L))$  un morphisme. Pour tout  $n \geqslant 1$ , on a  $\psi_{\operatorname{Spec}(L),G,\mathcal{I},\mathcal{D},n} = 0$  si  $\mathcal{I} \neq \{\operatorname{Ker}(\pi)\}$ . Par ailleurs, d'après la remarque 4.5, on a  $\psi_{\operatorname{Spec}(L),G,\{\ker(\pi)\},\mathcal{D},n} = 0$  si  $n > [L^G:k]$ .

**Proposition 4.14.** — Supposons que k soit un corps de nombres. Soit  $n \ge 1$ . Pour presque toute place finie  $\mathfrak{p}$ , le nombre de points modulo  $\mathfrak{p}$  de  $\psi_{X,G,\mathcal{I},\mathcal{D},n}$  est égal au nombre de points fermés de degré n de  $(X/G)_{\mathfrak{p}}$  ayant un groupe d'inertie dans  $\mathcal{I}$  et un groupe de décomposition dans  $\mathcal{D}$ .

Démonstration. — On peut supposer X affine. Pour presque tout  $\mathfrak{p}$ , la G-variété X a bonne réduction en  $\mathfrak{p}$ . D'après le lemme 4.10 et le point 2. du théorème 4.1 il y a alors une bijection entre les éléments de  $\psi_{X,G,\mathcal{I},\mathcal{D},n}(\kappa_{\mathfrak{p}})$  et les points fermés de degré n de  $Y_{\kappa_{\mathfrak{p}}}$  ayant dans le G-revêtement  $X_{\kappa_{\mathfrak{p}}} \to Y_{\kappa_{\mathfrak{p}}}$  un groupe d'inertie dans  $\mathcal{I}$  et un groupe de décomposition dans  $\mathcal{D}$ . On conclut grâce au point 2 du théorème 4.1.  $\square$ 

Remarque 4.15. — Nous ignorons s'il est possible de trouver un ensemble fini de places S de k tel que pour tout  $n \ge 1$  et tout  $\mathfrak{p} \notin S$  le nombre de points modulo  $\mathfrak{p}$  de  $\psi_{X,G,\mathcal{I},\mathcal{D},n}$  est égal au nombre de points fermés de degré n de  $(X/G)_{\mathfrak{p}}$  ayant un groupe d'inertie dans  $\mathcal{I}$  et un groupe de décomposition dans  $\mathcal{D}$  (i.e. s'il existe une version uniforme en n de la proposition 4.14). C'est en tout cas vrai si X est de dimension zéro (d'après la remarque 4.13) ou de dimension un (cf. la remarque 4.39 ci-dessous).

**Notation 4.16.** — Si G est un groupe fini, on note  $\mathbf{Conj}(G)$  l'ensemble des classes de conjugaison de sous-groupes de G. Si  $\mathcal{I}$  est un élément de  $\mathbf{Conj}(G)$ , on note  $\mathbf{Conj}_{\mathbf{c}}(G,\mathcal{I})$  l'ensemble des classes de conjugaison  $\mathcal{C}$  de G vérifiant la propriété suivante : il existe des éléments I de  $\mathcal{I}$  et G de G tels que G conjugaison G de G vérifiant la propriété suivante : il existe des éléments G de G tels que G conjugaison G de G vérifiant la propriété suivante : il existe des éléments G de G tels que G conjugaison G est conjugaison G de G tels que G conjugaison G est conjugaison G de G tels que G conjugaison G est conjugaison G est

**Remarque 4.17.** — Soit X une G-variété affine. Pour  $n \ge 1$  donné, d'après les remarques 4.4 et 4.12 il est immédiat que les formules

$$(\psi_{X,G,\mathcal{I},\mathcal{D},n})_{\mathcal{I} \in \mathbf{Conj}(G), \mathcal{D} \in \mathbf{Conj}_{\bullet}(G,\mathcal{I})}$$
(4.3.3)

forment une partition de la formule  $\psi_n(X/G)$ , i.e. on a pour toute k-extension pseudofinie K

$$\psi_n(X/G)(K) = \bigsqcup_{\substack{\mathcal{I} \in \mathbf{Conj}(G), \\ \mathcal{D} \in \mathbf{Conj}_{\mathbf{c}}(G,\mathcal{I})}} \psi_{X,G,\mathcal{I},\mathcal{D},n}(K). \tag{4.3.4}$$

En particulier, pour toute G-variété quasi-projective X, on a dans  $K_0(PFF_k)$  la relation

$$\psi_n(X/G) = \sum_{\substack{\mathcal{I} \in \mathbf{Conj}(G), \\ \mathcal{D} \in \mathbf{Conj}_c(G,\mathcal{I})}} \psi_{X,G,\mathcal{I},\mathcal{D},n}. \tag{4.3.5}$$

Nous introduisons à présent une construction qui nous sera utile pour la démonstration de la compatibilité à l'induction de la fonction L d'Artin motivique (cf. lemme 4.30).

**Notation 4.18.** — Soit H un sous-groupe d'un groupe fini G. Soit  $\mathcal{J} \in \mathbf{Conj}(H)$ ,  $\mathcal{D} \in \mathbf{Conj}_{\mathbf{c}}(H, \mathcal{J})$ ,  $\mathcal{I} \in \mathbf{Conj}(G)$  et  $\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G, \mathcal{I})$ . On écrit  $(\mathcal{J}, \mathcal{D}) \subset (\mathcal{I}, \mathcal{C}) \cap H$  si on a la propriété : il existe un élément (I, C) de  $\mathcal{I} \times \mathcal{C}$  tel que I est distingué dans C, C/I est cyclique,  $C \cap H \in \mathcal{D}$  et  $I \cap H \in \mathcal{J}$ . On note alors

$$f_{\mathcal{J},\mathcal{D}}^{\mathcal{I},\mathcal{C}} \stackrel{\text{def}}{=} \frac{|C| |I \cap H|}{|C \cap H| |I|} \tag{4.3.6}$$

 $\operatorname{et}$ 

$$d_{\mathcal{J},\mathcal{D}}^{\mathcal{I},\mathcal{C}} \stackrel{\text{def}}{=} \left| \{ g \in C \backslash G/H, \quad g C g^{-1} \cap H \in \mathcal{D} \text{ et } g I g^{-1} \cap H \in \mathcal{J} \} \right|. \tag{4.3.7}$$

Remarque 4.19. — Soit X une k-G-variété quasi-projective. Soit K une k-extension pseudo-finie et y un point fermé de  $(X/H)_K$ , ayant décomposition  $\mathcal{D}$  et inertie  $\mathcal{J}$ . On note  $\mathcal{C}$  (respectivement  $\mathcal{I}$ ) les groupes de décomposition (respectivement d'inertie) de l'image x de y dans  $(X/G)_K$ . Alors le degré de l'extension de corps résiduel  $\kappa_x \to \kappa_y$  est  $f_{\mathcal{J},\mathcal{D}}^{\mathcal{I},\mathcal{C}}$ , et il y a exactement  $d_{\mathcal{J},\mathcal{D}}^{\mathcal{I},\mathcal{C}}$  points fermés de  $(X/H)_K$  ayant décomposition  $\mathcal{D}$ , inertie  $\mathcal{J}$ , et image x.

Soit  $n \geqslant 1$  et d un diviseur de n. Pour toute k-variété quasi-projective X, on note  $\pi_{(d,n)}$ : Sym<sup>d</sup> $X \rightarrow$  Sym<sup>n</sup>X le morphisme qui envoie  $\{x_1,\ldots,x_d\}$  sur

 $\{\underbrace{x_1,\ldots,x_1}_{\frac{n}{d}\text{ fois}},x_2,\ldots,x_2,\ldots,x_d,\ldots,x_d\}$ . Considérons à présent une k-G-variété affine

X et H un sous-groupe de G. Soit p le morphisme naturel  $X/H \to X/G$ . Soit  $\mathcal{J} \in \mathbf{Conj}(H)$ ,  $\mathcal{D} \in \mathbf{Conj}_{\mathbf{c}}(H,\mathcal{J})$ ,  $\mathcal{I} \in \mathbf{Conj}(G)$  et  $\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G,\mathcal{I})$  tels que  $(\mathcal{J},\mathcal{D}) \subset (\mathcal{I},\mathcal{C}) \cap H$ . Pour  $n \geq 1$ , on note  $\psi_{X,H,\mathcal{J},\mathcal{D},n}^{\mathcal{I},\mathcal{C}}$  une formule sur  $\mathrm{Sym}^n(X/H)$  dont l'interprétation dans toute k-extension pseudo-finie K est l'ensemble des éléments de  $\mathrm{Sym}^n(X/H)(K)$ 

- 1. qui sont dans  $\psi_{X,H,\mathcal{J},\mathcal{D},n}(K)$ ;
- 2. dont l'image par  $\operatorname{Sym}^n p$  dans  $\operatorname{Sym}^n(X/G)(K)$  est l'image par  $\pi_{n/f_{\mathcal{J},\mathcal{D}}^{\mathcal{I},\mathcal{C}}}$  d'un élément de  $\operatorname{Sym}^{n/f_{\mathcal{J},\mathcal{D}}^{\mathcal{I},\mathcal{C}}}(X/G)(K)$  qui est dans  $\psi_{X,G,\mathcal{I},\mathcal{C},n/f_{\mathcal{J},\mathcal{D}}^{\mathcal{I},\mathcal{C}}}(K).$

L'identification canonique de  $\psi_{X,H,\mathcal{J},\mathcal{D},n}(K)$  à  $[(X/H)_K]_{H,\mathcal{J},\mathcal{D},n}^{(0)}$  met donc en bijection  $\psi_{X,H,\{e\},\mathcal{D},n}^{\mathcal{I},\mathcal{C}}(K)$  avec l'ensemble des éléments de  $[(X/H)_K]_{H,\mathcal{J},\mathcal{D},n}^{(0)}$  dont l'image par p est dans  $[(X/G)_K]_{H,\mathcal{I},\mathcal{C},d}^{(0)}$ . En particulier, les ensembles  $\psi_{X,H,\mathcal{J},\mathcal{D},n}^{\mathcal{I},\mathcal{C}}(K)$ , où  $(\mathcal{C},\mathcal{I})$  décrit l'ensemble des éléments de  $\mathbf{Conj}(G)^2$  tels que  $\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G,\mathcal{I})$  et  $(\mathcal{J},\mathcal{D}) \subset (\mathcal{I},\mathcal{C}) \cap H$ , forment une partition de  $\psi_{X,H,\mathcal{J},\mathcal{D},n}(K)$ . On en déduit également que p induit une application  $d_{\mathcal{J},\mathcal{D}}^{\mathcal{I},\mathcal{C}}$  pour 1 de  $\psi_{X,H,\mathcal{J},\mathcal{D},n}(K)$  sur son image par  $\mathrm{Sym}^n p$ , laquelle est en bijection avec  $\psi_{X,G,\mathcal{I},\mathcal{C},-\frac{n}{f_{\mathcal{J},\mathcal{C}}^{\mathcal{I},\mathcal{C}}}}(K)$ .

Supposons à présent k de caractéristique zéro. L'image de  $\psi^{\mathcal{I},\mathcal{C}}_{X,H,\mathcal{J},\mathcal{D},n}$  par le morphisme  $\chi_{\text{form}}$  du théorème 4.1 ne dépend pas du choix du plongement affine de X, on la note encore  $\psi^{\mathcal{I},\mathcal{C}}_{X,H,\mathcal{J},\mathcal{D},n}$ . En outre  $\psi^{\mathcal{I},\mathcal{C}}_{X,H,\mathcal{J},\mathcal{D},n}$  est compatible à la décomposition d'une G-variété affine en une sous-G-variété affine ouverte et son complémentaire. On définit ainsi, à G, H,  $\mathcal{J}$ ,  $\mathcal{D}$ ,  $\mathcal{I}$ ,  $\mathcal{C}$  et n fixés, un morphisme de groupes

$$\psi^{\mathcal{I},\mathcal{C}}_{\ldots H,\mathcal{J},\mathcal{D},n} : K_0(G\text{-Var}_k) \longrightarrow K_0^{\text{var}}(\text{CHM}(k)_{\mathbf{Q}})_{\mathbf{Q}}$$
 (4.3.8)

vérfiant, d'après ce qui précède, les deux relations suivantes.

Lemme 4.20. —

$$\psi_{X,H,\mathcal{J},\mathcal{D},n} = \sum_{\substack{(\mathcal{I},\mathcal{C}) \in \mathbf{Conj}(G)^2 \\ \mathcal{C} \in \mathbf{Conj}_c(G,I) \\ (\mathcal{J},\mathcal{D}) \subset (\mathcal{I},\mathcal{C}) \cap H}} \psi_{X,H,\mathcal{J},\mathcal{D},n}^{\mathcal{I},\mathcal{C}}$$

$$(4.3.9)$$

Lemme 4.21. —

$$\psi_{X,H,\mathcal{J},\mathcal{D},n}^{\mathcal{I},\mathcal{C}} = d_{\mathcal{J},\mathcal{D}}^{\mathcal{I},\mathcal{C}} \ \psi_{X,G,\mathcal{I},\mathcal{C},n/f_{\mathcal{I},\mathcal{D}}^{\mathcal{I},\mathcal{C}}}. \tag{4.3.10}$$

#### 4.4. Définition via le produit eulérien motivique. —

**Notation 4.22.** — Soit G un groupe fini et  $\rho$  une  $\mathbb{Q}$ -représentation de G. Soit  $\mathcal{I} \in \operatorname{Conj}(G)$  et  $\mathcal{D} \in \operatorname{Conj}_{c}(G,\mathcal{I})$ . Soient I et D des éléments de  $\mathcal{I}$  et  $\mathcal{D}$  respectivement tels qu'on ait  $I \subset D \subset N_G(I)$  et D/I cyclique. Soit g un élément de D dont l'image

engendre D/I. L'élément de  $\mathbf{Q}[t]$  det $(\mathrm{Id} - t \, \rho(g) \, | V^I) \in \mathbf{Q}[t]$  ne dépend pas des choix de I, D et (comme  $\rho$  est définie sur  $\mathbf{Q}$ ) g; on le note  $\mathscr{P}_{\rho,\mathcal{I},\mathcal{D}}(t)$ .

Rappelons la définition de la fonction L d'Artin classique comme produit eulerien. C'est sur cette définition qu'est modelée notre définition de la fonction L d'Artin motivique comme produit eulerien motivique.

Soit k un corps fini, X une k-G-variété quasi-projective, E un corps et  $\rho$  une E-représentation de G. Soit  $(X/G)^{(0)}$  l'ensemble des points fermés de X/G. Pour  $y \in (X/G)^{(0)}$ , soit  $D_y$  un groupe de décomposition au-dessus de y,  $I_y$  le groupe d'inertie correspondant, et  $\operatorname{Fr}_y$  une préimage dans  $C_y$  du Frobenius correspondant. Le facteur local de la fonction L d'Artin en y s'écrit alors

$$L_y(X, G, \rho, t) \stackrel{\text{def}}{=} \det(\operatorname{Id} - t^{\deg(y)} \rho(\operatorname{Fr}_y) | V^{I_y})^{-1}$$
(4.4.1)

La fonction L d'Artin associée aux données précédentes est l'élément de  $1+E[[t]]^+$  défini par

$$L_{\rm Ar}(X, G, \rho, t) \stackrel{\text{def}}{=} \prod_{y \in (X/G)^{(0)}} L_y(X, G, \rho, t).$$
 (4.4.2)

Supposons à présent que  $E = \mathbf{Q}$ . Pour  $y \in (X/G)^{(0)}$ , on note  $\mathcal{I}_y$  (respectivement  $\mathcal{D}_y$ ) l'ensemble des groupes d'inertie (respectivement de décomposition) au-dessus de y. La définition (4.4.1) se réécrit alors

$$L_y(X, G, \rho, t) = \mathscr{P}_{\rho, \mathcal{I}_y, \mathcal{D}_y}(t^{\deg(y)})^{-1}.$$
(4.4.3)

**Notation 4.23**. — Soit X une k-G-variété quasi-projective. Pour tout  $n \ge 1$ , tout  $\mathcal{I} \in \mathbf{Conj}_{G}(G)$  et  $\mathcal{D} \in \mathbf{Conj}_{c}(G,\mathcal{I})$ , on note  $X_{G,\mathcal{I},\mathcal{D},n}^{(0)}$  l'ensemble des points fermés de X/G de degré n ayant inertie  $\mathcal{I}$  et décomposition  $\mathcal{D}$ .

On a donc la relation

$$L_{\mathrm{Ar}}(X,G,\rho,t) = \prod_{n\geqslant 1} \prod_{\substack{\mathcal{I}\in\mathbf{Conj}(G)\\\mathcal{D}\in\mathbf{Conj}_{c}(G,\mathcal{I})}} \mathscr{P}_{\rho,\mathcal{I},\mathcal{D}}(t^{n})^{-\left|X_{G,\mathcal{I},\mathcal{D},n}^{(0)}\right|}.$$
 (4.4.4)

**Notation 4.24.** — Si A est une **Q**-algèbre, P un élément de  $1+A[[t]]^+$  et a un élément de A on pose

$$P(t)^{a} \stackrel{\text{def}}{=} 1 + \sum_{n \ge 1} \frac{a \cdot (a-1) \dots (a-n+1)}{n!} (P(t)-1)^{n}$$
 (4.4.5)

$$= \exp\left(a \log[P(t)]\right). \tag{4.4.6}$$

**Définition 4.25**. — Soit k un corps de caractéristique zéro, G un groupe fini,  $\rho$  une  $\mathbf{Q}$ -représentation de G, X une k-G-variété quasi-projective et Y = X/G. Motivé par

la relation (4.4.4), on définit la fonction L d'Artin motivique associée à ces données comme étant l'élément de  $1+K_0^{\rm var}({\rm CHM}(k)_{\bf Q})_{\bf Q}$   $[[t]]^+$  défini par

$$L_{\text{mot}}(X, G, \rho, t) \stackrel{\text{def}}{=} \prod_{n \geqslant 1} \prod_{\mathcal{I} \in \mathbf{Conj}(G)} \prod_{\mathcal{D} \in \mathbf{Conj}_{c}(G, \mathcal{I})} \mathscr{P}_{\rho, \mathcal{I}, \mathcal{D}}(t^{n})^{-\psi_{X, G, \mathcal{I}, \mathcal{D}, n}}$$
(4.4.7)

**4.5.** Propriétés. — Dans toute cette partie, le corps k est supposé de caractéristique zéro.

4.5.1. Lien avec la fonction zêta motivique. — Dans le cas d'un corps de base fini, si  $\rho$  est triviale,  $L_{Ar}(X, G, \rho, t)$  est la fonction zêta de Hasse-Weil de X/G. On a un résultat similaire pour la fonction L motivique.

Lemme 4.26. — Soit X une k-G-variété quasi-projective. On a

$$L_{\text{mot}}(X, G, \text{triv}, t) = Z_{\text{mot}}(X/G, t) \tag{4.5.1}$$

*Démonstration.* — D'après la relation (4.3.5) et la définition de  $L_{\text{mot}}(X, G, \text{triv}, t)$ , on a

$$L_{\text{mot}}(X, G, \text{triv}, t) = \prod_{n \ge 1} (1 - t^n)^{-\psi_n(X/G)}$$
(4.5.2)

D'après la proposition 2.17 de [**Bou06**], le membre de droite de (4.5.2) coïncide avec  $Z_{\text{mot}}(X/G,t)$ .

4.5.2. Somme directe, quotient, induction et restriction. — Nous énonçons et démontrons à présent quelques propriétés élémentaires des fonctions L d'Artin motiviques, pendant naturel de propriétés des fonctions L d'Artin classiques : compatibilité à la somme directe, au quotient, à l'induction et à la restriction des représentations. La compatibilité à la somme directe et à l'induction nous permettra de montrer que notre fonction coïncide avec la fonction définie par Dhillon et Minac (qui vérifie les propriétés analogues), et dans le cas d'un corps de nombres se spécialise sur la fonction d'Artin classique en presque toute place.

**Lemme 4.27.** — (Compatibilité à la somme directe) Si  $\rho = \rho_1 \oplus \rho_2$ , alors

$$L_{\text{mot}}(X, G, \rho, t) = L_{\text{mot}}(X, G, \rho_1, t) L_{\text{mot}}(X, G, \rho_2, t). \tag{4.5.3}$$

$$D\acute{e}monstration.$$
 — On a en effet  $\mathscr{P}_{\rho_1\oplus\rho_2}=\mathscr{P}_{\rho_1}\mathscr{P}_{\rho_2}.$ 

Lemme 4.28. — (Compatibilité au quotient) Soit H un sous-groupe distingué de G,  $\pi: G \to G/H$  le morphisme quotient,  $\rho$  une  $\mathbb{Q}$ -représentation de G/H et X une G-variété quasi-projective. Alors on a

$$L_{\text{mot}}(X/H, G/H, \rho, t) = L_{\text{mot}}(X, G, \rho \circ \pi, t), \tag{4.5.4}$$

plus précisément on a pour tout  $n \ge 1$ 

$$\prod_{\substack{\mathcal{I} \in \mathbf{Conj}(G) \\ \mathcal{D} \in \mathbf{Conj}_c(G,\mathcal{I})}} \mathscr{P}_{\rho \circ \pi,\mathcal{I},\mathcal{D}}(t^n)^{-\psi_{X,G,\mathcal{I},\mathcal{D},n}} = \prod_{\substack{\mathcal{I} \in \mathbf{Conj}(G/H) \\ \mathcal{D} \in \mathbf{Conj}_c(G/H,\mathcal{I})}} \mathscr{P}_{\rho,\mathcal{I},\mathcal{D}}(t^n)^{-\psi_{X/H,G/H,\mathcal{I},\mathcal{D},n}}.$$

$$(4.5.5)$$

**Lemme 4.29**. — (Compatibilité à la restriction) Soit H un sous-groupe de G,  $\rho$  une Q-représentation de G et X une H-variété. Soit Y la G-variété formée de l'union disjointe de G/H-copies de X. Alors

$$L_{\text{mot}}(X, H, \rho_{|_{H}}, t) = L_{\text{mot}}(Y, G, \rho, t),$$
 (4.5.6)

plus précisément on a pour tout  $n \ge 1$ 

$$\prod_{\substack{\mathcal{I} \in \mathbf{Conj}(H) \\ \mathcal{D} \in \mathbf{Conj}_c(H, \mathcal{I})}} \mathscr{P}_{\rho|_H, \mathcal{I}, \mathcal{D}}(t^n)^{-\psi_{X, H, \mathcal{I}, \mathcal{D}, n}} = \prod_{\substack{\mathcal{I} \in \mathbf{Conj}(G) \\ \mathcal{D} \in \mathbf{Conj}_c(G, \mathcal{I})}} \mathscr{P}_{\rho, \mathcal{I}, \mathcal{D}}(t^n)^{-\psi_{Y, G, \mathcal{I}, \mathcal{D}, n}}. \quad (4.5.7)$$

Lemme 4.30. — (Compatibilité à l'induction) Soit H un sous-groupe de G,  $\rho$  une Q-représentation de H et X une G-variété. Alors

$$L_{\text{mot}}(X, H, \rho, t) = L_{\text{mot}}(X, G, \text{Ind}_{H}^{G} \rho, t). \tag{4.5.8}$$

Démonstration. — Le principe de la démonstration de ces trois résultats est le suivant : on montre que ces relations sont «vérifiées» pour toutes k-extensions pseudofinies, en «copiant» la démonstration des propriétés analogues des fonctions L d'Artin classiques, puis on applique le théorème de Denef et Loeser.

Nous nous contentons de donner la démonstration du lemme 4.30, et nous supposerons pour simplifier le revêtement  $X \to X/G$  non ramifié, la preuve dans le cas ramifié étant analogue. Rappelons tout d'abord que si  $\rho$  est une représentation d'un sous-groupe D d'indice f d'un groupe cyclique C on a

$$\mathscr{P}_{\operatorname{Ind}_{D}^{C}\rho,\{e\},C}(t) = \mathscr{P}_{\rho,\{e\},D}(t^{f}). \tag{4.5.9}$$

Soit  $\mathcal{C}$  un élément de  $\operatorname{Conj}_{\mathcal{C}}(G)$ , et C un élément de  $\mathcal{C}$ . Soient  $\mathcal{C}_1, \ldots, \mathcal{C}_r$  les Hclasses de conjugaison de l'ensemble  $\{C \cap H, C \in \mathcal{C}\}$ . Pour  $i = 1, \dots, r$ , soit

$$(C \backslash G/H)_i \stackrel{\text{def}}{=} \{ g \in C \backslash G/H, \quad g C g^{-1} \cap H \in \mathcal{C}_i \}$$
 (4.5.10)

Le cardinal de cet ensemble est donc (cf. notations 4.18)  $d_{\{e\},C_i}^{\{e\},C}$ , on le note ici  $d_i$ . On note également  $f_i$  l'entier  $f_{\{e\},C_i}^{\{e\},C}$ . D'après [**Ser67**, §7.4,Proposition 15], on a

$$\mathscr{P}_{\operatorname{Ind}_{H}^{G} \rho, \{e\}, \mathcal{C}}(t) = \prod_{g \in C \setminus G/H} \mathscr{P}_{\operatorname{Ind}_{g C g^{-1} \cap H}^{g C g^{-1}} \rho, \{e\}, g C g^{-1}}(t)$$
(4.5.11)

soit, d'après la relation (4.5.9)

$$\mathscr{P}_{\operatorname{Ind}_{H}^{G} \rho, \{e\}, \mathcal{C}}(t) = \prod_{1 \leq i \leq r} \mathscr{P}_{\rho, \{e\}, \mathcal{C}_{i}} \left( t^{f_{i}} \right)^{d_{i}}$$

$$(4.5.12)$$

Appliquant le lemme 4.21 on obtient

$$\mathscr{P}_{\operatorname{Ind}_{H}^{G}\rho,\{e\},\mathcal{C}}(t^{n})^{-\psi_{X,G,\{e\},\mathcal{C},n}} = \prod_{1 \leqslant i \leqslant r} \mathscr{P}_{\rho,\{e\},\mathcal{C}_{i}} \left(t^{nf_{i}}\right)^{-\psi_{X,H,\{e\},\mathcal{C}_{i},nf_{i}}} . \tag{4.5.13}$$

On en déduit

$$\prod_{n\geqslant 1} \prod_{\mathcal{C}\in\mathbf{Conj}_{c}(G)} \mathscr{P}_{\mathrm{Ind}_{H}^{G}\rho,\{e\},\mathcal{C}}(t^{n})^{-\psi_{X,G,\{e\},\mathcal{C},n}}$$

$$(4.5.14)$$

$$= \prod_{n \geqslant 1} \prod_{f \geqslant 1} \prod_{\mathcal{D} \in \mathbf{Conj_c}(H)} \mathscr{P}_{\rho, \{e\}, \mathcal{D}} \left( t^{nf} \right)^{-\sum_{\mathcal{D} \subset \mathcal{C} \cap H} \psi^{\{e\}, \mathcal{C}}_{X, H, \{e\}, \mathcal{D}, nf}} f^{\mathcal{C}}_{\mathcal{D}} = f}$$

$$(4.5.15)$$

$$= \prod_{n \geqslant 1} \prod_{\mathcal{D} \in \mathbf{Conj}_{c}(H)} \mathscr{P}_{\rho,\{e\},\mathcal{D}}(t^{n}) \int_{\mathcal{D} \subset \mathcal{C} \cap H} \psi_{X,H,\{e\},\mathcal{D},n}^{\{e\},\mathcal{C}} dt^{n} dt^{n}$$

$$(4.5.16)$$

$$= \prod_{n \geqslant 1} \prod_{\mathcal{D} \in \mathbf{Conj_c}(H)} \mathscr{P}_{\rho,\{e\},\mathcal{D}}(t^n)^{-\sum_{\mathcal{D} \subset \mathcal{C} \cap H} \psi_{X,H,\{e\},\mathcal{D},n}^{\{e\},\mathcal{C}}}$$
(4.5.17)

$$(\text{lemme 4.20}) = \prod_{n \geqslant 1} \prod_{\mathcal{D} \in \mathbf{Conj}_{c}(H)} \mathscr{P}_{\rho,\{e\},\mathcal{D}} (t^{n})^{-\psi_{X,H,\{e\},\mathcal{D},n}}$$
(4.5.18)

d'où le résultat.

Corollaire 4.31. — 1. La fonction  $L_{\text{mot}}(X, G, \rho, t)$  coincide avec l'image dans  $1 + K_0 \left( \text{CHM}(k)_{\mathbf{Q}} \right)_{\mathbf{Q}} [[t]]^+$  de la fonction  $L_{\text{mot}}^{DM}(X, G, \rho, t)$ .

2. Supposons que k soit un corps de nombres. Soit  $\ell$  un nombre premier. Alors pour presque toute place  $\mathfrak p$  de k, on a la relation

$$\operatorname{Tr}_{\mathfrak{p}}(\chi_{\ell}(L_{\operatorname{mot}}(X,G,\rho,t))) = L_{Ar}(X_{\mathfrak{p}},G,\rho,t). \tag{4.5.19}$$

 $D\acute{e}monstration$ . — D'après le théorème d'Artin ([Ser67, II-45, proposition 25]), il existe un entier positif d tel qu'on puisse écrire

$$d\chi_{\rho} = \sum_{C} n_{C} \chi_{\operatorname{Ind}_{C}^{G}(\operatorname{triv}_{C})}$$
(4.5.20)

où la somme porte sur des sous-groupes cycliques C de G et les  $n_C$  sont des entiers. D'après les lemmes 4.26, 4.27 et 4.30, on a donc

$$L_{\text{mot}}(X, G, \rho, t)^d = \prod_{\substack{C < G \\ C \text{ cyclique}}} L_{\text{mot}}(X, C, \text{triv}_C, t)^{n_C} = \prod_{\substack{C < G \\ C \text{ cyclique}}} Z_{\text{mot}}(X/C, t)^{n_C}$$

$$(4.5.21)$$

De même, d'après les propositions 2.7 et 2.10 de [DM06] et le lemme 3.8, on a

$$L_{\text{mot}}^{\text{DM}}(X, G, \rho, t)^d = \prod_{\substack{C < G \\ C \text{ cy clique}}} Z_{\text{mot}}(X/C, t)^{n_C}. \tag{4.5.22}$$

Ainsi  $L_{\text{mot}}(X, G, \rho, t)$  et  $L_{\text{mot}}^{\text{DM}}(X, G, \rho, t)$  sont deux éléments de  $1 + K_0 \left( \text{CHM}(k)_{\mathbf{Q}} \right) \otimes \mathbf{Q}[[t]]^+$  dont une puissance coïncide. Ils sont donc égaux.

Pour montrer le deuxième point, on remarque que la relation (4.5.21) entraîne

$$\chi_{\ell} \left( L_{\text{mot}}(X, G, \rho, t) \right)^{d} = \prod_{\substack{C < G \\ C \text{ cyclique}}} \chi_{\ell} \left( Z_{\text{mot}}(X/C, t) \right) \right)^{n_{C}}. \tag{4.5.23}$$

D'après le corollaire 2.9, il existe un ensemble fini S de places tel que pour tout  $\mathfrak{p} \notin S$  et pour tout C on a la relation

$$\operatorname{Tr}_{\mathfrak{p}}(\chi_{\ell}(Z_{\operatorname{mot}}(X/C,t)))) = Z_{\operatorname{HW}}((X/C)_{\mathfrak{p}},t). \tag{4.5.24}$$

D'après la relation (4.5.23) on en déduit que pour presque tout p on a

$$\operatorname{Tr}_{\mathfrak{p}}(\chi_{\ell}(L_{\operatorname{mot}}(X,G,\rho,t)))^{d} = \prod_{\substack{C < G \\ C \text{ cyclique}}} Z_{\operatorname{HW}}((X/C)_{\mathfrak{p}},t)^{n_{C}}. \tag{4.5.25}$$

Comme les fonctions L d'Artin classiques sont également compatibles à la somme directe, la restriction et l'induction, on en déduit le résultat.

Remarque 4.32. — Soit k un corps fini et  $\#_k: K_0\left(\operatorname{CHM}(k)_{\mathbf{Q}}\right) \to \mathbf{C}$  le morphisme « nombre de k-points » obtenu en considérant la trace du Frobenius sur une réalisation  $\ell$ -adique. On a en particulier, pour toute k-variété projective et lisse,  $\#_k Z_{\mathrm{mot}}(X,t) = Z_{\mathrm{HW}}(X,t)$ . En fait, un raisonnement analoge à celui de  $[\mathbf{DM06},\S5.2]$  montre en outre que si G est un groupe fini agissant sur X, on a  $\#_k Z_{\mathrm{mot}}(h(X)^G,t) = Z_{\mathrm{HW}}(X/G,t)$ . Comme dans la démonstration précédente, le théorème d'Artin permet alors de montrer qu'on a pour toute k-variété X projective et lisse et toute  $\mathbf{Q}$ -représentation  $\rho$  d'un groupe fini G la relation  $L_{\mathrm{Ar}}(X,G,\rho,t) = \#_k L_{\mathrm{mot}}^{\mathrm{DM}}(X,G,\rho,t)$ . Une relation analogue est montrée dans  $[\mathbf{DM06}]$  dans le cas de représentations définies sur un corps contenant toutes les racines de l'unité.

**Remarque 4.33.** — La relation (4.5.19) pourrait aussi être vue comme découlant de la comparaison des expressions (4.4.4) et (4.4.7) et du fait que pour tout  $n \ge 1$  et presque tout  $\mathfrak{p}$  le nombre de points modulo  $\mathfrak{p}$  de  $\psi_{X,G,\mathcal{I},\mathcal{D},n}$  est égal au cardinal de l'ensemble  $((X/G)_{\mathfrak{p}})_{n,\mathcal{I},\mathcal{D}}^{(0)}$  (proposition 4.14). Cependant, pour rendre l'argument rigoureux, il faudrait disposer d'une version uniforme en n de la proposition 4.14 (cf. la remarque 4.15).

Corollaire 4.34. — Si X est de dimension au plus 1,  $L_{mot}(X, G, \rho, t)$  est rationnelle.

Démonstration. — Ceci découle de la proposition 3.12 et du corollaire 4.31.

Nous verrons à la section suivante que dans le cas d'un corps k de caractéristique non nulle et d'une variété X de dimension au plus 1, on peut encore définir des motifs virtuels  $\psi_{X,G,\mathcal{I},\mathcal{C},n}$  de sorte que  $L_{\mathrm{mot}}^{\mathrm{DM}}$  vérifie la décomposition en produit eulerien motivique (4.4.7).

4.6. Formules et motifs virtuels associés aux symboles d'Artin. — Soit k un corps, G un groupe fini,  $\mathscr C$  une k-G-courbe projective et lisse sur k,  $Y=\mathscr C/G$  et E un corps de caractéristique zéro contenant toutes les racines de l'unité. Les auteurs de  $[\mathbf{DM06}]$  définissent pour tout entier  $n\geqslant 1$  et pour toute classe de conjugaison C de G le «motif virtuel des éléments de degré n de symbole d'Artin C» noté  $\mathrm{Ar}(\mathscr C,G,C,n))_{n\geqslant 1}\in K_0\left(\mathrm{CHM}(k)_E\right)\otimes \mathbf{Q}$  ayant la propriété suivante : si k est un corps global, pour presque toute place finie  $\mathfrak p$  et pour tout  $n\geqslant 1$ ,  $\mathrm{Tr}_{\mathfrak p}(\chi_\ell(\mathrm{Ar}(\mathscr C,G,C,n)))$  est le nombre d'éléments de  $((\mathscr C/G)_{\mathfrak p})_{\mathrm{\acute{e}t}}$  de degré n et de symbole d'Artin C. La définition précise de ces motifs virtuels est rappelée ci-dessous.

Le but de cette section est d'expliquer (lorsque k est de caractéristique zéro) comment ces motifs virtuels sont reliés aux motifs  $(\psi_{\mathscr{C},G,\{e\},\mathcal{C},n})$ . Au passage, nous expliquerons également, pour un corps k de caractéristique non nulle, comment on peut donner un sens aux motifs virtuels  $(\psi_{X,G,\mathcal{I},\mathcal{C},n})$  si X est une k-variété projective lisse de dimension au plus 1.

La remarque de départ est la suivante. Supposons que k soit un corps de nombres. D'après la proposition 4.14 et la propriété évoquée ci-dessus, pour tout  $n \ge 1$ , on a pour presque toute place  $\mathfrak p$  l'égalité

$$\operatorname{Tr}_{\mathfrak{p}}(\chi_{\ell}(\psi_{\mathscr{C},G,\{e\},\mathcal{C},n})) = \sum_{C \leadsto \mathcal{C}} \operatorname{Tr}_{\mathfrak{p}}(\chi_{\ell}(\operatorname{Ar}(\mathscr{C},G,C,n))), \tag{4.6.1}$$

où, pour toute classe de conjugaison C et tout  $C \in \mathbf{Conj}_{\mathbf{c}}(G)$  on note  $C \leadsto C$  la propriété : tout élément de C engendre un élément de C.

Nous allons montrer que la relation 4.6.1 est déjà vraie au niveau des motifs virtuels, i.e. la proposition suivante.

**Proposition 4.35.** — Soit k un corps de caractéristique zéro, G un groupe fini,  $\mathscr C$  une k-G-courbe projective et lisse sur k et E un corps de caractéristique zéro contenant toutes les racines de l'unité. Pour tout  $n \ge 1$  et tout  $\mathcal C \in \operatorname{\textbf{Conj}}_c(G)$  on a dans  $K_0(\operatorname{CHM}(k)_E) \otimes \mathbf Q$  la relation

$$\psi_{\mathscr{C},G,\{e\},\mathcal{C},n} = \sum_{C \leadsto \mathcal{C}} \operatorname{Ar}(\mathscr{C},G,C,n)$$
(4.6.2)

Avant toute chose, rappelons la définition des motifs virtuels  $(Ar(\mathscr{C}, G, C, n))$ . Sous les hypothèses de la proposition 4.35, les auteurs de [**DM06**] associent à toute E-représentation  $\rho$  de G une fonction L non ramifiée définie comme suit : le lieu de ramification  $(\mathscr{C}/G)^{\text{ram}}$  de  $\mathscr{C} \to \mathscr{C}/G$  est une union finie de points fermés de  $\mathscr{C}/G$ .

Pour tel point y, on note  $\mathcal{I}_y$  (respectivement  $\mathcal{D}_y$ ) l'ensemble de ses groupes de décomposition (respectivement d'inertie),  $x_y$  un point de la fibre au-dessus de y,  $D_y$  (respectivement  $I_y$ ) le groupe de décomposition (respectivement d'inertie) associé, et  $\rho_y$  la **Q**-représentation de  $D_y/I_y$  induite par  $\rho$ . On pose alors, suivant [**DM06**],

$$L_{\text{mot}}^{\text{DM,nr}}(\mathscr{C},G,\rho,t) = L_{\text{mot}}^{\text{DM}}(\mathscr{C},G,\rho,t) \prod_{y \in (\mathscr{C}/G)^{\text{ram}}} L_{\text{mot}}^{\text{DM}}(\text{Spec}(\kappa_{x_y}),D_y/I_y,\rho_y,t)^{-1}.$$

$$(4.6.3)$$

**Remarque 4.36.** — Tout comme pour la définition de  $L_{\rm mot}^{\rm DM}$ , il est inutile dans la définition de  $L_{\rm mot}^{\rm DM,nr}$  de supposer que le corps E contient toutes les racines de l'unité. En particulier, la définition a un sens pour une **Q**-représentation  $\rho$ .

**Remarque 4.37.** — La compatibilité de  $L_{\mathrm{mot}}^{\mathrm{DM}}$  aux sommes directes de représentations ([**DM06**, Proposition 2.8]) entraı̂ne aussitôt la propriété similaire pour  $L_{\mathrm{mot}}^{\mathrm{DM,nr}}$ . Par ailleurs la remarque 3.7 montre que  $L_{\mathrm{mot}}^{\mathrm{DM,nr}}$  est compatible au changement de coefficients.

Soit C une classe de conjugaison de G. On note pour  $n \ge 1$ 

$$\mathfrak{P}_n(C) \stackrel{\text{déf}}{=} \{ D \in \operatorname{Conj}(G), \quad x \in D \Rightarrow x^n \in C \}. \tag{4.6.4}$$

On note  $\mathbf{1}_C$  la fonction qui vaut 1 sur C et 0 sinon. Il existe donc des nombres rationnels  $m_{\rho,C}$  tels que

$$\mathbf{1}_C = \sum_{\rho \in \operatorname{Irr}_E(G)} m_{\rho,C} \, \chi_{\rho} \tag{4.6.5}$$

Les motifs virtuels  $\operatorname{Ar}(\mathscr{C},G,C,n)$  sont alors définis par récurrence sur  $n\geqslant 1$  à l'aide de la formule suivante

$$\sum_{n\geqslant 1} \left( \sum_{\substack{d\mid n\\D\in \mathcal{P}_{\frac{n}{d}}(C)}} \operatorname{Ar}(\mathscr{C}, G, D, d) \right) t^n = \sum_{\rho\in \operatorname{Irr}_{\mathbf{Q}}(G)} m_{\rho,C} t \frac{d\log}{dt} L^{\operatorname{nr}}(\mathscr{C}, G, \rho, t). \tag{4.6.6}$$

**Lemme 4.38**. — Pour toute **Q**-représentation  $\rho$ , on a dans  $K_0(\operatorname{CHM}(k)_{\mathbf{Q}}) \otimes \mathbf{Q}$  la relation

$$L_{\text{mot}}^{DM,nr}(\mathscr{C},G,\rho,t) = \prod_{n\geqslant 1} \prod_{\mathcal{D}\in \operatorname{Conj}_{c}(G)} \mathscr{P}_{\rho,\{e\},\mathcal{D}}\left(t^{n}\right)^{-\psi_{\mathscr{C},G,\{e\},\mathcal{D},n}}. \tag{4.6.7}$$

 $D\'{e}monstration$ . — D'après le point 1 du corollaire 4.31 et les définitions de  $L^{\rm DM,nr}_{\rm mot}$  et  $L_{\rm mot}$  il suffit de montrer qu'on a la relation

$$\prod_{n\geqslant 1} \prod_{\mathcal{I}\in\mathbf{Conj}(G)\backslash\{e\}} \prod_{\mathcal{D}\in\mathbf{Conj}_{c}(G,\mathcal{I})} \mathscr{P}_{\rho,\mathcal{I},\mathcal{D}}(t^{n})^{-\psi_{\mathscr{C},G,\mathcal{I},C,n}}$$

$$= \prod_{y\in(\mathscr{C}/G)^{\mathrm{ram}}} L_{\mathrm{mot}}(\mathrm{Spec}(\kappa_{x_{y}}), D_{y}/I_{y}, \rho_{y}, t). \quad (4.6.8)$$

Or pour  $y \in (\mathscr{C}/G)^{\mathrm{ram}}$  on a

 $L_{\text{mot}}(\operatorname{Spec}(\kappa_{x_y}), D_y/I_y, \rho_y, t)$ 

$$= \prod_{1 \leqslant n \leqslant [\kappa(y):k]} \prod_{D \leqslant D_y/I_y} \mathscr{P}_{\rho_y, \{e\}, D} \left(t^n\right)^{-\psi_{\operatorname{Spec}(\kappa_{x_y}), D_y/I_y, \{e\}, D, n}} . \quad (4.6.9)$$

Par ailleurs pour  $n \geqslant 1$ ,  $\mathcal{I} \in \mathbf{Conj}(G) \setminus \{e\}$  et  $\mathcal{D} \in \mathbf{Conj}_{c}(G, \mathcal{I})$ , on a pour toute k-extension pseudo finie K

$$\psi_{\mathscr{C},G,\mathcal{I},\mathcal{D},n}(K) = \bigsqcup_{\substack{y \in (\mathscr{C}/G)^{\text{ram}} \\ [\kappa_y:k] \geqslant n \\ \mathcal{I}_y = \mathcal{I} \\ \mathcal{D} \subset \mathcal{D}_y}} \psi_{\text{Spec}(\kappa_{xy}),D_y/I_y,\{e\},\pi_y(\mathcal{D}),n}(K). \tag{4.6.10}$$

où  $\pi_y(\mathcal{D})$  est l'image dans  $D_y/I_y$  d'un élément de D de  $\mathcal{D}$  vérifiant  $D \subset D_y$ . Ceci découle en effet de la remarque 4.12. On en déduit l'égalité

$$\psi_{\mathscr{C},G,\mathcal{I},\mathcal{D},n} = \sum_{\substack{y \in (\mathscr{C}/G)^{\text{ram}} \\ [\kappa_y:k] \geqslant n \\ \mathcal{I}_y = \mathcal{I} \\ \mathcal{D} \subset \mathcal{D}_n}} \psi_{\text{Spec}(\kappa_{xy}),D_y/I_y,\pi_y(\mathcal{D}),n}. \tag{4.6.11}$$

Le résultat cherché en découle aisément.

Démonstration de la proposition 4.35. — Pour tout  $\rho \in \operatorname{Irr}_E(G)$  et tout  $\mathcal{C} \in \operatorname{\mathbf{Conj}}_{\operatorname{c}}(G)$  on pose (cf. (4.6.5))  $m_{\rho,\mathcal{C}} \stackrel{\text{def}}{=} \sum_{C \in \mathcal{C}} m_{\rho,C}$ . On note pour  $n \geqslant 1$ 

$$\mathfrak{P}_n(\mathcal{C}) \stackrel{\text{def}}{=} \{ \mathcal{D} \in \mathbf{Conj}_{\mathrm{c}}(G), \quad \forall D, \quad D \leadsto \mathcal{D} \Rightarrow \exists C, \quad C \leadsto \mathcal{C}, \ D \in \mathfrak{P}_n(C) \}. \quad (4.6.12)$$

En sommant (4.6.6) sur toutes les classes de conjugaison C vérifiant  $C \leadsto \mathcal{C}$ , on obtient la relation

$$\sum_{n\geqslant 1} \left[ \sum_{d|n} \sum_{\mathcal{D}\in\mathcal{P}_{\frac{d}{n}}(\mathcal{C})} \left( \sum_{D\leadsto\mathcal{D}} \operatorname{Ar}(\mathscr{C}, G, D, d) \right) \right] t^{n} = \sum_{\rho\in\operatorname{Irr}_{E}(G)} m_{\rho,\mathcal{C}} t \frac{d\log}{dt} L_{\operatorname{mot}}^{\operatorname{DM}, \operatorname{nr}}(\mathscr{C}, G, \rho, t)$$

$$(4.6.13)$$

On rappelle que l'on désigne par  $\theta_{\mathcal{C}}$  la fonction

$$\theta_{\mathcal{C}}: g \mapsto \begin{cases} 1 & \text{si le groupe engendr\'e par } g \text{ est dans } \mathcal{C} \\ 0 & \text{sinon.} \end{cases}$$
 (4.6.14)

En particulier,  $\theta_{\mathcal{C}}$  est une fonction **Q**-centrale. Il existe donc des rationnels  $(\widetilde{m}_{\rho,\mathcal{C}})_{\rho\in \mathrm{Irr}_{\mathbf{Q}}(G)}$  tels que

$$\theta_{\mathcal{C}} = \sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} \chi_{\rho}. \tag{4.6.15}$$

Comme  $\theta_{\mathcal{C}} = \sum_{C \leadsto \mathcal{C}} \mathbf{1}_{C}$ , on a alors

$$\sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} \, \chi_{\rho} = \sum_{\rho \in \operatorname{Irr}_{E}(G)} m_{\rho,\mathcal{C}} \, \chi_{\rho}. \tag{4.6.16}$$

D'après la remarque 4.37, il vient

$$\sum_{\rho \in \operatorname{Irr}_{E}(G)} m_{\rho,\mathcal{C}} t \frac{d \log}{dt} L_{\operatorname{mot}}^{\operatorname{DM},\operatorname{nr}}(\mathscr{C}, G, \rho, t) = \sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} t \frac{d \log}{dt} L_{\operatorname{mot}}^{\operatorname{DM},\operatorname{nr}}(\mathscr{C}, G, \rho, t).$$
(4.6.17)

Pour  $C \in \mathbf{Conj}_{c}(G)$ , on note  $x_{C}$  un générateur d'un élément de C. On a alors pour toute  $\mathbf{Q}$ -représentation  $\rho$ 

$$t \frac{d \log}{dt} \mathscr{P}_{\rho, \{e\}, \mathcal{C}}(t^n) = -n \sum_{k \ge 1} \operatorname{Tr}(\rho(x_{\mathcal{C}}^k)) t^{n k}. \tag{4.6.18}$$

D'après le lemme 4.38, on a donc

$$\sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} t \frac{d \log}{dt} L_{\text{mot}}^{\text{DM,nr}}(\mathscr{C}, G, \rho, t)$$
(4.6.19)

$$= \sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} \sum_{\mathcal{D} \in \operatorname{Conj}_{\mathbf{c}}(G)} \sum_{n \geqslant 1} -\psi_{\mathscr{C},G,\{e\},\mathcal{D},n} t \frac{d \log}{dt} \mathscr{P}_{\rho,\{e\},\mathcal{D}}(t^n)$$
(4.6.20)

$$= \sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} \sum_{\mathcal{D} \in \operatorname{Conj}_{\mathbf{c}}(G)} \sum_{n \geqslant 1} n \, \psi_{\mathscr{C},G,\{e\},\mathcal{D},n} \sum_{k \geqslant 1} \operatorname{Tr}(\rho(x_{\mathcal{D}}^{k})) \, t^{n \, k}$$
(4.6.21)

$$= \sum_{n\geqslant 1} \sum_{\mathcal{D}\in \operatorname{Conj}_{c}(G)} n \, \psi_{\mathscr{C},G,\{e\},\mathcal{D},n} \sum_{k\geqslant 1} \sum_{\rho\in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} \operatorname{Tr}(\rho(x_{\mathcal{D}}^{k})) \, t^{n \, k}. \tag{4.6.22}$$

Or on a d'après (4.6.15)

$$\sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} \operatorname{Tr}(\rho(x_{\mathcal{D}}^k)) = \theta_{\mathcal{C}}(x_{\mathcal{D}}^k) = \begin{cases} 1 & \operatorname{si} \langle x_{\mathcal{D}}^k \rangle \in \mathcal{C} \text{ i.e. si } \mathcal{D} \in \mathcal{P}_k(\mathcal{C}) \\ 0 & \operatorname{sinon.} \end{cases}$$
(4.6.23)

Finalement on obtient

$$\sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} t \frac{d \log}{dt} L_{\operatorname{mot}}^{\operatorname{DM,nr}}(\mathscr{C}, G, \rho, t) = \sum_{n \geqslant 1} \sum_{k \geqslant 1} \sum_{\mathcal{D} \in \mathcal{P}_{k}(\mathcal{C})} n \psi_{\mathscr{C}, G, \{e\}, \mathcal{D}, n} t^{n k} \quad (4.6.24)$$

$$= \sum_{n\geqslant 1} \left[ \sum_{d\mid n} \left( \sum_{\mathcal{D}\in \mathcal{P}_{\frac{n}{d}}(\mathcal{C})} d\psi_{\mathscr{C},G,\{e\},\mathcal{D},d} \right) \right] t^{n}. \tag{4.6.25}$$

D'après (4.6.13), (4.6.17) et cette dernière relation, on obtient pour tout  $n \ge 1$  l'égalité

$$\sum_{d|n} \sum_{\mathcal{D} \in \mathcal{P}_{\underline{d}}(\mathcal{C})} \left( \sum_{D \leadsto \mathcal{D}} \operatorname{Ar}(\mathscr{C}, G, D, d) \right) = \sum_{d|n} \sum_{\mathcal{D} \in \mathcal{P}_{\underline{n}}(\mathcal{C})} d\psi_{\mathscr{C}, G, \{e\}, \mathcal{D}, d}$$
(4.6.26)

d'où le résultat cherché. 
$$\Box$$

**Remarque 4.39.** — En écrivant les relations (4.6.25) pour tous les éléments  $\mathcal{C}$  de  $\mathbf{Conj_c}(G)$  et en utilisant le point 2 du corollaire 4.31 et les propriétés standards des fonctions L d'Artin classiques, on montre par récurrence sur n que si k est un corps

de nombres, il existe un nombre fini de places S tel que pour tout  $\mathfrak{p} \notin S$ , pour tout  $\mathcal{C} \in \operatorname{Conj}_{\mathbf{c}}(G)$  et tout  $n \geqslant 1$   $\operatorname{Tr}_{\mathfrak{p}}(\chi_{\ell}(\psi_{\mathscr{C},G,\{e\},\mathcal{D},n}))$  est égal au nombre de points fermés de degré n de  $(X/G)_{\mathfrak{p},\text{\'et}}$  ayant un groupe de décomposition dans  $\mathcal{C}$  (cf. remarque 4.15).

Remarque 4.40. — Comme la définition de  $L^{\mathrm{DM,nr}}_{\mathrm{mot}}(\mathscr{C},G,\rho,t)$  a un sens en caractéristique non nulle, les relations (4.6.25) permettent de définir  $\psi_{\mathscr{C},G,\{e\},\mathcal{D},n}$  en caractéristique non nulle. Par ailleurs, si k est de caractéristique zéro et si L est une k-extension finie séparable munie d'une action libre de G on a également pour tout  $C \in \mathbf{Conj}_{c}(G)$ 

$$\sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G)} \widetilde{m}_{\rho,\mathcal{C}} t \frac{d \log}{dt} L_{\operatorname{mot}}(\operatorname{Spec}(L), G, \rho, t) = \sum_{n \geqslant 1} \left[ \sum_{d \mid n} \left( \sum_{\mathcal{D} \in \mathcal{P}_{\frac{n}{d}}(\mathcal{C})} d \, \psi_{\operatorname{Spec}(L), G, \{e\}, \mathcal{D}, d} \right) \right] t^{n}.$$

$$(4.6.27)$$

Ces relations permettent de définir  $\psi_{\text{Spec}(L),G,\{e\},\mathcal{D},d}$  (et donc  $\psi_{\text{Spec}(L),G,\mathcal{T},\mathcal{D},d}$  d'après la remarque 4.13) si k est de caractéristique non nulle. Finalement, compte tenu de la relation (4.6.11), il est possible pour un corps k de caractéristique non nulle de donner un sens aux motifs virtuels  $\psi_{X,G,\mathcal{I},\mathcal{D},n}$  pour toute k-G-variété projective et lisse X de dimension au plus 1. En utilisant les relations d'orthogonalité

$$\sum_{\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G)} \chi_{\rho_0}(\mathcal{C}) \, \widetilde{m}_{\rho,\mathcal{C}} = \begin{cases} 0 & \text{si} & \rho \neq \rho_0 \\ 1 & \text{si} & \rho = \rho_0 \end{cases} , \qquad (4.6.28)$$

on peut alors montrer en partant des relations (4.6.25) et (4.6.27) qu'on a pour tout  $\rho$  la décomposition

$$L_{\text{mot}}^{\text{DM}}(X, G, \rho, t) = \prod_{n \geqslant 1} \prod_{\mathcal{I} \in \mathbf{Conj}(G)} \prod_{\mathcal{D} \in \mathbf{Conj}_{c}(G, \mathcal{I})} \mathscr{P}_{\rho, \mathcal{I}, \mathcal{D}}(t^{n})^{-\psi_{X, G, \mathcal{I}, \mathcal{D}, n}}. \tag{4.6.29}$$

#### 5. Le volume de Tamagawa motivique

**5.1.** Le volume de Tamagawa classique. — Soit k un corps fini de cardinal  $q, \mathscr{C}$  une k-courbe projective, lisse et géométriquement intègre, K son corps de fonctions,  $\mathscr{X} \to \mathscr{C}$  un morphisme projectif, lisse, à fibres géométriquement intègres, dont la fibre générique K vérifie les hypothèses suivantes :

**Hypothèses 5.1**. — 1. On a 
$$H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$$
.

- 2.  $\operatorname{Pic}(X^s)$  est un  $\mathfrak{G}_K$ -module discret libre de rang fini qui coïncide avec  $\operatorname{Pic}(\overline{X})$ .
- 3. Le rang de  $\operatorname{Pic}(X^s)$  coı̈ncide avec le deuxième nombre de Betti de X.

Sous ces hypothèses, nous rappelons la définition, dûe à Peyre, du volume de Tamagawa de la famille  $\mathscr{X}/\mathscr{C}$ . Lorsque  $\mathscr{X}/\mathscr{C}$  vérifie l'approximation faible, ce volume apparaît conjecturalement dans l'estimation asymptotique du nombre de sections de  $\mathscr{X} \to \mathscr{C}$  de degré anticanonique borné (cf. [**Pey03a**] pour plus de détails, ainsi que la remarque 5.2 et la section 5.9 ci-dessous).

Soit  $\mathcal{H}$  un sous-groupe d'indice fini de  $\mathcal{G}_K$  agissant trivialement sur  $\operatorname{Pic}(\overline{X})$ ,  $K' \stackrel{\text{def}}{=} (K^{\operatorname{s}})^{\mathcal{H}}$ ,  $G \stackrel{\text{def}}{=} \operatorname{Gal}(K'/K)$  et  $\mathscr{D} \to \mathscr{C}$  le k-revêtement galoisien ramifié de groupe G correspondant à l'extension K'/K. On note  $\rho_{\operatorname{NS}}$  la  $\mathbf{Q}$ -représentation de G induite par l'action de  $\mathcal{G}_K$  sur  $\operatorname{Pic}(\overline{X})$ .

Le volume de Tamagawa de  $\mathscr{X}/\mathscr{C}$  peut alors être défini comme le produit eulerien

$$\mathcal{V}(\mathcal{X}/\mathcal{C}) \stackrel{\text{def}}{=} q^{(1-g(\mathcal{C})) \operatorname{dim}(X)} \prod_{y \in \mathcal{C}^{(0)}} L_y(\mathcal{D}, G, \rho_{NS}, q^{-1})^{-1} \frac{|\mathcal{X}_y(\kappa_y)|}{|\kappa_y|^{\dim(X)}}.$$
 (5.1.1)

Grâce à la compatibilité des fonctions L d'Artin au quotient, cette définition est indépendante du choix de  $\mathcal{H}$ . Dans le cas où la famille  $\mathscr{X} \to \mathscr{C}$  est constante, nous donnerons dans la section suivante une version motivique du volume de Tamagawa. Rappelons d'abord succinctement les arguments qui permettent à Peyre de montrer la convergence du produit eulerien (5.1.1). La convergence du produit eulerien motivique définissant le volume de Tamagawa motivique sera démontrée par une adaptation motivique de ces arguments. Les hypothèses 5.1 ont les conséquences suivantes :

- 1.  $b_1(X) = 0$  et  $b_1(\mathcal{X}_y) = 0$  pour tout  $y \in \mathcal{C}^{(0)}$ ;
- 2. pour presque tout  $y \in \mathcal{C}^{(0)}$ , on a un isomorphisme

$$\operatorname{Pic}(X^{\operatorname{s}}) \xrightarrow{\sim} \operatorname{Pic}(\overline{\mathscr{X}}_y)$$
 (5.1.2)

compatible aux actions de  $\mathfrak{G}_K$  et  $\mathfrak{G}_{\kappa_y}$ ;

3. pour tout  $\ell$  distinct de la caractéristique de k et pour presque tout  $y \in \mathscr{C}^{(0)}$  on a un isomorphisme de  $\mathcal{G}_{\kappa_y}$ - $\mathbf{Q}_{\ell}$ -module

$$\operatorname{Pic}(\overline{\mathscr{X}_y}) \otimes \mathbf{Q}_{\ell} \xrightarrow{\sim} H_{\ell}^2(\mathscr{X}_y) \otimes \mathbf{Q}_{\ell}(1).$$
 (5.1.3)

Soit  $y \in \mathcal{C}^{(0)}$  un élément non ramifié, et  $F_y$  un frobenius associé. Son image dans  $\mathcal{G}_{\kappa_y}$  est donc  $F_{\kappa_y}$ . On a l'estimation

$$L_y(\mathcal{D}, G, \rho_{NS}, q^{-1})^{-1} = 1 - \operatorname{Tr}\left(F_y | \operatorname{Pic}(\overline{X})\right) q^{-\deg(y)} + \mathcal{O}\left(q^{-2\deg(y)}\right)$$
 (5.1.4)

soit d'après l'isomorphisme (5.1.2)

$$L_y(\mathscr{D},G,\rho_{\scriptscriptstyle \mathrm{NS}},q^{-1})^{-1} = 1 - \operatorname{Tr}\left(F_{\kappa_y}|\operatorname{Pic}(\overline{\mathscr{X}_y})\right) \, q^{-\deg(y)} + \mathcal{O}\left(q^{-2\deg(y)}\right) \quad (5.1.5)$$

Par ailleurs, on a d'après la formule des traces de Grothendieck-Lefschetz

$$|\mathscr{X}_{y}(\kappa_{y})| = \sum_{0 \leqslant r \leqslant 2 \operatorname{dim}(X)} (-1)^{r} \operatorname{Tr}(F_{\kappa_{y}}|H_{\ell}^{r}(\mathscr{X}_{y}))$$
 (5.1.6)

En utilisant le théorème de Deligne sur les valeurs propres du Frobenius, la nullité du premier nombre de Betti, l'isomorphisme (5.1.3) et la dualité de Poincaré on déduit de (5.1.6) l'estimation

$$|\mathscr{X}_{y}(\kappa_{y})| = q^{\dim(X) \operatorname{deg}(y)} + \operatorname{Tr}\left(F_{\kappa_{y}}|\operatorname{Pic}(\overline{\mathscr{X}_{y}})\right) q^{(\dim(X)-1) \operatorname{deg}(y)} + \mathcal{O}\left(q^{(\dim(X)-\frac{3}{2}) \operatorname{deg}(y)}\right)$$

$$(5.1.7)$$

De (5.1.5) et (5.1.7), on déduit finalement que le produit eulerien

$$\prod_{y \in \mathscr{C}^{(0)}} L_y(\mathscr{D}, G, \rho_{NS}, q^{-1})^{-1} \frac{|\mathscr{X}(\kappa_y)|}{|\kappa_y|^{\dim(X)}}$$
(5.1.8)

est absolument convergent.

Remarque 5.2. — Pour  $x \in \mathscr{C}^{(0)}$ , notons  $K_x$  le complété de K pour la valuation définie par x. Le volume de Tamagawa (5.1.1) correspond au volume de l'espace  $\prod_{x \in \mathscr{C}^{(0)}} X(K_x)$  pour une certaine mesure adélique définie par Peyre (cette dernière définition est plus générale et vaut pour des K-variétés n'ayant pas nécessairement bonne réduction partout), et le nombre de Tamagawa de la famille  $\mathscr{X}/\mathscr{C}$  est défini comme étant le volume de l'adhérence de X(K) pour cette même mesure. Il coïncide donc avec le volume de Tamagawa si X vérifie l'approximation faible, i.e. si X(K) est dense dans  $\prod_{x \in \mathscr{C}^{(0)}} X(K_x)$  (par exemple si X est rationnelle).

**Remarque 5.3**. — Peyre normalise la mesure utilisée par la partie principale de la fonction L d'Artin en  $t = q^{-1}$ , i.e. par la quantité

$$\left[ (1 - q t)^{\operatorname{rg}(\operatorname{Pic}(\overline{X})^G)} L_{\operatorname{Ar}}(\mathscr{D}, G, \rho_{\operatorname{NS}}, t) \right]_{t=g^{-1}}.$$
 (5.1.9)

Nous nous écartons de cette définition notamment à cause du fait que l'analogue motivique naturel de cette quantité n'a pas nécessairement de sens dans l'anneau que nous considérons (cf. la remarque 5.12). Bien entendu il faudra tenir compte de ce choix dans la formulation de la version motivique de la conjecture de Manin, ce qui se fait à peu de frais, grâce la proposition 3.12 (cf. la section 5.9). Une question pertinente pour une « bonne » formulation de la conjecture de Manin semble d'ailleurs plutôt être liée aux pôles qui doivent apparaître sur le cercle de convergence (cf. la remarque 5.33).

**Remarque 5.4**. — Supposons que la famille  $\mathscr{X} \to \mathscr{C}$  soit isotriviale, i.e. qu'il existe une k-variété X telle que pour tout  $y \in \mathscr{C}^{(0)}$  on a  $\mathscr{X}_y \xrightarrow{\sim} X \times_k \kappa_y$ . Le produit eulerien (5.1.8) peut se réécrire

$$q^{(1-g(\mathscr{C}))\operatorname{dim}(X)} \prod_{n\geqslant 1} \prod_{\substack{\mathcal{I}\in\operatorname{\mathbf{Conj}}(G)\\\mathcal{D}\in\operatorname{\mathbf{Conj}}_{c}(G,\mathcal{I})}} \mathscr{P}_{\rho_{\mathrm{NS}},\mathcal{I},\mathcal{D}}(q^{-n})^{\left|\mathscr{D}_{G,\mathcal{I},\mathcal{D},n}^{(0)}\right|} \left(\frac{|X(k_{n})|}{q^{n}\operatorname{dim}(X)}\right)^{\left|\mathscr{C}_{n}^{(0)}\right|}$$

$$(5.1.10)$$

Remarque 5.5. — On se place à présent dans le cas d'une famille triviale  $\mathscr{X} = X \times \mathscr{C}$ . Remarquons que les trois premières hypothèses de 5.1 équivalent alors aux hypothèses suivantes :  $H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$ , et  $\operatorname{Pic}(\overline{X})$  est libre de rang fini égal à  $b_2(X)$ . On a alors un isomorphisme  $\operatorname{Pic}(X_K^s) = \operatorname{Pic}(\overline{X})$  compatible aux actions de  $\mathcal{G}_K$  à gauche et  $\mathcal{G}_k$  à droite. On a  $\mathscr{D} \xrightarrow{\sim} \mathscr{C} \times_k k'$ . En particulier le revêtement

 $\mathcal{D} \to \mathcal{C}$ est non ramifié et (5.1.10) se réécrit

$$q^{(1-g(\mathscr{C})) \dim(X)} \prod_{n \geqslant 1} \prod_{C < G} \mathscr{P}_{\rho_{NS}, \{e\}, C}(q^{-n})^{\left|\mathscr{D}_{G, \{e\}, C, n}^{(0)}\right|} \left(\frac{|X(k_n)|}{q^{n \dim(X)}}\right)^{\left|\mathscr{C}_n^{(0)}\right|}$$
(5.1.11)

Pour tout sous-groupe cyclique C de G et tout  $n \ge 1$ , on pose  $\eta_n(C) = 1$  si  $|C| = \frac{[k':k]}{n \wedge [k':k]}$  et  $\eta_n(C) = 0$  sinon. On a donc

$$\left| \mathscr{D}_{G,\{e\},C,n}^{(0)} \right| = \eta_n(C) \left| \mathscr{C}_n^{(0)} \right| \tag{5.1.12}$$

et (5.1.11) peut se réécrire

$$q^{(1-g(\mathscr{C})) \dim(X)} \prod_{n \geqslant 1} \prod_{C < G} \left( \mathscr{P}_{\rho_{NS}, \{e\}, C} (q^{-n})^{\eta_n(C)} \frac{|X(k_n)|}{q^{n \dim(X)}} \right)^{|\mathscr{C}_n^{(0)}|}.$$
 (5.1.13)

**5.2.** Vers un analogue motivique du volume de Tamagawa. — Désormais, on considère uniquement le cas d'une famille constante. Dans le cas d'une famille isotriviale, il est immédiat de concevoir un analogue motivique de l'expression 5.1.10, mais nous ne savons pas démontrer la convergence du produit eulerien motivique en question.

5.2.1. Définitions. — Soit k un corps et X une k-variété projective, lisse et géométriquement intègre, vérifiant les hypothèses suivantes :

**Hypothèse 5.6**. —  $\operatorname{Pic}(\overline{X})$  est un **Z**-module libre de rang fini égal à  $b_2(X)$ , qui coïncide avec  $\operatorname{Pic}(X^s)$ .

**Hypothèse 5.7.** — Les groupes  $H^1(X, \mathcal{O}_X)$  et  $H^2(X, \mathcal{O}_X)$  sont nuls.

**Remarque 5.8**. — Si k est de caractéristique zéro, l'hypothèse  $H^1(X, \mathcal{O}_X) = 0$  est superflue au vu de l'hypothèse 5.6.

**Lemme 5.9**. — L'hypothèse 5.6 entraîne la nullité de  $b_1(X)$  et l'existence d'un isomorphisme de  $\mathcal{G}_k$ - $\mathbb{Q}_\ell$ -modules

$$\operatorname{Pic}(\overline{X}) \otimes \mathbf{Q}_{\ell} \xrightarrow{\sim} H_{\ell}^{2}(X) \otimes \mathbf{Q}_{\ell}(1).$$
 (5.2.1)

 $Si\ k$  est de caractéristique zéro et X est une variété de Fano, les hypothèses 5.6 et 5.7 sont vérifiées.

Démonstration. — Tous les arguments nécessaires se trouvent dans [Pey95], nous les rappelons. Les suites exactes de Kummer induisent des suites exactes de  $\mathcal{G}_k$ -modules

$$0 \to H^1_{\text{\'et}}(\overline{X}, \mathbf{Z}_{\ell}(1)) \to T_{\ell}(\operatorname{Pic}(\overline{X}) \to 0 \tag{5.2.2}$$

et

$$0 \to \operatorname{Pic}(\overline{X}) \otimes \mathbf{Z}_{\ell} \to H^{2}_{\operatorname{\acute{e}t}}(\overline{X}, \mathbf{Z}_{\ell}(1)) \to T_{\ell}(\operatorname{Br}(\overline{X})) \to 0 \tag{5.2.3}$$

où  $T_{\ell}(M)$  désigne le module de Tate de M. Sous l'hypothèse 5.6,  $T_{\ell}(\operatorname{Pic}(\overline{X}))$  est nul, et donc  $b_1(X) = 0$ .

D'après [**Gro68**, Corollaire 3.4], le corang  $\ell$ -adique de  $Br(\overline{X})$  est la différence entre  $b_2(X)$  et le rang de  $Pic(\overline{X})$ . Sous l'hypothèse 5.6 il est donc nul, d'où  $T_{\ell}(Br(\overline{X})) = 0$ , d'où l'isomorphisme recherché.

Si k est de caractéristique zéro et X est une variété de Fano, l'hypothèse 5.7 découle du théorème d'annulation de Kodaira. D'après [**Pey95**, Lemme 1.2.1 et remarques 1.2.2 et 1.2.3])  $\operatorname{Pic}(\overline{X})$  est libre de rang fini égal à  $b_2(X)$ .

**Lemme 5.10**. — Supposons que k soit un corps global. Alors, sous les hypothèses 5.6 et 5.7, pour presque toute place finie  $\mathfrak{p}$ , il existe un isomorphisme

$$\operatorname{Pic}(\overline{X}) \xrightarrow{\sim} \operatorname{Pic}(\overline{X_{\mathfrak{p}}})$$
 (5.2.4)

compatible aux actions de  $\mathfrak{G}_k$  et  $\mathfrak{G}_{\kappa_{\mathfrak{p}}}$ .

Démonstration. — Ceci découle de la démonstration du lemme 2.2.1 de [Pey95].

Sous les hypothèses ci-dessus nous allons définir, pour toute k-courbe  $\mathscr C$  projective, lisse et géométriquement intègre le volume de Tamagawa motivique de la famille constante  $X \times_k \mathscr C \to \mathscr C$ . Il serait intéressant d'étendre ces définitions à une famille non constante, par exemple à une famille isotriviale.

**Notations 5.11.** — Soit  $\mathcal{H}$  un sous-groupe d'indice fini de  $\mathcal{G}_k$  agissant trivialement sur  $\operatorname{Pic}(\overline{X}), k' \stackrel{\text{def}}{=} \overline{k}^{\mathcal{H}}$  et  $G = \operatorname{Gal}(k'/k)$ . On note  $\rho_{\operatorname{NS}}$  la **Q**-représentation de G induite par l'action de  $\mathcal{G}_k$  sur  $\operatorname{Pic}(\overline{X})$ . On pose  $\mathscr{D} \stackrel{\text{def}}{=} \mathscr{C} \times_{\operatorname{Spec}(k)} \operatorname{Spec}(k')$ , de sorte que  $\mathscr{D} \to \mathscr{C}$  est un k-revêtement galoisien étale de groupe G.

Un analogue motivique naturel du produit eulerien (5.1.11) est alors donné (formellement du moins dans un premier temps) par le produit eulerien motivique

$$\mathbf{L}^{(1-g(\mathscr{C})) \operatorname{dim}(X)} \prod_{n \geqslant 1} \prod_{\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G)} \mathscr{P}_{\rho_{\mathrm{NS}}, \{e\}, \mathcal{C}} (\mathbf{L}^{-n})^{\psi_{\mathscr{D}, G, \{e\}, \mathcal{C}, n}} \left[ \frac{\Phi_{n}(X)}{\mathbf{L}^{n \operatorname{dim}(X)}} \right]^{\psi_{n}(\mathscr{C})}.$$
(5.2.5)

Notons que, grâce à la compatibilité au quotient des fonctions  ${\bf L}$  d'Artin motiviques, pour tout n la série formelle

$$\prod_{\mathcal{C} \in \mathbf{Conj}_{c}(G)} \mathscr{P}_{\rho_{\mathrm{NS}}, \{e\}, \mathcal{C}}(t^{n})^{\psi_{\mathscr{D}, G, \{e\}, \mathcal{C}, n}}$$
(5.2.6)

est indépendante du choix de  $\mathcal{H}$  (i.e. de l'extension de k trivialisant  $\operatorname{Pic}(\overline{X})$ ).

Remarque 5.12. — Si l'on désire adapter à ce cadre la normalisation utilisée par Peyre (cf. remarque 5.3), il faut en outre multiplier l'expression précédente par la valeur en  $t = \mathbf{L}^{-1}$  de la série

$$(1 - \mathbf{L} t)^{\operatorname{rg}(\operatorname{Pic}(\overline{X})^G)} L_{\operatorname{mot}}(\mathscr{D}, G, \rho_{\operatorname{NS}}, t). \tag{5.2.7}$$

Mais d'après le point 4 de la proposition 3.12, on a

$$Z_{\text{mot}}(\text{Pic}(\overline{X}), t)^{-1} Z_{\text{mot}}(\text{Pic}(\overline{X}), \mathbf{L} t)^{-1} L_{\text{mot}}(\mathscr{C}, G, \rho, t) \in 1 + K_0 \left( \text{CHM}(k)_{\mathbf{Q}} \right) [t]^+.$$

$$(5.2.8)$$

On voit alors que la série (5.2.7) ne converge pas en  $t=\mathbf{L}^{-1}$  pour la topologie que l'on va utiliser si  $\operatorname{Pic}(\overline{X})$  n'est pas un module galoisien trivial : si M est une représentation irréductible non triviale la série  $Z_{\mathrm{mot}}(M,t)$  ne converge pas en t=1. Une solution pourrait être d'inverser  $Z_{\mathrm{mot}}^{-1}(M,1)=\sum_{n\geqslant 0}(-1)^n\left[\operatorname{Alt}^nM\right]$ , mais outre que le morphisme de localisation correspondant n'est pas injectif, on ne disposera plus ensuite dans le cas d'un corps global du morphisme de spécialisation en presque toute place  $\mathfrak p$  (on a  $\operatorname{Tr}_{\mathfrak p}(\chi_\ell(Z_{\mathrm{mot}}^{-1}(M,1)))=\det(\operatorname{Id}-\operatorname{Fr}_{\mathfrak p}|M)$  et cette quantité est nulle si M contient la  $\mathcal G_{\kappa_{\mathfrak p}}$  représentation triviale).

Nous allons maintenant donner, dans le cas d'un corps de caractéristique zéro k, un analogue motivique de l'expression (5.1.13). Notons  $\mathbf{Conj}_{\mathbf{c}}(G)_{\mathcal{C},n}$  l'ensemble des éléments  $\mathcal{D}$  de  $\mathbf{Conj}_{\mathbf{c}}(G)$  qui vérifient la propriété suivante : si D est un élément de  $\mathcal{D}$ , il existe un élément C de  $\mathcal{C}$  qui vérifie C < D et  $|C| = \frac{|D|}{|D| \wedge n}$  Soit

$$\eta_{k',G,\mathcal{C},n} \stackrel{\text{déf}}{=} \bigvee_{\mathcal{D} \in \mathbf{Coni}} \bigvee_{(G)_{\mathcal{C},n}} \varphi_{\mathrm{Spec}(k'),G^{\mathrm{op}},\mathcal{D}}. \tag{5.2.9}$$

**Proposition 5.13.** — 1. Soit K une extension pseudo-finie de k,  $C_K < G$  un groupe de décomposition de K dans l'extension  $k \to k'$ , et  $n \ge 1$ . Notons  $K_n$  une extension de degré n de K. Alors pour tout  $C \in Conj_c(G)$ , on a

$$\eta_{k',G,\mathcal{C},n}(K) = \begin{cases} \{e\} & \text{s'il existe } C \in \mathcal{C} \text{ tel que } C < C_K \text{ et } |C| = \frac{|C_K|}{n \wedge |C_K|} \\ \varnothing & \text{sinon.} \end{cases}$$
 (5.2.10)

En d'autres termes,  $\eta_{k',G,\mathcal{C},n}(K) = \{e\}$  si et seulement si  $K_n$  a pour décomposition  $\mathcal{C}$  dans l'extension k'/k.

2. Supposons que k soit un corps de nombres. Il existe un ensemble fini S de places de k tel que pour tout  $\mathfrak{p} \notin S$  et tout  $n \geqslant 1$ , on ait, en notant  $\mathcal{C}_{\mathfrak{p}}$  la classe des groupes de décomposition de  $\mathfrak{p}$  dans l'extension  $k \to k'$ ,

$$\operatorname{Tr}_{\mathfrak{p}}\left[\chi_{\ell}\left(\eta_{k',G,C,n}\right)\right] = \begin{cases} 1 & s'il \ existe \ C \in \mathcal{C} \ et \ C_{\mathfrak{p}} \in \mathcal{C}_{\mathfrak{p}} \ tel \ que \ C < C_{\mathfrak{p}} \ et \ |C| = \frac{|C_{\mathfrak{p}}|}{n \wedge |C_{\mathfrak{p}}|} \\ 0 & sinon. \end{cases}$$

$$(5.2.11)$$

En d'autres termes, si on note  $C_{\mathfrak{p}}$  un élément de  $\mathcal{C}_{\mathfrak{p}}$  et  $\kappa'_{\mathfrak{p}}/\kappa_{\mathfrak{p}}$  l'extension de corps résiduels correspondante, le membre de gauche de l'expression ci-dessus vaut 1 si l'extension  $\kappa_{\mathfrak{p},n}/\kappa_{\mathfrak{p}}$  a pour groupe de décomposition dans  $\kappa'_{\mathfrak{p}}/\kappa_{\mathfrak{p}}$  un élément de  $\mathcal{C}$ , et vaut 0 sinon.

3. On a pour tout  $C \in Conj_c(G)$  et tout  $n \ge 1$ 

$$\psi_{\mathscr{D},G,\{e\},\mathcal{C},n} = \eta_{k',G,\mathcal{C},n} \cdot \psi_n(\mathscr{C}). \tag{5.2.12}$$

 $D\'{e}monstration$ . — Le premier point découle de la définition de  $\eta_{k',G,C,n}$  et des propriétés classiques des groupes de décomposition. Le deuxième point découle de ces mêmes définitions et propriétés, ainsi que du point 2 du théorème 4.1.

Pour montrer le troisième point, on se ramène au cas où  $\mathscr C$  est affine. Alors, d'après le premier point, les formules  $\psi_{\mathscr D,G,\mathcal C,n}$  et  $\psi_n(\mathscr C) \wedge \eta_{k',G,\mathcal C,n}$  sont deux formules de  $\operatorname{Sym}^n(\mathscr C)$  dont les K-points coïncident pour toute k-extension pseudo-finie K, d'où le résultat.

D'après (5.2.12) le produit eulerien (5.2.5) se réécrit (formellement du moins)

$$\mathbf{L}^{(1-g(\mathscr{C})) \operatorname{dim}(X)} \prod_{n \geqslant 1} \prod_{\mathcal{C} \in \operatorname{\mathbf{Conj}}_{c}(G)} \left[ \mathscr{P}_{\rho_{\operatorname{NS}}, \{e\}, \mathcal{C}}(\mathbf{L}^{-n})^{\eta_{k', G, \mathcal{C}, n}} \frac{\Phi_{n}(X)}{\mathbf{L}^{n \operatorname{dim}(X)}} \right]^{\psi_{n}(\mathscr{C})}.$$
(5.2.13)

C'est sous cette forme que nous allons définir le volume de Tamagawa motivique en caractéristique non nulle. Dans ce cas, il n'est malheureusement pas clair que cette dernière forme soit équivalente à (5.2.5), i.e. que la relation (5.2.12) soit vérifiée. Si k est un corps global de caractéristique nulle, l'analogue du point 2 de la proposition 5.13 est encore valide, d'après la remarque 4.3. Si k est fini, toujours d'après la remarque 4.3, l'analogue suivant du point 2 de la proposition 5.13.

**Proposition 5.14.** — Supposons que k soit fini. Alors pour tout  $n \ge 1$ , tout  $m \ge 1$  et tout sous-groupe C de G,  $\text{Tr}(F_k^m|\chi_\ell(\eta_{k',G,C,n}))$  vaut 1 si  $k_{m\,n}/k_m$  a pour groupe de décomposition C dans l'extension  $k' \otimes_k k_m/k_m$  et 0 sinon.

Nous allons montrer que le produit eulerien motivique (5.2.13) converge effectivement dans une certaine complétion de l'anneau  $K_0$  (CHM $(k)_{\mathbf{Q}}$ )  $\otimes$   $\mathbf{Q}$  et, dans le cas où k est un corps global, se spécialise sur le volume de Tamagawa de  $X_{\mathfrak{p}} \times \mathscr{C}_{\mathfrak{p}}/\mathscr{C}_{\mathfrak{p}}$  pour presque tout  $\mathfrak{p}$ .

**5.3. Topologie utilisée.** — Soit A et B des anneaux et  $\varphi: A \longrightarrow B[u,u^{-1}]$  un morphisme d'anneaux. On définit une filtration décroissante de A par des sous-groupes en posant pour  $i \in \mathbf{Z}$   $\mathcal{F}^i_{\varphi}A = \{a \in A, \deg(\varphi(a)) \leqslant -i\}.$ 

**Notation 5.15**. — On pose 
$$\hat{A}^{\varphi} \stackrel{\text{def}}{=} \lim A/\mathfrak{F}_{\varphi}^{i}A$$
.

On a  $\mathcal{F}_{\varphi}^{i}A \cdot \mathcal{F}_{\varphi}^{j}A \subset \mathcal{F}_{\varphi}^{i+j}A$  ce qui permet de munir  $\hat{A}^{\varphi}$  d'une structure d'anneau. Le morphisme  $\varphi$  s'étend alors en un morphisme d'anneaux de  $\hat{A}^{\varphi}$  vers l'anneau des séries de Laurent à coefficients dans B i.e  $\varphi : \hat{A}^{\varphi} \to B((u^{-1}))$ .

On a immédiatemment le critère de convergence suivants.

**Lemme 5.16**. — On suppose que A est une **Q**-algèbre. Soit  $(a_n)_{n\geqslant 0}$  et  $(b_n)_{n\geqslant 0}$  deux suites d'éléments de A. On suppose qu'on a pour tout  $n \deg(\varphi(b_n)) \geqslant 0$ , et

 $\deg(\varphi(a_n)) + \deg(\varphi(b_n)) < 0$ , et qu'on  $a \deg(\varphi(a_n)) + \deg(\varphi(b_n)) \longrightarrow -\infty$ . Alors le produit  $\prod_{n \ge 0} (1 + a_n)^{b_n}$  converge dans  $\hat{A}^{\varphi}$ , et on a

$$\varphi\left(\prod_{n\geqslant 0} (1+a_n)^{b_n}\right) = \prod_{n\geqslant 0} (1+\varphi(a_n))^{\varphi(b_n)}.$$
 (5.3.1)

Nous allons définir le volume de Tamagawa motivique comme un élément de  $[K_0(\widehat{\operatorname{CHM}(k)}_{\mathbf{Q}})\otimes \mathbf{Q}]^{\operatorname{Poinc}_\ell}$  où  $\operatorname{Poinc}_\ell$  est le polynôme de Poincaré virtuel  $\ell$ -adique. L'intérêt d'utiliser la réalisation  $\ell$ -adique est de pouvoir spécialiser le résultat dans le cas d'un corps global ou d'un corps fini. On montrera que cette spécialisation donne bien le résultat attendu, à savoir le volume de Tamagawa classique. Ceci étant, on aurait pu utiliser une autre cohomologie de Weil. Dans le cas d'une surface, on peut même utiliser un polynôme de Poincaré absolu, cf. la section 5.10.

## 5.4. Énoncé du résultat. —

**Théorème 5.17.** — Soit k un corps,  $\mathcal{C}$  une k-courbe projective, lisse et géométriquement intègre et X une k-variété projective, lisse, géométriquement intègre et vérifiant les hypothèses 5.6 et 5.7. Le produit eulerien motivique

$$\mathbf{L}^{(1-g(\mathscr{C})) \operatorname{dim}(X)} \prod_{n \geqslant 1} \left[ \prod_{\mathcal{C} \in \operatorname{Conj}_{c}(G)} \mathscr{P}_{\rho_{NS}, \{e\}, \mathcal{C}} (\mathbf{L}^{-n})^{\eta_{k', G, \mathcal{C}, n}} \frac{\Phi_{n}(X)}{\mathbf{L}^{n \operatorname{dim}(X)}} \right]^{\psi_{n}(\mathscr{C})}$$
(5.4.1)

converge dans  $[K_0(\widehat{\operatorname{CHM}(k)}_{\mathbf{Q}}) \otimes \mathbf{Q}]^{\operatorname{Poinc}_{\ell}}$ . On l'appelle volume de Tamagawa motivique de  $X \times \mathscr{C}$ , et on le note  $\mathscr{V}_{mot}(X \times \mathscr{C}/\mathscr{C})$ .

Ce théorème sera démontré à la sous-section 5.6.

Remarque 5.18. — Si k est un corps quelconque, on peut définir un polynôme de Poincaré virtuel  $\ell$ -adique Poinc $_\ell$ :  $K_0(\operatorname{Var}_k) \to K_0(\mathcal{G}_k \operatorname{-}\mathbf{Q}_\ell)[u]$  qui en caractéristique zéro se factorise par  $\chi_{\operatorname{var}}$  (si k est de type fini, ceci provient de l'existence d'une filtration par le poids sur les groupes de cohomologie  $\ell$ -adique à support compact; pour le cas général cf.  $[\mathbf{Eke07}]$ ). On peut alors se poser la question de la convergence de (5.4.1) dans  $\widehat{\mathcal{M}_k \otimes \mathbf{Q}}^{\operatorname{Poinc}_\ell}$  où  $\mathcal{M}_k \stackrel{\mathrm{def}}{=} K_0(\operatorname{Var}_k)[\mathbf{L}^{-1}]$  (cf. les définitions 2.6, 4.7 et 4.3). En caractéristique zéro, compte tenu du fait que la situation « se factorise » à travers  $\chi_{\operatorname{var}}$ , la réponse à cette question est positive. En caractéristique non nulle, en l'absence d'analogue de  $\chi_{\operatorname{var}}$ , nous ne connaissons pas la réponse. L'un des problèmes qui se posent est qu'on n'est plus a priori assuré de l'égalité  $\operatorname{Poinc}_\ell(Z_{\operatorname{mot}}(X,t)) = \operatorname{Poinc}_\ell(Z_{\operatorname{var}}(X,t))$ , et donc de la validité de la relation (2.6.5) pour  $\Phi_{n,\operatorname{var}}(X)$ .

On peut également considérer la convergence dans le complété  $\widehat{\mathcal{M}_k \otimes \mathbf{Q}}^{\text{dim}}$  de  $\mathcal{M}_k \otimes \mathbf{Q}$  pour la filtration dimensionnelle, utilisée dans la théorie de l'intégration motivique (cf. [**DL99**, §3.2]). Comme une variété de dimension n a un polynôme de

Poincaré virtuel de degré 2n, on a un morphisme continu naturel  $\widehat{\mathcal{M}_k \otimes \mathbf{Q}}^{\dim} \to \widehat{\mathcal{M}_k \otimes \mathbf{Q}}^{\mathrm{Poinc}_\ell}$ , mais nous ne savons pas s'il est injectif, et nous ignorons si (5.4.1) converge dans  $\widehat{\mathcal{M}_k \otimes \mathbf{Q}}^{\dim}$ .

**Définition 5.19.** — Soit k un corps global, et  $\mathfrak p$  une place finie de k. Un élément de  $K_0(\mathcal G_k\mathbf{-Q}_\ell)\otimes\mathbf Q((u^{-1}))$  est dit pur en  $\mathfrak p$  s'il s'écrit  $\sum_{n\leqslant n_0}a_n\,u^n$  où, pour tout  $n\leqslant n_0$ ,  $a_n$  est une combinaison linéaire d'éléments de la forme [V] où les valeurs propres de  $\mathrm{Fr}_{\mathfrak p}$  agissant sur  $V^{I_{\mathfrak p}}$  sont des nombres algébriques dont tous les conjugués complexes ont pour module  $N(\mathfrak p)^{\frac{n}{2}}$ . Il est dit pur s'il est pur en presque tout  $\mathfrak p$  (en particulier l'image par  $\mathrm{Poinc}_\ell$  d'un élément de  $K_0$  (CHM $(k)_{\mathbf Q}$ ) est pur).

**Théorème 5.20**. — On conserve les hypothèse du théorème 5.17 et on suppose en outre que k est un corps global. Alors, pour presque toute place finie  $\mathfrak{p}$ ,  $\operatorname{Poinc}_{\ell}(\mathscr{V}_{mot}(X \times \mathscr{C}/\mathscr{C}))$  est pur en  $\mathfrak{p}$ , et la série

$$\operatorname{Tr}_{\mathfrak{p}}\left[\operatorname{Poinc}_{\ell}(\mathscr{V}_{mot}(X\times\mathscr{C}/\mathscr{C}))\right] \in \mathbf{C}[[u^{-1}]] \tag{5.4.2}$$

converge absolument en u=-1 vers le volume de Tamagawa  $\mathcal{V}(X_{\mathfrak{p}}\times\mathcal{C}_{\mathfrak{p}}/\mathcal{C}_{\mathfrak{p}})$  défini par le produit eulerien (5.1.1).

Ce théorème sera démontré à la sous-section 5.7.

**Théorème 5.21**. — On conserve les hypothèse du théorème 5.17 et on suppose en outre que k est un corps fini. Alors pour tout entier m vérifiant

$$m > \frac{1}{2}\log_q(1 + \operatorname{Sup}_i b_i(X))$$
 (5.4.3)

la série

$$\operatorname{Tr}\left[F_k^m|\operatorname{Poinc}_{\ell}(\mathscr{V}_{mot}(X\times\mathscr{C}/\mathscr{C}))\right] \in \mathbf{C}[[u^{-1}]] \tag{5.4.4}$$

converge absolument en u=-1 vers le volume de Tamagawa  $\mathscr{V}(X_{k_m}\times\mathscr{C}_{k_m}/\mathscr{C}_{k_m})$  défini par le produit eulerien (5.1.1).

Ce théorème sera démontré à la sous-section 5.8.

Remarque 5.22. — La condition (5.4.3) semble bien entendu artificielle, et on aimerait s'en débarrasser. Elle serait superflue si par exemple  $\operatorname{Poinc}_{\ell}(\mathcal{V}_{\operatorname{mot}}(X \times \mathcal{C}/\mathcal{C}))$  était à croissance polynômiale bornée au sens de [Eke07, §2], mais nous ne savons pas si cette propriété est vérifiée.

## 5.5. Quelques lemmes. —

Lemme 5.23. — Soit k' une extension galoisienne finie de k, de groupe G. Soit  $\rho$  une  $\mathbf{Q}$ -représentation de G. Alors  $\chi_{\mathrm{eq}}(\mathrm{Spec}(k'),\chi_{\rho^{\mathrm{op}}})$  (cf. le théorème 2.2 en caractéristique nulle et la définition 2.3 en caractéristique non nulle) coïncide avec la classe de  $V_{\rho}$  dans  $K_0(\mathrm{MA}(k)_{\mathbf{Q}})$ .

Démonstration. — D'après le point 1 du théorème 2.2 en caractéristique nulle et la remarque 2.3 en caractéristique non nulle, via l'équivalence de catégories (2.5.1),  $\chi_{\rm eq}({\rm Spec}(k'),\chi_{\rho^{\rm op}})$  s'identifie à la classe dans  $K_0\left({\rm MA}(k)_{\bf Q}\right)$  de l'image du projecteur de  $V_{\rho}\otimes {\bf Q}[G]$  donné par

$$\frac{1}{|G|} \sum_{g \in G^{\text{op}}} \rho^{\text{op}}(g^{-1}) \otimes g^* = \frac{1}{|G|} \sum_{g \in G} \rho(g) \otimes \rho_d(g).$$
 (5.5.1)

D'après le lemme 3.11, cette image est isomorphe à  $V_{\rho}$ .

**Lemme 5.24.** — Soit k' une extension galoisienne finie de k, de groupe G. Soit  $\rho_0$  une  $\mathbf{Q}$ -représentation de G. On a dans  $K_0\left(\mathrm{CHM}(k)_{\mathbf{Q}}\right)_{\mathbf{Q}}$  la relation

$$\sum_{\mathcal{C} \in Conj_{c}(G)} \chi_{\rho_{0}}(\mathcal{C}) \, \varphi_{\operatorname{Spec}(k'), G^{op}, \mathcal{C}} = [V_{\rho_{0}}] \,. \tag{5.5.2}$$

 $D\acute{e}monstration$ . — On peut supposer  $\rho_0$  irréductible. Soit  $\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G)$ . On rappelle que  $\theta_{\mathcal{C}}$  est la fonction qui à  $g \in G$  associe 1 si le groupe engendré par g est dans  $\mathcal{C}$  et 0 sinon. C'est une fonction  $\mathbf{Q}$ -centrale à valeurs dans  $\mathbf{Q}$ . Il existe donc des éléments  $m_{\rho,\mathcal{C}} \in \mathbf{Q}$  tels que  $\theta_{\mathcal{C}} = \sum_{\rho \in \mathrm{Irr}_{\mathbf{Q}}(G^{\circ p})} m_{\rho,\mathcal{C}} \chi_{\rho}$ . On a alors d'après les théorèmes 2.2 et 4.1 en caractéristique nulle et les définition 2.3 et 4.2 en caractéristique non nulle

$$\varphi_{\operatorname{Spec}(k'),G^{\operatorname{op}},\mathcal{C}} = \sum_{\rho \in \operatorname{Irr}_{\mathbf{Q}}(G^{\operatorname{op}})} m_{\rho,\mathcal{C}} \chi_{\operatorname{eq}}(\operatorname{Spec}(k'),\chi_{\rho}). \tag{5.5.3}$$

soit d'après le lemme 5.23

$$\varphi_{\text{Spec}(k'),G^{\text{op}},\mathcal{C}} = \sum_{\rho \in \text{Irr}_{\mathbf{Q}}(G^{\text{op}})} m_{\rho,\mathcal{C}} \left[ V_{\rho^{\text{op}}} \right]. \tag{5.5.4}$$

Le lemme découle alors des relations d'orthogonalité (4.6.28).

**Lemme 5.25**. — Soit k' une extension galoisienne finie de k, de groupe G. Pour tout  $n \ge 1$  et toute  $\mathbb{Q}$ -représentation  $\rho$  de G, on a dans  $K_0(\mathrm{MA}(k)_{\mathbb{Q}}) \otimes \mathbb{Q}$  la relation

$$\sum_{\mathcal{C} \in \mathbf{Conj}_{\mathcal{C}}(G)} \chi_{\rho}(\mathcal{C}) \, \chi_{\ell}(\eta_{k',G,\mathcal{C},n}) = P_{\dim(\rho),n} \left( \left[ {\stackrel{j}{\wedge}} V_{\rho} \right] \right)_{1 \leqslant j \leqslant \dim(\rho)} \tag{5.5.5}$$

 $D\acute{e}monstration$ . — Pour  $C \in \mathbf{Conj}_{c}(G)$  on note  $\theta_{C,n}$  la fonction **Q**-centrale qui à  $g \in G$  associe 1 si le groupe engendré par  $g^{n}$  est dans C et 0 sinon. En particulier, on

a les relations  $\sum_{\mathcal{C} \in \mathbf{Conj}_{\bullet}(G)} \chi_{\rho}(\mathcal{C}) \, \theta_{\mathcal{C},n} = \chi_{\rho}^{n} \text{ et } \theta_{\mathcal{C},n} = \sum_{\mathcal{D} \in \mathbf{Conj}_{\bullet}(G)_{\mathcal{C},n}} \theta_{\mathcal{D}}$ . On a donc

$$\sum_{\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G)} \chi_{\rho}(\mathcal{C}) \, \eta_{k',G,\mathcal{C},n} = \sum_{\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G)} \chi_{\rho}(\mathcal{C}) \sum_{\mathcal{D} \in \mathbf{Conj}_{\mathbf{c}}(G)_{\mathcal{C},n}} \varphi_{\operatorname{Spec}(k'),G^{\operatorname{op}},\mathcal{D}}$$
(5.5.6)

$$= \sum_{\mathcal{C} \in \mathbf{Conj}_{c}(G)} \chi_{\rho}(\mathcal{C}) \sum_{\mathcal{D} \in \mathbf{Conj}_{c}(G)_{\mathcal{C},n}} \chi_{eq}(\operatorname{Spec}(k'), \theta_{\mathcal{D}}) \quad (5.5.7)$$

$$= \sum_{\mathcal{C} \in \mathbf{Conj}_{c}(G)} \chi_{\rho}(\mathcal{C}) \chi_{eq}(\operatorname{Spec}(k'), \theta_{\mathcal{C},n}) \quad (5.5.8)$$

$$= \sum_{\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G)} \chi_{\rho}(\mathcal{C}) \chi_{eq}(\operatorname{Spec}(k'), \theta_{\mathcal{C},n})$$
 (5.5.8)

$$= \chi_{\text{eq}}(\text{Spec}(k'), \chi_{\rho^{\text{op}}}^n). \tag{5.5.9}$$

Par ailleurs, il découle de la remarque 2.11 que l'élément de  $K_0$  (G- $\mathbf{Q}$ -Vect) donné par  $P_{\dim(\rho),n}\left(\begin{bmatrix} j \\ \wedge V_{\rho} \end{bmatrix}\right)$  a pour caractère  $\chi_{\rho}^{n}$ . D'après le lemme 5.23, il est donc égal à  $\chi_{\rm eq}({
m Spec}(k'),\chi)$ 

5.6. Démonstration du théorème 5.17. — Notons  $\ell$  la classe de  $\mathbf{Q}_{\ell}(-1)$  dans  $K_0(\mathcal{G}_k - \mathbf{Q}_\ell)$ . Pour  $n \ge 1$ , soit  $P_{X,\ell,n}(u)$  l'élément de  $1 + K_0(\mathcal{G}_k - \mathbf{Q}_\ell)[[u^{-1}]]^+$  défini par

$$P_{X,\ell,n}(u) \stackrel{\text{def}}{=} \operatorname{Poinc}_{\ell} \left( \prod_{\mathcal{C} \in \operatorname{\mathbf{Conj}_{c}}(G)} \mathscr{P}_{\rho_{\operatorname{NS}}, \{e\}, \mathcal{C}}(\mathbf{L}^{-n})^{\eta_{k',G,\mathcal{C},n}} \frac{\Phi_{n}(X)}{\mathbf{L}^{n \operatorname{dim}(X)}} \right)$$
(5.6.1)  
$$= \prod_{\mathcal{C} \in \operatorname{\mathbf{Conj}_{c}}(G)} \mathscr{P}_{\rho_{\operatorname{NS}}, \{e\}, \mathcal{C}}(\ell^{-n} u^{-2n})^{\chi_{\ell}(\eta_{k',G,\mathcal{C},n})} \frac{\operatorname{Poinc}_{\ell}(\Phi_{n}(X))}{\ell^{n \operatorname{dim}(X)} u^{2n \operatorname{dim}(X)}}.$$
(5.6.2)

Il découle de la relation (2.6.5) qu'on a  $\deg(\operatorname{Poinc}_H(\Phi_n(\mathscr{C}))) = 2 n$ . Ainsi, d'après la relation (4.2.4) et la remarque 4.8, on a pour tout n

$$0 \le \deg(\operatorname{Poinc}_{\ell}(\psi_n(\mathscr{C})) \le 2n. \tag{5.6.3}$$

En vertu du lemme 5.16, il suffit donc pour établir la convergence dans  $[K_0(\widehat{\operatorname{CHM}(k)}_{\mathbf{Q}}) \otimes \mathbf{Q}]^{\operatorname{Poinc}_{\ell}}$ du produit eulerien motivique (5.4.1) de montrer qu'on a

$$\deg_u(P_{X,\ell,n}(u) - 1) \leqslant -3n. \tag{5.6.4}$$

D'après la proposition 2.12 et le fait que  $b_1(X)$  est nul, il existe un polynôme  $Q_0$  à coefficients dans  $K_0(\mathcal{G}_k - \mathbf{Q}_\ell)$  vérifiant

$$\operatorname{Poinc}_{\ell}(\Phi_{n}(X)) = \ell^{n \operatorname{dim} X} u^{2 n \operatorname{dim}(X)} + P_{b_{2}(X), n} \left( \left[ \bigwedge^{j} H_{\ell}^{2 \operatorname{dim}(X) - 2}(X) \right] \right) u^{n (2 \operatorname{dim}(X) - 2)} + u^{n (2 \operatorname{dim}(X) - 3)} Q_{0}(u^{-1}).$$
(5.6.5)

D'après (5.2.1) et la dualité de Poincaré, on a l'égalité

$$\left[ H_{\ell}^{2 \operatorname{dim}(X) - 2}(X) \right] = \left[ \operatorname{Pic}(X)^{\vee} \right] \ell^{\operatorname{dim}(X) - 1}.$$
 (5.6.6)

Compte tenu du fait qu'une  $\mathbf{Q}$ -représentation est isomorphe à sa duale, on en tire pour tout j la relation

$$\left[ \bigwedge^{j} H_{\ell}^{2 \operatorname{dim}(X) - 2}(X) \right] = \ell^{j (\operatorname{dim}(X) - 1)} \left[ \bigwedge^{j} \operatorname{Pic}(X) \right]$$
 (5.6.7)

et finalement

$$P_{b_2(X),n}\left( \bigwedge^j H_\ell^{2\dim(X)-2}(X) \right) = \ell^{n (\dim(X)-1)} P_{b_2(X),n}\left( \left[ \bigwedge^j \operatorname{Pic}(X) \right] \right). \tag{5.6.8}$$

Ainsi, on a

$$\frac{\operatorname{Poinc}_{\ell}(\Phi_{n}(X))}{\ell^{n} \operatorname{dim}(X) u^{2 n} \operatorname{dim}(X)} = 1 + \ell^{-n} P_{b_{2}(X), n} \left( \left[ \bigwedge^{j} \operatorname{Pic}(X) \right] \right) u^{-2 n} + u^{-3 n} \ell^{-n} \operatorname{dim}(X) Q_{0}(u^{-1}).$$
(5.6.9)

Par ailleurs, il existe un élément  $Q_1$  de  $K_0(\mathcal{G}_k \mathbf{Q}_\ell) \otimes \mathbf{Q}[[u]]$  tel qu'on ait

$$\prod_{C \in \mathbf{Conj}_{c}(G)} \mathscr{P}_{\rho_{NS}, \{e\}, C} (\ell^{-n} u^{-2n})^{\chi_{\ell}(\eta_{k', G, C, n})}$$

$$= 1 - \ell^{-n} \sum_{C \in \mathbf{Conj}_{c}(G)} \chi_{\rho}(C) \chi_{\ell}(\eta_{k', G, C, n}) u^{-2n} + u^{-4n} Q_{1}(u^{-1}). \quad (5.6.10)$$

D'après la relation (5.5.5) appliquée à  $\rho_{\mbox{\tiny NS}},$  on a pour tout n la relation

$$\sum_{\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G)} \chi_{\rho_{\mathrm{NS}}}(\mathcal{C}) \, \chi_{\ell}(\eta_{k',G,C,n}) = P_{b_2(X),n} \left( \left[ \bigwedge^{j} \mathrm{Pic}(X) \right] \right)_{1 \leqslant j \leqslant b_2(X)}. \tag{5.6.11}$$

De (5.6.9), (5.6.10) et (5.6.11) on déduit l'inégalité 5.6.4, et donc le théorème 5.17.

#### 5.7. Démonstration du théorème 5.20. —

**Notations 5.26.** — Pour toute place  $\mathfrak{p}$  de k non ramifiée dans l'extension k'/k, notons  $\mathcal{C}_{\mathfrak{p}}$  la classe des groupes de décomposition de  $\mathfrak{p}$  dans l'extension k'/k, et pour  $n \geq 1$ ,  $\mathcal{C}_{\mathfrak{p},n}$  l'unique classe de  $\mathbf{Conj}_{\mathtt{c}}(G)$  tel qu'il existe  $C \in \mathcal{C}_{\mathfrak{p},n}$  et  $C_{\mathfrak{p}} \in \mathcal{C}_{\mathfrak{p}}$  vérifiant  $C < C_{\mathfrak{p}}$  et  $|C| = \frac{|C_{\mathfrak{p}}|}{n \wedge |C_{\mathfrak{p}}|}$ .

**Lemme 5.27.** — Soit b(X) le plus grand nombre de Betti de X. Il existe un ensemble fini S de places finies de k (dépendant de X et de  $\mathscr{C}$ ), tel que pour tout  $\mathfrak{p} \notin S$  on a les propriétés suivantes :

- 1. Pour tout  $n \ge 1$ , Poinc $\ell(\Phi_n(X))$ , Poinc $\ell(\psi_n(\mathscr{C}))$  et  $P_{X,\ell,n}(u)$  sont purs en  $\mathfrak{p}$ .
- 2. Poinc<sub> $\ell$ </sub>( $\mathscr{V}_{mot}(X \times \mathscr{C})$ ) est pur en  $\mathfrak{p}$ .
- 3. Pour tout  $n \ge 1$ , il existe des nombres algébriques  $(\alpha_{\mathfrak{p},n,r})_{r \ge 3}$  vérifiant

$$\forall r \geqslant 3, \quad |\alpha_{\mathfrak{p},n,r}| \leqslant \frac{2\left(\dim(X) + b_2(X)\right)(1 + b(X))^r}{r} \tag{5.7.1}$$

et

$$\operatorname{Tr}_{\mathfrak{p}}\left(\log(P_{X,\ell,n}(u))\right) = \sum_{r \ge 3} \alpha_{\mathfrak{p},n,r} N(\mathfrak{p})^{-\frac{n\,r}{2}} u^{-n\,r}. \tag{5.7.2}$$

4. Pour tout  $n \ge 1$ , il existe des nombres algébriques  $(\beta_{\mathfrak{p},n,r})_{0 \le r \le 2n}$  vérifiant

$$|\beta_{\mathfrak{p},n,r}| \leqslant \frac{b_1(\mathscr{C}) + 1}{n} \tag{5.7.3}$$

et

$$\operatorname{Tr}_{\mathfrak{p}}\left(\operatorname{Poinc}_{\ell}(\psi_{n}(\mathscr{C}))\right) = \sum_{0 \leq r \leq 2 \, n} \beta_{\mathfrak{p},n,r} \, N(\mathfrak{p})^{\frac{r}{2}} \, u^{r}. \tag{5.7.4}$$

5. Il existe des nombres algébriques  $(\gamma_{\mathfrak{p},r})_{r\geqslant 1}$  vérifiant

$$|\gamma_{\mathfrak{p},r}| \le 6 r (b_1(\mathscr{C}) + 1) (\dim(X) + b_2(X)) (1 + b(X))^r$$
 (5.7.5)

et

$$\operatorname{Tr}_{\mathfrak{p}}\left[\sum_{n\geqslant 1}\operatorname{Poinc}_{\ell}(\psi_{n}(\mathscr{C}))\operatorname{log}(P_{X,\ell,n})\right] = 1 + \sum_{r\geqslant 1}\gamma_{\mathfrak{p},r}N(\mathfrak{p})^{-\frac{r}{2}}u^{-r}.$$
 (5.7.6)

6. La série entière  $\operatorname{Tr}_{\mathfrak{p}}(\operatorname{Poinc}_{\ell}[\mathscr{V}_{mot}(X \times \mathscr{C})]) \in \mathbf{C}[[u^{-1}]]$  converge absolument pour tout  $u = z \in \mathbf{C}$  vérifiant

$$|z| > (1 + b(X)) N(\mathfrak{p})^{-\frac{1}{2}}$$
 (5.7.7)

et sa somme vaut alors

$$\exp\left[\sum_{n\geqslant 1}\operatorname{Tr}_{\mathfrak{p}}[\operatorname{Poinc}_{\ell}(\psi_{n}(\mathscr{C}))]_{u=z}\,\log\left(\mathscr{P}_{\rho_{NS},\mathcal{C}_{\mathfrak{p},n}}(N(\mathfrak{p})^{-n}\,z^{-2\,n})\frac{\operatorname{Tr}_{\mathfrak{p}}[\operatorname{Poinc}_{\ell}(\Phi_{n}(X))]_{u=z}}{N(\mathfrak{p})^{n\,\dim(X)}\,z^{\,2\,n\,\dim(X)}}\right)\right].$$

$$(5.7.8)$$

 $D\'{e}monstration$ . — Notons S la réunion des places finies  $\mathfrak p$  qui vérifient l'une des conditions suivantes :

- 1. p appartient à l'ensemble fini du point 2 de la proposition 5.13;
- 2. il existe  $\mathcal{C} \in \mathbf{Conj}_{\mathbf{c}}(G)$  tel que  $\chi_{\ell}\left(\varphi_{\mathrm{Spec}(k'),G^{\mathrm{op}},\mathcal{C}}\right) = \mathrm{Poinc}_{\ell}\left(\varphi_{\mathrm{Spec}(k'),G^{\mathrm{op}},\mathcal{C}}\right)$  n'est pas pur en  $\mathfrak{p}$ ;
- 3. Poinc<sub> $\ell$ </sub>(X) n'est pas pur en  $\mathfrak{p}$ ;
- 4. Poinc<sub> $\ell$ </sub>( $\mathscr{C}$ ) n'est pas pur en  $\mathfrak{p}$ ;
- 5.  $\mathfrak{p}$  est ramifié dans l'extension k'/k;
- 6.  $\mathfrak{p}$  divise  $\ell$ .

Pour  $\mathfrak{p} \notin S$  et  $n \geqslant 1$ , la relation (5.2.9) montre que  $\chi_{\ell}(\eta_{k',G,\mathcal{C},n})$  est pur en  $\mathfrak{p}$ . Par ailleurs, pour  $\mathfrak{p} \notin S$  et  $n \geqslant 1$ , la proposition 2.12 montre que  $\operatorname{Poinc}_{\ell}(\Phi_n(X))$  et  $\operatorname{Poinc}_{\ell}(\Phi_n(\mathscr{C}))$  sont pur en  $\mathfrak{p}$ . La relation (4.2.4) montre alors que  $\operatorname{Poinc}_{\ell}(\psi_n(\mathscr{C}))$  est pur en  $\mathfrak{p}$ . On en déduit que  $P_{X,\ell,n}(u)$  est pur en  $\mathfrak{p}$ , puis que  $\operatorname{Poinc}_{\ell}(\mathscr{V}_{\mathrm{mot}}(X \times \mathscr{C}))$  est pur en  $\mathfrak{p}$ .

Soit  $\mathfrak{p} \notin S$ . Posons  $v = N(\mathfrak{p})^{-\frac{1}{2}} u^{-1}$ . Soit  $n \geqslant 1$ . Comme  $\operatorname{Poinc}_{\ell}(\Phi_n(X))$  est pur en  $\mathfrak{p}$ , on a

$$\operatorname{Tr}_{\mathfrak{p}}\left(\frac{\operatorname{Poinc}_{\ell}(\Phi_{n}(X))}{\ell^{n}\dim(X)} u^{2n}\dim(X)}\right) \tag{5.7.9}$$

$$= \sum_{0 \leqslant r \leqslant 2 \operatorname{dim}(X)} \operatorname{Tr}(\operatorname{Fr}_{\mathfrak{p}}^{n} | H^{2 \operatorname{dim}(X) - r}(X)) N(\mathfrak{p})^{-n \frac{2 \operatorname{dim}(X) - r}{2}} v^{n r}$$
 (5.7.10)

$$= \sum_{0 \leqslant r \leqslant 2 \dim(X)} a_{\mathfrak{p},n,r} v^{nr}$$
 (5.7.11)

où les  $a_{\mathfrak{p},n,r}$  sont des nombres algébriques vérifiant  $a_{\mathfrak{p},n,r}=a_{\mathfrak{p},n,2\dim(X)-r}$  et

$$\forall 0 \leqslant r \leqslant 2 \dim(X), \quad |\alpha_{\mathfrak{p},n,r}| \leqslant b(X). \tag{5.7.12}$$

Il découle de la proposition 5.13 et de (5.7.11) que l'on a

$$\operatorname{Tr}_{\mathfrak{p}}(P_{X,\ell,n}(u)) = \mathscr{P}_{\rho_{NS},\mathcal{C}_{\mathfrak{p},n}}(N(\mathfrak{p})^{-n} u^{-2n}) \left( \sum_{0 \leqslant r \leqslant 2 \operatorname{dim}(X)} a_{\mathfrak{p},n,r} v^{nr} \right).$$
 (5.7.13)

On voit ainsi que  $\operatorname{Tr}_{\mathfrak{p}}(P_{X,\ell,n}(u))$  s'écrit  $Q_{1,\mathfrak{p},n}(v^n)\,Q_{2,\mathfrak{p},n}(v^n)$  où  $Q_{1,\mathfrak{p},n}$  est un polynôme de degré  $2\,b_2(X)$  dont les racines sont de module 1 et  $Q_{2,\mathfrak{p},n}$  est un polynôme réciproque de degré  $2\dim(X)$  dont les racines sont de module inférieur à 1+b(X). On en déduit (5.7.2) et (5.7.1).

Montrons le point 4. D'après la proposition 2.12 et la remarque 2.11, on a pour tout  $d\geqslant 1$ 

$$\operatorname{Tr}\left(\operatorname{Fr}_{\mathfrak{p}} \mid \operatorname{Poinc}_{\ell}(\Phi_{d}(\mathscr{C}))\right) = 1 + (-1)^{d+1} \operatorname{Tr}\left(\operatorname{Fr}_{\mathfrak{p}}^{d} \mid H_{\ell}^{1}(\mathscr{C})\right) u^{d} + N(\mathfrak{p})^{d} u^{2d}. \quad (5.7.14)$$

Par ailleurs, comme Poinc<sub> $\ell$ </sub>( $\Phi_d(\mathscr{C})$ ) est pur en  $\mathfrak{p}$  on a

$$\forall d \geqslant 1, \quad \left| \operatorname{Tr}(\operatorname{Fr}_{\mathfrak{p}}^{n} | H_{\ell}^{1}(\mathscr{C})) \right| \, N(\mathfrak{p})^{-\frac{d}{2}} \leqslant b_{1}(\mathscr{C}). \tag{5.7.15}$$

D'après la relation (4.2.4), on a

$$\forall n \geqslant 1, \quad \psi_n(\mathscr{C}) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{d}{n}\right) \Phi_d(\mathscr{C}),$$
 (5.7.16)

où  $\mu: \mathbb{N} \to \{0, 1, -1\}$  est la fonction de Möbius. On a donc pour tout  $n \geqslant 1$ 

 $\operatorname{Tr}_{\mathfrak{p}}\left(\operatorname{Poinc}_{\ell}(\psi_n(\mathscr{C}))\right)$ 

$$\begin{split} &= \frac{1}{n} \sum_{\substack{d \mid n \\ d \text{ impair}}} (-1)^{d+1} \mu\left(\frac{n}{d}\right) \operatorname{Tr}(\operatorname{Fr}_{\mathfrak{p}}^{d} \mid H_{\ell}^{1}(\mathscr{C})) \, N(\mathfrak{p})^{-\frac{d}{2}} \, v^{d} \\ &+ \frac{1}{n} \sum_{\substack{d \mid n \\ d \text{ pair}}} \left[ (-1)^{d+1} \, \mu\left(\frac{d}{n}\right) \operatorname{Tr}(\operatorname{Fr}_{\mathfrak{p}}^{d} \mid H_{\ell}^{1}(\mathscr{C})) \, N(\mathfrak{p})^{-\frac{d}{2}} + \mu\left(\frac{2 \, n}{d}\right) \right] \, v^{d} \quad (5.7.17) \end{split}$$

d'où le résultat annoncé. Les deux derniers points en découlent aisément.

Montrons à présent le théorème 5.20. Tout d'abord, d'après le lemme 5.10, il existe un ensemble fini S' de places de k tel que pour toute place  $\mathfrak{p} \notin S'$ , on a un isomorpisme

$$\operatorname{Pic}(\overline{X}) \xrightarrow{\sim} \operatorname{Pic}(\overline{X_n})$$
 (5.7.18)

compatible aux actions de  $\mathcal{G}_k$  à gauche et  $\mathcal{G}_{\kappa_{\mathfrak{p}}}$  à droite. Pour  $\mathfrak{p} \notin S'$ , soit  $G_{\mathfrak{p}}$  un groupe de décomposition de  $\mathfrak{p}$  dans l'extension k'/k,  $\rho_{NS,\mathfrak{p}}$  la  $\mathbb{Q}$ -représentation de  $G_{\mathfrak{p}}$  induite par l'action de  $\mathcal{G}_{\kappa_{\mathfrak{p}}}$  sur  $\mathrm{Pic}(\overline{X})$ ,  $\kappa'_p$  l'extension galoisienne de groupe  $G_{\mathfrak{p}}$  de  $\kappa_{\mathfrak{p}}$  et  $\mathscr{D}(\mathfrak{p}) \stackrel{\mathrm{def}}{=} \mathscr{C}_{\mathfrak{p}} \times_{\kappa_p} \kappa'_p$ . Le volume de Tamagawa de la famille  $X_{\mathfrak{p}} \times \mathscr{C}_{\mathfrak{p}}/\mathscr{C}_{\mathfrak{p}}$  est donc égal à

$$N(\mathfrak{p})^{(1-g(\mathscr{C}))\operatorname{dim}(X)} \prod_{n\geqslant 1} \prod_{C< G_{\mathfrak{p}}} \mathscr{P}_{\rho_{\mathrm{NS},\mathfrak{p}},\{e\},C}(N(\mathfrak{p})^{-n})^{\left|\mathscr{D}(\mathfrak{p})_{G_{\mathfrak{p}},\{e\},C,n}^{(0)}\right|} \left(\frac{|X(\kappa_{\mathfrak{p},n})|}{N(\mathfrak{p})^{n\operatorname{dim}(X)}}\right)^{\left|(\mathscr{C}_{\mathfrak{p}})_{n}^{(0)}\right|} \tag{5.7.19}$$

Comme  $\mathscr{D}_{\mathfrak{p}} = (\mathscr{C} \times_k k')_{\mathfrak{p}}$  est isomorphe à la réunion disjointe de  $G/G_{\mathfrak{p}}$  copies de  $\mathscr{D}(\mathfrak{p})$ , par compatibilité à la restriction des fonctions L d'Artin classique on a l'égalité

$$\mathcal{V}(X_{\mathfrak{p}} \times \mathcal{C}_{\mathfrak{p}}/\mathcal{C}_{\mathfrak{p}}) = N(\mathfrak{p})^{(1-g(\mathscr{C}))\operatorname{dim}(X)} \prod_{n \geqslant 1} \prod_{C < G} \mathscr{P}_{\rho_{\mathrm{NS}}, \{e\}, C}(N(\mathfrak{p})^{-n})^{\left|(\mathscr{D}_{\mathfrak{p}})_{G, \{e\}, C, n}^{(0)}\right|} \left(\frac{|X(\kappa_{\mathfrak{p}, n})|}{N(\mathfrak{p})^{n \operatorname{dim}(X)}}\right)^{\left|(\mathscr{C}_{\mathfrak{p}})_{n}^{(0)}\right|}$$

$$(5.7.20)$$

D'après la remarque 5.5, on a donc

$$\mathscr{V}(X_{\mathfrak{p}} \times \mathscr{C}_{\mathfrak{p}}/\mathscr{C}_{\mathfrak{p}}) = N(\mathfrak{p})^{(1-g(\mathscr{C})) \operatorname{dim}(X)} \prod_{n \geqslant 1} \left[ \mathscr{P}_{\rho_{NS}, \mathcal{C}_{\mathfrak{p}, n}}(N(\mathfrak{p})^{-n}) \frac{|X(\kappa_{\mathfrak{p}, n})|}{N(\mathfrak{p})^{n \operatorname{dim}(X)}} \right]^{|(\mathscr{C}_{\mathfrak{p}})_{n}^{(0)}|}.$$
(5.7.21)

Soit S'' l'ensemble fini de places de k constitué de la réunion de l'ensemble S du lemme 5.27, des places  $\mathfrak p$  vérifiant  $N(\mathfrak p) \leqslant (1+b(X))^2$  et de l'ensemble S' introduit ci-dessus. Il découle alors du lemme 5.27 que pour tout  $\mathfrak p \notin S''$  la série  $\operatorname{Poinc}_{\ell}(\mathscr V_{\operatorname{mot}}(X \times \mathscr C))$  est pur en  $\mathfrak p$  et que la série entière

$$N(\mathfrak{p})^{(g(\mathscr{C}-1))\operatorname{dim}(X)}\operatorname{Tr}_{\mathfrak{p}}\left[\operatorname{Poinc}_{\ell}\left(\mathscr{V}_{\operatorname{mot}}(X\times\mathscr{C})\right)\right]\in\mathbf{C}[[u^{-1}]]$$
 (5.7.22)

converge absolument en u = -1 vers

$$\exp\left[\sum_{n\geqslant 1} \operatorname{Tr}_{\mathfrak{p}}[\operatorname{Poinc}_{\ell}(\psi_{n}(\mathscr{C}))]_{u=-1} \log \left(\mathscr{P}_{\rho_{NS},\{e\},\mathcal{C}_{\mathfrak{p},n}}(N(\mathfrak{p})^{-n}) \frac{\operatorname{Tr}_{\mathfrak{p}}[\operatorname{Poinc}_{\ell}(\Phi_{n}(X))]_{u=-1}}{N(\mathfrak{p})^{n \operatorname{dim}(X)}}\right)\right]$$

$$= \exp\left[\sum_{n\geqslant 1} \operatorname{Tr}_{\mathfrak{p}}[\chi_{\ell}(\psi_{n}(\mathscr{C}))] \log \left(\mathscr{P}_{\rho_{NS},\{e\},\mathcal{C}_{\mathfrak{p},n}}(N(\mathfrak{p})^{-n}) \frac{\operatorname{Tr}_{\mathfrak{p}}[\chi_{\ell}(\Phi_{n}(X))]}{N(\mathfrak{p})^{n \operatorname{dim}(X)}}\right)\right].$$
(5.7.23)

Mais d'après le corollaire 4.9, on a  $\operatorname{Tr}_{\mathfrak{p}}[\chi_{\ell}(\psi_n(\mathscr{C}))] = \left| (\mathscr{C}_{\mathfrak{p}})_n^{(0)} \right|$  et  $\operatorname{Tr}_{\mathfrak{p}}[\chi_{\ell}(\Phi_n(X))] = |X_{\mathfrak{p}}(\kappa_{\mathfrak{p},n})|$ . On en déduit que l'expression (5.7.23) coïncide bien avec  $N(\mathfrak{p})^{(g(\mathscr{C})-1)\operatorname{dim}(X)} \mathscr{V}(X_{\mathfrak{p}} \times \mathscr{C}_{\mathfrak{p}}/\mathscr{C}_{\mathfrak{p}})$ .

# 5.8. Démonstration du théorème 5.21. —

**Notations 5.28**. — Pour tout entier  $m \ge 1$ , notons  $C_m$  le groupe de décomposition de  $k_m/k$  dans l'extension k'/k, et pour  $n \ge 1$ ,  $C_{m,n}$  le sous-groupe de  $C_m$  vérifiant  $|C_{m,n}| = \frac{|C_m|}{n \wedge |C_m|}$ .

**Lemme 5.29**. — Soit b(X) le plus grand nombre de Betti de X. On a alors :

1. Pour tout  $n \ge 1$ , il existe des nombres algébriques  $(\alpha_{n,r})_{r \ge 3}$  vérifiant

$$\forall r \geqslant 3, \quad |\alpha_{n,r}| \leqslant \frac{2(\dim(X) + b_2(X))(1 + b(X))^r}{r}$$
 (5.8.1)

et pour tout  $m \geqslant 1$ 

$$\operatorname{Tr}(F_k^m | \log(P_{X,\ell,n}(u))) = \sum_{r \ge 3} \alpha_{n,r} q^{-\frac{n \, m \, r}{2}} \, u^{-n \, r}. \tag{5.8.2}$$

2. Pour tout  $n \ge 1$ , il existe des nombres algébriques  $(\beta_{n,r})_{0 \le r \le 2}$  n vérifiant

$$|\beta_{n,r}| \leqslant \frac{b_1(\mathscr{C}) + 1}{n} \tag{5.8.3}$$

et pour tout  $m \geqslant 1$ 

$$\operatorname{Tr}\left(F_k^m|\operatorname{Poinc}_{\ell}(\psi_n(\mathscr{C}))\right) = \sum_{0 \leqslant r \leqslant 2 \, n} \beta_{n,r} \, q^{\frac{m \, r}{2}} \, u^r. \tag{5.8.4}$$

3. Il existe des nombres algébriques  $(\gamma_r)_{r\geqslant 1}$  vérifiant

$$|\gamma_r| \le 6 r (b_1(\mathscr{C}) + 1) (\dim(X) + b_2(X)) (1 + b(X))^r$$
 (5.8.5)

et pour tout  $m \geqslant 1$ 

$$\operatorname{Tr}\left[F_k^m \middle| \sum_{n\geqslant 1} \operatorname{Poinc}_{\ell}(\psi_n(\mathscr{C})) \log(P_{X,\ell,n})\right] = 1 + \sum_{r\geqslant 1} \gamma_r \, q^{-\frac{m\,r}{2}} \, u^{-r}. \tag{5.8.6}$$

4. Pour  $m \geqslant 1$ , la série entière  $\operatorname{Tr}(\operatorname{Poinc}_{\ell}[F_k^m | \mathscr{V}_{mot}(X \times \mathscr{C})]) \in \mathbf{C}[[u^{-1}]]$  converge absolument pour tout  $u = z \in \mathbf{C}$  vérifiant

$$|z| > (1 + b(X)) q^{-\frac{m}{2}}$$
 (5.8.7)

et sa somme vaut alors

$$\exp\left[\sum_{n\geqslant 1}\operatorname{Tr}[F_k^m|\operatorname{Poinc}_{\ell}(\psi_n(\mathscr{C}))]_{u=z}\log\left(\mathscr{P}_{\rho_{NS},\{e\},C_{m,n}}(q^{-n\,m}\,z^{-2\,n})\frac{\operatorname{Tr}[F_k^m|\operatorname{Poinc}_{\ell}(\Phi_n(X))]_{u=z}}{q^{n\,m\,\dim(X)}\,z^{\,2\,n\,\dim(X)}}\right)\right].$$
(5.8.8)

La démonstration de ce lemme est très similaire à celle du lemme 5.27. Par un raisonnement analogue à celui de la section 5.7, on en déduit le théorème 5.21.

## 5.9. Lien conjectural avec la fonction zêta des hauteurs anticanoniques.

— On se place sous les hypothèses du théorème 5.17. On suppose en outre que le cône effectif de  $\overline{X}$  est finiment engendré et que la classe du faisceau anticanonique de X est à l'intérieur du cône effectif. Ces hypothèses permettent de définir un invariant rationnel  $\alpha^*(X)$  (cf. [**Pey03a**, §3.1]). On définit par ailleurs l'invariant  $\beta(X)$  comme étant le cardinal du groupe  $H^1(k, \operatorname{Pic}(\overline{X}))$ . Si K désigne le corps des fonctions de  $\mathscr{C}$ , on suppose en outre que l'ensemble X(K) est Zariski dense. Par souci de simplification, on supposera également qu'on a

$$\max\{d \in \mathbf{N}_{>0}, \quad \frac{1}{d} \left[\omega_X^{-1}\right] \in \text{Pic}(X)\} = 1.$$
 (5.9.1)

Supposons tout d'abord que k soit un corps fini de cardinal q. Pour U ouvert de Zariski de X assez petit, on peut alors considérer la fonction zêta des hauteurs anticanonique  $Z_{\rm H}(X\times\mathscr{C}/\mathscr{C},U,t)$ : c'est la série génératrice qui compte le nombre de morphismes de  $\mathscr{C}$  vers X de degré anticanonique donné dont l'image n'est pas incluse dans le complémentaire de U. Voici une version de la conjecture de Manin dans ce cadre.

Question 5.30. — On suppose que  $X \times \mathcal{C}/\mathcal{C}$  vérifie l'approximation faible (par exemple que X est rationnelle). Est-il vrai que pour un ouvert U assez petit, la série entière  $Z_H(X \times \mathcal{C}/\mathcal{C}, U, t)$  a un rayon de convergence égal à  $q^{-1}$  et que pour un certain  $\varepsilon > 0$  sa somme se prolonge en une fonction méromorphe sur  $\{|t| < q^{-1+\varepsilon}\}$ , admettant un pôle d'ordre  $\operatorname{rg}(\operatorname{Pic}(X))$  en  $t = q^{-1}$  tel que

$$\lim_{t \to q^{-1}} (1 - qt)^{\operatorname{rg}(\operatorname{Pic}(X))} Z_H(X \times \mathscr{C}/\mathscr{C}, U, t)$$

$$= \alpha^*(X) \beta(X) \left[ (1 - qt)^{\operatorname{rg}(\operatorname{Pic}(X))} L_{Ar}(\mathscr{D}, G, \rho_{NS}, t) \right]_{t=q^{-1}} \mathscr{V}(X \times \mathscr{C}/\mathscr{C}). \quad (5.9.2)$$

Nous donnons ci-dessous un pendant motivique de la version affaiblie suivante de la question 5.30.

**Question 5.31**. — On suppose que  $X \times \mathcal{C}/\mathcal{C}$  vérifie l'approximation faible. Est-il vrai que pour un ouvert U assez petit, la série

$$\det(\operatorname{Id} - F_k t | \operatorname{Pic}(\overline{X})) \det(\operatorname{Id} - q F_k t | \operatorname{Pic}(\overline{X})) Z_H(X \times \mathscr{C}/\mathscr{C}, t)$$
(5.9.3)

converge en  $t = q^{-1}$  vers

$$\alpha^*(X)\,\beta(X)\,\left[\det(\operatorname{Id}-F_k\,t|\operatorname{Pic}(\overline{X}))\,\det(\operatorname{Id}-q\,F_k\,t|\operatorname{Pic}(\overline{X}))\,L_{Ar}(\mathscr{D},G,\rho_{\scriptscriptstyle NS},t)\right]_{t=q^{-1}}\,\mathscr{V}(X\times\mathscr{C}/\mathscr{C})\quad?\quad(5.9.4)$$

Revenons au cas d'un corps k quelconque. Pour U ouvert de Zariski de X assez petit, on peut alors considérer la fonction zêta des hauteurs anticanonique géométrique  $Z_{H,\text{var}}(X \times \mathscr{C}/\mathscr{C}, U, t)$ : c'est une série formelle dont les coefficients sont les classes dans  $K_0(\text{Var}_k)$  des espaces de modules paramétrant les morphismes de  $\mathscr{C}$  vers X de degré anticanonique donné dont l'image n'est pas incluse dans le complémentaire de

U. Lorsque k est un corps fini, le morphisme « nombre de points » envoie  $Z_{\rm H,var}$  sur  $Z_{\rm H}$ . Si k est de caractéristique zéro, on peut considérer la fonction zêta des hauteurs motiviques  $Z_{\rm H,mot} \stackrel{\rm def}{=} \chi_{\rm var}(Z_{\rm H,var})$ . Par analogie avec la question 5.31, on peut alors poser la question suivante.

Question 5.32. — Supposons k de caractéristique zéro. Est-il vrai que pour un ouvert U assez petit la série

$$Z_{\text{mot}}(\operatorname{Pic}(\overline{X}), t)^{-1} Z_{\text{mot}}(\operatorname{Pic}(\overline{X}), t)^{-1} Z_{H, \text{mot}}(X \times \mathscr{C}/\mathscr{C}, U, t)$$
 (5.9.5)

converge dans  $[K_0(\widehat{\operatorname{CHM}(k)}_{\mathbf{Q}}) \otimes \mathbf{Q}]^{\operatorname{Poinc}_\ell}$  en  $t = \mathbf{L}^{-1}$  vers

$$\alpha(X)\,\beta(X)\,\left[Z_{\mathrm{mot}}(\mathrm{Pic}(\overline{X}),t)^{-1}\,Z_{\mathrm{mot}}(\mathrm{Pic}(\overline{X}),\mathbf{L}\,t)^{-1}L_{\mathrm{mot}}(\mathscr{D},G,\rho_{\scriptscriptstyle NS},t)\right]_{t=\mathbf{L}^{-1}}\,\,\mathscr{V}_{\scriptscriptstyle mot}(X\times\mathscr{C}/\mathscr{C})\quad?\quad(5.9.6)$$

Les arguments développés dans [**Bou06**] montrent que la réponse à cette question est positive dans le cas où X est une variété torique déployée et  $\mathscr{C} = \mathbf{P}^1$ .

Remarque 5.33. — On pourrait imaginer renforcer la question 5.31 en demandant en outre la convergence de la série (5.9.3) en  $t = q^{-1+\varepsilon}$  pour  $\varepsilon > 0$  assez petit. Ceci aurait deux avantages : d'une part une telle convergence impliquerait une réponse positive à la question 5.30, d'autre part l'adaptation au cadre motivique serait aisée (quitte à introduire formellement des racines de L dans l'anneau de Grothendieck des motifs). Cependant une réponse positive à la question ainsi reformulée entraînerait en outre que les pôles de la fonction zêta des hauteurs sur le cercle de rayon  $q^{-1}$  sont inclus dans l'ensemble  $\{\alpha^{-1} q^{-1}\}$ ,  $\alpha$  décrivant les valeurs propres de  $F_k$  sur  $\operatorname{Pic}(\overline{X})$ . Ceci n'est pas vérifié par exemple dans le cas du plan projectif éclaté en un point (où  $q^{-1}$  n'est pas l'unique pôle du prolongement méromorphe sur le cercle de rayon  $q^{-1}$ ). La question de la nature des pôles qui doivent apparaître sur le cercle de rayon  $q^{-1}$  reste à étudier.

Supposons à présent que k soit un corps de nombres et indiquons comment les questions 5.31 et 5.32 pourraient être reliées. On suppose qu'il existe un ouvert U tel que la réponse à la question 5.32 soit positive. Notons, pour alléger l'écriture,

$$\widetilde{Z_{\mathrm{H,mot}}}(t) \stackrel{\text{def}}{=} Z_{\mathrm{mot}}(\mathrm{Pic}(\overline{X}), t)^{-1} Z_{\mathrm{mot}}(\mathrm{Pic}(\overline{X}), \mathbf{L} t)^{-1} Z_{\mathrm{H,mot}}(X \times \mathscr{C}/\mathscr{C}, U, t) \in K_0\left(\mathrm{CHM}(k)_{\mathbf{Q}}\right)[[t]]$$
(5.9.7)

 $_{
m et}$ 

$$\widetilde{L_{\text{mot}}}(t) \stackrel{\text{def}}{=} Z_{\text{mot}}(\text{Pic}(\overline{X}), t)^{-1} Z_{\text{mot}}(\text{Pic}(\overline{X}), \mathbf{L} t)^{-1} L_{\text{mot}}(\mathscr{D}, G, \rho_{\text{NS}}, t) \in K_0\left(\text{CHM}(k)_{\mathbf{Q}}\right)[[t]].$$
(5.9.8)

Ainsi, d'après le point 4 de la proposition 3.12,  $\widetilde{L_{\mathrm{mot}}}(t)$  est un polynôme.

Supposons en outre que pour presque tout  $\mathfrak p$  on ait  $\mathrm{Tr}_{\mathfrak p}(\chi_\ell(\widetilde{Z_{\mathrm{H,mot}}}(t)) = \widetilde{Z_{\mathrm{H,\mathfrak p}}}(t)$  où

$$\widetilde{Z_{\mathrm{H},\mathfrak{p}}}(t) \stackrel{\mathrm{def}}{=} \det(\mathrm{Id} - \mathrm{Fr}_{\mathfrak{p}} \ t | \operatorname{Pic}(\overline{X_{\mathfrak{p}}})) \ \det(\mathrm{Id} - N(\mathfrak{p}) \ \mathrm{Fr}_{\mathfrak{p}} \ t | \operatorname{Pic}(\overline{X_{\mathfrak{p}}})) \ Z_{\mathrm{H}}(X_{\mathfrak{p}} \times \mathscr{C}_{\mathfrak{p}} / \mathscr{C}_{\mathfrak{p}}, U_{\mathfrak{p}}, t) \in \mathbf{C}[[t]]. \tag{5.9.9}$$

D'après le théorème 5.20, on est dans la situation suivante :

$$\begin{array}{c|c}
\operatorname{Poinc}_{\ell}(\widetilde{Z_{H,\operatorname{mot}}}(t)) & \xrightarrow{t=\ell^{-1}u^{-2}} \alpha(X)\beta(X)\widetilde{L_{\operatorname{mot}}}(\ell^{-1}u^{-2}) \,\,\mathcal{V}_{\operatorname{mot}}(X \times \mathscr{C}/\mathscr{C}) \\
\downarrow^{\operatorname{Tr}_{\mathfrak{p}}} & \xrightarrow{\operatorname{Tr}_{\mathfrak{p}}(.)} & \xrightarrow{t=N(\mathfrak{p})^{-1}u^{-2}} & \operatorname{Tr}_{\mathfrak{p}}(.) \\
\downarrow^{\operatorname{CI}(u,u^{-1})[[t]]} & \xrightarrow{t=N(\mathfrak{p})^{-1}u^{-2}} & \xrightarrow{\operatorname{Tr}_{\mathfrak{p}}(.)} \\
\downarrow^{u=-1} & & \downarrow^{u=-1} \\
\widetilde{Z_{H,\mathfrak{p}}(t)} & \xrightarrow{t=N(\mathfrak{p})^{-1}?} & \alpha^{*}(X)\beta(X)\widetilde{L_{\operatorname{Ar}}}(N(\mathfrak{p})^{-1}) \,\,\mathcal{V}(X_{\mathfrak{p}} \times \mathscr{C}_{\mathfrak{p}}/\mathscr{C}_{\mathfrak{p}}) \\
\downarrow^{(5,9,10)}
\end{array}$$

Si on arrive à montrer que la flèche horizontale inférieure est bien définie et fait « commuter » le carré inférieur, on obtient que la réponse à la question 5.31 est positive en  $\mathfrak p$ . Concrètement, on est ramené à un problème d'interversion de série. Il s'agirait alors de dégager les propriétés de  $\widetilde{Z}_{H,mot}$  assurant que cette interversion est licite.

**5.10.** Une vraie version motivique. — L'appelation « motivique » pour le volume de Tamagawa dont l'existence est montrée par le théorème 5.17 est abusive au vu de la complétion utilisée. Il devrait plutôt être qualifié de « cohomologique ». Si on admet la conjecture que tout motif de Chow admet une décomposition de Chow-Künneth (cf. [**Mur93**]), on peut définir un polynôme de Poincaré virtuel « absolu »

Poinc<sub>abs</sub>: 
$$K_0 \left( \operatorname{CHM}(k)_{\mathbf{Q}} \right) \longrightarrow K_0 \left( \operatorname{CHM}(k)_{\mathbf{Q}} \right) [u, u^{-1}]$$
  
 $[M] \longmapsto \sum_{i \in \mathbf{Z}} \left[ h^i(M) \right] u^i$  (5.10.1)

et on peut se demander si la convergence du nombre de Tamagawa motivique a lieu dans  $K_0\left(\operatorname{CHM}(k)_{\mathbf{Q}}\right) \otimes \mathbf{Q}^{\operatorname{Poinc}_{abs}}$  (et pas seulement dans une complétion liée à une réalisation cohomologique). En fait on peut montrer un résultat de convergence inconditionnel pour les surfaces : soit  $\mathscr{S}_k$  la sous-catégorie pleine de  $\operatorname{CHM}(k)_{\mathbf{Q}}$  dont les objets sont les motifs découpés sur les variétés de dimension au plus 2, leurs sommes et leurs duaux. Comme les variétés de dimension au plus 2 admettent des décomposition de Chow-Künneth (cf.  $[\mathbf{Mur90}]$ ), on peut définir un polynôme de Poincaré virtuel absolu

Poinc<sub>abs</sub>: 
$$K_0(\mathscr{S}_k) \longrightarrow K_0(\mathscr{S}_k)[u, u^{-1}]$$
  
 $[M] \longmapsto \sum_{i \in \mathbf{Z}} [h^i(M)] u^i$  (5.10.2)

**Théorème 5.34.** — Soit k un corps de caractéristique zéro. Soit C une courbe projective, lisse et géométriquement intègre. Soit S une surface projective, lisse et géométriquement intègre vérifiant les hypothèses 5.6. On suppose en outre que

 $A_0(S_{k(S)})$  est nul. On reprend les notations 5.11. Le produit eulerien motivique

$$\mathbf{L}^{2(1-g(\mathscr{C}))} \prod_{n\geqslant 1} \left[ \prod_{\mathcal{C}\in Conj_{c}(G)} \mathscr{P}_{\rho_{NS},\{e\},\mathcal{C}} (\mathbf{L}^{-n})^{\eta_{k',G,\mathcal{C},n}} \frac{\Phi_{n}(S)}{\mathbf{L}^{2n}} \right]^{\psi_{n}(\mathscr{C})}$$
(5.10.3)

converge dans  $K_0(\widehat{\mathscr{S}_k)} \otimes \mathbf{Q}^{\operatorname{Poinc}_{\operatorname{abs}}}$  (cf. la notation 5.15).

**Remarque 5.35**. — L'hypothèse que  $A_0(S_{k(S)})$  est nul est vérifiée dès que  $A_0(S_{\overline{k(S)}})$  est nulle. Ceci vaut en particulier si S est  $\overline{k(S)}$ -rationnellement connexe, et donc si S est une surface de Fano.

Démonstration. — Comme  $H^1(S, \mathcal{O}_S) = 0$ , la variété d'Albanese de S est triviale. D'après [KMP07, Propositions 14.2.1, 14.2.3 et Corollary 14.4.9 (a)], on a une décomposition

$$h(S) = \mathbf{1} \oplus \operatorname{Pic}(\overline{S})(-1) \oplus t^{2}(S) \oplus \mathbf{1}(-2)$$
(5.10.4)

où  $t^2(S)$  est un motif de poids 2 qui est nul si et seulement si  $A_0(S_{k(S)})$  est nul. Ainsi on a

$$Z_{\text{mot}}(S) = Z_{\text{mot}}(\mathbf{1}, t) Z_{\text{mot}}(\text{Pic}(\overline{S}), \mathbf{L}t) Z_{\text{mot}}(\mathbf{1}, \mathbf{L}^2 t)$$
(5.10.5)

d'où

$$Z_{\text{mot}}(S)^{-1} = (1 - t) \left( \sum_{n \ge 0} (-1)^n \left[ \text{Alt}^n(\text{Pic}(\overline{S})) \right] \mathbf{L}^n t^n \right) (1 - \mathbf{L}^2, t) \right).$$
 (5.10.6)

On en déduit l'analogue pour le polynôme de Poincaré virtuel absolu de la proposition 2.12: pour tout  $n \ge 1$ , on a

$$\operatorname{Poinc}_{\operatorname{abs}}(\Phi_n(S)) = 1 + P_{b_2(S),n}\left(\left[ \bigwedge^{j} \operatorname{Pic}(\overline{S}) \right] \right)_{1 \leq j \leq b_2(S)} u^{2n} + \mathbf{L}^{2n} u^{4n} \qquad (5.10.7)$$

À partir de là, il est facile de vérifier que toutes les égalités de la démonstration du théorème 5.17 ont lieu dans  $K_0(\mathscr{S}_k)\otimes \mathbf{Q}$  (et pas seulement dans  $K_0(\mathscr{G}_k\mathbf{-Q}_\ell)\otimes \mathbf{Q}$ ).  $\square$ 

#### Références

- [And04] Y. André Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, vol. 17, Société Mathématique de France, Paris, 2004.
- [AT69] M. F. ATIYAH & D. O. TALL «Group representations, λ-rings and the *J*-homomorphism », *Topology* 8 (1969), p. 253–297.
- [BD07] K. Behrend & A. Dhillon « On the motivic class of the stack of bundles », Adv. Math. 212 (2007), no. 2, p. 617–644.
- [Bit04] F. BITTNER « The universal Euler characteristic for varieties of characteristic zero », Compos. Math. 140 (2004), no. 4, p. 1011–1032.

- [Bou06] D. Bourqui « Produit eulérien motivique et courbes rationnelles sur les variétés toriques », prépublication arXiv:math/0602094v1, 2006.
- [BT95] V. V. Batyrev & Y. Tschinkel « Rational points of bounded height on compactifications of anisotropic tori », *Internat. Math. Res. Notices* (1995), no. 12, p. 591-635.
- [dBR01] S. DEL BAÑO ROLLIN « On the Chow motive of some moduli spaces », J. Reine Angew. Math. 532 (2001), p. 105–132.
- [dBRNA98] S. DEL BAÑO ROLLIN & V. NAVARRO AZNAR « On the motive of a quotient variety », *Collect. Math.* **49** (1998), no. 2-3, p. 203–226, Dedicated to the memory of Fernando Serrano.
- [DL99] J. DENEF & F. LOESER « Germs of arcs on singular algebraic varieties and motivic integration », Invent. Math. 135 (1999), no. 1, p. 201–232.
- [DL01] \_\_\_\_\_, « Definable sets, motives and p-adic integrals », J. Amer. Math. Soc. 14 (2001), no. 2, p. 429–469 (electronic).
- [DL02] J. DENEF & F. LOESER « Motivic integration and the Grothendieck group of pseudo-finite fields », in *Proceedings of the International Congress of Mathematicians*, Vol. II (Beijing, 2002) (Beijing), Higher Ed. Press, 2002, p. 13-23.
- [DL04] J. Denef & F. Loeser « On some rational generating series occurring in arithmetic geometry », in *Geometric aspects of Dwork theory. Vol. I, II*, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, p. 509-526.
- [DM06] A. DHILLON & J. MINÁČ « A motivic Chebotarev density theorem », New York J. Math. 12 (2006), p. 123–141 (electronic).
- [Eke07] T. EKEDAHL « On the class of an algebraic stack », prépublication http: //www.mittag-leffler.se/preprints/0607/files/IML-0607-66.pdf, 2007.
- [Gro68] A. GROTHENDIECK « Le groupe de Brauer. II. Théorie cohomologique », in Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, p. 67–87.
- [Hei07] F. HEINLOTH « A note on functional equations for zeta functions with values in Chow motives », Ann. Inst. Fourier (Grenoble) 57 (2007), no. 6, p. 1927– 1945.
- [Kim05] S.-I. Kimura « Chow groups are finite dimensional, in some sense », Math. Ann. 331 (2005), no. 1, p. 173–201.
- [KMP07] B. KAHN, J. P. MURRE & C. PEDRINI « On the transcendental part of the motive of a surface », in Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 344, Cambridge Univ. Press, Cambridge, 2007, p. 143-202.
- [Knu73] D. KNUTSON  $\lambda$ -rings and the representation theory of the symmetric group, Lecture Notes in Mathematics, Vol. 308, Springer-Verlag, Berlin, 1973.
- [LL03] M. LARSEN & V. A. LUNTS « Motivic measures and stable birational geometry », Mosc. Math. J. 3 (2003), no. 1, p. 85-95, 259.
- [LL04] , « Rationality criteria for motivic zeta functions », Compos. Math. 140 (2004), no. 6, p. 1537–1560.
- [Mac62] I. G. Macdonald « The Poincaré polynomial of a symmetric product », Proc. Cambridge Philos. Soc. 58 (1962), p. 563–568.

- [Mur90] J. P. Murre « On the motive of an algebraic surface », J. Reine Angew. Math. 409 (1990), p. 190–204.
- [Mur93] \_\_\_\_\_\_, « On a conjectural filtration on the Chow groups of an algebraic variety.
   I. The general conjectures and some examples », Indag. Math. (N.S.) 4 (1993), no. 2, p. 177–188.
- [Nic07] J. NICAISE « Relative motives and the theory of pseudo-finite fields », Int. Math. Res. Pap. IMRP (2007), no. 1, p. Art. ID rpm001, 70.
- [Pey95] E. Peyre « Hauteurs et mesures de Tamagawa sur les variétés de Fano »,  $Duke\ Math.\ J.\ 79\ (1995),\ no.\ 1,\ p.\ 101–218.$
- [Pey02] \_\_\_\_\_, « Points de hauteur bornée et géométrie des variétés (d'après Y. Manin et al.) », Astérisque (2002), no. 282, p. Exp. No. 891, ix, 323–344, Séminaire Bourbaki, Vol. 2000/2001.
- [Pey03a] \_\_\_\_\_\_, « Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie », prépublication arXiv:math/0303067v1, 2003.
- [Pey03b] \_\_\_\_\_, « Points de hauteur bornée, topologie adélique et mesures de Tamagawa », J. Théor. Nombres Bordeaux 15 (2003), no. 1, p. 319–349, Les XXIIèmes Journées Arithmetiques (Lille, 2001).
- [Sch94] A. J. Scholl « Classical motives », in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, p. 163–187
- [Ser67] J.-P. Serre Représentations linéaires des groupes finis, Hermann, Paris, 1967.

David Bourqui, I.R.M.A.R, Campus de Beaulieu, 35042 Rennes cedex, France *E-mail*: david.bourqui@univ-rennes1.fr