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S U M M A R Y
In an attempt to improve the ground motion modelling, the characteristics of the slip velocity
functions (SVF) generated using the kinematic k−2 source are investigated and compared to the
dynamic solutions proposed in the literature. Several numerical simulations were performed
to test the influence of the model parameters on the SVF modelling. Overall, the shapes of
SVF are very complex and exhibit a large variability in time and space. However, we found
out that the mean SVF is a simple boxcar with duration equal to the largest rise time value.
In the areas of weak slip, the SVFs are characterized by the existence of negative values,
whereas in large slip areas, the SVF is more impulsive. Overall, on the examples investigated,
the SVFs modelled with this k−2 source model are different from a typical Kostrov’s solution.
The critical analysis of the kinematic k−2 source led us to identify the Fourier decomposition
of the slip to be responsible for these difficulties, and to propose a new recombination scheme.
It consists of adding a positive correction to the Fourier slip components. The slip is described
as the sum of positive contributions at various scales. The SVFs modelled using this new
scheme are greatly improved. Moreover, through several parametrical analyses performed to
qualify this new approach, we show that the SVF are corrected while preserving the essential
quality of the k−2 modelling, that is, the ω2 spectral shape and Cd apparent directivity of the
synthetic accelerograms. Strong ground motion modelling in the near-fault region was made
and numerical ground motion parameters were compared to the empirical relationships. We
show that predicted peak ground motion is consistent with near-source attenuation laws.

Key words: seismic spectra, source–time functions, strong ground motion, synthetic
seismograms.

1 I N T RO D U C T I O N

Predicting ground-motion parameters for earthquake scenarios is

fundamental for seismic hazard assessment and earthquake design

studies. This can be achieved through the development of empiri-

cal relationships relating a characteristic of the ground motion with

few parameters such as magnitude and site-to-event distance (e.g.

Sabetta & Pugliese 1987; Ambraseys et al. 1996; Abrahamson &

Silva 1997; Boore et al. 1997). This strategy remains however diffi-

cult to apply in regions of moderate seismicity where strong ground

motion data sets are often sparse, especially at short epicentral dis-

tances and large magnitudes. In such a case, data recorded in other

regions may be added to enlarge the data set (e.g. Berge-Thierry

et al. 2003). An alternative strategy to predict the ground motion

consists to compute synthetic broad-band accelerograms using a

seismic source model and a wave propagation numerical scheme

(e.g. Berge-Thierry et al. 1998; Mai & Beroza 2003). However, nat-

ural accelerograms are complex, high-frequency signals which are

strongly site-dependent. Indeed, even nearby stations can exhibit

very different spectral and temporal characteristics (e.g. records of

the M w 6.0, 2004 Parkfield event at the stations close to the fault).

These complexity and variability in the records are mainly attributed

to the high-frequency contents of the source radiation, to the inter-

action of the wavefield with the complex crustal structure, and to the

local site effect response. The challenge of the numerical approach

is thus to attempt to model realistic ground motion characteristics

(temporal and spectral), irrespectively of the earthquake scenario

and source-station configuration considered. This is especially dif-

ficult (1) when the target site is located in the vicinity of the extended

fault (in such a case the ground motion is strongly controlled by the

details of the rupture of the fault area close to the site) and (2) when

the site is located in the direction of the rupture propagation (in such

a case the ground motion is strongly controlled by the directivity

effects).

Several models were proposed to describe the seismic source

complexity (e.g. Andrews 1980, 1981; Boore 1983; Papageorgiou

& Aki 1983; Bernard & Madariaga 1984; Boatwright 1988; Frankel

1991; Herrero & Bernard 1994; Irikura & Kamae 1994; Zeng et al.
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1994; Bernard et al. 1996; Beresnev & Atkinson 1997). Most of

these models use simple slip velocity functions (SVFs) such as box-

car, triangular, trapezoidal functions. The case of the k−2 source

modelling proposed by Bernard et al. (1996) is of particular in-

terest because the SVFs strongly vary laterally on the fault (in

terms of shape and amplitude). In this model, the slip is decom-

posed on a Fourier k-spectrum, and each SVF is built by adding

each k-contribution with an elementary source–time function with a

k-dependent rise time. The resulting SVFs are thus complex, allow-

ing to generate synthetics that simultaneously satisfy a ω2 spectral

model (Aki 1967), with spectral amplitudes scaled to the directiv-

ity coefficient at high frequencies. An alternative SVF description

which may be more realistic can be provided by dynamic mod-

elling (e.g. Kostrov 1964; Archuleta & Hartzell 1981; Nakamura &

Miyatake 2000; Nielsen & Madariaga 2003; Guatteri et al. 2004

and Tinti et al. 2005) even if this approach is often limited to low

frequencies (usually lower than 2 Hz). One may thus attempt to use

such a ‘dynamically compatible’ SVF instead of the k-dependent

SVFs produced in the k−2 source model. However, the source pa-

rameters are not independent. Indeed, the spectral characteristics

of the ground motion strongly depend on the assumptions made

for the slip distribution, rupture and slip velocities (see Andrews

1981; Joyner 1991 or Tsai 1997, for instance). Changing the SVFs

without modifying the other source parameters may thus distort

the spectral characteristics of the synthetic accelerograms gener-

ated by the k−2 model, and may not satisfy anymore the ω2 spectral

model.

The aim of this paper is twofold: (1) to characterize the SVFs

obtained using the stochastic kinematic k−2 source model and com-

pare them with a typical dynamic SVF solutions and (2) to improve

the SVF modelling in order to better fit the dynamic SVF solutions

proposed in the literature while preserving the spectral radiation of

the k−2 kinematic model.

2 S V F s O B TA I N E D F RO M DY N A M I C

RU P T U R E M O D E L L I N G

In the early classic dynamic rupture models, Kostrov (1964) derived

an analytical SVF solution for a self-similar, circular crack. His

solution is singular at the crack tip, and its amplitude falls off as

the inverse of the square root of time. This solution has no healing

time and thus for convenience, we present a truncated version of the

Kostrov’s solution using a rise time value (Fig. 1a). This singularity

at the crack tip can be removed by adding a cohesive force (Ida

1972). To solve this more complete dynamic rupture problem, one

needs to assume a constitutive law relating the total dynamic traction

to the friction law, such as the slip weakening (Andrews 1976) or

the rate- and state-dependent (Dieterich 1992) laws. For instance,

Nielsen & Madariaga (2003) derive a 2-D, antiplane solution for

fixed rupture and healing speeds that satisfies both the wave equation

and crack boundary conditions assuming a simple Coulomb friction

law in the absence of any rate or state dependence. They obtained

an analytical solution for a fundamental fracture mode in the form

of a self-similar, self-healing pulse. The analytical SVF obtained is

similar to the Kostrov’s (1964) solution but ends at a healing time

(Fig. 1b).

The constitutive law and the initial conditions on the fault plane

are important since they control the solution. The shape and duration

of the resulting SVFs can strongly vary on the fault plane depending

on the parameters that were chosen (e.g. Inoue & Miyatake 1998;

Nakamura & Miyatake 2000; Guatteri et al. 2003). Despite the vari-

ability of the SVFs computed in dynamic models, a few attempts

were made to define approximate expressions of SVF suitable for

use in kinematic strong ground motion modelling (Nakamura &

Miyatake 2000; Guatteri et al. 2004; Tinti et al. 2005). For instance,

on the basis of 2-D, and 3-D crack simulations including a slip-

weakening friction law, Nakamura & Miyatake (2000) proposed an

Figure 1. Schematic SVFs derived from dynamic rupture modelling (see text for details). Analytical solutions (a) for a crack proposed by Kostrov (1964) and

modified by adding a rise time value and (b) for a self-healing crack proposed by Nielsen and Madariaga (2003). Schematic solutions proposed by (c) Nakamura

and Miyatake (2000) and (d) Guatteri et al. (2004).
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expression of the SVF (Fig. 1c) depending on several parameters

mainly related to the stress drop, rupture velocity, critical distance

and rigidity values as well as on the dislocation mode. The SVF

proposed by these authors is less singular than the analytical solu-

tions previously described. After reaching a maximum slip velocity

value, the SVF amplitude decreases as the inverse of the square root

of time up to the rise time, then as the inverse of the time up to the

healing time. Guatteri et al. (2004) proposed another expression,

easier to parametrize (Fig. 1d), and characterized mainly by the rise

time, the pulse time and the maximum slip velocity value. The lat-

ter solution is a schematic version of the Nakamura & Miyatake’s

(2000) proposition.

3 S V F s O B TA I N E D F RO M k −2

K I N E M AT I C RU P T U R E M O D E L L I N G

In this section, the SVFs generated by the k−2 kinematic model are

analysed to define their main characteristics, and are compared with

the dynamic modelling solutions.

3.1 The k−2 kinematic source model

As we previously noted, several kinematic source models were

developed among which stochastic source models (e.g. Andrews

1980; Papageorgieu & Aki 1983; Irikura & Kamae 1994; Her-

rero & Bernard 1994; Zeng et al. 1994; Bernard et al. 1996), and

pseudo-dynamic models (e.g. Guatteri et al. 2003, 2004) that at-

tempt to describe the source complexity. Recent studies proposed

different strategies to reproduce the spatial complexity of slip distri-

butions (e.g. Somerville et al. 1999; Mai & Beroza 2002; Lavallée &

Archuleta 2003). It has been shown (Andrews 1980, 1981) that as-

suming a slip having a k−2 spectral decay in the radial wavenumber

domain (Fig. 2), ensures that the radiated displacement spectrum has

a standard ω-square spectral shape (Aki 1967) in the far field approx-

imation. It is worth noting that the spectral decay of slip distributions

inverted for several events is to the first order in agreement with a k−2

spectral decay (Somerville et al. 1999; Mai & Beroza 2002). Her-

rero & Bernard (1994) developed a broad-band, kinematic rupture

model based on a self-similar k−2 slip distribution. These authors

made the working hypothesis of an instantaneous rise time, which re-

sulted in modelling high frequency spectral amplitudes proportional

to C2
d (Cd being the coefficient of directivity). To better model the

high frequency content of the synthetics, Bernard et al. (1996) pro-

Figure 2. Example of a k−2 slip distribution for a magnitude six, earthquake.

(a) Spatial and (b) spectral representations in the radial wavenumber. The

slip distribution is generated in the Fourier domain with spectral amplitudes

proportional to k−2 and random phases for k > k c (k c cut-off wavenumber).

posed to introduce a propagating pulse and a k-dependent rise time.

The elementary source–time function they chose is a boxcar with a

k-dependent rise time, τ (k). This scale-dependent rise time distorts

the ω2 spectrum at high-frequency, allowing the apparent directiv-

ity to be equal to Cd. A maximal rise time value is defined (τ max)

equal to L0/V r, where L0 is the width of the slip pulse. This pulse

is assumed to propagate at a constant rupture velocity V r. Bernard

et al. (1996) and Berge (1997) showed that the characteristics of the

radiated spectra depend in particular of the values chosen for V r/V s

and L0/L. The k−2 kinematic source model proposed by Bernard

et al. (1996) is attractive because it allows generating realistic broad-

band accelerograms using heterogeneous slip and rupture process

(Berge-Thierry et al. 1999; Berge-Thierry et al. 2001; Gallović &

Brokešová 2004). Furthermore, the synthetics are valid for any dis-

tance and fault-station configuration.

3.2 Characteristics of SVFs generated by the k−2 model

Following Bernard et al. (1996), we can write the SVF as a function

of time (t) at a point on the fault (ξ):

�u̇(ξ, t) =
∫ ∫

�ũ(kx , ky)F[τ (kx , ky), t]eik·ξ dkx dky . (1)

In this equation, �ũ represents the 2-D Fourier transform of the final

slip distribution �u(x, y) on the fault (shown in Fig. 2). The SVFs

are computed numerically, by adding each slip Fourier contribution.

The elementary source–time function F[τ (k), t] we used is a boxcar

whose duration is k-dependent. In this section, we analyse the SVFs

generated by the k−2 kinematic model for a magnitude six event,

slip distribution (10 × 5 km2, Fig. 2). The shear wave velocity V s

was fixed to 3.7 km s–1. Several combinations of V r/V s (0.7, 0.8 and

0.9) and L0/L (0.05–0.4) were tested. The range of values explored

corresponds to the ones already used in the parametrical analysis of

previous studies (Bernard et al. 1996; Berge 1997). For being con-

cise, only two cases are reported here for two pulse widths (L0/L)

equal to 0.2 (leading to τ max equal to 0.68 s) and 0.4 (τ max = 1.35 s),

and a constant V r to V s ratio equal to 0.8. The parameter τ max cor-

responds to a long-wavelength rise time. It affects the wavelengths

larger than the pulse width (Bernard et al. 1996). These values are

compatible with the range of rise-time provided by the kinematic

rupture inversion for M w ∼ 6.0 events (e.g. Ide 1999; Miyakoshi

et al. 2000; Tselentis & Zahradnik 2000; Horikawa 2001; Baumont

et al. 2004 for which rise times vary from 0.1 to 4 s). Fig. 3(a)

shows few SVFs that were computed with L0/L ratio equal to 0.2

(τ max = 0.68 s). The strongest slip velocity amplitudes are spatially

correlated with areas of large slip, the weakest amplitudes being

located at the edges of the fault plane where the slip dies away. In

this example, the maximum peak-slip velocity peak reaches about

7.5 m s−1, which is high, whereas the mean slip velocity is much

lower, being equal to 1.2 m s−1. This high value obtained for the SVF

peak amplitude is related to the high stress drop value (∼ 8.5 MPa)

associated to this slip distribution. Moreover, it will be shown later

on in this paper that the large peak-slip velocity values are restricted

to very small areas, which are beyond the optimal resolution of any

source kinematic inversion.

To better examine the shape of the modelled SVFs, slip-unit SVFs

were computed and are shown in Fig. 3(b). The modelled SVFs have

very complex shapes with no clear tendency, exhibiting a large vari-

ability in time and space. Several shapes can nonetheless be identi-

fied among which one can notice Kostrov’s, boxcar, and ramp-like

shapes. In this particular case, negative slip velocity values are ob-

tained locally, in particular at the edges of the fault where the whole
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Figure 3. Characterization of the SVFs generated using a k−2 source model and assuming τ max = 0.68 s. (a) Few SVFs computed on the fault plane are shown

in absolute amplitudes. To limit the influence of potential numerical noise, SVFs were computed only in the areas where the slip is larger than a threshold value

fixed to 0.01 m. (b) Same as (a) except that SVFs were normalized to slip-unit to highlight the variability of the solutions. (c) The mean SVF was estimated

from the SVFs obtained at each node of the fault satisfying the threshold criteria. It is compared to the Kostrov-type solution normalized to the equivalent slip

value. (d) The mean shape of the SVFs was obtained by averaging the slip-unit SVFs. To test the influence of the weak slip areas, various slip thresholds were

considered (values indicated within the parenthesis). These solutions are also compared to a Kostrov-type solution normalized to slip-unit.

solutions are oscillating around zero. For the various combinations

of V r/V s and L0/L we explored, the SVFs modelled with the k−2

source model are overall different from a typical Kostrov’s solution.

To further characterize the SVFs obtained by k−2 modelling, we

computed numerically the absolute mean SVF (Fig. 3c) by averaging

all the solutions computed on the fault plane. The mean solution

obtained corresponds roughly to a boxcar function. One can attempt

to determine an analytical mean slip velocity in an arbitrary point.

Assuming a uniform random phase, one finds:

〈�u̇(ξ, t)〉 ∝ H (t)H (τmax − t), (2)

where H(·) is the Heaviside function (see Appendix A for details).

This analytical expression confirms that the expected mean SVFs is

a boxcar function with duration equal to τ max.

Fig. 3(d) shows the mean shape estimated from the slip-unit SVFs

obtained at each node of the fault. A slip threshold criterion was ap-

plied to limit the influence of the oscillating SVFs found in the weak

slip areas. Various slip thresholds were considered. The solution ob-

tained when most of the fault area is kept in the computation (areas

where the slip is greater than 0.01 m) is characterized by a nega-

tive value at the beginning followed by an accelerating phase. This

solution is obviously controlled by the oscillating SVFs obtained at

the edges of the fault. When only areas with a significant amount of

slip are included in the computation (slip > 0.1 m), the mean shape

of the SVFs corresponds to a boxcar.

Fig. 4 illustrates the effect of τ max on the proportion of the fault

affected by negative slip velocities (for the slip distribution shown

in Fig. 2). To this aim, the cumulated negative slip, that is, the

amount of slip occurring in the direction opposite to the rake, is

computed at each node of the fault by integrating the SVF in the

time windows where it takes negative values. For τ max = 0.68 s, the

areas where the SVF has a cumulated negative slip not null remain

limited in extension (Fig. 4a), even if locally it can be observed large

negative cumulated value. For τ max = 1.35 s, a large proportion

of the fault is characterized by the presence of a large cumulated

negative slip (Fig. 4b) that can locally reach −0.5 m. It can be shown

that these areas are correlated with the areas of weak slip. At first

glance, these negative slip velocity values could appear to be linked

to numerical noise problems but it will be shown in the following

section that those inadequate modelling are intimately linked to k−2

modelling.

These observations can be generalized to the various combina-

tions of parameters tested. For τ max values smaller than 0.68 s (cor-

responding to a narrower slip pulse and/or a larger V r/V s value), the

proportion of the fault area associated to negative slip velocity values

is reduced. For τ max values larger than 0.68 s, the proportion of the

fault area associated to negative slip velocity values increases and

the individual SVF shapes are becoming very complex, even if the

mean SVF remains close to a boxcar function. In conclusion, what-

ever the parametric combination tested, the SVF shapes obtained

by k−2 modelling are not comparable to the solutions derived by

dynamic rupture modelling (decaying proportionally to t−1/2 when

the slip velocity has reached its maximal value).

4 N E W R E C O M B I N AT I O N S C H E M E

F O R T H E k −2 M O D E L

4.1 Analysis of the k−2 procedure

To understand the origin of the negative SVF values, one should

examine in details the procedure followed in the k−2 modelling.

For simplicity, we grouped the slip 2-D Fourier contributions by

successive bands of k (Fig. 5). One can observe that whereas at

long wavelength, the slip contribution is strictly positive, at shorter

wavelength, the slip contributions can be either positive or nega-

tive. Let us recall that each slip contribution to the SVF is set up

with a k-dependent rise time that is inversely proportional to k (i.e.

C© 2007 The Authors, GJI, 171, 739–754
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Figure 4. Spatial analysis of the SVF behaviour. Cumulated negative slip

computed for each grid node on the fault plane for two rise time values (a)

τ max = 0.68 s and (b) τ max = 1.35 s. White zones corresponds to strictly

positive SVF or slip null.

proportional to the wavelength). Consequently, the negative or pos-

itive slip contributions at short wavelength are concentrated over a

short rise time at the beginning of the SVFs, resulting in slip veloc-

ity amplitudes that can exceed the contributions at long wavelength

that are distributed over a larger rise time. The SVFs can thus take

punctually significant negative values. Moreover, as shown by Fig. 5,

all slip contributions at intermediate to short wavelength oscillate

around zero, with a mean value equal to zero. Thus, these slip con-

tributions to the SVF are null when averaged on the fault plane. In

other words, only the long wavelength has none zero mean value;

equal to the mean slip, which is set up with a constant rise time

(τ max). Hence, the expected mean SVF is a boxcar function of du-

ration equal to the rise time of the long wavelength, in agreement

with what we found numerically (Fig. 3c).

4.2 An alternative to the k−2 procedure

In order to generate SVFs comparable to the dynamic modelling so-

lutions, we have shown that the short-wavelength slip contributions

should be corrected to be mostly positive. This can be achieved by

adding a zero order correction to each spectral contribution to the

SVF, which can be written as followed:

�u̇new(ξ, t) = Cn ·
{ ∫

�ũ(k)F[τ (k), t]eik·ξdk

+
∫

�uc(k)F[τ (k), t]dk

}
, (3)

where �uc(k) is the slip correction amplitude set up using the

k-dependent rise time scaling law. To preserve the seismic moment,

the new SVF is renormalized using the initial slip value through a

coefficient of renormalization Cn. The slip correction term has to

be adjusted as a function of the slip distribution.

Let us first assume that �uc(k) is proportional to the slip spectral

amplitude, and thus proportional to k−2 (Fig. 6a):

�uc(k) = p �ũ(k). (4)

Using the slip distribution used previously and τ max = 0.68 s, we

computed the slip velocity correction function (SVCF) associated

to the slip correction term. As shown by Fig. 6(b), the SVCF is

characterized by a singularity of large amplitude followed by a fast

decay, which makes difficult the adjustment of the p-value.

An alternative strategy is based on a more physical approach. The

idea is to describe the slip distribution as a summation of positive

slip distributions, at different scales, following an approach similar

to that of the summation of fractal sets of source sizes (Anderson

1997). We therefore, define a slip correction by band of k, where

the bands of k are defined as B0 = [0, dk], B1 = ]dk, 2dk], B2 =
]2dk, 4dk], . . . , Bn = ]2ndk, 2n+1dk], . . . , Bm = ]2mdk, kmax]. For a

given band of k, we defined the slip correction, �uc,Bn , proportional

to the standard deviation of slip, σRMS[�uBn (ξ)], where �uBn (ξ) is

the slip contribution for the band Bn:

�uc,Bn = pσRMS[�uBn (ξ)]. (5)

Thus, depending on p, only some fraction of the bandpassed slip has

a negative value. It can be demonstrated that the RMS of the slip

corresponding to the band Bn is proportional to k−1 at intermediate to

short wavelengths (see Appendix A for details), which is illustrated

on Fig. 6(a). In order to smooth the correction term effect, the slip

correction amplitude is distributed over the band of k (eq. 5), and

set up with a k-dependent rise time. Since Bn includes 22n discrete

k-value, the individual correction can be written:

�uc(k) = �uc,Bn

22n
. (6)

This correction is constant over the band, but is discontinuous be-

tween two adjacent bands. Since the correction amplitude varies on

average with a k−3 trend (see Appendix A for details), we prefer to

distribute the correction in a more continuous way by defining it as

followed:

�uc(k) = p C σRMS[�uBn (ξ)]k−3, (7)

where C is equal to �k−3 in Bn. This alternative expression for the

slip correction is plotted in Fig. 6(a). The resulting SVCF shown

in Fig. 6(b) is characterized by a decay which is less abrupt than

when obtained using a correction term proportional to k−2. To even

further minimize the correction, a specific procedure was defined

for B0. Indeed, for this band, it is not necessary to add its RMS value

to obtain only positive slip contribution, so that we choose to fix the

correction to the smallest requested amplitude.

In summary, we have seen that the SVCF is constant over the fault

plane and is scaled in amplitude by the p factor. Its shape is controlled

by the relationship between �uc(k) and the k−1 rise time scaling law.

Fig. 7 shows our favourite k−3 SVCF calculated for several p and
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Figure 5. Decomposition of the slip contributions to the SVF modelled with the standard k−2 model. Contributions are summed up by band of k to obtain (a)

the final slip and (b) the SVF at a given location on the fault plane indicated by the arrow (along-strike = 8.4 km, along-dip = 0.96 km) assuming τ max =
0.68 s. The bands are defined as follows: (1) [0–2dk], (2) [3dk–4dk], and (3) [5dk–kmax] being the dk value equal to dk = 2π /L = 0.62 rad km−1.

Figure 6. (a) Spectral and (b) temporal characteristics of the slip velocity correction function (SVCF). Several corrections were tested: (1) the amplitude

corrections were scaled on slip distribution (light grey circles), that is, proportional to k−2, (2) the amplitude corrections were scaled on the standard deviation

of slip defined for each band of k (triangles). To smooth the SVCF, the later correction was distributed over the band following a k−3 trend (black circles). (b)

The SVCFs are compared to the truncated SVF Kostrov-type solution.

rise time values. For τ max = 0.68, SVCF peak amplitudes are equal

to about 11.2, 8.4, 5.6 and 2.8 m s−1 for p = 2.0, 1.5, 1.0, and 0.5,

respectively. SVCF peak amplitudes remain almost unchanged for

τ max = 1.35 s. Compared to the 7.5 m s−1 peak amplitude of the

SVF generated using the standard k−2 procedure (see Fig. 3), the

SVCF peak amplitudes become larger than the uncorrected SVF

peak amplitude for p greater than 1.5. Peak amplitudes of the SVCF

can be reduced by about 20 per cent by fixing the correction of B0

to zero, which will be the case in the following tests.

4.3 Characteristics of corrected SVFs

In this section, we propose to analyse the characteristics of the

corrected SVFs obtained with the new k−2 recombination scheme

C© 2007 The Authors, GJI, 171, 739–754
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Figure 7. SVCFs computed with the new recombination scheme using several p scaling factor (p = 0.5, 1, 1.5 and 2) and assuming �uc(k) is proportional to

k−3. Two maximum rise time values were considered (a) τ max = 0.68 s and (b) τ max = 1.35 s. (b) and (d) Same legend as (a) and (b) except that the contribution

of the first band to the SVCF was ignored.

Figure 8. Same legend as Fig. 5 for the new recombination scheme. Whereas the final slip remains unchanged, the SVF obtained is very different from the

one obtained using the standard k−2 model.

described above. It is important to note that in this new approach,

whereas the final slip distribution remains unchanged (Fig. 8), the

slip is decomposed in a different way among the various bands of

k with respect to the standard k−2 modelling (Fig. 5). In particu-

lar, short and intermediate wavelengths are all described as mostly

positive heterogeneities, which will be added onto the long wave-

lengths. These contributions are set up with a rise time proportional

to the wavelength. The short wavelength contributions to the SVF

will sum up constructively at the slipping phase, which will lead to

the development of a singularity of the SVF.

Assuming various p scaling factor (p = 0.5, 1.0, 1.5 and 2.0)

and τ max = 0.68 s, we modelled a few SVFs on the fault plane.

Fig. 9 shows the solutions obtained for p equal to 1, which should

be compared to those shown in Fig. 3. On this example, we can notice

that the corrected SVFs are almost strictly positive. The correction

amplitude is in proportion more important in weak slip areas than
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Figure 9. Characterization of SVFs modelled using the new recombination scheme. The slip threshold was fixed to 0.01 m (see Fig. 3), and τ max to 0.68 s. (a)

Few SVFs computed on the fault plane assuming a p scaling factor equal to 1 are shown in absolute amplitudes in m s−1, (b) Same as (a) except that SVFs were

normalized to slip unit to highlight the variability of the solutions. (c) The mean SVF is compared to the Kostrov-type solution for various p scaling factors.

All the functions were normalized to slip-unit. (d) Same as (c) for the mean shape SVF.

in large slip areas for which the k−2 contribution remains impor-

tant. The peak-velocity varies strongly throughout the fault plane.

The maximum peak amplitude of the corrected SVFs reaches about

8.0 m s−1, which represents an increase of 6 per cent relative to the

7.5 m s−1 value obtained with the standard k−2 model. These high

values are located on areas related to the maximum slip. The shape

of the corrected SVF varies in space and time, but less strongly than

for the standard k−2 modelling. Moreover, as illustrated by Fig. 9(c),

for p greater than 0.5, both the mean SVF and the mean shape are

comparable to the truncated Kostrov’s (1964) solution (normalized

to the same slip value). Let us recall that at this stage each wavenum-

ber contribution to the final SVF is synchronous with the rupture

time arrival and no attempt to remove the singularity was made. The

choice of the p-value depends of the τ max value. For instance, the

minimal p-value should be fixed to 1 for τ max equal to 1.35 s.

5 E F F E C T S O N FA R - F I E L D

A C C E L E RO G R A M S O F T H E

C O R R E C T I O N S C A L I N G FA C T O R

In this section, we aim to qualify the effects of the SVF correction on

the temporal and spectral characteristics of accelerograms modelled

at large distance. Naturally, the final choice of the p factor value will

be guided by the need of correcting the SVFs and at the same time

preserving the quality of the k−2 modelling. The scenarios we chose

to model correspond to a strike-slip event rupturing a vertical fault

plane. The rupture front propagates unilaterally. The modelling was

performed for three sites located at 100 km from the origin, in direc-

tive, non-directive and antidirective azimuths (being θ = 0◦, 90◦ and

180◦ in relation to the strike and rupture direction). This simplified

source-station geometry was retained to compare the results with

the well-known analytical spectral solution. Moreover, let us recall

that this source-station configuration is the most critical in strong

motion simulation, particularly in the forward rupture direction. The

Green’s functions were calculated using the analytical solution for

the far-field approximation (Aki & Richards 1980), modelling only

S waves in an infinite homogeneous space. For simplicity, the focal

mechanism, and the intrinsic attenuation were not included. Syn-

thetics seismograms are obtained by convolving the SVFs with the

Green’s functions obtained at each fault point.

5.1 Analysis of the S, far-field mean spectra

Mean acceleration spectra are computed for a magnitude six, mod-

erate size event (L × W = 10 × 5 km2) considering 40 stochastic slip

realizations, and the results are compared to the analytical solution

for the k−2 modelling derived by Bernard et al. (1996). However,

an adjustment must be made to the proposed analytical solution.

Indeed, Fig. 10 shows the mean slip spectrum computed on all slip

realizations. The mean slip spectrum clearly follows a k−2 slope at

high frequency, but one can notice that it does not follow our target

spectral shape for which the analytical solution has been developed.

As discussed by Gallovic (2002), this difference is due to the slip

generation procedure which includes edge tapering and zero wa-

tering, two treatments that distort the slip spectral shape. Further

work will be needed to improve this aspect. Nonetheless, one may

consider that the mean slip spectrum has an apparent k c lower than

the theoretical one (λc = 8.5 not 5 km). The analytical spectra will

thus be drawn using the apparent k c value we inferred.

The fault plane was subdivided onto a 256 × 128 regular grid

(mesh size 40 × 40 m2). Synthetic seismograms are modelled up

to 12 Hz assuming various pulse widths (L0 = 0.05L, 0.1L, 0.2L
and 0.4L), rupture velocities (V r = 0.7V s, 0.8V s and 0.9V s), and p
scaling factors (p = 0.0, 0.5, 1.0, 1.5 and 2.0). Fig. 11 shows the

results obtained at the three stations for V r = 0.8V s and τ max =
0.68 s. For these parameters, the analytical solution has an apparent

corner frequency equal to f a = Cd V r/L = 1.5, 0.3 and 0.17 Hz for

the directive, non-directive, and antidirective stations, respectively,

and a pulse frequency equal to f p = V r/L0 = 1.5 Hz.

Fig. 11(a) shows the mean spectra of accelerograms computed at

the three stations using the standard k−2 modelling. The results are

overall similar to the analytical solution. However, we observe that
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Figure 10. Spectral characteristics of the k−2 slip distributions. A set of

40 stochastic k−2 slip distributions was generated in the Fourier domain

following a spectral target, �ũ(k) ∼ (1 + (k/k c)2)−1 and k c = 2π /λc, with a

cut-off wavelength λc equal to 5 km. A water level was applied on each slip

distribution as well as a tapering window to smoothen the edge of the slip.

The mean slip amplitude spectrum (grey thin lines) is estimated from its

discrete Fourier spectrum (grey circles). The mean spectra does not follow

the spectral target estimated with λc = 5 km, but rather well follows the one

calculated with λc = 8.5 km.

the spectral amplitudes are smaller than the predictions within the

frequency range 2–7 Hz for the directive station, 0.3–1 Hz for the

non-directive one, and 0.2–0.7 Hz for the antidirective one. These

frequency ranges all correspond to the slip contributions for k within

0.8 to 3 rad km−1, where statistically the slip spectral amplitudes

appear to be slightly weaker than the target slip amplitude (Fig. 3b).

The mean spectra of accelerograms computed with the new re-

combination scheme using various p scaling factor are shown in

Fig. 11(b)–(d) (p = 0.5, 1.0 and 1.5, respectively). We observe that

adding a correction to the SVF modelling acts as a filter on the

spectra at high frequency. What happens is that in our corrected

model, the slip velocity pulse has two components: a spatially vari-

able term, linked to the standard k−2 model, and a homogeneous

term related to the slip correction. The latter does not contribute to

the high frequency spectrum anymore, as it does not fluctuate when

the slip velocity pulse propagates along the fault. It does however

contribute to the low frequency level. Thus this filtering effect is

increasing with p, as seen on the Fig. 11(b)–(d).

In this example, the mean spectral amplitudes obtained for p equal

to 0.5 and 1.0 are slightly filtered in particular for the directive

and non-directive stations. Moreover, it should be noted that the

deficient part of the spectra has been filled up by the corrective

term added to the SVFs. The modelled mean spectra follow a ω2

spectral model with a high-frequency plateau proportional to Cd.

It should also be pointed out that the spectral hole related to the

pulse frequency, which is present on the analytical solution for the

directive station, has been removed. This results from the fact that

the radiation is dominated on average by the mean SVF, which is

for the band of k methodology a Kostrov’s (1964) like SVF (Fig.

9c), whereas in the analytical solution corresponding to the k−2

standard modelling, it is a boxcar function (Fig. 3b). For p = 1.5

(Fig. 11d), the mean spectrum for the antidirective station is not flat

anymore. The correction effects are becoming too large to preserve

the characteristics of the k−2 modelling.

Two alternative strategies were also tested. Several studies were

conducted to attempt to propose SVF compatible with dynamic

modelling that could be used to model the ground motion. Fig. 11(e)

shows the mean spectra of synthetics generated using k−2 slip distri-

butions with a constant Kostrov’s (1964) SVF truncated to a constant

rise time, τ max, that is to say a k-independent SVF. Whereas the mean

acceleration spectrum for the directive station still follows a ω2 spec-

tral model within the range of frequency chosen, the results obtained

for the other two stations are strongly filtered. It is clear that directly

injecting SVF compatible with dynamic modelling is not sufficient

to preserve the spectral characteristics of the synthetic accelero-

grams (flat acceleration spectrum at high-frequency). The spatial-

and temporal-variability on SVFs must be introduced in modelling

to simulate ground motions following a ω2 spectral model. On the

other hand, one can try to apply directly a post-processing on the

negative values of SVF by applying a water level and renormal-

izing to the local slip the SVF. Fig. 11f shows that the distortions

introduced on the spectra are minor for all stations.

5.2 Analysis of the S, far-field accelerograms

Far-field accelerograms were computed up to 25 Hz for a magnitude

6.5 event (L × W = 15 × 7.5 km2). The fault plane was subdivided

onto a 512 × 256 regular grid mesh of about 30 × 30 m2. For con-

venience, synthetics were shifted by 20 s from origin time. Synthet-

ics are computed for the directive, antidirective and non-directive

stations.

Fig. 12 shows the acceleration, velocity and displacement time-

series as well as their spectra computed with the standard k−2 model

and the new recombination scheme. In this example, we assumed a

maximum rise time τ max equal to 1 s, which correspond to a pulse

width of 3 km for a rupture velocity equal to 3 km s−1. The p scaling

factor was fixed to 1. Let us first examine the synthetics computed

with the standard k−2 model (Fig. 12a, c and e). The synthetic ac-

celerograms are complex, exhibiting a rich-frequency content. The

duration and amplitude of the signal are obviously controlled by

the location of the stations with respect to the fault. At first glance,

the accelerograms obtained are overall of good quality in term of

low numerical noise, ω2 spectral shapes, and Cd apparent directiv-

ity. It should be pointed out that, similarly to the results we obtained

for the characterization of the far-field mean spectra, the spectral

amplitudes follow rather well the analytical spectral solution at all

stations, except at intermediate-frequencies at the directive station.

The PGA reaches 3.4, 0.61 and 0.17 m s−2 for the directive, non-

directive and antidirective station, respectively. The PGA obtained

at the directive station is large compared to the predictions made

by empirical PGA attenuation relationships (e.g. mean PGA ± σ =
0.15–0.58 m s−2 after Berge-Thierry et al. 2003), whereas the PGA

values obtained at the other two stations are in good agreement

with the empirical predictions. Fig. 12(c) and (e) shows the time-

series in velocity and displacement (computed with the standard k−2
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Figure 11. Mean S-wave acceleration spectra computed for the three stations using τ max = 0.68 s (thin lines). The largest amplitudes spectra are obtained at the

directive station, the weakest ones correspond to results at the antidirective station, and the intermediate ones to the non-directive station. Several methodologies

were tested: (a) standard k−2 model, (b–d) new recombination scheme for various p scaling factor (0.5, 1.0 and 1.5, respectively), (e) k−2 model set up with a

k-independent Kostrov-type SVF truncated to τ max and (f) k−2 model in which a water level was applied on the SVFs. All the solutions are compared to the

analytical solution developed for the standard k−2 model (dashed line).

model), which naturally have a lower frequency content. One can

note, especially for the antidirective station, that the starting values

of the signal are negative. This is unsatisfactory because we did not

include the focal mechanism, and thus the expected displacement

time-series are exclusively positive. This negative start is due to the

characteristics of the SVF estimated in the areas of weak slip, for

which we recall here that SVFs exhibit negative values.

Fig. 12(b), (d) and (f) show the synthetics obtained with the new

recombination scheme. The spectral amplitudes of the synthetics

satisfy the ω2 spectral shape, and remain very close to the analytical

solution developed by Bernard et al. (1996) for the k−2 model, even

if they were slightly filtered at high frequency. Overall, it can be ob-

served that the amplitudes of the accelerograms have been reduced.

In particular, the PGA is about 30–40 per cent smaller (2.3, 0.36 and

0.10 m s−2) than the one obtained with the standard k−2 approach.

The synthetics computed in displacement and in velocity are overall

very similar, except that the beginning and ending signals are bet-

ter modelled with the recombination scheme. We also note that the

spectral holes at f p have disappeared in the new scheme.

Fig. 13 shows the results of a simulation made with a larger rise

time (τ max = 2 s), which corresponds to a 6 km pulse width for a

3 km s−1 rupture velocity. The p scaling factor value was not changed

(p = 1). As the accelerations are controlled by the high-frequency

content of the source, that is, the small-scale heterogeneities in our

model, the amplitudes of the accelerograms are weakly affected by

the change of τ max for both the standard and new k−2 modelling. The

most striking difference can be noted on the time-series in displace-

ment (Fig. 13e and f). Indeed, the signal modelled using the new

recombination scheme is much more impulsive for the directive

station than the one obtained with the standard methodology. The

peak ground displacement (PGD) is increased by 50 per cent for

the directive station whereas it remains almost the same for the

other two stations. The peak ground velocities (PGV) estimated on

the time-series generated with the new approach are larger for the
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Figure 12. Far-field S wave, synthetics modelled assuming τ max is equal to 1 s. Both time-series and spectral amplitudes are shown. (a) Acceleration, (c)

velocity and (e) displacement ground motion modelled using the standard k−2 model. (b) Acceleration, (d) velocity and (f) displacement ground motion

obtained with the new recombination scheme assuming a p scaling factor equal to 1. The corresponding directive, non- and antidirective stations are labelled

in time-series box.

directive station (15 per cent), but smaller for the other stations by

about 28 per cent.

The differences observed between the synthetics generated using

the two approaches are larger for the displacement, than for the

velocity or the acceleration. This can be explained by the fact that

the far-field accelerograms are controlled by the second derivative

of the SVF, whereas the displacement waveforms are controlled by

the SVF itself. Consequently, even if the SVF modelled with these

two methods are significantly different, the second derivative of the

SVF remains similar and is mostly controlled by the k−2 modelling,

and not by the added correction. This suggests that the dynamically

compatible SVF proposed by the dynamic modelling studies are not

sufficient to improve the acceleration modelling, and that additional

constraints should also be added on the SVF derivatives. Further

work could be done considering for instance the results proposed by

Ohnaka & Yamashita (1989) who provided theoretical relationships

that characterize the maximum slip velocity value, V max, and also

the maximum slip acceleration for a shear crack as a function of the

peak shear stress, the crack velocity and the shear modulus. On the

other hand, the large spatial variability of V max that is required to

satisfy to the ω2 spectral model using the k−2 kinematic modelling

may be linked to spatial fluctuations of dynamic parameters. Fig. 14

shows the spatial distribution of V max on the fault plane obtained

with the band of k approach. We observe a large variability reaching

strongest amplitudes between 10 and 12 m s−1 concentrated in a few

patches. The V max spectrum is shown in the same figure being in

average the amplitudes proportional to k−1 and ∼k−1.5 at low- and

high-wavenumber.

6 E F F E C T S O N N E A R - FAU LT R E G I O N

O F S T RO N G M O T I O N S I M U L AT I O N S

O F T H E N E W S V F M O D E L L E D

In the previous section, we analysed the behaviour of the source

model in the far-field approximation. In this section, we aim to char-

acterize the ground motion variability produced by our kinematic

model in the vicinity of the fault, a region where the strong ground

motion predictions are very sensitive to the spatial fluctuations of

the SVFs and to the near- and intermediate-field terms. Through this
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Figure 13. Same legend as Fig. 15 for τ max equal to 2 s.

Figure 14. Peak-slip velocity, V max, computed on the fault plane with the band of k approach. (a) Spatial distribution and (b) spectral amplitudes along the

radial wavenumber.

modelling, we also attempt to validate our approach by comparing

our estimates of PGA and PGV values with the ones predicted by

empirical attenuation relationships. Synthetic accelerograms were

computed for a M w 6.0, earthquake on a vertical strike-slip fault

(10 × 5 km2) buried at 2.5 km (top of the fault). The stations are

distributed radially in the near-fault region at distances ranging from

0 to 40 km (Fig. 15). The geological medium was modelled as a

homogeneous half-space. Implicitly, we assume that at such short
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Figure 15. Source-station geometry used for modelling an M w 6.0 earth-

quake. The fault plane corresponds to a vertical strike-slip buried at 2.5 km

of depth.

distances to the fault, the strong ground motion is mainly controlled

by the direct body waves. The complete wavefield Green’s functions

were computed up to 12 Hz using the code AXITRA (Coutant 1990)

based on the Discrete Wave Number method (Bouchon & Aki 1977).

Synthetic accelerograms were computed assuming a constant rup-

ture velocity (V r/V s = 0.8). Several combinations of random slip

distributions (5) and hypocentral location along-strike (at −5, −2.5

and 0 km) were used. The hypocentral depth was fixed at 5 km.

In Fig. 16, the ground velocity predicted at station 02 (Fig. 15)

using the k−2 approach is compared with the one obtained using the

band of k methodology. This example illustrates the importance of

the SVF modelling. Indeed, the modelled S wave in the new method-

ology is more impulsive, due to the singularity at the rupture front of

the SVFs. In terms of velocity spectrum, notice the disappearance

of the spectral hole around 1 Hz, which was associated to the slip

pulse.

Fig. 17 shows the horizontal PGA and PGV values estimated for

all simulations as a function of the closest distance to the surface pro-

jection of the fault. Averaged curves (± the standard deviation) were

estimated from the numerical data set. These results are compared

to the values predicted by the empirical attenuation relationship

defined by Sabetta & Pugliese (1987) from strong motion accelero-

grams recorded in Italy for shallow earthquakes. Our choice was

motivated by the fact that these authors provided the attenuation

coefficients for both PGA and PGV, which still remains uncommon.

The mean PGA estimates are overall in good agreement with the em-

pirical predictions (Fig. 17a). Nonetheless, our PGA estimates ex-

hibit a large variability at all distances, larger than the empirical one

in term of standard deviation. Concerning the PGV (Fig. 17b), our

Figure 16. Comparison of ground-velocity time-series and the spectrum (north component) simulated at the station 02 (R = 1 km). Waveforms were modelled

with the band of k (top) and standard k−2 (bottom) methodologies for a unilateral rupture scenario.

Figure 17. Comparison of simulated (circles) and empirical attenuation relationships (grey lines) for horizontal peak ground (a) acceleration, PGA and (b)

velocity, PGV for a M w 6.0 earthquake. In both cases dashed lines represent ± the standard deviation. The predicted numerical values were computed using

five random slip distributions and the band of k methodology for three rupture scenarios. Empirical attenuation relationships correspond to one derived by

Sabetta & Pugliese (1987).
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predictions are very similar on average to the empirical predictions,

but are also associated to a larger standard deviation than the one of

the empirical relationship. This large variability obtained both for

the PGA and PGV is mainly related to the directivity effect. Indeed,

many stations are located in the direction or the opposite direction

of the rupture propagation, which may lead to overestimate the vari-

ability. Moreover, for a vertical strike-slip fault configuration, the

effects of the radiation pattern and of the directivity are maximal for

directive stations. Finally, the use of a half-space medium may also

increase the variability estimate, given the fact that very coherent

interferences are promoted in such a simple model.

7 C O N C L U S I O N S

In this paper, we have been investigating the stochastic kinematic

k−2 source model proposed by Bernard et al. (1996), and in par-

ticular the SVF modelling which control the source radiation. The

analysis we made revealed that the modelled SVFs are characterized

on the fault plane by a large variability in space–time that can be re-

lated to the selected source model (heterogeneous slip and the scale

dependent rise time). We have shown that the mean SVF solution is

very different from the solutions proposed by dynamic modelling.

Moreover, in the areas of weak slip, the SVFs are not realistic as

they exhibit negative slip velocity values. When using a large rise

time τ max, the proportion of fault area affected by unsatisfactory

SVF modelling increases. The detailed analysis of the procedure

followed to build the SVF led us to identify the Fourier decomposi-

tion as being responsible of the difficulties encountered. Indeed, in

such an approach, the slip is decomposed into positive and negative

contributions relatively to a low frequency distribution. Each con-

tribution being set up with a scale dependent rise time, the resulting

SVF can be locally negative, and very different from the typical

impulsive dynamic solutions.

To counteract this difficulty, we proposed a new recombination

scheme that leads to split the distribution into frequency-dependent

positive contributions. Basically, it consists of defining a corrective

term for each Fourier contribution, scaled to the product of p times

the RMS of the slip computed by band of k. Several parametrical

analyses have been made to characterize the effects of this correction

on the far-field mean spectral shape, as well as on time-series. We

have shown that adding a correction scaled to the RMS (p=1) allows

preserving the ω2 spectral shape, and the Cd apparent directivity

of the synthetic accelerograms, while the SVF are to the first order

comparable to the dynamic SVF solutions proposed in the literature.

Moreover, the holes in the acceleration spectrum predicted by the

theoretical k−2 model are smoothed in the new procedure which is

more satisfactory. As the correction is proportional to the RMS of

the slip for each band of k, the procedure only depends on the slip

distribution fluctuations, and not on the magnitude or on the fault

dimensions. This new recombination scheme can thus be applied to

events with a magnitude larger than the M6.0 tested in this study,

and for any fault mechanisms.

Strong ground motions simulated in the near-fault region using

the new band of k methodology yields to PGA and PGV predic-

tions in good agreement with empirical prediction for mean value.

The variability is however larger than the empirically predicted one

mainly due to a combined effect of directivity and focal mechanism

for a vertical strike-slip event.

The new recombination scheme, by decomposing the final slip

into positive slip contributions, is more adapted to model the SVFs

than a 2-D Fourier Transform analysis. Our proposed decomposition

can be seen as an attempt to link the standard k-square approach with

composite source methods. Moreover, this study is only the first step

for adding physical constraints in the kinematic modelling. Indeed,

at this stage, the SVFs modelled with this kinematic approach are

still singular at the rupture front arrival, whereas this singularity has

been removed in dynamic rupture models by considering friction

laws. Consequently, additional hypothesis on the kinematic rupture

process must be done to handle this problem. For instance, other

parameters must be taken in account, such as a variable rupture

velocity, or a smooth radiation pattern at high frequency. Concern-

ing the variable rupture velocity, even if it can be easily combined

with the new approach proposed, the choice of a rupture veloc-

ity distribution on the fault plane must be made in order to obtain

a dynamically consistent description of the parameters that define

the rupture processes. This could be achieved using for instance

a ‘pseudo-dynamic’ approach (Guatteri et al. 2004), which allows

to link the rupture velocity to the slip through the fracture energy.

Finally, further work must be done to compare our ground motion

predictions with real records for large magnitude earthquakes for

which the near-source effects become dominant.

A C K N O W L E D G M E N T S

The authors are very grateful to the Editor Prof T. Dahm, to Dr P.

Martin Mai and to an anonymous reviewer for their constructive

comments, which help us to greatly improve the manuscript.

R E F E R E N C E S

Abrahamson, N.A. & Silva, W.J., 1997. Empirical response spectral atten-

uation relations for shallow crustal earthquakes, Seism. Res. Lett., 68,

94–128.

Aki, K., 1967. Scaling law of seismic spectrum, J. Geophys. Res., 72, 1217–

1231.

Aki, K. & Richards, P.G., 1980. Quantitative Seismology: Theory and Meth-
ods, Freeman, New York.

Ambraseys N.N., Simpson, K.A. & Bommer, J.J., 1996. Prediction of hor-

izontal response spectra in Europe, Earthq. Eng. Struct. Dyn., 25, 371–

400.

Anderson, J.G., 1997. Seismic energy and stress drop parameters for a com-

posite source model, Bull. Seism. Soc. Am., 87, 85–96.

Andrews, D.J., 1976. Rupture velocity of plane strain shear cracks, J. Geo-
phys. Res., 81, 5679–5687.

Andrews, D.J., 1980. A stochastic fault model, I. Static case, J. Geophys.
Res., 85, 3867–3877.

Andrews, D.J., 1981. A stochastic fault model II, Time-dependent case, J.
Geophys. Res., 86, 10 821–10 834.

Archuleta, R.J. & Hartzell, S.H., 1981. Effects of fault finiteness on near-

source ground motion, Bull. Seism. Soc. Am., 71, 939–957.

Baumont, D., Scotti, O., Courboulex, F. & Melis, N., 2004. Complex kine-

matic rupture of the Mw 5.9, 1999 Athens earthquake as revealed by the

joint inversion of regional seismological and SAR data, Geophys. J. Int.,
158, 1078–1087, doi:10.1111/j.1365–246X.2004.02374.x.

Beresnev, I. & Atkinson, G.M., 1997. Modeling Finite-Fault Radiation from

ω2 Spectrum, Bull. Seism. Soc. Am., 87, 67–84.

Berge, C., 1997. Modélisation haute-fréquence des sources sismiques: ap-

plication au risque sismique, Ph. D thesis, University of Paris VI.

Berge-Thierry C., Cotton, F., Scotti, O., Griot-Pommera, D.A. & Fukushima,

Y., 2003. New empirical response spectral attenuation laws for moderate

European earthquakes, J. Earth. Eng., 7, 193–222.

Berge-Thierry C., Bernard, P. & Herrero, A., 2001. Simulating strong ground

motion with the “k-2” kinematic source model: an application to seis-

mic hazard in the Erzincan Basin, Turkey, Journal of Seismology, 5, 85–

101.

C© 2007 The Authors, GJI, 171, 739–754

Journal compilation C© 2007 RAS



New approach in the kinematic k−2 source model 753

Berge-Thierry, C., Gariel, J.C. & Bernard, P., 1998. A very broad-band

stochastic source model used for near source strong motion prediction,

Geophys. Res. Lett., 25, 1063–1066.

Berge-Thierry, C., Lussou, P., Hernandez, B., Cotton, F. & Gariel, J.C.,

1999. Computation of the strong motions during the 1995 Hyogoken-

Nanbu earthquake, combining the k-square spectral source model and

the discrete wavenumber technique, The Effects of Surface Geology on
Seismic Motion, Proceeding of the Second International Symposium on

the Effects of Surface Geology on Seismic Motion, Yokohama, Japan.

Bernard, P. & Madariaga, R., 1984. A new asymptotic method for the

modeling of near-field accelerograms, Bull. Seism. Soc. Am., 74, 539–

559.

Bernard, P., Herrero, A. & Berge, C., 1996. Modeling directivity of hetero-

geneous earthquake ruptures, Bull. Seism. Soc. Am., 86, 1149–1160.

Boatwright, J., 1988. The seismic radiation from composite models of fault-

ing, Bull. Seism. Soc. Am., 78, 489–508.

Boore, D.M., 1983. Stochastic simulation of high frequency ground motion

based on seismological models of the radiated spectra, Bull. Seism. Soc.
Am., 73, 1865–1894.

Boore, D.M., Joyner, W.B. & Fumal, T.E., 1997. Equations for estimating

horizontal response spectra and peak acceleration from western North

American earthquakes: a summary of recent work, Seism. Res. Lett., 68,

128–153.

Bouchon, M. & Aki, K., 1977. Discrete wavenumber representation of

seismic-sources wave fields, Bull. Seism. Soc. Am., 67, 259–277.

Coutant, O., 1990. Programme de Simulation Numérique AXITRA, Rapport
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A P P E N D I X A

Mean SVF

The SVF modelled with the standard k−2 model can be expressed

as follows:

�u̇(ξ, t) =
∫ ∫

�ũ(k)F[τ (k), t]eik ξdk,

where k is the wavenumber, and ξ is point in the fault plane. In order

to calculate the mean SVF, we assume that the origin of coordinates

is located at the centre of a rectangular fault plane. Let us express the

slip spectrum as �ũ(k) = |�u(k)|eiø. The slip spectrum amplitude

is constant, �u0 (mean slip), for k < k c and equal to �u0k2
c /k2 for

k < k c, where k c is the corner radial wavenumber of the slip spec-

trum. The phase, ø, was taken to be uniformly random for k > k c,

and null for k < k c. The k-dependent rise time τ (k) is equal to τ max

for k < k0 and τ maxk0/k for k > k0.

By taking the mean of the SVF at a given point ξ, by considering

several realizations of stochastic slip, a straightforward calculus in

polar coordinates yields a mean SVF consisting in a deterministic

(k < k c) and a stochastic (k > k c) contributions:

〈�u̇(ξ, t)〉 =
∫ 2π

0

∫ kc

0

�u(k)eikξ cos(θ ) F[τ (k), t]k dk dθ

+
∫ 2π

0

∫ kmax

kc

�u(k)
〈
eikξ cos(θ )+iφ

〉
F[τ (k), t]k dk dθ,

where kmax is the maximum radial wavenumber. Assuming that the

phase is uniformly random in the second term, the expected value

of 〈eikξ cos(θ )+iø〉 is equal to zero. We can write the expected SVF in

C© 2007 The Authors, GJI, 171, 739–754

Journal compilation C© 2007 RAS



754 J. Ruiz et al.

a simplified way as:

〈�u̇(ξ, t)〉 = �u0 F(τmax, t)

∫ 2π

0

∫ kc

0

eikξ cos(θ ) kdk dθ,

integrating by θ first, using the property
∫

eik ·ξcos(θ )dθ = 2πJ 0(kξ )

and finally integrating by k, one finds the following deterministic

solution for the mean SVF

〈�u̇(ξ, t)〉 = 2π
�u0

τmax

k2
c

J1(kcξ )

kcξ
H (τmax − t)H (t),

where J 0(·), J 1(·) are Bessel functions and H(·) is the Heaviside

time function.

Asymptotic behaviour of σRMS by band of k

The square of the standard deviation of slip grouped by band of k is

computed as

σ 2
RMS[�uBn (ξ)] =

∫ ∫
(�u − �ū)2 dx dy =

∫ ∫
�u2 dx dy,

where �ū is the mean slip estimated by band. This latter expression

is obtained assuming that the mean slip by band is equal to zero.

By using the Parseval’s relationships we can compute the standard

deviation in the wavenumber domain

σ 2
RMS(k) =

∫ ∫
�u2 dx dy =

∫ ∫
�ũ2(kx , ky) dkx dky .

To calculate this expression, by construction of intervals of k (radial

wavenumber), we evaluate this expression in the Bn = [kn, kn +1]

domain. We are looking for an asymptotic behaviour of σ RMS, then

we recall that the slip amplitude �ũ(k) ∝ k−2, and by definition,

kn +1 = 2kn. Then a straightforward calculus yields

σ 2
RMS(k) ∝

∫ kn+1

kn

1

k4
kdk ∝ 1

k2
n

,

by taking the square root, we obtain the standard deviation by band

of k that is proportional to k−1
n

σRMS ∝ 1

kn
.

The amplitude correction value,�uc(k), can be estimated on average

at first order as

〈�uc(k)〉 = �uc,Bn

22n
,

where �uc,Bn is the slip correction of the band and 22n is the number

of discrete wavenumber by band of k. The first wavenumber of each

band is defined as kn = 2n dk, where all intervals are defined with

a constant dk, then we can suppose that kn ∝ 2n. We shown that

slip correction by band of k is proportional to k−1
n , then amplitude

correction for each k is asymptotically proportional to

〈�uc(k)〉 ∝ 1/kn/22n ∝ 1/kn/k2
n ∝ 1/k3

n .
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