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Abstract

PlcR is a Bacillus cereus transcriptional regulator, which activates gene expression by binding to a nucleotidic sequence
called the ‘PlcR box’. To build a list of all genes included in the PlcR regulon, a consensus sequence was identified by
directed mutagenesis. The reference strain ATCC14579 sequenced genome was searched for occurrences of this consensus
sequence to produce a virtual regulon. PlcR control of these genes was confirmed by comparing gene expression in the
reference strain and its isogenic D-plcR strain using DNA microarrays, lacZ fusions and proteomics methods. The resulting
list included 45 genes controlled by 28 PlcR boxes. Forty of the PlcR controlled proteins were exported, of which 22 were
secreted in the extracellular medium and 18 were bound or attached to cell wall structures (membrane or peptidoglycan
layer). The functions of these proteins were related to food supply (phospholipases, proteases, toxins), cell protection
(bacteriocins, toxins, transporters, cell wall biogenesis) and environment-sensing (two-component sensors, chemotaxis
proteins, GGDEF family regulators). Four genes coded for cytoplasmic regulators. The PlcR regulon appears to integrate a
large range of environmental signals, including food deprivation and self cell-density, and regulate the transcription of
genes designed to overcome obstacles that hinder B. cereus growth within the host: food supply, host barriers, host
immune defenses, and competition with other bacterial species. PlcR appears to be a key component in the efficient
adaptation of B. cereus to its host environment.
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Introduction

In pathogenic bacteria, the production of virulence factors is often

coordinately regulated in response to changes in the bacterial cell

environment, with various types of regulatory processes being

employed. In Gram-positive bacteria, these processes may involve

two-component systems [1,2], alternative sigma factors [3] or stand-

alone transcription regulators [4]. In some cases, the three regulatory

mechanisms act together, each controlling a part in the production of

virulence factors. This situation is found for instance in the

nosocomial infection agent Staphylococcus aureus, in which more than

40 cell-surface or secreted proteins involved in bacterial virulence are

controlled by a complex network involving the transcriptional

regulator SarA, the two component regulator Agr and the general

stress response regulator SigB [5]. In some species, a master

regulator controls most of the virulence factors, which are therefore

members of the same regulon. Virulence regulons may include a

large number of genes: for example, the PrfA regulon of the food-

borne pathogen Listeria monocytogenes includes 73 genes located on the

chromosome [6]. Functional analysis of genes included in virulence

regulons and a precise understanding of their regulation provide

means to determine how environmental signals are integrated by

virulence regulators and which strategies are used by bacterial cells to

survive and develop within their host environment.

In Bacillus cereus, the transcriptional regulator PlcR (Phospholi-

pase C Regulator) controls most known virulence factors [7]. B.

cereus is a sporulating low-GC Gram-positive bacterium widely

distributed in the environment and genetically close to two other

pathogens: the human pathogen B. anthracis, which is the cause of

anthrax and was implicated in the killing of five people in the US

in the fall of 2001, and the insect pathogen B. thuringiensis. B. cereus

is a food-poisoning pathogen frequently diagnosed as the causative

agent of gastroenteritis [8] but it may also cause more severe

diseases such as endophthalmitis [9] or meningitis [10]. PlcR

controls the expression of several enterotoxins, haemolysins,

phospholipases and proteases [7,11]. PlcR has been shown to

bind to DNA on a specific sequence called the ‘PlcR box’, located

upstream from controlled genes, and at various distances ahead of

the 235 box of the sigma A promoter [11,12]. The transcription

of plcR starts shortly before the onset of the stationary phase t0 and

reaches a plateau two hours later (t2) [13]. plcR transcription is

autoinduced [13], and is repressed by the sporulation factor

Spo0A [14]. PlcR needs PapR to be active: this peptide is

expressed as a propeptide under the control of PlcR, is exported

out of the cell, is processed to form the active peptide either during

export or in the extracellular medium, and is captured back by the

cell through the oligopeptide permease system OppABCDF

[12,15,16]. Thus, the three partners PlcR, OppABCDF and

PapR function as a quorum-sensing system. Therefore, PlcR

integrates at least two classes of signals: cell growth state through

Spo0A and self cell density through PapR [12,14].

Although several B. cereus genes have been demonstrated to be

controlled by PlcR, no detailed study of the whole PlcR regulon

has been undertaken until now. Moreover, several B. cereus group
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genomes have now been sequenced, presenting the possibility of

building a virtual PlcR regulon by searching for matches with the

PlcR box consensus sequence. Using this method, a virtual regulon

was in fact proposed after the sequences of B. cereus ATCC14579

and other strains were published [17–19]. However the presence

of a PlcR box is not sufficient to classify a gene as PlcR-regulated:

experimental evidence is also required. In addition, PlcR may

recognize sequences diverging from the previously defined

consensus sequence, as has been reported in a study of

metalloprotease gene inhA2 regulation [20]. In order to define all

factors involved in the coordinated PlcR-based virulence response

in B. cereus, we have undertaken an extensive study to map the

complete PlcR regulon in the ATCC 14579 reference strain,

utilizing mutagenesis experiments and in silico predictions in

combination with proteomics and transcriptomics analyses.

Results

Directed mutagenesis defines a new PlcR box
A consensus sequence was previously determined by alignment

of the promoter regions of 13 PlcR-controlled genes [11].

However, the PlcR box located upstream from inhA2, a gene

known to be under PlcR control, diverged from this original

consensus sequence by one base. Therefore, we investigated which

substitution could be introduced in the consensus sequence while

still maintaining significant PlcR-dependent activity. Thus, we

mutated half of the palindromic nucleotide sequence of the PlcR

box located upstream from plcA, a PlcR-regulated gene coding for

a phosphatidyl-inositol specific phospholipase C (PI-PLC) and

used to report PlcR activity [12]. The recognition of the mutated

PlcR boxes by PlcR was investigated in the ATCC14579 strain by

a transcriptional fusion between the modified promoter region of

plcA and lacZ, carried on the pHT304-18Z plasmid [21]. The

results, displayed in Table 1, showed that the first and the last

nucleotide of the 16 bp consensus sequence can be replaced by any

base without a greater than five-fold drop in expression of plcA-

lacZ. However, deletion of A or T or their replacement by C or G

in position 7–8 in the middle of the sequence, or a replacement of

C by G in position 5 of the sequence, leads to a dramatic loss of

activity. Similarly A2, T3 or G4 could not be replaced by another

base. Therefore, the PlcR target sequence identified in the

mutagenesis experiment was ‘ATGhAwwwwTdCAT’, were h, w

and d stand for, respectively: C, A or T; A or T; G, A or T. In

addition to the previous consensus sequence ‘TATGnAnnnnTn-

CATA’, this sequence was retained for the subsequent in silico

analysis step.

Searching for PlcR boxes in the sequenced B. cereus
genome

We searched for the two PlcR target sequences TATG-

nAnnnnTnCATA and ATGhAwwwwTdCAT in the B. cereus

ATCC14579 genome sequence. We identified a total of 69 boxes

located at least 35 bp, but not more than 700 bp, upstream from a

putative coding sequence. These boxes may control as many as 138

genes, as the same box could act on several genes putatively

organized into an operon and/or that were divergently transcribed

(see supplementary material, Table S1). Included in this list are genes

that have not been annotated in the published genome sequence of

the ATCC14579 strain (Ivanova et al., 2003; http://www.ncbi.nlm.

nih.gov/genomes/lproks.cgi?view = 1), but for which expression was

confirmed by proteomic or genetic means (Bc0361a, this study;

BC3763, [7]; Bc2463a, Bc3185a, Bc5101a, [22]).

Microarray analysis
We used microarrays to determine the ratio of expression

between the wild type ATCC14579 strain and the isogenic DplcR

strain for the 138 genes identified in the in silico procedure. For this

determination, we chose two time points in the growth curve: the

onset of the stationary phase (t0), because PlcR expression

increases sharply at this point, and two hours later (t2), after PlcR

expression reaches a plateau. Most of the genes, which on the basis

of genome annotation were expected to be transcribed as part of

an operon structure, displayed similar expression ratio values.

Only genes with a relative expression ratio greater than 2.5 at t0 or

at t2, and a significance value (p) smaller than 0.2, were considered

for subsequent analysis. Consequently, 75 genes (Figure 1, blue

box) were considered as not controlled by PlcR under standard

culture conditions and were discarded. No microarray data were

available for 25 genes. For most of the 38 remaining genes,

transcription was enhanced by PlcR both at t0 and at t2 (Figure 1).

Noticeably, the clO hemolysin, the cytK cytotoxin and the

enterotoxins hblC, hbLD, hblA and nheA, nheB, nheC, were the genes

most strongly induced by PlcR with relative expression ratios of 10

to 50 in the DplcR mutant versus wildtype cells. The expression of

genes coding for other secreted proteins, including proteases (sfp,

nprB, nprC, mpbE, colA, and colC) and phospholipases (plcA, plcB and

smase) was also induced by PlcR, with a ratio of induction ranging

from 3 to 30 (see supplementary Table S1). The expression of a

high number of genes coding for cell-surface proteins appeared

also to be induced by PlcR, although at a lower level than for

secreted proteins. By contrast, only a few genes coding for cytosolic

proteins, including four transcriptional regulators, had their

expression significantly induced by PlcR. Data relating to plcR

Table 1. Effect of base mutation on the plcA PlcR box activity.

T1 A2 T3 G4 C5 A6 A7 T8 A9 T10 T11 T12 C13 A14 T15 A16

A 20 100 100 1 ND 100 100 ND ND ND ND ND ND ND ND 100

T 100 ND ND ND ND 4 10 100 ND ND ND ND ND ND ND 90

G 70 1 ND 100 6 3 3 2 ND ND ND ND ND ND ND 40

C 20 ND 0 ND 100 2 2 7 ND ND ND ND ND ND ND 45

T A T G N A N N N N T N C A T A

Each column corresponds to each position of the PlcR box located in the region upstream from plcA (BC3761). The unmodified sequence is given in the first line, and the
subsequent next lines give the effect of a base exchange by A, T, G or C. Last line gives the original consensus sequence. The plcA promoter regions including the
modified PlcR boxes are transcriptionally fused with lacZ, and each modified PlcR box activity is expressed as the percentage of beta-galactosidase activity relative to
the unmodified PlcR box. ND means ‘not determined’.
doi:10.1371/journal.pone.0002793.t001

The PlcR Regulon
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and papR were discarded, because insertion of the KmR cassette

into the plcR gene introduced a promoter upstream from the

regions recognized by the microarray 70-mer oligos. These genes

have however previously been shown to be PlcR-regulated

[11,13]. Finally, 6 genes appeared to be repressed by PlcR at a

ratio of 2 to 6 in this microarray analysis, either at t0 (BC4986) or

at t2 (BC0069, BC1736, BC3520, BC4982, BC4983).

Transcriptional fusions
Results from the microarray analysis were then crossed with data

from previous proteomic or genetic analysis [7,11–13,22–24]. All

genes encoding secreted proteins and identified by DNA microarray

analysis were confirmed as belonging to the PlcR regulon, including

BC2463a, BC3185a and BC5101a for which microarray results

could not be produced, except for colC, for which no data from

previous reports was available. Some cell surface and cytosolic

proteins (inhA2, prp2 and plcR) were also confirmed as part of the

PlcR regulon. However, for 39 genes, some of which were in operon,

no previous results were available regarding their control by PlcR.

Therefore, we constructed 30 transcriptional fusions between the

genes promoter region including the PlcR box and a lacZ gene, to

determine if they were truly controlled by PlcR. Two genes that were

not previously predicted to be in the ATCC14579 strain genome

sequence, but which were located downstream from PlcR boxes,

were included in the analysis: cwh (BC3763) and a small open reading

frame located downstream from BC0361, which we named

BC0361a. The ratios of b-galactosidase (encoded by lacZ) activity

between the wild type strain and the DplcR strain was plotted at t0 vs

t2 (Figure 2; the kinetics of expression obtained between t21 and t4
are shown in supplementary, Figure S1). Among the 30 promoter

regions assayed by lacZ fusions, 14 were controlled by PlcR whereas

the remaining 16 were not. Microarray results were missing or gave

low ratio values for these 16 PlcR-independent genes.

Proteomic study
We have observed in a previous two-dimensional protein gel

electrophoresis analysis of the B. cereus ATCC14579 secretome at

t2 that most of the extracellular proteins disappeared upon

inactivation of plcR [7]. However, in the same time a large

number of spots appeared on the gel obtained from the mutant

strain. This suggests that PlcR is possibly a repressor for some

extracellular proteins. We identified the protein content of 103 of

these spots by peptide mass fingerprints and by N-terminal

sequencing (see supplementary material, Figure S2 and Table S2),

and only one of the proteins was encoded by a gene preceded by a

PlcR box. This protein, the fructose bisphosphate aldolase FbaA,

was shown by lacZ fusion not to be controlled by PlcR (Figure S1).

Therefore no repressor role for PlcR acting on genes coding for

secreted proteins was identified. The appearance of cytosolic

proteins in the culture supernatant if plcR is inactivated was due to

a greater cell lysis in the mutant strain than in wildtype: this lysis,

determined by measuring isocitrate dehydrogenase activity in the

bacterial cells and culture supernatant, was 1% in the wildtype

strain and 15% in the mutant strain at t2.

Final list of the PlcR-controlled genes
We built a list of PlcR-controlled genes using the data

generated. We added three genes coding for antibacterial peptides

to this list, which were previously shown to be controlled by PlcR:

sppc1, sppc2 and sppc3 [22]. The final list included 45 genes

controlled by 28 PlcR boxes, as the same PlcR box may control

several genes (Table 2 and Figure S4). Genes coding for secreted

Figure 1. DplcR-wt expression ratios as determined by micro-
array experiments. Ratios of expression between the wildtype strain
and the delta plcR strain as determined by microarrays. The log2 of
these ratios were plotted at t2 vs t0. Each red circle represents the values
obtained for one gene. Inside the blue square at the center of the figure
are the genes for which the expression ratios were equal or less than 2.
Genes for which the transcription was induced by PlcR both at t0 and at
t2 are in the yellow square ‘a’, whereas genes induced only at t2 or only
at t0 are in the yellow squares ‘b’ or ‘d’, respectively. Genes repressed by
PlcR both at t0 and at t2 are in the yellow square ‘c’.
doi:10.1371/journal.pone.0002793.g001

Figure 2. DplcR-wt expression ratios as determined by lacZ
fusions. Ratios of expression between the wildtype strain and the delta
plcR strain as determined by lacZ fusions. The log2 of these ratios were
plotted at t2 vs t0. Each red circle represents the values obtained for one
gene. Inside the blue square at the center of the figure are the genes for
which the expression ratios were equal or less than 2. The transcription
of all the other genes was induced by PlcR both at t0 and at t2 (yellow
square ‘a’).
doi:10.1371/journal.pone.0002793.g002

The PlcR Regulon
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proteins made up 49% of the regulon, whereas genes coding for

proteins associated to the membrane or to the peptidoglycan (cell

wall proteins) represented 40%. The 22 secreted proteins were

toxins, phospholipases, proteases, peptides with antibacterial activity

and included one cell-cell communication peptide (PapR); however,

the 18 cell wall proteins were annotated as being involved in cell

immunity, drug efflux transport, cell wall biogenesis, and environ-

ment-sensing (in connection with regulation systems). Environmental

sensors included two chemotaxis proteins, McpA and TlpA, the two-

component system sensor YufM and one GGDEF family protein.

The GGDEF family protein displays three conserved domains: a

dinucleotide cyclase and a phosphodiesterase domain, involved in

regulating the intracellular level of cyclic dinucleotide diguanylate, a

second messenger, in response to ligands detected by the PAS

domain [25]. One protein, InhA2, was possibly involved in cell

immunity. InhA2 is a member of the Immune Inhibitor A

metalloprotease family, previously shown to specifically degrade

antibacterial peptides [26] and involved in bacterial virulence [20].

The cytosolic proteins controlled by PlcR were PlcR itself, a TetR

family regulator, a two-component response regulator, a protein of

unknown function and a protein homologous to the RimL ribosomal

alanine acetyl transferase. Therefore, all cytoplasmic PlcR-controlled

proteins of known function are likely to be regulators. The TetR

family regulators are transcriptional repressors involved in the

biosynthesis of antibiotic efflux pumps and the response to osmotic

stress [27]. The two-component response regulator YufM is in an

operon with its sensor component YufL and a chemotaxis transducer

protein McpA, all under PlcR transcriptional control. RimL belongs

to the GNAT superfamily of acetyltransferases [28] and acetylates a

ribosomal protein interacting with elongation factors EF-Tu and EF-

G [29,30].

Analysis of the nucleotidic sequences of the active PlcR
boxes

The 28 active PlcR boxes that we determined were scattered all

along the chromosome (Figure S3, supplementary material).

Consequently, no pathogenicity island could be found in the B.

cereus chromosome. Alignment of the active PlcR boxes led us to a

new consensus sequence, shown as a logo in Figure 3. To

investigate whether nucleotide sequences surrounding active PlcR

Table 2. List of the PlcR-controlled genes in the ATCC14579
strain.

Gene nu Gene ID Name Function Localisation

Bc1809 30019951 nheA Enterotoxin Extracellular

Bc1810 30019952 nheB Enterotoxin Extracellular

Bc1811 30019953 nheC Enterotoxin Extracellular

Bc3102 30021214 hblB Enterotoxin Extracellular

Bc3103 30021215 hblL1 Enterotoxin Extracellular

Bc3104 30021216 hblL2 Enterotoxin Extracellular

Bc5101 30023138 clo Hemolysin I, cereolysin Extracellular

Bc1110 30019265 cytK Hemolysin, cytotoxin Extracellular

Bc3761 30021854 plcA Phospholipase (phosphatidyl
inositol)

Extracellular

Bc0670 30018852 plcB Phospholipase (phosphatidyl
choline)

Extracellular

Bc0671 30018853 smase Phospholipase (sphingomyelin) Extracellular

Bc2735 30020906 nprP2 Neutral protease Extracellular

Bc3383 30021487 nprC Neutral protease Extracellular

Bc5351 30023381 nprB Neutral protease Extracellular

Bc0556 30018742 colC Protease, collagenase Extracellular

Bc3161 30021271 colA Protease, collagenase Extracellular

Bc3384 30021488 mpbE Protease, Enhancin Extracellular

Bc3762 30021855 sfp Protease, subtilase family
protease

Extracellular

Bc5101a NA sppc1 Peptide with anti-bacterial
activity

Extracellular

Bc2463a NA sppc2 Peptide with anti-bacterial
activity

Extracellular

Bc3185a NA sppc3 Peptide with anti-bacterial
activity

Extracellular

Bc5349 30023379 papR Peptide, signaling molecule Extracellular

Bc0576 30018762 mcpA Methyl-accepting chemotaxis
transducer protein

Cell wall

Bc3385 30021489 tlpA Methyl-accepting chemotaxis
transducer protein

Cell wall

Bc0577 30018763 yufL Two-component system sensor Cell wall

Bc3747 30021841 sensory box / GGDEF family
protein

Cell wall

Bc4509 30022587 ABC transporter, permease
subunit

Cell wall

Bc4510 30022588 ABC transporter, ATP-binding
protein

Cell wall

Bc2411 30020542 Drug efflux protein Cell wall

Bc3763 NA cwh Cell wall hydrolase Cell wall

Bc0991 30019146 slpA S-layer protein A, autolysin Cell wall

Bc3746 30021840 Predicted hydrolase or acyl
transferase. Lipoprotein?

Cell wall

Bc0666 30018848 inhA2 Metalloprotease – lipoprotein Cell wall

Bc4999 30023039 CAAX amino terminal protease
family, 6 TM domains

Cell wall

Bc4511 30022589 lppC Acid phosphatase, lipoprotein Cell wall

Bc2552 30020679 Unknown, 2 transmembrane
domains

Cell wall

Bc1713 30019857 Unknown, membrane spanning
protein

Cell wall

Bc3527 30021629 Unknown, membrane spanning
protein

Cell wall

Gene nu Gene ID Name Function Localisation

Bc0361a NA Unknown, 1 TM domain Cell wall

Bc0362 30018570 Unknown, lipoprotein Cell wall

Bc0578 30018764 yufM Two-component system
regulator

Cytoplasm

Bc2410 30020541 tetR Regulator, TetR family Cytoplasm

Bc1082 30019237 Ribosomal protein alanine acetyl
transferase; regulator ?

Cytoplasm

Bc5350 30023380 plcR Transcriptional regulator Cytoplasm

Bc1081 30019236 prp2 Unknown Cytoplasm

Sppc stands for ‘small peptide regulated by PlcR in B. cereus’. Sppc genes are
wrongly annotated in the ATCC14579 genome. Bc2463a, BC3185a and Bc5101a
are located between the PlcR box and, respectively, Bc2463, Bc3185 and
Bc5101. Bc0361a is located between the PlcR box and Bc0361. Overall, 22 PlcR-
controlled proteins are secreted, 18 are located in the cell wall and 5 are located
in the cytosol. Determination of protein subcellular localisation was based on
signal peptides, hydrophobic domains and cell-wall/membrane anchoring
motifs presence.
doi:10.1371/journal.pone.0002793.t002

Table 2. cont.

The PlcR Regulon
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boxes could exhibit additional properties required for the box to

be recognized by PlcR, a comparison of sequences upstream or

downstream from the active and inactive PlcR boxes was

performed. We found that in the vicinity of the active PlcR

boxes, the AT-content was much higher than in the vicinity of

inactive boxes (Figure 4). Downstream from all the active PlcR

boxes, we identified a putative 210 sA binding sequence (Figure

S5), suggesting that the PlcR-regulated genes may be transcribed

by a sA-associated RNA polymerase.

Discussion

Building a list of PlcR-controlled genes
In 1999, Agaisse and colleagues used a genetic screen to identify

PlcR-regulated genes. They reported 13 genes encoding exported

proteins, mostly toxins and degradative enzymes [11]. As a

consequence, PlcR appeared to be a pleiotropic virulence

regulator controlling extracellular factors. That study also led to

the definition of a PlcR target sequence, to which the active

complex PlcR/PapR binds [12]. Later, the sequencing of B. cereus

genomes in combination with proteomic and genetic studies

revealed that PlcR may control a much higher number of genes,

all of which were not, at least not directly, involved in virulence

[7,17,24,31]. Indeed, the role of PlcR in virulence has been

extensively documented [31–34]. Various studies have also

suggested that PlcR could acts on other functions, including

sporulation [35] and biofilm formation [36]. We therefore

systematically investigated the PlcR regulon to understand better

the role of PlcR during bacterial infection, and have provided the

first comprehensive, genome-wide characterization of the com-

plete PlcR virulence regulon based on functional experiments. A

virtual PlcR regulon was constructed in silico using the PlcR DNA

target sequence defined through mutagenesis experiments, and

was investigated by transcriptional studies using DNA microarrays

and lacZ fusions. The resulting data were cross-analyzed with data

from proteomic studies, to build a list of 45 genes positively

controlled by PlcR under standard culture conditions. The genes

were scattered along the chromosome, and did not form a

pathogenicity island. Aligning the sequences of the PlcR boxes

located upstream from these genes led to the identification of the

PlcR consensus binding sequence wTATGnAwwwwTnCATAw.

Inactive PlcR boxes
A high number of PlcR boxes turned out to be inactive under

our culture conditions. Alignment of the sequences located

upstream and downstream from the PlcR boxes revealed that,

for active boxes, these sequences are significantly more AT-rich.

Therefore, in addition to the consensus sequence, the genetic

environment of the PlcR box could be critical for the binding of

PlcR to its box, and/or could be important for the transcription

activity of the promoter. Also, we found cases in which a PlcR box

is placed between two divergently transcribed genes, and PlcR

controls the transcription of only one of these genes (for example,

Bc0555/Bc0556). Thus, the binding of PlcR to its box is required

but not sufficient to activate the transcription of genes located

Figure 3. PlcR consensus sequence. The height of the letter
representing a base is proportional to its frequency at each position in
the alignment. For each position, the most frequent base is drawn in
blue, followed by green and pink for less frequent bases.
doi:10.1371/journal.pone.0002793.g003

Figure 4. Percentage of A+T in the vicinity of PlcR boxes. Active boxes are plotted in blue whereas inactive boxes are plotted in red. The
dashed line represents the average A+T percentage for the ATCC14579 chromosome. The difference between active and inactive boxes for the A+T
percentage is highly significant (Qui-square test, p,0.001).
doi:10.1371/journal.pone.0002793.g004

The PlcR Regulon
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downstream. A putative sA -10 region consensus sequence was

found downstream from all the active PlcR boxes. In various

conditions, including the host, the transcription of genes not

controlled by PlcR despite the binding of the regulator to the PlcR

box may require alternative sigma factors, such as sB, sH, or ECF

factors. In B. anthracis [37], L. monocytogenes [38,39] and S. aureus [5],

sB has been shown to be involved in virulence under some culture

conditions. Similarly, sH is required for toxin gene expression in

B. anthracis [40]. These two sigma factors are likely to be expressed

in early stationary phase under standard culture conditions

[37,40]. Finally, it seems unlikely that we may have missed any

PlcR-regulated genes in this study due to no expression in LB

medium because no additional genes were identified in a screen

for genes specifically induced during growth in vivo [31].

Role of the PlcR regulon
Ninety percent of the genes included in the final list of PlcR-

controlled genes encode proteins either secreted or located at the cell

wall, i.e. at the interface between the bacterial cell and its

environment – including the eukaryotic host. Proteases and

phospholipases, in addition to enterotoxins and hemolysins, have

been found located at this interface. These enzymes are likely to be

involved in host tissue degradation. Phosphatidylcholine-specific

phospholipase C (PC-PLC) and sphingomyelinase were previously

shown to induce hemolysis [41,42] and the InhA2 metalloprotease is

involved in protecting the bacterial cell from host immune defenses

[26]. Proteins involved in peptidoglycan synthesis and modification

(four genes) are also likely to be involved in bacterial cell protection

by strengthening the cell wall, as suggested by the significantly

greater tendency of cell lysis observed for the plcR mutant strain than

the wildtype strain (this study). Furthermore, three secreted

antibacterial peptides and four drug efflux transporters shown to

be controlled by PlcR for the first time here may protect the cell from

competition with other bacterial species and their bacteriocins.

Thus, these functions may work together to provide nutrition

and bacterial cell protection in a hostile host environment

(Figure 5). The bacterium may feed on host tissues by producing

toxins, phospholipases and proteases. Proteins, peptides and amino

acids have been suggested as the preferred nutrient sources for B.

cereus [17], possibly linked to the growth of the bacterium as a

human and animal pathogen. Meanwhile, other functions of the

regulon may inhibit the growth of other bacterial species in the

same niche, inactivate host antibacterial peptides, and increase cell

wall resistance to lysis.

Sensing the host environment
Sensing the surrounding environment is necessary for a

bacterium to react appropriately to changes. Bacterial pathogens

often use two-component systems to sense their host environment,

and promote or repress the transcription of genes in response to

changes in this environment [1,2]. Interestingly, as shown here for

the first time, four sensors are included in the B. cereus PlcR

virulence regulon, only one of which (YufL) is part of a two-

component system. The other sensors are chemotaxis proteins

(McpA and TlpA) or a GGDEF-family regulator producing a

second messenger. This variety in sensor types is likely to reflect a

variety in the types of signals providing input to the cell.

Furthermore, genes controlled by PlcR-dependent transcriptional

regulators could add to the list of genes controlled by PlcR, and

extend the regulon size. However, these regulators could also

recruit genes already controlled by PlcR. If so, PlcR-controlled

sensors and their regulators could modulate the transcription of

Figure 5. Overview of the PlcR regulon organization. PlcR positively controls (dark line) the transcription of a vast array of genes coding for
proteins located in the cell wall or in the extracellular space. Cell wall proteins are designed in green. Secreted proteins are exported through the
SecA machinery designed in pink. Environmental signals are sensed by cell-wall sensors and act via (dashed line) regulators on undetermined genes
or proteins. PlcR requires PapR to be active (dashed line). Signals integrated by PlcR and PlcR-controlled regulators are designed in red.
doi:10.1371/journal.pone.0002793.g005
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subgroups of PlcR-controlled genes. It was recently suggested that

regulators other than PlcR could act on the expression of PlcR-

controlled genes [43,44]. Accordingly, L. monocytogenes internalins,

which constitute a subgroup of the PrfA virulence regulon, are

simultaneously controlled by sB, itself acting on gene transcription

in response to stress signals [39]. These observations have led us to

propose the following hypothesis for the integration of PlcR/

PapR-related environmental signals in B. cereus: PlcR triggers the

transcription of its regulon, including the sensor proteins, in

response to food deprivation sensed via transition state regulators

and in response to its own cell density sensed via PapR. In turn, the

PlcR-controlled sensors repress (or promote) transcription of

subgroups of genes in response to host signals. The PlcR/PapR

quorum-sensing system thus provides an efficient way to integrate

several environmental signals and produce a gene expression

profile continuously adapted to a changing host environment, such

as that experienced by the bacterium during infection.

Materials and Methods

Strains and culture conditions
The B. cereus strains used in this study were the type strain,

ATCC14579, and the isogenic DplcR strain [32], obtained by

insertion of a KmR cassette in plcR. The two strains were grown in

Luria Bertani broth (LB) at 30uC. Cultures were harvested at the

onset of the stationary phase (t0) or two hours later (t2). The onset

of the stationary phase (t0) was defined as the breakpoint in the

vegetative phase slope.

Directed mutagenesis of the PlcR box
Point mutations were introduced into the PlcR box of the plcA

promoter region by PCR amplification with primer Bc-plc

matching the 59 end of the plcA gene, and primers pRX1 to

pRX18 carrying a modified PlcR box (supplementary Table S3).

Each PCR product (a 390-bp DNA fragment) was digested with

XbaI and HindIII enzymes and cloned between the XbaI and

HindIII sites in pHT304-18Z [21]. The nucleotide sequence of

each DNA fragment was determined and analyzed by Genome

express (France) by using oligonucleotides UP and OVG flanking

the DNA fragments cloned into pHT304-18Z. Plasmids carrying

the plcA’-lacZ transcriptional fusions were introduced into B. cereus

ATCC14579 by electroporation, and ß-galactosidase activity

produced by the recombinant clones was measured two hours

after entry in the stationary phase in LB medium.

Microarray analysis
Harvested bacterial cells were incubated in an equal volume of

ice-cold methanol for 5 minutes before centrifugation at 4uC and

4000 rpm. RNA isolation was performed with the RNeasy Midi

Kit (Qiagen, Germany) together with the RNase-Free DNase Set

(Qiagen, Germany). For microarray slide preparation, 70-mer

oligos from the whole genomic B. cereus ATCC14579 ORFs

(released at NCBI in 2003) were designed and synthesized by

Qiagen-Operon (Germany). The oligos were printed in 50%

DMSO on UltraGAPSTM gamma amino silane-coated slides from

Corning (USA), at the Norwegian Radiumhospital (DNR). The

microarray slides were prehybridized before use for 30–60 min-

utes in a 56SSC/0.1 % SDS/0.1 % BSA solution at 42uC,

according to the UltraGAPSTM Coated Slides instruction manual

from Corning. The slides were then washed three times in MQ

H2O, once in isopropanol and finally spun dry.

cDNA synthesis, labeling and purification was carried out with

the FairPlayTM microarray labeling kit (Stratagene, CA, USA),

using 500 ng random hexamers (Applied Biosystems, CA, USA)

on 20 mg of RNA, and with amino-allyl coupling of Cy3 and Cy5

dyes from Amersham Biosciences (GE Healthcare Bio-Sciences

AB, Sweden). After purification, the samples were concentrated

with a Microcon column (Millipore, MA, USA) and hybridization

solution was added to a final concentration of 30 % formamide,

56SSC, 0.1 % SDS and 0.1 mg/mL sperm DNA, based on the

UltraGAPSTM Coated Slides instruction manual from Corning

(USA). Labeled DNA were denatured at 95uC for 2 minutes, and

incubated at 42uC before hybridization. The samples were

hybridized in a hybridization chamber (Monterey Industries,

CA, USA), humidified with 56SSC for 16 hours in a 42uC water

bath. After hybridization, the slides were washed at 42uC in

0.56SSC/0.01 % SDS and in 0.066SSC, and finally at room

temperature in isopropanol before they were spun dry.

The slides were scanned with an Axon 4000B scanner.

Gridding, spot annotation and calculation was carried out using

GenePix Pro 6.0 software. The R platform [45] and LIMMA

[46,47] were used for filtering, normalization and further analysis

(for details, see supplementary material). P-values were computed

using false discovery rate correction of 0.05.

Transcriptional fusions
Transcriptional fusions were constructed in the pHT304-18Z

plasmid, between the XbaI and PstI or HindIII and BamHI cloning

sites of the plasmid [48]. Primers used for PCR-amplification of

the promoter regions cloned are listed in supplementary Table S4.

The resulting plasmids were then transferred into B. cereus strains

ATCC14579 or ATCC14579 DplcR by electroporation. For b-

galactosidase activity measurement, bacterial cells were lysed using

the FastPrep 120 system (Savant), and b-galactosidase-specific

activities were measured as described previously [49]. The specific

activities are expressed in units of b-galactosidase milligram21 of

protein (Miller units). Two to four assays were performed for each

transcriptional fusion.

Two-dimensional electrophoresis
Protein extracts were prepared from the culture supernatants

and subjected to two-dimensional electrophoresis as described

earlier [7]. The spots were immediately excised and stored at

270uC until use. Proteins were identified by peptide mass

fingerprint and by N-terminal sequencing. Peptide mass finger-

prints were generated after trypsin-digestion and MALDI-TOF

analysis (Biobac, INRA, Jouy-en-Josas, France), and proteins were

identified using ProteinProspector or Mascot programs. N-

terminal sequencing was performed by Prof. K. Sletten at the

Biotechnology Center, University of Oslo, Norway.

Sequence analysis
PlcR boxes were searched in the sequenced genome of the

ATCC14579 strain using the ‘find sequence’ tool of Vector NTI

(Invitrogen). The same method was used to find sA 210 boxes in

the promoter regions of PlcR-controlled genes. The consensus

sequence for PlcR binding (‘PlcR box’) was drawn as a logo where,

at each nucleotide position, the letter height is proportional to the

frequency of the base and to the weight of the position in the

sequence [50]. The content in A+T bases in sequences upstream

and downstream from the inactive and active PlcR boxes were

compared using a chi-square test.
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Table S1 Microarray results for genes with a PlcR box in their
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Found at: doi:10.1371/journal.pone.0002793.s001 (0.26 MB PDF)
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Table S2 Proteins identified in the culture supernatant of the

delta-PlcR ATCC14579 strain harvested at t2

Found at: doi:10.1371/journal.pone.0002793.s002 (0.19 MB PDF)

Table S3 Primers used for the directed mutagenesis of the PlcR

box

Found at: doi:10.1371/journal.pone.0002793.s003 (0.04 MB PDF)

Table S4 Primers for transcriptional fusions

Found at: doi:10.1371/journal.pone.0002793.s004 (0.05 MB PDF)

Figure S1 Results from lacZ fusions

Found at: doi:10.1371/journal.pone.0002793.s005 (0.13 MB PDF)

Figure S2 Two-dimensional gel electrophoresis of the D-plcR

ATCC14579 supernatant

Found at: doi:10.1371/journal.pone.0002793.s006 (0.97 MB PDF)

Figure S3 Location of PlcR boxes on the ATCC14579

chromosome

Found at: doi:10.1371/journal.pone.0002793.s007 (0.02 MB PDF)

Figure S4 Genetic environment of the 45 PlcR-regulated genes

Found at: doi:10.1371/journal.pone.0002793.s008 (0.26 MB PDF)

Figure S5 Putative 210 sA boxes located downstream of PlcR

boxes for PlcR-controlled genes

Found at: doi:10.1371/journal.pone.0002793.s009 (0.60 MB PDF)
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