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Identification of Pharmacokinetics Models in the presence of

Timing Noise

Thierry Bastogne, Sophie Mézières-Wantz, Nacim Ramdani, Pierre Vallois and Muriel

Barberi-Heyob

Abstract

The problem addressed in this paper deals with the parameterestimation ofin vitro uptake kinetics of drugs

into living cells in presence of timing noise. Effects of thetiming noise on the bias and variance of the output

error are explicitly determined. A bounded-error parameter estimation approach is proposed as a suited solution

to handle this problem. Application results are presented which emphasize the effectiveness of the methodology

in such an experimental framework.1.
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I. I NTRODUCTION

Pharmacokinetics is the study of the bodily absorption, distribution, metabolism and excretion of drugs by

bodies. In chemical kinetics, reactions are generally described by differential equations which link the reaction

rate with concentrations or pressures of reactants. In molecular cell biology, because of the complexity of the

systems, the nature of some reactions is still unclear. Thispaper focuses on the intracellular uptake kinetics

of a photosensitizing drug (PS),i.e. the rate of photosensitizing molecules incorporated and accumulated by

living cancer cells according to incubation terms [1]. The delivery control of the photosensitizing agent into

the cancer cells is one the major factor on the therapeutic efficiency of the photodynamic therapy (PDT) [2].

Photodynamic therapy involves selective uptake and retention of a photosensitive drug in a tumour, followed

by irradiation with light at an appropriate wavelength. Photosensitisers are photoactive compounds such as for

instance porphyrins and chlorins. The activated photosensitiser is thought to produce singlet oxygen at high

doses and thereby to initiate apoptotic and necrotic death of tumour. Most of the PS uptake kinetics models are

non-parametric, the temporal evolution of the PS intracellular concentration is described by step responses. The

purpose of this study is the estimation of kinetics model parameters from data collected duringin vitro kinetics

experiments. These parameters are crucial information to both improve the modalities of the drug delivery

process in photodynamic therapy and discriminate the uptake characteristics of different photosensitizers. Few

papers have been reported for the application of system identification techniques to pharmacokinetics modeling

problems [3]–[5].

Unfortunately, these approaches cannot be applied to the PSuptake kinetics. Indeed, thein vitro and in vivo

intracellular concentration of photosensitizer ([Pi]) is currently measured by use of steady-state and time-resolved

fluorescence spectroscopy, or high performance liquid chromatography. But these optical measurement systems

also induce a photobleaching process of the PS. The term photobleaching refers to the process by which the

chromophoric structure of the PS is degraded by absorbed light energy [6]. As PS can be photobleached after

light exposure, repeated experimentations for the same biological sample are not conceivable. In other terms,

one biological sample with PS cannot be used for consecutivemeasurements of[Pi ]. CollectingNt data points

of the kinetics then requires to repeatNt times the same experiment (Nt biological samples) with identical initial

conditions. To avoid the time consuming and the too high costof such an experiment set up,Nt is generally kept

small, i.e. Nt ≤ 10. This limitation onNt is the first problem to overcome for estimating kinetics parameters.

The second difficulty is the low signal-to-noise ratio. The latter is due to a great measurement variability when

working on living cells which are very sensitive to externaldisturbances. Thirdly, the choice of the stimulus

signal is restricted to step signals which correspond to theamount of PS injected into the culture medium wells

at time t = 0. A last issue is a timing offset error in the measurement samples. Indeed the time-sampling of

the PS uptake kinetics is not automatic but depends on the duration of the handling tasks led by the biologist

on each biological sample. This timing error is bounded and can reach until±15mn for a measurement time

sequence{t j} = {1,2,4,6,8,14,18,24h}.

The problem addressed in this paper deals with the parameterestimation of pharmacokinetic models in

presence of timing errors. In almost any real application the actual sampling instances are not the same as



the ideal, desired sampling instances. We call this difference timing noise [7]. In many current and emerging

applications, such as in wideband communication systems and mechanically-actuated probes, this timing noise

is not an insignificant source of uncertainty. In electronics and telecomunication, the timing noise is also

known under the name oftime jitter, i.e. an unwanted variation of one or more signal characteristicssuch

as the sampling period [8]. In networked control systems, the variation of the sampling rate due to MAC

(medium access control), often called network-induced jitter, may have a negative impact in control loops [9].

Sometimes, the jitter errors can be handled by new data acquisition methods like in [10]. But often, jitter

errors are unavoidable and has to be taken into account in theparameter estimation approach. Several random

models of the time jitter have been proposed since [11] for signal processing applications but more rarely in

system identification problems. In [12], it is shown that using a model that takes into consideration a fractional

dead-time with a value equal to the jitter average leads to a much better parameter identification than when

the problem is just ignored. In [13], a weighted least squares estimator is proposed to estimate the time base

drift (delay) introduced by a high-frequency sampling oscilloscope. In [14], a continuous time model frequency

domain maximum-likelihood approach is developed but was not evaluated on output error models.

Parameter estimation algorithms in system identification methods are often based on the minimization of

a quadratic function of the output error,i.e. the difference between the system and the model outputs. The

sensitivity of the output error to timing noise comparatively to input and output noise is unknown. Therefore,

the contributions of this paper are twofold:

• the stochastic effects of the timing noise on the output error are explicitly determined. They are compared

with the ones of input and output noise. These results are obtained by assuming that there is no modeling

error between the model and the biological system;

• a solution suited to this system identification problem is proposed and applied toin vitro data sets in

a second part of this paper in order to assess its effectiveness in practice. The identification problem is

addressed in thebounded-errorcontext and is solved with a set projection algorithm based on interval

analysis introduced in [15].

The paper is organized as follows. The experimental set up isdescribed in section II. A linear compartmental

model of the intracellular PS uptake phenomenon is proposedin III. Section IV presents the model structure

and the output, input and timing noise (errors). Section V deals with the stochastic modeling of the bias and

variance of the output error. A bounded-error approach is proposed and applied toin vitro data in Section VI.

II. EXPERIMENTAL SET UP

Fig.1 depicts the basic material used inin vitro experiments for studying the uptake kinetics of a

photosensitizing drug into living cells. Cells are seeded in 250µ l culture wells and are exposed at timet0 = 0 to a

photosensitizing drugD. Let us consider the uptake phenomenon as a dynamic system. Its input variableu(t) is a

step signal which corresponds to the amount of drug injectedinto the well at timet = 0. Its output variabley(t) is

the amount of drug absorbed by the cells. ˆy(t) is the measurement ofy(t) given by a spectrofluorimeter at times

{t j} with j ∈ {1, · · · ,Nt}. However, the spectrofluorimeter affects the biological state of the photosensitizing drug

through a photobleaching process. Each culture well then becomes unusable after measurement. Consequently,



TABLE I

MAIN NOTATIONS

Symb. Description

t time variable

t j theoretical time instant

associated with thej th measurement sample

t̂ j real time instant

associated with thej th measurement sample

u(t) noise-free input signal

(stipulated by the experimenter)

û(t) real input signal

y(t) system output variable

(unknown by the experimenter)

ŷ(t) measured output variable

yM (t) model output variable

nu input noise

ny output noise

nt timing noise

ey(t) output error variable

S biological system

M (p) parametric model

p vector of parameters

Nt = card({t j}) number of data points

Nr number of repeated experiments

at each time instant

x′ transposition ofx

N (µ ,σ) gaussian distribution with meanµ and

standard deviationσ

U (a,b) uniform distribution

on the interval[a;b]

E {·} mathematical expectation operator

Microwell (300µ l )

û(t)

PS drug

Culture Medium

Intracellular PS

Extracellular PS

Living cells
Spectro-

fluorimeter

ŷ(t j )

u(t)

t j

y(t)

Fig. 1. in vitro experimental set up



to measure the intracellular PS concentration atNt different time instants, it is necessary to repeat the same

experiment inNt different culture wells. Moreover,Nr identical wells are handled by the experimenter at

each time instantt j to a posterioriestimate the repeatability of the measurements. Globally,Nr ×Nt wells are

handled during the whole experiment. In practice, such an experiment is also repeated for other PS and different

concentrations of protein in the medium. Consequently, thetotal number of wells to handle can be much larger

thanNr ×Nt . All the wells are prepared in the same initial conditions and each biological sample is carefully

handled in a sterile framework to avoid the contamination ofculture media with unwanted bacteria.

III. in vitro PSUPTAKE MODELING

The in vitro uptake of the PS agent into cancer cells can be described by a compartmental modeling approach.

In this paper, a linear two compartments model presented in Fig.2, is used. The two compartments are associated

with the extracellular and intracellular volumes respectively. x(t) denotes the amount of extracellular PS.

Parametersku andkr are the uptake and release rates respectively. Differential equations of this compartmental

model are defined as follows

dx
dt

= kry(t)−kux(t)+
du
dt

(1)

dy
dt

= kux(t)−kry(t), (2)

with x(0) = y(0) = 0. Introducings the Laplace variable, one can then write

(s+ku)x(s) = kry(s)+su(s) (3)

sy(s) = kux(s)−kry(s), (4)

After substitution ofx(s) from (3) in (4), it comes that

(s+ku+kry)y(s) = kuu(s), (5)

or in the time domain

1
ku +kr

dy
dt

+y(t) =
ku

ku +kr
u(t), or (6)

T
dy
dt

+y(t) = ku(t), (7)

whereT = 1/(ku +kr) and k = ku/(ku +kr) are the time constant and the static gain of the PS uptake model

described by a linear first-order differential equation. In[16], it is shown that a first-order transfer function

is indeed a parsimonious model structure for describing theuptake kinetics of thechlorin e6 photosensitizing

drug into HT29-A4 cancer cells (human colon cancer cell line).

IV. M ODEL AND ERRORS DESCRIPTIONS

The determination of a parametric model describing the uptake kinetics of a photosensitizing drug into living

cells by extracting information from observations ofu andy is a system identification problem [17], [18]. At

this point and thereafter, it is assumed that the system and the model are identicalM (p) ≡ S (p). However,

as depicted in Fig. 3, three kinds of uncertainties are examined and are represented by output, input and timing



noise (errors). Output and intput noise (ny andnu) are described by stationary stochastic processes added tothe

output and input signals. The timing noise (nt) is a sequence of random variables added to the timing sequence

{t j} controlling the sampling process of the output signal.t̂ j is the real time instant at which the output variable

y is measured whilet j represents the theoretical measurement time instant notedby the experimenter.ey(t j)

denotes the output error between the system and the model outputs (ŷ(t̂ j ) and yM (t j ) respectively). Table I

sums up the main notations used in the sequel.

A. Model structure

For the sake of simplicity, it is assumed in the sequel thatM (p) andS (p) both rely on a first-order transfer

function, inspired from (7),

S (p) : T ·
dy
dt

+y(t) = k · û(t) (8)

M (p) : T ·
dyM

dt
+yM (t) = k ·u(t), (9)

with y(0) = yM (0) = 0. p= (T , k) is the parameter vector whereT andk denote the time constant and the static

gain respectively. From a biological point of view,T andk inform the biologist about the uptake rate and yield

respectvely.u(t) is a step signal of magnitudeu0 defined in (13). As a result, the intracellular concentration of

the photosensitizing drugy follows a mono-exponential kinetics defined by

y(t) = k · û0 · (1−e−t/T). (10)

B. Output noise

Conjugated effects of measurement noise and disturbances are usually described by a stochastic variableny

added toy such that

ŷ(t j) = y(t j)+ny(t j ), (11)

wherey and ŷ denote the real biological response and its measurement respectively.

C. Input noise

u is a step signal defined by

u(t) =





0 t < 0

u0 t ≥ 0
(12)

The step magnitude (u0) represents the amount of the injected drug. The duration ofinjection is not significant

compared to the duration of the experiment. The drug administration is usually carried out by multichannel

micropipettes. For technical reasons, the real filling levels of drug in the cones are not identical and do not

match with the dose stipulated by the experimenter. This error is represented by an input noisenu added tou

such that

û(t) =





0 t < 0

û0 = u0 +nu t ≥ 0
(13)

whereu0 and û0 denote the prescribed dose and the effectively administrated dose respectively.



D. Timing noise

In experimental biology, the timing noise is due to the fact that measurements are generally carried out

manually by the experimenter and not by a numerical measurement system triggered by a clock. In this

application, such a system does not exist. The uncertainty about the sampling time instants comes from the

biologist who cannot both carry out the experiment and writedown the corresponding time instants because of

the sterile context and the number of wells (several hundreds) to handle. Off course, one can imagine a second

biologist who would assist the first one to note down the sampling time instants. But such an organization is

too expensive to be implemented. In practice, only the time instantst−j andt+j corresponding to the beginning

and the end of the experiment are noted by the experimenter. In this study,(t+j − t−j ) is about 30mn, i.e. the

time for the PS to be administrated in the wells and the time for the cells to be washed, removed, lysed and

diluted in ethanol before the measurement step with the spectrofluorimeter. The nominal measurement time

instant t j noted by the experimenter in his table is an average time instant defined byt j = (t+j + t−j )/2. The

real time instant̂t j at which the uptake kinetics is stopped and measured, is unknown. This lack of precision

in the timing of experiments is described by a timing noisent .

V. STOCHASTIC MODELING

In this section it is assumed that{ny(t j )} is an independent and identically distributed sequence of Gaussian

variables

ny(t j) = σy ·G
j
y, (14)

whereσy denotes the standard deviation ofny and G j
y ∼ N (0,1). nu is supposed to be a Gaussian variable

defined by

nu = σu ·Gu, (15)

whereσu denotes the standard deviation ofnu andGu ∼ N (0,1). The experimenter is assumed to handle the

wells with a constant rhythm. Accordingly, the timing noisesequence{nt j} is supposed to be independent and

identically distributed sequence of uniform variables such that

nt j ∼ U (t−j ,t+j ) (16)

∼−
τ j

2
+ τ j ·U

j
t , (17)

with τ j = t+j − t−j andU j
t ∼U (0,1). τ j denotes the width of the timing uncertainty interval for thetime instant

t j . {ny(t j)}, nu and {nt j} are supposed to be independent. Given the previous assumptions about the input,

output and timing noise, the expression ofey(t j) becomes

ey(t j) = ŷ(t̂ j)−yM (t j ) (18)

= k · (u0 + σuGu) · (1−e−
1
T (t j−

τ j
2 +τ jU

j
t ))+ σyG

j
y

−k ·u0 · (1−e−
t j
T ), (19)

wherek, T are given.



The mathematical expectation ofey(t j) is defined in Proposition 5.1, its demonstration is developed in

appendix II.

Proposition 5.1:

E {ey(t j )} = k ·u0 ·e
−t j
T

(
1−sinhc(

τ j

2T
)
)

, (20)

with sinhc(x) = sinh(x)/x denotes the hyperbolic sinus cardinal function of x.

Sincex→ sinhc(x) is increasing onR+, equation (20) shows thatE {ey(t j)} < 0. This systematic bias is only

due to the timing noise. The absolute value of the mean outputerror increases with respect toτ and is null

only for τ = 0.

The variance ofey(t j) is given in Proposition 5.2, its demonstration is developedin appendix III.

Proposition 5.2:

Var{ey(t j)} = σ2
y +k2σ2

u +k2e
−t j
T ·sinhc(

τ j

2T
)(A+B), (21)

with: A = e
−t j
T

(
cosh(

τ j
2T )−sinhc(

τ j
2T )

)
u2

0 and B=

(
e
−t j
T cosh(

τ j
2T )−2

)
σ2

u .

To take into account both the bias and the variance ofey(t j), its mean square error defined byε(t j) =

E 2{ey(t j)}+Var{ey(t j)} is examined thereafter. Three specific values ofε(t j), notedεny(t j), εnu(t j) andεnt(t j ),

are determined to emphasize the contribution of each kind ofnoise.

• σu = 0, τ j = 0:

εny(t j) = σ2
y , (22)

• σy = 0, τ j = 0:

εnu(t j) = k2σ2
u

(
e
−t j
T −1

)2

, (23)

• σy = 0, σu = 0:

εnt(t j) = k2u2
0e

−2t j
T

(
1−2sinhc(

τ j

2T
)

+sinhc(
τ j

2T
)cosh(

τ j

2T
)
)

. (24)

The effect of the timing noise on the output error is estimated as significant if there exists a time instantt j such

that εnt(t j) > (εnu(t j)+ εny(t j))/10. For instance, ifu0 = 1,k = 0.3,T = 5,t j = 1,τ j = 0.5,σy = 0.01,σu = 0.12

thenεnt(t j) ≈ 5·10−5, εnu(t j) ≈ 3·10−5 andεny(t j) ≈ 1·10−4. Consequently, the effect of the timing noise on

the output error cannot be neglected for the time instantt j = 1(h). The impact ofnt decreases ast j and becomes

negligible fromt j & 3(h). This example emphasizes thatnt could significantly influence the estimation of the

time constant which mainly depends on the first measurement samples. Since the consequences ofnt cannot

be reasonably ignored, usual parameter estimation methods(those assuming only the presence of output noise)

are not appropriate to solve this estimation problem. In thenext section, a bounded-error parameter estimation

approach is proposed as a suited solution to handle timing errors.

2These values have been chosen from empirical knowledge of biologists and experimental results.



VI. B OUNDED-ERROR ESTIMATION WITH in vitro DATA

Bounded-error or set-membership approaches allow to estimate parameters and their uncertainty in inverse

problem contexts in which all uncertain quantities are assumed as unknown but bounded with known bounds.

No further hypothesis about probability distributions is stated. Several algorithms have been developped to

solve estimation problems stated in the bounded-error context. When models are non linear, most approaches

use interval analysis and constraint propagation techniques. Allied with global algorithms and a reliable

numerical implementation, they derive guaranteed computations, i.e. they provide a numerical proof of property

or non-property. They are rather mature techniques and havealready been successfully applied for solving

problems in biology, chemical or thermal engineering, economics, computer vision or robotics, when guaranteed

computations were essential [15], [19]. In this part, we assume that all the uncertain quantities satisfy this

bounded-errorproperty and bounded-error estimation techniques are applied to experimental data collected

during in vitro uptake kinetics experiments of a PS into human malignant glioma cells.

Let ey be the model output error defined byey(t,p) = ŷ(t̂)− yM (p, t), where ŷ = (ŷ(t̂1), · · · , ŷ(t̂Nt )) is the

vector of the collected data andyM = (yM (p,t1), · · · ,yM (p,tNt )) the vector of the corresponding model output,

with yM (p,t) = k · u0 · (1− e−t/T), t = (t1, · · · ,tNt ) and t̂ = (t̂1, · · · , t̂Nt ). Now, contrarywise to the stochastic

framework section, the unknown quantities vector is extended to also include the actual measurement time

instant. Therefore, in bounded-error estimation (or set-membership estimation), one looks for the set of all

unknown quantities vectorsp× t∗ such that the output error vectorey stays within a known feasible domainE.

The problem under study is then to determine the posterior feasible setS of unknown quantitiesp× t∗ defined

by

S = {p× t∗ ∈ P̌× [t] |ey(p, t∗) ∈ E} (25)

= {p× t∗ ∈ P̌× [t] |yM (p, t∗) ∈ Y}, (26)

where[t] = [t, t] denote intervals on the measurement time instants,P̌ is a prior set of parameters andY = ŷ−E.

Since we are not interested in computing the actual measurement time instants, we can relax the problem without

losing any guarantee by computing directly the projection of the setS onto thep-parameter space. The posterior

feasible set of parameter vector of interest is then given by

P = {p ∈ P̌ |∃t∗ ∈ [t],ey(p, t∗) ∈ E} (27)

= {p ∈ P̌ |∃t∗ ∈ [t],yM (p, t∗) ∈ Y}. (28)

P can be determined in a guaranteed way using a set projection algorithm based on parameter space partionning

and interval analysis [15], [19]. The experimental protocol is defined byNt = 5, Nr = 6 andu0 = 25mol. Fig. 4

presents the experimental data of six PS uptake kinetics carried out in the same experimental framework. Each

cross corresponds to one measurement sample. The output variable, measured by the spectrofluorimeter, is given

in arbitrary unit. Prior intervals[ŷ(t j)] and [t j ] on the output measurements and the time instants are given in

table II. Bounds of[t j ] have been measured during the kinetics experiment.[ŷ(t j)] has been determined from

the minimum and maximum values of measurements. The uncertainty associated with each pair of output and
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Fig. 2. in vitro compartmental model

M (p)

S (p)

Kinetics Experiment

u0

nu ny
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Fig. 3. Description of uncertainties

TABLE II

PRIOR FEASIBLE INTERVALS FOR THE DATA

j t j (h) [t j ] [ŷ(t j )]

1 1 [0.67;1.33] [0;0.607]

2 2 [1.67;2.33] [0.238;0.861]

3 8 [7.67;8.33] [0.681;1.396]

4 18 [17.67;18.33] [0.661;1.447]

5 24 [23.67;24.33] [1.376;2.459]

0 1 2 8 18 24 25
0

1

2

3

4

5

6

7

8

y

t(h)

Fig. 4. Experimental data, intervals and boxes



time data is materialized by a box. The prior box, given in (29), is an empirical estimate given by the biologists.

P̌ = [ǩ]× [Ť] = [1,4]× [1,40]. (29)

Fig. 5 presents the estimate ofP when the partionning algorithm is set not to partition boxeswith a size smaller

than ε = 0.01. The paving form associated with the estimate ofP is composed of grey and black boxes. The

grey boxes have been proved to be included inP but no conclusion has been reached for the black ones. The

external envelope ofP is defined byk̂ ∈ [1.37;3.49] and T̂ ∈ [1.7;33]. This results shows that the estimation

uncertainty on the time-constant is larger than the one on the static gain.

Fig. 6 depicts thea posterioriestimate of the output set̂Y, a set of time trajectories defined by

Ŷ =
{
(t,y) ∈ R

+ ×R | y(t) = ku0(1−e−t/T),

with (k,T)T ∈ P̂

}
. (30)

This figure points out a wide variation of the initial slope ofthe step response which explains the large

uncertainty on the time-constant estimate. In this study case, the wide variation of the initial slope is mainly

due to the height of the boxes rather than their width. In other terms, in this application, the uncertainty on the

time-constant estimate is mainly caused by the output noiserather than the timing noise.

VII. C ONCLUSION

This paper focuses on consequences of timing errors in collected data on the parameter estimation of kinetics

models and more precisely their effects on the output error.The contribution of the timing noise on the output

error is compared with the ones induced by input and output noise in terms of bias and variance. Mathematical

expressions of the bias and variance of the output error withrespect to the parameters of input, output and

timing noises are established. It is shown that the influenceof the timing noise on the output error can be

significant, particularly for the first measurement time instants (t j . 3h). Accordingly, the timing noise may

have a significant influence on the time-constant estimate. An application toin vitro data is developed in

the second part of this paper. It is shown how the timing noisecan be taken into account by bounded-error

estimation algorithms based on interval analysis. The timing noise is described as a bounded error and no further

hypothesis about probability distributions is stated. Theresults presented herein emphasize the effectiveness of

such an bounded-error estimation approach in such an experimental framework.
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APPENDIX I

Lemma 1.1:

E {ea( 1
2−U)} =

sinh(a
2)

a
2

= sinhc
(a

2

)
, (31)

wherea is a non-null constant andU is a random variable distributed according to a uniform law on [0,1].

APPENDIX II

PROOF OF THEPROPOSITION5.1

Proof: SinceGu andG j
y are centered and sinceU j

t andGu are independent, then

E {ey(t j)} = k ·u0 ·
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It can be deduced from Lemma 1.1 that

E {ey(t j)} = k ·u0 ·e
−

t j
T

(
1−sinhc(

τ j

2T
)
)

. (35)

APPENDIX III

PROOF OF THEPROPOSITION5.2

Proof: From (19),ey(t j) is rewritten such that

ey(t j) = X1 +X2−yM (t j ), (36)

with

X1 = k · (u0+ σuGu) · (1−e−
1
T (t j−

τ j
2 +τ jU

j
t )) (37)

X2 = σyG
j
y. (38)

SinceX1 andX2 are independent, it can be deduced that

Var(ey(t j)) = Var(X1)+Var(X2) (39)

= Var(X1)+ σ2
y . (40)

Let us compute the expectation ofX1.

E {X1} = k ·u0 ·
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(41)
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)
, (42)

according to Lemma 1.1. The expectation ofX2
1 is given by

E {X2
1} = k2

E {(u0+ σuGu)
2}E {X2

3} (43)

= k2(u2
0 + σ2
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3}, (44)

where
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1
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t ). (45)

We have
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We finally obtain
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Equation (21) in proposition 5.2 is then a direct consequence of (40).
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