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Identification of Pharmacokinetics Models in the presence o
Timing Noise
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Barberi-Heyob

Abstract

The problem addressed in this paper deals with the paramstienation ofin vitro uptake kinetics of drugs
into living cells in presence of timing noise. Effects of ttiming noise on the bias and variance of the output
error are explicitly determined. A bounded-error parametimation approach is proposed as a suited solution
to handle this problem. Application results are presentbtkvemphasize the effectiveness of the methodology
in such an experimental framework.
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I. INTRODUCTION

Pharmacokinetics is the study of the bodily absorptiontrilistion, metabolism and excretion of drugs by
bodies. In chemical kinetics, reactions are generally rilesd by differential equations which link the reaction
rate with concentrations or pressures of reactants. In cuatae cell biology, because of the complexity of the
systems, the nature of some reactions is still unclear. pajser focuses on the intracellular uptake kinetics
of a photosensitizing drug (PS)e. the rate of photosensitizing molecules incorporated amdiraclated by
living cancer cells according to incubation terms [1]. Thadivcery control of the photosensitizing agent into
the cancer cells is one the major factor on the therapeuiimesfcy of the photodynamic therapy (PDT) [2].
Photodynamic therapy involves selective uptake and retemtf a photosensitive drug in a tumour, followed
by irradiation with light at an appropriate wavelength. Risensitisers are photoactive compounds such as for
instance porphyrins and chlorins. The activated photasesrsis thought to produce singlet oxygen at high
doses and thereby to initiate apoptotic and necrotic defatiinaour. Most of the PS uptake kinetics models are
non-parametric, the temporal evolution of the PS intratailconcentration is described by step responses. The
purpose of this study is the estimation of kinetics modehpaaters from data collected durimgvitro kinetics
experiments. These parameters are crucial informationotb bnprove the modalities of the drug delivery
process in photodynamic therapy and discriminate the eptalracteristics of different photosensitizers. Few
papers have been reported for the application of systemifidation techniques to pharmacokinetics modeling
problems [3]—[5].

Unfortunately, these approaches cannot be applied to thepR&e kinetics. Indeed, thie vitro andin vivo
intracellular concentration of photosensitizg®]] is currently measured by use of steady-state and timevexso
fluorescence spectroscopy, or high performance liquidroatography. But these optical measurement systems
also induce a photobleaching process of the PS. The ternolpleaching refers to the process by which the
chromophoric structure of the PS is degraded by absorbatidigergy [6]. As PS can be photobleached after
light exposure, repeated experimentations for the samedital sample are not conceivable. In other terms,
one biological sample with PS cannot be used for consecote@surements dB]. CollectingN; data points
of the kinetics then requires to repéttimes the same experimem(biological samples) with identical initial
conditions. To avoid the time consuming and the too high abstich an experiment set ul, is generally kept
small,i.e. N < 10. This limitation onN; is the first problem to overcome for estimating kinetics pzaters.
The second difficulty is the low signal-to-noise ratio. Th#dr is due to a great measurement variability when
working on living cells which are very sensitive to exterdturbances. Thirdly, the choice of the stimulus
signal is restricted to step signals which correspond tatheunt of PS injected into the culture medium wells
at timet = 0. A last issue is a timing offset error in the measurementpdasn Indeed the time-sampling of
the PS uptake kinetics is not automatic but depends on tretidarof the handling tasks led by the biologist
on each biological sample. This timing error is bounded amd I@ach untit=15mn for a measurement time
sequencetj} = {1,2,4,6,8,14,18,24n}.

The problem addressed in this paper deals with the paramstenation of pharmacokinetic models in

presence of timing errors. In almost any real applicatiom dictual sampling instances are not the same as



the ideal, desired sampling instances. We call this diffeeetiming noise [7]. In many current and emerging
applications, such as in wideband communication systerdgrathanically-actuated probes, this timing noise
is not an insignificant source of uncertainty. In electrenand telecomunication, the timing noise is also
known under the name dfme jitter, i.e. an unwanted variation of one or more signal characteristich

as the sampling period [8]. In networked control systems, \hriation of the sampling rate due to MAC
(medium access control), often called network-induceadrjitmay have a negative impact in control loops [9].
Sometimes, the jitter errors can be handled by new data siiqni methods like in [10]. But often, jitter
errors are unavoidable and has to be taken into account ipdtemneter estimation approach. Several random
models of the time jitter have been proposed since [11] fgnali processing applications but more rarely in
system identification problems. In [12], it is shown thatngsa model that takes into consideration a fractional
dead-time with a value equal to the jitter average leads touahnbetter parameter identification than when
the problem is just ignored. In [13], a weighted least sgsi@®&imator is proposed to estimate the time base
drift (delay) introduced by a high-frequency sampling dsscope. In [14], a continuous time model frequency
domain maximume-likelihood approach is developed but wasenaluated on output error models.

Parameter estimation algorithms in system identificatiethmds are often based on the minimization of

a quadratic function of the output errdre. the difference between the system and the model outputs. The
sensitivity of the output error to timing noise comparaijvi® input and output noise is unknown. Therefore,
the contributions of this paper are twofold:

« the stochastic effects of the timing noise on the outputreare explicitly determined. They are compared
with the ones of input and output noise. These results ar@redd by assuming that there is no modeling
error between the model and the biological system;

« a solution suited to this system identification problem ispmsed and applied tm vitro data sets in
a second part of this paper in order to assess its effectigeimepractice. The identification problem is
addressed in thbounded-errorcontext and is solved with a set projection algorithm basednterval
analysis introduced in [15].

The paper is organized as follows. The experimental set dpssribed in section Il. A linear compartmental

model of the intracellular PS uptake phenomenon is proposéd. Section IV presents the model structure
and the output, input and timing noise (errors). Section Wlslevith the stochastic modeling of the bias and

variance of the output error. A bounded-error approach ap@sed and applied tim vitro data in Section VI.

Il. EXPERIMENTAL SET UP

Fig.1 depicts the basic material used im vitro experiments for studying the uptake kinetics of a
photosensitizing drug into living cells. Cells are seeded3Qu| culture wells and are exposed at titge=0 to a
photosensitizing dru. Let us consider the uptake phenomenon as a dynamic systempuit variablau(t) is a
step signal which corresponds to the amount of drug injeatedhe well at timet = 0. Its output variablg(t) is
the amount of drug absorbed by the ceyig) is the measurement gft) given by a spectrofluorimeter at times
{tj} with j € {1,--- ,N¢}. However, the spectrofluorimeter affects the biologicalesbf the photosensitizing drug

through a photobleaching process. Each culture well thenres unusable after measurement. Consequently,



Fig. 1.
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MAIN NOTATIONS

Symb. Description
t time variable
tj theoretical time instant
associated with thg!h measurement sample
fj real time instant
associated with thg!" measurement sample
u(t) noise-free input signal
(stipulated by the experimenter)
at) real input signal
y(t) system output variable
(unknown by the experimenter)
y(t) measured output variable
740, model output variable
ny input noise
ny output noise
n timing noise
gy(t) output error variable
54 biological system
VA parametric model
p vector of parameters

N = card({t; })
Nr

number of data points
number of repeated experiments
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X transposition of
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to measure the intracellular PS concentratiomMadifferent time instants, it is necessary to repeat the same
experiment inN; different culture wells. Moreovein; identical wells are handled by the experimenter at
each time instant; to a posterioriestimate the repeatability of the measurements. Glolslly, N; wells are
handled during the whole experiment. In practice, such peément is also repeated for other PS and different
concentrations of protein in the medium. Consequentlytaked number of wells to handle can be much larger
thanN; x N;. All the wells are prepared in the same initial conditionsl @ach biological sample is carefully

handled in a sterile framework to avoid the contaminatiorcufure media with unwanted bacteria.

1. in vitro PSUPTAKE MODELING

Thein vitro uptake of the PS agent into cancer cells can be described iappartmental modeling approach.
In this paper, a linear two compartments model presentedi2 Hs used. The two compartments are associated
with the extracellular and intracellular volumes respeatyi. x(t) denotes the amount of extracellular PS.
Parameterk, andk; are the uptake and release rates respectively. Diffetegisations of this compartmental

model are defined as follows

O k() k() + 5 )
Y kxt) k), @
with x(0) = y(0) = 0. Introducings the Laplace variable, one can then write
(s+ ku)X(s) = kry(s) +su(s) 3)
SY(s) = kuX(s) — ky(9), 4)
After substitution ofx(s) from (3) in (4), it comes that
(s+kut+ky)y(s) = kuu(s), (5)
or in the time domain
e = ), or ©)
T%—i—y(t) = ku(t), @)

whereT = 1/(ky+ k) andk =k,/(ky + k) are the time constant and the static gain of the PS uptake Imode
described by a linear first-order differential equation.[16], it is shown that a first-order transfer function
is indeed a parsimonious model structure for describinguihtake kinetics of thehlorin e6 photosensitizing

drug into HT29-A4 cancer cells (human colon cancer cell)line

IV. M ODEL AND ERRORS DESCRIPTIONS

The determination of a parametric model describing thekgpkinetics of a photosensitizing drug into living
cells by extracting information from observationswéndy is a system identification problem [17], [18]. At
this point and thereatfter, it is assumed that the system lamdniodel are identicalZ (p) = .7 (p). However,

as depicted in Fig. 3, three kinds of uncertainties are exadhand are represented by output, input and timing



noise (errors). Output and intput noisg @ndny) are described by stationary stochastic processes addbd to
output and input signals. The timing noisg)(is a sequence of random variables added to the timing sequen
{tj} controlling the sampling process of the output sighiais the real time instant at which the output variable
y is measured whilg; represents the theoretical measurement time instant rptétie experimentesey(t;)
denotes the output error between the system and the modaitsu§ifj) andy ,(tj) respectively). Table |

sums up the main notations used in the sequel.

A. Model structure

For the sake of simplicity, it is assumed in the sequel thatp) and.”(p) both rely on a first-order transfer

function, inspired from (7),

70 T Yy =keaw @
s Ty 0=k, ©

with y(0) =y »(0) =0. p= (T, k) is the parameter vector whefeandk denote the time constant and the static
gain respectively. From a biological point of vieW,andk inform the biologist about the uptake rate and yield
respectvelyu(t) is a step signal of magnitude defined in (13). As a result, the intracellular concentratid

the photosensitizing drug follows a mono-exponential kinetics defined by

y(t) =k-Go- (1—e¥T). (10)

B. Output noise

Conjugated effects of measurement noise and disturbameassaally described by a stochastic variafje

added toy such that
y(t)) = y(t;) +ny(t)), (11)

wherey andy denote the real biological response and its measuremeraatbgely.

C. Input noise

u is a step signal defined by

0 t<O
u(t) = (12)
Ug t>0

The step magnitudaug) represents the amount of the injected drug. The durationjection is not significant
compared to the duration of the experiment. The drug adinatisn is usually carried out by multichannel
micropipettes. For technical reasons, the real filling lewa drug in the cones are not identical and do not
match with the dose stipulated by the experimenter. Thigrasrrepresented by an input noisg added tou
such that

0 t<0

a(t) = (13)
00 = u0+ nu t Z 0

whereup and up denote the prescribed dose and the effectively admingstrdbse respectively.



D. Timing noise

In experimental biology, the timing noise is due to the fdwttmeasurements are generally carried out
manually by the experimenter and not by a numerical measemersystem triggered by a clock. In this
application, such a system does not exist. The uncertalmyitathe sampling time instants comes from the
biologist who cannot both carry out the experiment and wdde/n the corresponding time instants because of
the sterile context and the number of wells (several hurgJredhandle. Off course, one can imagine a second
biologist who would assist the first one to note down the samgpime instants. But such an organization is
too expensive to be implemented. In practice, only the tinséaintst;" andtj+ corresponding to the beginning
and the end of the experiment are noted by the experimentéhid study,(tj+ —tj*) is about 3Gnn i.e. the
time for the PS to be administrated in the wells and the tintettie cells to be washed, removed, lysed and
diluted in ethanol before the measurement step with thetsgfkmorimeter. The nominal measurement time
instantt; noted by the experimenter in his table is an average timarnnstefined byt; = (tj*+tj*)/2. The
real time instant;j at which the uptake kinetics is stopped and measured, isawrknThis lack of precision

in the timing of experiments is described by a timing naige

V. STOCHASTIC MODELING

In this section it is assumed théiy(tj)} is an independent and identically distributed sequenceanfsGian

variables
ny(t) = 0y- G, (14)
where oy denotes the standard deviation mf and G)j, ~ 4/ (0,1). ny is supposed to be a Gaussian variable
defined by
Ny = 0u- Gy, (15)

where g, denotes the standard deviationmgfand G, ~ .#7(0,1). The experimenter is assumed to handle the
wells with a constant rhythm. Accordingly, the timing noseguencen;} is supposed to be independent and

identically distributed sequence of uniform variableshstitat

nej ~ % (¢ ,4) (16)

Ti :
~o T, (17)
with 7j =t —t;° andyy ~ % (0,1). 1; denotes the width of the timing uncertainty interval for tiee instant

tj. {ny(t;)}, ny and {nyj} are supposed to be independent. Given the previous assursEbout the input,

output and timing noise, the expressionepftj) becomes

&y(tj) =9(t) — v« () (18)
=k-(up+0uGy) - (1— e*%(tJ*I}HJUh) + ayG)j,
N

—Kk-up-(1—e 1), (19)

wherek, T are given.



The mathematical expectation @f(t;) is defined in Proposition 5.1, its demonstration is devedope
appendix II.
Proposition 5.1:

é"{e),(tj)}:k~uo~ezlt“j (1—sinhc(2T—_i_)), (20)

with sinhgx) = sinh(x)/x denotes the hyperbolic sinus cardinal function of x.

Sincex — sinhdx) is increasing oR ™, equation (20) shows that{e(tj)} < 0. This systematic bias is only
due to the timing noise. The absolute value of the mean owport increases with respect toand is null
only for t =0.

The variance ofy(tj) is given in Proposition 5.2, its demonstration is developedppendix IlI.

Proposition 5.2:
—t; .
Var{g(tj)} = 02+ K202+ K2e T -sinhc(zr—_JI_)(A—i— B), 21)

—tj . . —t; .
with: A=eT (cosk(zr—‘T) —sinhc(zr—‘T)) w3 and B= ( eT cosh5}) — 2) o2.
To take into account both the bias and the varianceyf), its mean square error defined lsytj) =
&?{gy(tj)} +Var{g(tj)} is examined thereafter. Three specific values(@f), notedeny(t;), &nu(t;) anden(tj),

are determined to emphasize the contribution of each kinabife.

e« 0y=0,7j=0:
eny(tj) = o7, (22)

e 0y=0,T1;=0:

enu(t)) = K202 (e"lt“j - 1)2, (23)
e 0y=0,0,=0:
Enlty) = K2Ze T (1- 2sinhq L)
2T
+sinhc(2T—+)cosr(2T—_i_)) . (24)
The effect of the timing noise on the output error is estimate significant if there exists a time instansuch
that &nt(tj) > (&nu(tj) + &ny(tj))/10. For instance, itip = 1,k = 0.3, T =5,tj = 1,1 = 0.5, 0y = 0.01, 0, = 0.12
then gnt(tj) = 5-107°, eny(tj) =~ 3-107° and &yy(tj) ~ 1- 10~4. Consequently, the effect of the timing noise on
the output error cannot be neglected for the time indtaatl (h). The impact of, decreases &g and becomes
negligible fromt; 2 3(h). This example emphasizes thatcould significantly influence the estimation of the
time constant which mainly depends on the first measurenanples. Since the consequencesytannot
be reasonably ignored, usual parameter estimation metiioaise assuming only the presence of output noise)

are not appropriate to solve this estimation problem. Inrtbet section, a bounded-error parameter estimation

approach is proposed as a suited solution to handle timirggser

2These values have been chosen from empirical knowledgeolifgits and experimental results.



VI. BOUNDED-ERROR ESTIMATION WITHIN Vitro DATA

Bounded-error or set-membership approaches allow to aiparameters and their uncertainty in inverse
problem contexts in which all uncertain quantities are asxiias unknown but bounded with known bounds.
No further hypothesis about probability distributions tated. Several algorithms have been developped to
solve estimation problems stated in the bounded-errorezbntVhen models are non linear, most approaches
use interval analysis and constraint propagation teclesiqéllied with global algorithms and a reliable
numerical implementation, they derive guaranteed contiouis, i.e. they provide a numerical proof of property
or non-property. They are rather mature techniques and hbkeady been successfully applied for solving
problems in biology, chemical or thermal engineering, &oits, computer vision or robotics, when guaranteed
computations were essential [15], [19]. In this part, weuass that all the uncertain quantities satisfy this
bounded-errorproperty and bounded-error estimation techniques arelemppd experimental data collected
duringin vitro uptake kinetics experiments of a PS into human malignaoti cells.

Let e, be the model output error defined By(t,p) = 9(t) —y.~(p,t), wherey = (Y(f1),---,¥(fn)) is the
vector of the collected data ayd, = (v~ (p,t1),---,Y.#(P,tn)) the vector of the corresponding model output,
with y ~(p,t) =k-Up- (1 —e¥T), t = (tg,--- ,tn,) andt = (f1,---,f). Now, contrarywise to the stochastic
framework section, the unknown quantities vector is ex¢éehtb also include the actual measurement time
instant. Therefore, in bounded-error estimation (or setatpership estimation), one looks for the set of all
unknown quantities vectorsx t* such that the output error vectey stays within a known feasible domélii

The problem under study is then to determine the posterasilide seS of unknown quantitiep x t* defined

by
S={pxt ePx|t]|g(p,t*) € E} (25)
={pxt"ePx[t]|y.,(p,t") €Y}, (26)

wherelt] = [t, T] denote intervals on the measurement time instahis a prior set of parameters afit= § — E.
Since we are not interested in computing the actual measurgiime instants, we can relax the problem without
losing any guarantee by computing directly the projectibthe setS onto thep-parameter space. The posterior

feasible set of parameter vector of interest is then given by
P={pecP|3t" € [t]g(p,t") €E} (27)
={peP[3t" €[ty (p.t") € Y} (28)

P can be determined in a guaranteed way using a set projedgoritam based on parameter space partionning
and interval analysis [15], [19]. The experimental proldsaefined byN: =5, N; = 6 andup = 25mol. Fig. 4
presents the experimental data of six PS uptake kineticgedawut in the same experimental framework. Each
cross corresponds to one measurement sample. The out@iilgameasured by the spectrofluorimeter, is given
in arbitrary unit. Prior interval$y(tj)] and [tj;] on the output measurements and the time instants are given in
table 1l. Bounds oft;] have been measured during the kinetics experinigfit)] has been determined from

the minimum and maximum values of measurements. The umugrssociated with each pair of output and



Fig. 2. in vitro compartmental model
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Fig. 3. Description of uncertainties

TABLE Il

PRIOR FEASIBLE INTERVALS FOR THE DATA

it ;] [9(t;)]

1 1 [0.67;1.33] [0;0.607]

2 2 [1.67;2.33] [0.238;0.861]

3 8 [7.67;8.33] [0.681;1.396]

4 18 [17.67;18.33] [0.661;1.447]

5 24 [23.67;24.33] [1.376;2.459]
8
7k J
s J
sk J

>4l 1

3t J
2t % 1
1 J
%12 s 18 24 25

Fig. 4. Experimental data, intervals and boxes



time data is materialized by a box. The prior box, given in)(29an empirical estimate given by the biologists.
P =[x [T] = [1,4] x [1,40. (29)

Fig. 5 presents the estimate Bfwhen the partionning algorithm is set not to partition bowéth a size smaller
thane = 0.01. The paving form associated with the estimatédé composed of grey and black boxes. The
grey boxes have been proved to be included ibut no conclusion has been reached for the black ones. The
external envelope of is defined byk € [1.37;349] and T € [1.7;33. This results shows that the estimation
uncertainty on the time-constant is larger than the one erstatic gain.

Fig. 6 depicts thea posterioriestimate of the output séf, a set of time trajectories defined by
¥={(t.y) eR" xR|y(t) =kup(1—e /7).
with (k,T)T e 1@}. (30)

This figure points out a wide variation of the initial slope thie step response which explains the large
uncertainty on the time-constant estimate. In this studsecthe wide variation of the initial slope is mainly
due to the height of the boxes rather than their width. In oteens, in this application, the uncertainty on the

time-constant estimate is mainly caused by the output rmaiger than the timing noise.

VII. CONCLUSION

This paper focuses on consequences of timing errors inatetledata on the parameter estimation of kinetics
models and more precisely their effects on the output effee. contribution of the timing noise on the output
error is compared with the ones induced by input and outpisenia terms of bias and variance. Mathematical
expressions of the bias and variance of the output error reisipect to the parameters of input, output and
timing noises are established. It is shown that the influesfcthe timing noise on the output error can be
significant, particularly for the first measurement timetamss ¢; < 3h). Accordingly, the timing noise may
have a significant influence on the time-constant estimate.application toin vitro data is developed in
the second part of this paper. It is shown how the timing noese be taken into account by bounded-error
estimation algorithms based on interval analysis. Themgmoise is described as a bounded error and no further
hypothesis about probability distributions is stated. Témults presented herein emphasize the effectiveness of

such an bounded-error estimation approach in such an expetal framework.
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APPENDIXI
Lemma 1.1:
ik @
pred-vy - SG) sinhc(g) , (31)
2

wherea is a non-null constant and is a random variable distributed according to a uniform law[@1].

APPENDIXII

PROOF OF THEPROPOSITIONS.1

Proof: SinceG, and G)j, are centered and sind:Qj and G, are independent, then
Sleylty)} =k to: (1-s{e Ty
—k-uo-(l—eT) (32)
—koupe T (1-fe HOEU)) (33)

—koupet (1-efel BU)). (34)



It can be deduced from Lemma 1.1 that

£{gt)} =k-up-e * (1-sinha L))

APPENDIXIII

PROOF OF THEPROPOSITIONS.2

Proof: From (19),ey(t;) is rewritten such that
& () =Xa+ X2 —y.x(t)),
with
X1 = k- (Up+ 0uGy) - (1— e T~ 3+
Xo = 0yG).
SinceX; andX; are independent, it can be deduced that
Var(ey(tj)) = Var(X1) +Var(Xp)
=Var(Xy) + 0.
Let us compute the expectation Xf.
£} = K- Uo- (1— et g{e?<%utj>})
— K- Up- (1—e*lt“jsinhc(i)> :
2T
according to Lemma 1.1. The expectation)(ff is given by
E{XE} =K (Uo+ 0uGu)?} & (X5}
=Ke(U§+ o) {5},
where
Xg=1— e*%(t'*%jﬂiutj)_

We have

Ti : . _
E{X3} =1+ &{e T2} _ogfe T FHnuy

—lre Tefer U} 2ete(eru))

_ 2 Tj Y. T
=1+e Tsmhc(_l_) 2e Tsmhqz_l_).

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)



We finally obtain
2t .
Var{X1} = k*(u3 + ?) (1+e"lisinhc(%)
—2e Fsinhd L) ) — k2 ( 1— e ¥ sinhq L) i
2T 0 2T
2, 2 2 72[1' . Tj 7tJ' . Tj
=k(ug+03) [ 1+e T sinhd =) — 2" Tsinhd =)
T 2T
— k23 1—2e’;lsinhc(i)+e*3|t“j (sinhc(i))2
0 2T 2T
2t; .
=K <05+ (U3 + Gf)e*TJsinhc(%)
B Y T o A T2
207e Tsmhc(z_l_) uge™ T (smhqz_l_)) .

Equation (21) in proposition 5.2 is then a direct conseqaef(40).

(47)
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