HAL
open science

The modular branching rule for affine Hecke algebras of type A

Susumu Ariki, Nicolas Jacon, Cédric Lecouvey

To cite this version:

Susumu Ariki, Nicolas Jacon, Cédric Lecouvey. The modular branching rule for affine Hecke algebras of type A. 2008. hal-00315397v1

HAL Id: hal-00315397
 https://hal.science/hal-00315397v1

Preprint submitted on 28 Aug 2008 (v1), last revised 22 Mar 2010 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE MODULAR BRANCHING RULE FOR AFFINE HECKE ALGEBRAS OF TYPE A

SUSUMU ARIKI, NICOLAS JACON AND CÉDRIC LECOUVEY

Abstract

For the affine Hecke algebra of type A at roots of unity, we make explicit the correspondence between geometrically constructed simple modules and combinatorially constructed simple modules and prove the modular branching rule. The latter generalizes work by Vazirani.

1. Introduction

In [6], Ginzburg explains his geometric construction of simple modules over (extended) affine Hecke algebras H_{n} defined over \mathbb{C}. In this paper, we consider the affine Hecke algebra of type A whose parameter is a root of unity. Then, the simple modules are labelled by aperiodic multisegments.

On the other hand, Dipper, James and Mathas' Specht module theory gives us a combinatorial construction of simple modules of cyclotomic Hecke algebras, and they exhaust all the simple modules of the affine Hecke algebra. The simple modules are labelled by Kleshchev multipartitions.

If one wants more than mere labelling of simples, the combinatorially defined simple modules often have more advantage than the geometrically defined simple modules. For example, we may work over any algebraically closed field other than \mathbb{C} when we use the combinatorially defined simple modules. Hence, explicit description of the module correspondence between the two constructions is desirable.

We provide this explicit description of the module correspondence in this article. Note that both the set of aperiodic multisegments and the set of Kleshchev multipartitions have structure of Kashiwara crystals. Then, we show that the crystal embedding gives the module correspondence.

Closely related to this result is the modular branching rule. One may prove the result on the module correspondence by using this, which is our first proof, or one may prove the modular branching rule by first establishing the result on the module correspondence, which is our second proof.

Let L_{ψ} be the simple module labelled by a multisegment ψ, whose precise meaning will be explained in section 4 . The modular branching rule is a rule to describe $\operatorname{Soc}\left(\operatorname{Res}_{H_{n-1}}^{H_{n}}\left(L_{\psi}\right)\right)$, or equivalently $\operatorname{Top}\left(\operatorname{Res}_{H_{n-1}}^{H_{n}}\left(L_{\psi}\right)\right)$. We show

[^0]that
$$
\operatorname{Soc}\left(\operatorname{Res}_{H_{n-1}}^{H_{n}}\left(L_{\psi}\right)\right)=\bigoplus_{i \in \mathbb{Z} / e \mathbb{Z}} L_{\tilde{e}_{i} \psi},
$$
where \tilde{e}_{i} is the Kashiwara operator. We give a geometric proof of this rule in the framework of Lusztig and Ginzburg's theory. This gives the first proof. On the other hand, if one uses results in (1) and [2], both become easier, and this is the second proof.

Recall that the main result of [24] is the modular branching rule when the parameter of the affine Hecke algebra is not a root of unity. Hence our result generalizes 24, Theorem 3.1] and we may deduce other results in 24] from this.

The paper is organized as follows. In section 2 , we review basic facts on the crystal $B(\infty)$ of type $A_{e-1}^{(1)}$. In section 3 , we prepare for a geometric proof of the modular branching rule of the affine Hecke algebra. The proof is carried out in the framework of Lusztig and Ginzburg's theory, so that we explain the theory in some detail. This part may be read as a concise review of the theory. In section 4 , we give the geometric proof of the modular branching rule. In section 5, we introduce crystals of deformed Fock spaces and state results to compute crystal isomorphisms among them. In section 6 , we prove a lemma on the module correspondence of simple modules in various labellings and give a combinatorial proof of the modular branching rule in the framework of Fock space theory for cyclotomic Hecke algebras. The reader would be surprised at how easy the second proof is.

Acknowledgements. Part of this work was done while the authors were visiting the MSRI in Berkeley in 2008. The authors wish to thank the institute for the hospitality and the organizers of the two programs for their invitation. The second author is also grateful to Hyohe Miyachi for fruitful discussions there. The second author is supported by the "Agence Nationale de laRecherche" (project JCO7-192339).

2. Preliminaries

Let $e \geq 2$ be a fixed integer, \mathfrak{g} the Kac-Moody Lie algebra of type $A_{e-1}^{(1)}$. We denote by U_{v}^{-}the negative part of the quantum affine algebra $U_{v}(\mathfrak{g})$, which is generated by the Chevalley generators f_{i}, where $i \in \mathbb{Z} / e \mathbb{Z}$, subject to the quantum Serre relations. In this section, we review basic facts on U_{v}^{-} and its crystal. We denote the simple roots by α_{i}, and the simple coroots by α_{i}^{\vee}, for $i \in \mathbb{Z} / e \mathbb{Z}$.
2.1. The crystal $B(\infty)$. Let us introduce the Kashiwara operator \tilde{f}_{i}, for $i \in \mathbb{Z} / e \mathbb{Z}$, on U_{v}^{-}. Let $e_{i}, i \in \mathbb{Z} / e \mathbb{Z}$, be Chevalley generators of the positive part of $U_{v}(\mathfrak{g})$ and $t_{i}=v^{\alpha_{i}^{\vee}}$. The following two lemmas are due to Kashiwara.

Lemma 2.1. For each $u \in U_{v}^{-}$, there exist unique u^{\prime} and $u^{\prime \prime}$ in U_{v}^{-}such that we have

$$
e_{i} u-u e_{i}=\frac{t_{i} u^{\prime}-t_{i}^{-1} u^{\prime \prime}}{v-v^{-1}}
$$

We define an operator e_{i}^{\prime} on U_{v}^{-}by $e_{i}^{\prime} u=u^{\prime \prime}$, for $u \in U_{v}^{-}$. The algebra generated by $\left\{f_{i}\right\}_{i \in \mathbb{Z} / e \mathbb{Z}}$ and $\left\{e_{i}^{\prime}\right\}_{i \in \mathbb{Z} / e \mathbb{Z}}$ is called the Kashiwara algebra. Let $f_{i}^{(n)}$ be the $n^{t h}$ divided power of f_{i}.

Lemma 2.2. Let $P \in U_{v}^{-}$. For each $i \in \mathbb{Z} / e \mathbb{Z}$, there exists u_{n} in U_{v}^{-}, for $n \in \mathbb{Z}_{\geq 0}$, such that $e_{i}^{\prime} u_{n}=0$, for all n, and $P=\sum_{n \in \mathbb{Z}_{\geq 0}} f_{i}^{(n)} u_{n}$.

We define $\tilde{e}_{i} P=\sum_{n \in \mathbb{Z} \geq 1} f_{i}^{(n-1)} u_{n}$ and $\tilde{f}_{i} P=\sum_{n \in \mathbb{Z}_{\geq 0}} f_{i}^{(n+1)} u_{n}$. They are well-defined. Let R be the subring of $\mathbb{C}(v)$ consisting of elements which are regular at $v=0$. Then, we define

$$
L(\infty)=\sum_{N \in \mathbb{Z}_{\geq 0}} \sum_{\left(i_{1}, \ldots, i_{N}\right) \in(\mathbb{Z} / e \mathbb{Z})^{N}} R \tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{N}} 1
$$

and

$$
B(\infty)=\left(\cup_{N \in \mathbb{Z}_{\geq 0}} \cup_{\left(i_{1}, \ldots, i_{N}\right) \in(\mathbb{Z} / e \mathbb{Z})^{N}} \tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{N}} 1+v L(\infty)\right) \backslash\{0\}
$$

$B(\infty)$ is a basis of the \mathbb{C}-vector space $L(\infty) / v L(\infty) . \quad U_{v}^{-}$admits a root space decomposition $U_{v}^{-}=\oplus_{\alpha \in Q_{+}}\left(U_{v}^{-}\right)_{-\alpha}$, where $Q_{+}=\sum_{i \in \mathbb{Z} / e \mathbb{Z}} \mathbb{Z}_{\geq 0} \alpha_{i}$, and it follows that

$$
B(\infty)=\bigsqcup_{\alpha \in Q_{+}} B(\infty)_{-\alpha}
$$

We define $\mathrm{wt}(b)=-\alpha$ if $b \in B(\infty)_{-\alpha}$. Then, by defining

$$
\epsilon_{i}(b)=\max \left\{k \in \mathbb{Z}_{\geq 0} \mid \tilde{e}_{i}^{k} b \neq 0\right\} \text { and } \varphi_{i}(b)=\epsilon_{i}(b)+\operatorname{wt}(b)\left(\alpha_{i}^{\vee}\right)
$$

for $b \in B(\infty),\left(B(\infty), \mathrm{wt}, \epsilon_{i}, \varphi_{i}, \tilde{e}_{i}, \tilde{f}_{i}\right)$ is a \mathfrak{g}-crystal in the sense of Kashiwara [14, p.48].

We define the bar operation on U_{v}^{-}by $\bar{v}=v^{-1}$ and $\bar{f}_{i}=f_{i}$. Lusztig and Kashiwara independently constructed the canonical basis/the global basis

$$
\left\{G_{v}(b) \mid b \in B(\infty)\right\}
$$

of U_{v}^{-}, which is characterized by the property that

$$
\overline{G_{v}(b)}=G_{v}(b), \quad G_{v}(b)+v L(\infty)=b
$$

Example 2.3. Let $e=3$. Then, e_{2} and f_{1} commute so that $e_{2}^{\prime} f_{1}=0$ and $\tilde{f}_{2} f_{1}=f_{2} f_{1}$ follows. Similarly, $\tilde{f}_{1} f_{2}=f_{1} f_{2}$. Thus, $\left\{f_{1} f_{2}, f_{2} f_{1}\right\}$ is the canonical basis of $\left(U_{v}^{-}\right)_{-\alpha_{1}-\alpha_{2}}$. For the null root $\delta=\alpha_{0}+\alpha_{1}+\alpha_{2}$, $\left\{f_{0} f_{1} f_{2}, f_{2} f_{1} f_{0}, f_{0} f_{2} f_{1}, f_{1} f_{0} f_{2}\right\}$ is the canonical basis of $\left(U_{v}^{-}\right)_{-\delta}$. Of course, more complex linear combination of monomials in f_{i} appear in the canonical basis of other $\left(U_{v}^{-}\right)_{-\alpha}$.
2.2. Hall algebras. The crystal $B(\infty)$ has a concrete description. Let Γ be the cyclic quiver of length e. This is an oriented graph with vertices $\mathbb{Z} / e \mathbb{Z}$ and edges $\{(i, i+1), i \in \mathbb{Z} / e \mathbb{Z}\}$. Let $V=\oplus_{i \in \mathbb{Z} / e \mathbb{Z}} V_{i}$ be a finite dimensional $\mathbb{Z} / e \mathbb{Z}$-graded vector space, and define

$$
E_{V}=\bigoplus_{i \in \mathbb{Z} / e \mathbb{Z}} \operatorname{Hom}_{\mathbb{C}}\left(V_{i}, V_{i+1}\right) \subseteq \operatorname{End}_{\mathbb{C}}(V)
$$

An element $X \in E_{V}$ is called a representation of Γ on V. If V runs through all finite dimensional $\mathbb{Z} / e \mathbb{Z}$-graded vector spaces, we obtain the category of representations of Γ. It is the same as the category of finite dimensional $\mathbb{C} \Gamma$-modules, where $\mathbb{C} \Gamma$ is the path algebra of Γ. The simple modules are labelled by $\mathbb{Z} / e \mathbb{Z}$. For each $i \in \mathbb{Z} / e \mathbb{Z}$, we define the corresponding simple module S_{i} by $V=V_{i}=\mathbb{C}$ and $X=0$.

If X is nilpotent as an endomorphism of V, the representation is called nilpotent. We denote by \mathcal{N}_{V} the subset of nilpotent representations in E_{V}. The vector

$$
\underline{\operatorname{dim}} V=\left(\operatorname{dim} V_{i}\right)_{i \in \mathbb{Z} / e \mathbb{Z}}
$$

is called the dimension vector of the representation.
Let $G_{V}=\prod_{i \in \mathbb{Z} / e \mathbb{Z}} \mathrm{GL}\left(V_{i}\right)$. It acts on E_{V} and N_{V} by conjugation and two representations are equivalent if and only if they are in the same G_{V}-orbit.

Example 2.4. Let $G_{n}=\mathrm{GL}_{n}(\mathbb{C})$ and suppose that $s \in G_{n}$ has order e. Let ζ be a primitive $e^{t h}$ root of unity, $V=\mathbb{C}^{n}$, and let V_{i} be the eigenspace of s for the eigenvalue ζ^{i}. If $X \in \operatorname{End}_{\mathbb{C}}(V)$ is such that $s X s^{-1}=\zeta X$ then $X V_{i} \subseteq V_{i+1}$. Thus, X defines a representation of Γ on V. Note that G_{V} is the centralizer group $G_{n}(s)$ in this case.

By linear algebra, the isomorphism classes of nilpotent representations are labelled by ($\mathbb{Z} / e \mathbb{Z}$-valued) multisegments.

Definition 2.5. Let $l \in \mathbb{Z}_{>0}$ and $i \in \mathbb{Z} / e \mathbb{Z}$. The segment of length l and head i is the sequence of consecutive residues $[i, i+1, \ldots, i+l-1]$. We denote it by $[i ; l)$. Similarly, The segment of length l and tail i is the sequence of consecutive residues $[i-l+1, \ldots, i-1, i]$. We denote it by $(l ; i]$. We say that $[i ; l)$ has a removable i-node and $[i+1 ; l)$ has an addable i-node.

A collection of segments is called a multisegment. If the collection is the empty set, we call it the empty multisegment.

Each $[i ; l)$ defines an indecomposable nilpotent $\mathbb{C} \Gamma$-module $\mathbb{C}(\ell ; i]$, which is characterized by the property that

$$
\mathbb{C}[i ; l) \text { is a uniserial module and } \operatorname{Top}(\mathbb{C}[i ; l))=S_{i}
$$

Hence, a complete set of isomorphism classes of nilpotent representations is given by the modules

$$
M_{\psi}=\bigoplus_{i \in \mathbb{Z} / e \mathbb{Z}, l \in \mathbb{Z}>0} \mathbb{C}[i, l)^{\oplus m_{[i ; l)}}
$$

which is labelled by the multisegment

$$
\psi=\left\{[i ; l)^{\oplus m_{[i, l)}}\right\}_{i \in \mathbb{Z} / e \mathbb{Z}, l \in \mathbb{Z}_{>0}}
$$

We denote the corresponding G_{V}-orbit in \mathcal{N}_{V} by \mathcal{O}_{ψ}.
Now, we introduce the Hall polynomials. Let \mathbb{F}_{q} be a finite field, and consider $\mathbb{F}_{q} \Gamma$-modules. Then, they are classified by multisegments again. Let V, T and W be $\mathbb{Z} / e \mathbb{Z}$-graded vector spaces over \mathbb{F}_{q} such that

$$
\underline{\operatorname{dim}} V=\underline{\operatorname{dim}} T+\underline{\operatorname{dim}} W .
$$

Let φ_{1}, φ_{2} and ψ be multisegments such that $\mathcal{O}_{\varphi_{1}} \subseteq \mathcal{N}_{T}, \mathcal{O}_{\varphi_{2}} \subseteq \mathcal{N}_{W}$ and $\mathcal{O}_{\psi} \subseteq \mathcal{N}_{V}$. If the number of submodules U of M_{ψ} that satisfies $U \simeq M_{\varphi_{2}}$ and $M_{\psi} / U \simeq M_{\varphi_{1}}$ is polynomial in $q=\operatorname{card}\left(\mathbb{F}_{q}\right)$, then this polynomial is called the Hall polynomial and we denote it by $F_{\varphi_{1}, \varphi_{2}}^{\psi}(q)$. The existence of Hall polynomials in our case was proved by Jin Yun Guo [11, Theorem 2.7].

For a and b in \mathbb{Z}^{e} we define a bilinear form m by

$$
m(a, b)=\sum_{i \in \mathbb{Z} / e \mathbb{Z}}\left(a_{i} b_{i+1}+a_{i} b_{i}\right)
$$

We remark that this is not the Euler form used by Ringel to define his (twisted) Hall algebra, but the one used by Lusztig, which comes from the difference of dimensions of the fibers of two fiber bundles which appear in his geometric definition of the product, namely in the definition of the induction functor. In his theory, the Euler form appears in the definition of coproduct, namely in the definition of the restriction functor.

Now, Lusztig's version of the Hall algebra associated to Γ is the $\mathbb{C}(v)$ algebra with basis $\left\{u_{\psi} \mid \psi\right.$ is a multisegment $\}$ and product is given by

$$
u_{\varphi_{1}} u_{\varphi_{2}}=v^{m(\underline{\operatorname{dim}} T, \underline{\operatorname{dim}} W)} \sum_{\psi} F_{\varphi_{1}, \varphi_{2}}^{\psi}\left(v^{-2}\right) u_{\psi}
$$

Note that $[i ; 1)$ is the multisegment which labels the simple module S_{i}, for $i \in \mathbb{Z} / e \mathbb{Z}$. Then the $\mathbb{C}(v)$-subalgebra generated by these $u_{[i ; 1)}$ is called the composition algebra, and we may and do identify it with U_{v}^{-}by $u_{[i ; 1)} \mapsto f_{i}$. This isomorphism between the composition algebra and U_{v}^{-}was proved by Ringel and Lusztig independently.
Definition 2.6. For each multisegment ψ, we define $E_{\psi}=v^{\operatorname{dim}} \mathcal{O}_{\psi} u_{\psi}$. The set $\left\{E_{\psi} \mid \psi\right.$ is a multisegment. $\}$ is called the PBW basis of the Hall algebra.

Example 2.7. In the previous example, we have

$$
f_{1} f_{2}=E_{\{[1 ; 2)\}}+v E_{\{[1 ; 1),[2 ; 1)\}}, \quad f_{2} f_{1}=E_{\{[1 ; 1),[2 ; 1)\}} .
$$

Similarly, we have

$$
\begin{aligned}
f_{0} f_{1} f_{2} & =E_{\{[0 ; 3)\}}+2 v E_{\{[1 ; 2),[0 ; 1)\}}+v^{2} E_{\{[0 ; 1),[1 ; 1),[2 ; 1)\}} \\
f_{2} f_{1} f_{0} & =E_{\{[2 ; 2),[1 ; 1)\}}+v E_{\{[0 ; 1),[1 ; 1),[2 ; 1)\}} \\
f_{0} f_{2} f_{1} & =E_{\{[0 ; 2),[2 ; 1)\}}+v E_{\{[0 ; 1),[1 ; 1),[2 ; 1)\}} \\
f_{1} f_{0} f_{2} & =E_{\{[1 ; 2),[0 ; 1)\}}+v E_{\{[0 ; 1),[1 ; 1),[2 ; 1)\}}
\end{aligned}
$$

Note that $E_{\{[0 ; 1),[1 ; 1),[2 ; 1)\}}$ does not appear with coefficient 1. This is general phenomenon. See Theorem 2.9 below.
Definition 2.8. A multisegment ψ is aperiodic if, for every $l \in \mathbb{Z}_{>0}$, there exists some $i \in \mathbb{Z} / e \mathbb{Z}$ such that the segment of length l and head i does not appear in ψ. Equivalently, a multisegment ψ is aperiodic if, for each $l \in \mathbb{Z}_{>0}$, there exists some $i \in \mathbb{Z} / e \mathbb{Z}$ such that the segment of length l and tail i does not appear in ψ.

The notion of aperiodicity and the following theorem are due to Lusztig.
Theorem 2.9. For each $b \in B(\infty)$, the canonical basis element $G_{v}(b)$ has the form

$$
G_{v}(b)=E_{\psi}+\sum_{\psi^{\prime} \neq \psi} c_{\psi, \psi^{\prime}}(v) E_{\psi^{\prime}}
$$

for a unique aperiodic multisegment ψ, such that $c_{\psi, \psi^{\prime}}(v) \in \mathbb{C}(v)$ is regular at $v=0$ and $c_{\psi, \psi^{\prime}}(0)=0$.

Hence, we may label elements of $B(\infty)$ by aperiodic multisegments. We identify $B(\infty)$ with the set of aperiodic multisegments. Then, we denote the canonical basis by $G_{v}(\psi)$, for multisegments ψ, hereafter.

Leclerc, Thibon and Vasserot described the crystal structure on the set of aperiodic multisegments $B(\infty)$ in [17, Theorem 4.1], by using a result by Reineke.

Let ψ be a multisegment. Let $\psi_{\geq l}$ be the multisegment obtained from ψ by deleting multisegments of length less than l, for $l \in \mathbb{Z}_{>0}$. Let $m_{[i ; l)}$ be the multiplicity of $[i ; l)$ in ψ. Then, for $i \in \mathbb{Z} / e \mathbb{Z}$, we consider

$$
S_{l, i}=\sum_{k \geq l}\left(m_{[i+1 ; k)}-m_{[i ; k)}\right)
$$

that is, the number of addable i-nodes of $\psi_{\geq l}$ minus the number of removable i-nodes of $\psi_{\geq l}$. Let $\ell_{0}<\ell_{1}<\cdots$ be those l that attain $\min _{l>0} S_{l, i}$. The following is the description of the crystal structure given by Leclerc, Thibon and Vasserot.

Theorem 2.10. Let ψ be a multisegment, $i \in \mathbb{Z} / e \mathbb{Z}$ and let ℓ_{0} be as above. Then, $\tilde{f}_{i} \psi=\psi_{\ell_{0}, i}$, where $\psi_{\ell_{0}, i}$ is obtained from ψ by adding $[i ; 1)$ if $\ell_{0}=1$, and by replacing $\left[i+1 ; \ell_{0}-1\right)$ with $\left[i ; \ell_{0}\right)$ if $\ell_{0}>1$.
2.3. An anti-automorphism of U_{v}^{-}. As the identification of the affine Hecke algebra with the convolution algebra $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$, which will be explained in the next section, is not canonical, we go back and forth between two identifications. For this reason, we need another labelling by aperiodic multisegments.

Let $V=\oplus_{i \in \mathbb{Z} / e \mathbb{Z}} V_{i}$ be a graded vector space as before, and define its dual graded vector space by $V^{*}=\oplus_{i \in \mathbb{Z} / e \mathbb{Z}} V_{i}^{*}$ where $V_{i}^{*}=\operatorname{Hom}_{\mathbb{C}}\left(V_{-i}, \mathbb{C}\right)$. Then, by sending $X \in E_{V}$ to its transpose, we have a linear isomorphism

$$
E_{V} \simeq E_{V^{*}}=\oplus_{i \in \mathbb{Z} / e \mathbb{Z}} \operatorname{Hom}_{\mathbb{C}}\left(V_{i}^{*}, V_{i+1}^{*}\right)
$$

Using the standard basis of E_{V} and its dual basis in $E_{V^{*}}$, we identify the underlying spaces E_{V} and $E_{V^{*}}$. Note that the G_{V}-action on this E_{V} is the conjugation by the transpose inverse of $g \in G_{V}$, while the G_{V}-action on the original E_{V} is the conjugation by $g \in G_{V}$. Then, ρ is an isomorphism of two G_{V}-varieties E_{V} so that the G_{V}-orbit \mathcal{O}_{ψ} in the original E_{V} corresponds to the G_{V}-orbit $\mathcal{O}_{\rho(\psi)}$ in the new E_{V}, where $\rho(\psi)$ is defined by $\rho([i ; l))=(l ;-i]$. Thus, we have a linear isomorphism of the Hall algebras on both sides, which we also denote by ρ, such that

$$
\rho\left(E_{\psi}\right)=E_{\rho(\psi)} \text { and } \rho\left(G_{v}(\psi)\right)=G_{v}(\rho(\psi)) \text { if } \psi \text { is aperiodic. }
$$

That is, this gives a relabelling of the PBW basis and the canonical basis. However, if we take the algebra structure into account, ρ induces the antiautomorphism of U_{v}^{-}given by $f_{i} \mapsto f_{-i}$, which is clear from the definition of the multiplication of the Hall algebra. In particular, the crystal structure on the set of aperiodic multisegments is changed in this new labelling, and the Kashiwara operators \tilde{e}_{i} and \tilde{f}_{i} correspond to the Kashiwara operators \tilde{e}_{-i} and \tilde{f}_{-i} in this new crystal structure. In the new crystal structure, we change the definition of addable and removable i-nodes as follows.

Definition 2.11. We say that ($l ; i]$ has a removable i-node and $(l ; i-1]$ has an addable i-node.

We consider $S_{l, i}=\sum_{k \geq l}\left(m_{(k ; i-1]}-m_{(k ; i]}\right)$, that is, the number of addable i-nodes of $\psi_{\geq l}$ minus the number of removable i-nodes of $\psi_{\geq l}$ in the new definition of removable and addable i-nodes. Let $\ell_{0}<\ell_{1}<\cdots$ be those l that attain $\min _{l>0} S_{l, i}$. Then, the crystal structure in the new labelling is given as follows. In fact, this version is stated in [17].

Theorem 2.12. Let ψ be a multisegment, $i \in \mathbb{Z} / e \mathbb{Z}$ and let ℓ_{0} be as above. Then, $\tilde{f}_{i} \psi=\psi_{\ell_{0}, i}$, where $\psi_{\ell_{0}, i}$ is obtained from ψ by adding $(1 ; i]$ if $\ell_{0}=1$, and by replacing $\left(\ell_{0}-1 ; i-1\right]$ with $\left(\ell_{0} ; i\right]$ if $\ell_{0}>1$.

To compute $\tilde{e}_{i} \psi$, for a multisegment ψ, we consider the same $S_{l, i}$. If $\min _{l>0} S_{l, i}$ is attained at more than one l, then $\tilde{e}_{i} \psi=0$. Otherwise, let ℓ_{0} be the unique l that attains $\min _{l>0} S_{l, i}$. Then, $\tilde{e}_{i} \psi$ is obtained from ψ by replacing $\left(\ell_{0} ; i\right]$ with $\left(\ell_{0}-1 ; i-1\right]$.

We use the crystal structure on the set of aperiodic multisegments in Theorem 2.10 when we choose the identification of $R\left(G_{n} \times \mathbb{C}^{\times}\right)$-algebras $H_{n} \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ following Lusztig [18], while we use that in Theorem 2.12 when we choose the identification $H_{n} \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ following Ginzburg [6]. We note that the second crystal structure is the star crystal structure of the first.

3. Affine Hecke algebras

Let H_{n} be the extended affine Hecke algebra associated with G_{n}. It is the $\mathbb{C}\left[q^{ \pm}\right]$-algebra generated by T_{i}, for $1 \leq i<n$, and $X_{i}^{ \pm}$, for $1 \leq i \leq n$,
subject to the relations

$$
\left(T_{i}-q\right)\left(T_{i}+1\right)=0, \quad q^{-1} T_{i} X_{i} T_{i}=X_{i+1}, \quad \text { etc. }
$$

In this section, we recall the geometric realization of affine Hecke algebras by Lusztig and Ginzburg, and of specialized affine Hecke algebras by Ginzburg.
3.1. Varieties. Let $G_{n}=G L_{n}(\mathbb{C})$ as before, and B_{n} the Borel subgroup of upper triangular matrices. We denote the unipotent radical of B_{n} by U_{n}, and the maximal torus of diagonal matrices by T_{n}. Write $\mathbb{C}^{n}=\mathbb{C} e_{1} \oplus \cdots \oplus \mathbb{C} e_{n}$ and let $\mathcal{F} \ell_{n}$ be the flag variety, which consists of increasing subspaces $F=$ $\left(F_{i}\right)_{0 \leq i \leq n}$ in \mathbb{C}^{n} such that $\operatorname{dim} F_{i}=i$, for all $i . G_{n} / B_{n} \simeq \mathcal{F} \ell_{n}$ through the map $g B_{n} \mapsto F$ defined by $F_{i}=\mathbb{C} g e_{1} \oplus \cdots \oplus \mathbb{C} g e_{i}$, for $1 \leq i \leq n$. Define the Schubert cell $S_{n}(w)$ and the Schubert variety $X_{n}(w)$, for $w \in \mathfrak{S}_{n}$, by

$$
\begin{aligned}
& S_{n}(w)=\left\{F \in \mathcal{F} \ell_{n} \mid \operatorname{dim}\left(F_{i} \cap \mathbb{C}^{j}\right)=\sharp\{k \mid 1 \leq k \leq i, 1 \leq w(k) \leq j\}\right\} \\
& X_{n}(w)=\left\{F \in \mathcal{F} \ell_{n} \mid \operatorname{dim}\left(F_{i} \cap \mathbb{C}^{j}\right) \geq \sharp\{k \mid 1 \leq k \leq i, 1 \leq w(k) \leq j\}\right\}
\end{aligned}
$$

The Bruhat order on \mathfrak{S}_{n} has the following description: $y \leq w$ if and only if

$$
\sharp\{k \mid 1 \leq k \leq i, 1 \leq y(k) \leq j\} \geq \sharp\{k \mid 1 \leq k \leq i, 1 \leq w(k) \leq j\}
$$

for all i and j. We have $X_{n}(w)=\sqcup_{y \leq w} S_{n}(y)$ and $\operatorname{dim} S_{n}(y)=\ell(y) . S_{n}(w)$ has the unique T_{n}-fixed point F_{w} defined by $\left(F_{w}\right)_{i}=\mathbb{C} e_{w(1)} \oplus \cdots \oplus \mathbb{C} e_{w(i)}$. It is well-known that $X(w)$ are normal varieties. See 4 , Theorem 3.2.2] for example.

Now we consider the diagonal G_{n}-action on $\mathcal{F} \ell_{n} \times \mathcal{F} \ell_{n}$. Then, G_{n}-orbits in $\mathcal{F} \ell_{n} \times \mathcal{F} \ell_{n}$ are in bijection with B_{n}-orbits in $\mathcal{F} \ell_{n}$ and we denote the orbits
$O_{n}(w)=\left\{\left(F, F^{\prime}\right) \in \mathcal{F} \ell_{n} \times \mathcal{F} \ell_{n} \mid \operatorname{dim}\left(F_{i} \cap F_{j}^{\prime}\right)=\sharp\{k \mid 1 \leq k \leq i, 1 \leq w(k) \leq j\}\right\}$.
A pair of flags $\left(F, F^{\prime}\right)$ belongs to $O_{n}(w)$ if and only if

$$
\operatorname{dim} \frac{F_{i} \cap F_{j}^{\prime}}{F_{i-1} \cap F_{j}^{\prime}+F_{i} \cap F_{j-1}^{\prime}}= \begin{cases}1 & (j=w(i)) \\ 0 & \text { (otherwise) }\end{cases}
$$

We denote by \mathcal{N}_{n} the set of nilpotent elements in $M a t_{n}(\mathbb{C})$ and write

$$
T^{*} \mathcal{F} \ell_{n}=\left\{(X, F) \in \mathcal{N}_{n} \times \mathcal{F} \ell_{n} \mid X F_{i} \subseteq F_{i-1}\right\}
$$

Then the Steinberg variety is defined by

$$
\begin{aligned}
Z_{n} & =T^{*} \mathcal{F} \ell_{n} \times_{\mathcal{N}_{n}} T^{*} \mathcal{F} \ell_{n} \\
& =\left\{\left(X, F, F^{\prime}\right) \in \mathcal{N}_{n} \times \mathcal{F} \ell_{n} \times \mathcal{F} \ell_{n} \mid X F_{i} \subseteq F_{i-1}, X F_{i}^{\prime} \subseteq F_{i-1}^{\prime}\right\}
\end{aligned}
$$

Z_{n} is a $G_{n} \times \mathbb{C}^{\times}$-variety by the action

$$
(g, c)\left(X, F, F^{\prime}\right)=\left(c^{-1} g X g^{-1}, g F, g F^{\prime}\right)
$$

for $(g, c) \in G_{n} \times \mathbb{C}^{\times}$and $\left(X, F, F^{\prime}\right) \in Z_{n}$.
We consider the complexified K-group of the abelian category of $G_{n} \times \mathbb{C}^{\times}$equivariant coherent sheaves on Z_{n}. Using the closed embedding $Z_{n} \subseteq$
$T^{*} \mathcal{F} \ell_{n} \times T^{*} \mathcal{F} \ell_{n}$, we have the convolution algebra $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right) . Z_{n}$ has a partition $Z_{n}=\sqcup_{w \in \mathfrak{S}_{n}} Z_{n}(w)$, where

$$
Z_{n}(w)=\left\{\left(X, F, F^{\prime}\right) \in Z_{n} \mid\left(F, F^{\prime}\right) \in O_{n}(w)\right\}
$$

We have $\operatorname{dim} Z_{n}(w)=n(n-1)$ and $Z_{n}(w)$ is a $\left(\frac{n(n-1)}{2}-\ell(w)\right)$-dimensional vector bundle over $O_{n}(w)$. Then, $\left\{\overline{Z_{n}(w)}\right\}_{w \in \mathfrak{S}_{n}}$ is the set of the irreducible components of Z_{n}. Define

$$
Z_{n-1, n}=\left\{\left(X, F, F^{\prime}\right) \in Z_{n} \mid F_{n-1}=F_{n-1}^{\prime}\right\} .
$$

The condition $F_{n-1}=F_{n-1}^{\prime}$ is equivalent to $\left(F, F^{\prime}\right) \in \sqcup_{w \in \mathfrak{S}_{n-1}} O_{n}(w)$, because

$$
\operatorname{dim} \frac{F_{n} \cap F_{n}^{\prime}}{F_{n-1} \cap F_{n}^{\prime}+F_{n} \cap F_{n-1}^{\prime}}=\operatorname{dim} \frac{\mathbb{C}^{n}}{F_{n-1}+F_{n-1}^{\prime}}=1
$$

if and only if $F_{n-1}=F_{n-1}^{\prime}$. Hence, $Z_{n-1, n}=\sqcup_{w \in \mathfrak{S}_{n-1}} Z_{n}(w)$.
Similarly, $\left(F, F^{\prime}\right) \in O_{n}(e) \sqcup O_{n}\left(s_{i}\right)=\overline{O_{n}\left(s_{i}\right)}$ if and only if $F_{j}=F_{j}^{\prime}$, for all $j \neq i$. It follows that

$$
\overline{Z_{n}\left(s_{i}\right)}=\left\{\left(X, F, F^{\prime}\right) \in Z_{n} \mid F_{j}=F_{j}^{\prime}, \text { for all } j \neq i, X F_{i+1} \subseteq F_{i-1}\right\}
$$

The pushforward of $\mathcal{O} \overline{Z_{n}\left(s_{i}\right)}$ with respect to the closed embedding $\overline{Z_{n}\left(s_{i}\right)} \subseteq$ Z_{n} is also denoted by $\mathcal{O}_{\overline{Z_{n}\left(s_{i}\right)}}$ by abuse of notation. We denote

$$
b_{i}=\left[\mathcal{O}_{\overline{Z_{n}\left(s_{i}\right)}}\right] \in K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)
$$

Let $Q_{i, i+1}$ be the parabolic subgroup of G_{n} which corresponds to $s_{i}, \mathfrak{n}_{i, i+1}$ the nilradical of its Lie algebra. Then

$$
\overline{Z_{n}\left(s_{i}\right)}=\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{Q_{i, i+1} \times \mathbb{C}^{\times}}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathfrak{n}_{i, i+1}\right)
$$

is a vector bundle over $\overline{O_{n}\left(s_{i}\right)}=\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{Q_{i, i+1} \times \mathbb{C}^{\times}}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$. We denote by \mathcal{L}_{i} the pullback of the line bundle

$$
\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{Q_{i, i+1} \times \mathbb{C}^{\times}}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \otimes \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)
$$

over $\overline{O_{n}\left(s_{i}\right)}$ to $\overline{Z_{n}\left(s_{i}\right)}$.
For $\lambda \in \mathbb{Z} \epsilon_{1} \oplus \cdots \oplus \mathbb{Z} \epsilon_{n}=\operatorname{Hom}\left(T_{n}, \mathbb{C}^{\times}\right)$, let \mathbb{C}_{λ} be the $B_{n} \times \mathbb{C}^{\times}$-module associated with λ and define the associated line bundle L_{λ} on $\mathcal{F} \ell_{n}$ by

$$
L_{\lambda}=\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{B_{n} \times \mathbb{C}^{\times}} \mathbb{C}_{\lambda}
$$

When we consider λ as a character of T_{n}, we denote it by e^{λ}. Then, we identify $K^{G_{n} \times \mathbb{C}^{\times}}\left(\mathcal{F} \ell_{n}\right)=R\left(T_{n} \times \mathbb{C}^{\times}\right)$via $L_{\lambda} \mapsto e^{\lambda}$ as usual.

Let us denote $\pi_{n}: T^{*} \mathcal{F} \ell_{n} \rightarrow \mathcal{F} \ell_{n}$ and $\delta_{n}: Z_{n}(e) \subseteq Z_{n}$. We consider the diagram

$$
\mathcal{F} \ell_{n} \stackrel{\pi_{n}}{\longleftarrow} T^{*} \mathcal{F} \ell_{n} \simeq Z_{n}(e) \xrightarrow{\delta_{n}} Z_{n}
$$

and we denote

$$
\theta_{\lambda}=\left[\delta_{n *} \pi_{n}^{*} L_{-\lambda}\right] \in K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)
$$

By the Thom isomorphism, $\left\{\left[\pi_{n}^{*} L_{\lambda}\right] \mid \lambda \in \operatorname{Hom}\left(T_{n}, \mathbb{C}^{\times}\right)\right\}$is a basis of $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}(e)\right)$.

Definition 3.1. We define $T_{i}=\left[\mathcal{L}_{i}\right]+q$, for $1 \leq i<n$, and $X_{i}=\theta_{\epsilon_{i}}$, for $1 \leq i \leq n$.

We have $\theta_{\lambda}=\prod_{i=1}^{n} X_{i}^{\lambda_{i}}$, for $\lambda=\sum_{i=1}^{n} \lambda_{i} \epsilon_{i}$. Using the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{1}}(-1) \otimes \mathcal{O}_{\mathbb{P}^{1}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{1}} \otimes \mathcal{O}_{\mathbb{P}^{1}} \rightarrow \mathcal{O}_{\Delta \mathbb{P}^{1}} \rightarrow 0
$$

where $\Delta \mathbb{P}^{1} \subseteq \mathbb{P}^{1} \times \mathbb{P}^{1}$ is the diagonal, we know that $\left[\mathcal{L}_{i}\right]=b_{i}-\left(1-q \theta_{\alpha_{i}}\right)$.
Then, T_{i}, for $1 \leq i<n$, and $X_{i}^{ \pm}$, for $1 \leq i \leq n$, satisfy the defining relations of H_{n}. In particular, we have the Bernstein relation

$$
T_{i} \theta_{\lambda}=\theta_{s_{i} \lambda} T_{i}+(1-q) \frac{\theta_{\lambda}-\theta_{s_{i} \lambda}}{\theta_{-\alpha_{i}}-1}
$$

where $\alpha_{i}=-\epsilon_{i}+\epsilon_{i+1}$. This follows from the next theorem. The theorem was found by Lusztig and the action of T_{i} is called the Demazure-Lusztig operator.

Theorem 3.2. Through the Thom isomorphism, we identify $K^{G_{n} \times \mathbb{C}^{\times}}\left(T^{*} \mathcal{F} \ell_{n}\right)$ with

$$
K^{G_{n} \times \mathbb{C}^{\times}}\left(\mathcal{F} \ell_{n}\right)=R\left(T_{n} \times \mathbb{C}^{\times}\right)
$$

Then the convolution action of $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ on $K^{G_{n} \times \mathbb{C}^{\times}}\left(T^{*} \mathcal{F} \ell_{n}\right)$ is given by

$$
T_{i} f=\frac{f-s_{i} f}{e^{\alpha_{i}}-1}-q \frac{f-e^{\alpha_{i}} s_{i} f}{e^{\alpha_{i}}-1}, \quad X_{i} f=e^{-\epsilon_{i}} f
$$

It is well-known that this is a faithful representation of H_{n}. Note that we have chosen the isomorphism $H_{n} \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ to have the same formulas as [6, Theorem 7.2.16, Proposition 7.6.38]. When we follow 18], we define

$$
\theta_{\lambda}=\left[\delta_{n *} \pi_{n}^{*} L_{\lambda}\right] \text { and } T_{i}=-\left[\mathcal{L}_{i}\right]-1
$$

Then, the formulas for the convolution action on $R\left(T_{n} \times \mathbb{C}^{\times}\right)$change to those in [18, p.335]. The two identifications of $H_{n} \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ are related by the involution σ defined by

$$
T_{i} \mapsto-q T_{i}^{-1}, \quad X_{i} \mapsto X_{i}^{-1}
$$

In the rest of this section, we follow the identification in 18].
The center $Z\left(H_{n}\right)$ of H_{n} is the $\mathbb{C}\left[q^{ \pm}\right]$-subalgebra consisting of all the symmetric Laurent polynomials in X_{1}, \ldots, X_{n}. Thus, we identify $Z\left(H_{n}\right)$ with $R\left(G_{n} \times \mathbb{C}^{\times}\right)$. We also identify $\mathbb{C}\left[q^{ \pm}\right]\left[X_{1}^{ \pm}, \ldots, X_{n}^{ \pm}\right]$with $R\left(T_{n} \times \mathbb{C}^{\times}\right)$.

Let $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right)$ be the convolution algebra with respect to the embedding $Z_{n-1, n} \subseteq T^{*} \mathcal{F} \ell_{n} \times T^{*} \mathcal{F} \ell_{n}$. Let

- $H_{n-1, n}$ be the parabolic subalgebra $H_{n-1} \otimes_{\mathbb{C}} \mathbb{C}\left[X_{n}^{ \pm}\right]$of H_{n}, and
- $\iota_{n}: Z_{n-1, n} \subseteq Z_{n}$ be the inclusion map.

As Lusztig originally stated the next theorem as an isomorphism of bimodules, we attribute the next theorem to Ginzburg and Lusztig.

Theorem 3.3.

(1) We have an isomorphism of $R\left(G_{n} \times \mathbb{C}^{\times}\right)$-algebras $H_{n} \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ by the above choice of T_{i} and X_{i} in $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$.
(2) The inclusion map ι_{n} induces the following commutative diagram of $Z\left(H_{n}\right)$ algebras.

$$
\begin{array}{ccc}
\iota_{n *}: K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right) & \rightarrow & K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right) \\
\downarrow & & \downarrow \\
H_{n-1, n} & \subseteq & H_{n}
\end{array}
$$

where the vertical arrows are isomorphisms.
It is also clear that the inclusion map $Y_{n} \simeq Z_{n}(e) \hookrightarrow Z_{n-1, n}$ induces

$$
K^{G_{n} \times \mathbb{C}^{\times}}\left(Y_{n}\right) \rightarrow K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right)
$$

and it is identified with $R\left(T_{n} \times \mathbb{C}^{\times}\right) \hookrightarrow H_{n-1, n}$.
3.2. Faithfully flat descent. In the proof of [23, Proposition 6.2], the following is shown by using faithfully flat descent.

Proposition 3.4. Let G and H be affine algebraic groups such that H is a closed subgroup of G and that H acts on a quasi-projective variety X. Then we have the category equivalence

$$
\operatorname{Coh}^{G}\left(G \times_{H} X\right) \simeq \operatorname{Coh}^{H}(X)
$$

where, $\operatorname{Coh}^{G}\left(G \times_{H} X\right)$ is the category of G-equivariant coherent sheaves on $G \times_{H} X$ and $C o h^{H}(X)$ is the category of H-equivariant coherent sheaves on X.

We denote the induced isomorphism of Grothendieck groups

$$
\operatorname{Res}_{H}^{G}: K^{G}\left(G \times_{H} X\right) \xrightarrow{\sim} K^{H}(X)
$$

The left hand side is a $K^{G}(G / H)$-module through the projection $G \times_{H} X \rightarrow$ G / H, and $\operatorname{Res}_{H}^{G}$ is a $R(H)$-module isomorphism.

We add the assumption that X is quasi-projective in order to assure that $G \times_{H} X$ is also a variety [3, Theorem 4.6.1]. $G \times_{H} X$ is smooth (resp. normal) if and only if X is smooth (resp. normal) 21, Proposition 4.22].

Note that the action of H on $G \times X$, which is given by $h(g, x)=\left(g h^{-1}, h x\right)$, is free, namely the map $H \times G \times X \rightarrow(G \times X) \times(G \times X)$ which is defined by $(h, g, x) \mapsto\left(g h^{-1}, h x\right) \times(g, x)$ is a closed embedding, thus $G \times X \rightarrow G \times_{H} X$ is faithfully flat.

The category equivalence is given in a very explicit manner. Consider

$$
\begin{array}{ccc}
G \times H \times X & \rightarrow & H \times X \\
\downarrow \downarrow & & \downarrow \downarrow \\
G \times X & \xrightarrow{\mu} & X \\
\nu \downarrow & & \\
G \times_{H} X & &
\end{array}
$$

The double vertical arrows on the left are the action map $a^{H}:(g, h, x) \mapsto$ $\left(g h^{-1}, h x\right)$ and the projection map $p^{H}:(g, h, x) \mapsto(g, x)$, and similarly, the double vertical arrows on the right are $(h, x) \mapsto h x$ and $(h, x) \mapsto x . \mu$ is the $\operatorname{map}(g, x) \mapsto x$. All the maps in the diagram are flat. Now, we identify

$$
G \times H \times X \simeq(G \times X) \times_{G \times_{H} X}(G \times X)
$$

by $(g, h, x) \mapsto\left(g h^{-1}, h x\right) \times(g, x)$. Then the projection to the first and the second components are a^{H} and p^{H}. Thus, the theory of faithful descent implies that $\operatorname{Coh}^{G}\left(G \times_{H} X\right)$ is equivalent to the category of G-equivariant sheaves on $G \times X$ with descent data, but the latter category is nothing but $C o h^{G \times H}(G \times X)$ by the above identification. Now we identify

$$
G \times G \times X \simeq(G \times X) \times_{X}(G \times X)
$$

by $\left(g_{1}, g_{2}, x\right) \mapsto\left(g_{1} g_{2}, g_{2}, x\right)$. Then the projection to the first and the second on the right are $a^{G}:\left(g_{1}, g_{2}, x\right) \mapsto\left(g_{1} g_{2}, x\right)$ and $p^{G}:\left(g_{1}, g_{2}, x\right) \mapsto\left(g_{2}, x\right)$ on the left. Thus, $\operatorname{Coh}{ }^{G \times H}(G \times X)$ is the category of H-equivariant sheaves on $G \times X$ with descent data, which is equivalent to $\operatorname{Coh}^{H}(X)$.

Hence, for $\mathcal{F} \in \operatorname{Coh}^{G}\left(G \times_{H} X\right)$, there exists a unique sheaf \mathcal{F}^{\sharp} up to isomorphism such that $\mu^{*} \mathcal{F}^{\sharp} \simeq \nu^{*} \mathcal{F}$, and the category equivalence is given by $\mathcal{F} \mapsto \mathcal{F}^{\sharp}$.

Let $\iota: X \hookrightarrow G \times_{H} X$ be the closed embedding. Namely, $\iota=\nu \circ \eta$ where $\eta: X \rightarrow G \times X$ is the section of μ defined by $x \mapsto(e, x)$. Then, we may compute the pullback $i^{*}: \operatorname{Coh}^{G}\left(G \times_{H} X\right) \rightarrow \operatorname{Coh}^{H}(X)$ of sheaves as follows.

$$
\iota^{*} \mathcal{F}=\eta^{*} \nu^{*} \mathcal{F} \simeq \eta^{*} \mu^{*} \mathcal{F}^{\sharp}=\mathcal{F}^{\sharp}
$$

Thus, $\operatorname{Res}_{H}^{G}$ is given by the explicit formula $[\mathcal{F}] \mapsto\left[\iota^{*} \mathcal{F}\right]$.
Suppose that X is smooth. Then, we may define the pullback in K-theory

$$
\iota^{*}: K^{G}\left(G \times_{H} X\right) \rightarrow K^{H}(X)
$$

by $[\mathcal{F}] \mapsto \sum_{j \in \mathbb{Z}}(-1)^{j}\left[\mathcal{T}\right.$ or $\left.{ }_{j}^{\mathcal{O}_{G \times}{ }_{H} X}\left(\iota_{*} \mathcal{O}_{X}, \mathcal{F}\right)\right]$. Thus, if \mathcal{F} is the sheaf of sections of a vector bundle then

$$
\operatorname{Res}_{H}^{G}([\mathcal{F}])=\left[\iota^{*} \mathcal{F}\right]=\iota^{*}[\mathcal{F}]
$$

which implies that $\operatorname{Res}_{H}^{G}([\mathcal{F}])=\iota^{*}[\mathcal{F}]$, for all $\mathcal{F} \in \operatorname{Coh}^{G}\left(G \times_{H} X\right)$, since X is smooth. Thus, we have $\iota^{*}[\mathcal{F}]=\left[\iota^{*} \mathcal{F}\right]$.

Now, let $Z \subseteq X$ be a closed H-variety, which is not necessarily smooth. Then, $X \cap\left(G \times_{H} Z\right)=Z$ and we may define the pullback

$$
\iota^{*}: K^{G}\left(G \times_{H} Z\right) \rightarrow K^{H}(Z)
$$

with respect to the embedding of smooth varieties $X \subseteq G \times_{H} X$. As we consider $K^{G}\left(G \times_{H} Z\right)$ as a subspace of $K^{G}\left(G \times_{H} X\right)$, we have $\operatorname{Res}_{H}^{G}([\mathcal{F}])=$ $\iota^{*}[\mathcal{F}]=\left[\iota^{*} \mathcal{F}\right]$, for $\mathcal{F} \in \operatorname{Coh}^{G}\left(G \times_{H} Z\right)$, as well.

3.3. The embedding of $H_{n-1, n}$ into H_{n}. Let

$$
\mathcal{N}_{n-1, n}=\left\{X \in \mathcal{N}_{n} \mid X \mathbb{C}^{n-1} \subseteq \mathbb{C}^{n-1}\right\}
$$

and we denote

$$
Y_{n-1}=T^{*} \mathcal{F} \ell_{n-1}, \quad Y_{n-1, n}=\left.T^{*} \mathcal{F} \ell_{n}\right|_{\mathcal{F} \ell_{n-1}}, \quad Y_{n}=T^{*} \mathcal{F} \ell_{n} .
$$

Here, we identify $\mathcal{F} \ell_{n-1}=\left\{F \in \mathcal{F} \ell_{n} \mid F_{n-1}=\mathbb{C}^{n-1}\right\}$. We define

$$
\begin{aligned}
Z_{n-1, n}^{\prime} & =Y_{n-1, n} \times_{\mathcal{N}_{n-1, n}} Y_{n-1, n} \\
& =\left\{\left(X, F, F^{\prime}\right) \in Z_{n} \mid F_{n-1}=F_{n-1}^{\prime}=\mathbb{C}^{n-1}\right\} .
\end{aligned}
$$

Let $P_{n-1, n}$ be the maximal parabolic subgroup of G_{n} that stabilizes \mathbb{C}^{n-1}. The Levi part $L_{n-1, n} \times \mathbb{C}^{\times}$of $P_{n-1, n} \times \mathbb{C}^{\times}$is $\left(G_{n-1} \times \mathbb{C}^{\times}\right) \times \mathbb{C}^{\times}$, which acts on Z_{n-1} by letting the middle component act trivially. We denote the unipotent radical of $P_{n-1, n}$ by $U_{n-1, n}$. It is also the unipotent radical of $P_{n-1, n} \times \mathbb{C}^{\times}$. Explicitly,

$$
L_{n-1, n}=\left(\begin{array}{cc}
G_{n-1} & 0 \\
0 & \mathbb{C}^{\times}
\end{array}\right), \quad U_{n-1, n}=\left\{\left(\begin{array}{cc}
1_{n-1} & * \\
0 & 1
\end{array}\right)\right\} .
$$

We consider the following diagram as before.
$Z_{n-1, n}^{\prime} \stackrel{\mu_{n-1, n}}{\longleftarrow}\left(G_{n} \times \mathbb{C}^{\times}\right) \times Z_{n-1, n}^{\prime} \xrightarrow{\nu_{n-1, n}}\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{P_{n-1, n} \times \mathbb{C}^{\times} \times} Z_{n-1, n}^{\prime}=Z_{n-1, n}$. Then, Proposition 3.4 says that we have the restriction map

$$
\begin{equation*}
\operatorname{Res}_{P_{n-1, n} \times \mathbb{C}^{\times}}^{G_{n} \times \mathbb{C}^{\times}}: K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right) \simeq K^{P_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}^{\prime}\right) . \tag{1}
\end{equation*}
$$

$Z_{n-1, n}^{\prime}$ is a $L_{n-1, n} \times \mathbb{C}^{\times}$-equivariant vector bundle of rank $n-1$ over Z_{n-1} and we write $\kappa_{n-1, n}: Z_{n-1, n}^{\prime} \rightarrow Z_{n-1}$. Then $\kappa_{n-1, n}^{*}$ gives the Thom isomorphism

$$
K^{L_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}^{\prime}\right) \approx K^{L_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1}\right) .
$$

Noting that

$$
\begin{aligned}
K^{P_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}^{\prime}\right) & \simeq K^{L_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}^{\prime}\right) \text { by the forgetful map, and } \\
K^{L_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1}\right) & \simeq K^{G_{n-1} \times \mathbb{C}^{\times}}\left(Z_{n-1}\right) \otimes_{\mathbb{C}} \mathbb{C}\left[X_{n}^{ \pm}\right],
\end{aligned}
$$

we have

$$
\begin{equation*}
K^{P_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}^{\prime}\right) \simeq K^{G_{n-1} \times \mathbb{C}^{\times}}\left(Z_{n-1}\right) \otimes \mathbb{C} \mathbb{C}\left[X_{n}^{ \pm}\right] . \tag{2}
\end{equation*}
$$

We identify Z_{n-1} with the zero section of $\kappa_{n-1, n}$ and denote the embedding

$$
\epsilon_{n-1, n}: Z_{n-1} \rightarrow Z_{n-1, n} .
$$

Let us consider the embedding of smooth varieties

$$
\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{P_{n-1, n} \times \mathbb{C}^{\times}}\left(Y_{n-1, n} \times Y_{n-1, n}\right) \supseteq Y_{n-1} \times Y_{n-1} .
$$

Then, $Z_{n-1, n} \cap\left(Y_{n-1} \times Y_{n-1}\right)=Z_{n-1}$ and we define

$$
\epsilon_{n-1, n}^{*}: K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right) \rightarrow K^{P_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1}\right) .
$$

with respect to this embedding of smooth varieties.

Next proposition gives the geometric description of the embedding $H_{n-1, n}$ into H_{n}.

Proposition 3.5. Combining the isomorphisms (1) and (2), we have the following isomorphism of $R\left(L_{n-1, n} \times \mathbb{C}^{\times}\right)$-algebras

$$
K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right) \supseteq K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right) \stackrel{\epsilon_{n-1, n}^{*}}{\simeq} K^{G_{n-1} \times \mathbb{C}^{\times}}\left(Z_{n-1}\right) \otimes_{\mathbb{C}} \mathbb{C}\left[X_{n}^{ \pm}\right]
$$

which gets identified with $H_{n} \supseteq H_{n-1, n}=H_{n-1} \otimes_{\mathbb{C}} \mathbb{C}\left[X_{n}^{ \pm}\right]$through the isomorphisms
$K^{G_{n-1} \times \mathbb{C}^{\times}}\left(Z_{n-1}\right) \simeq H_{n-1}, \quad K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right) \simeq H_{n-1, n}, \quad K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right) \simeq H_{n}$ given by Theorem 3.5.
Proof. We only have to show that $b_{i} \mapsto b_{i}$, for $1 \leq i<n-1$, and $\theta_{\lambda} \mapsto \theta_{\lambda}$. Define

$$
\overline{Z_{n-1, n}^{\prime}\left(s_{i}\right)}=\left\{\left(X, F, F^{\prime}\right) \in Z_{n-1, n}^{\prime} \mid F_{j}=F_{j}^{\prime} \text { for all } j \neq i, \quad X F_{i+1} \subseteq F_{i-1}\right\}
$$

Then $\nu_{n-1, n}^{-1}\left(\overline{Z_{n}\left(s_{i}\right)}\right)=\left(G_{n} \times \mathbb{C}^{\times}\right) \times \overline{Z_{n-1, n}^{\prime}\left(s_{i}\right)}$ and we have

$$
\nu_{n-1, n}^{*} \mathcal{O}_{\overline{Z_{n}\left(s_{i}\right)}}=\mu_{n-1, n}^{*} \mathcal{O}_{\overline{Z_{n-1, n}^{\prime}\left(s_{i}\right)}}, \quad \mathcal{O}_{\overline{Z_{n-1, n}^{\prime}\left(s_{i}\right)}}=\kappa_{n-1, n}^{*} \mathcal{O}_{\overline{Z_{n-1}\left(s_{i}\right)}}
$$

Hence, $b_{i} \mapsto b_{i}$, for $1 \leq i<n-1$.
Let $Z_{n-1, n}^{\prime}(e)=\left\{\left(X, F, F^{\prime}\right) \in Z_{n-1, n}^{\prime} \mid F=F^{\prime}\right\}$ and consider the diagram

$$
\begin{array}{rll}
& & \nu_{n-1, n}^{-1}\left(Z_{n}(e)\right)=\left(G_{n} \times \mathbb{C}^{\times}\right) \times Z_{n-1, n}^{\prime}(e) \\
& \swarrow & \downarrow \nu_{n-1, n}^{\prime} \\
Z_{n-1, n}^{\prime}(e) \simeq Y_{n-1, n} & \subseteq & Y_{n} \simeq Z_{n}(e) \\
\pi_{n-1, n} \downarrow & & \downarrow \pi_{n} \\
\mathcal{F} \ell_{n-1} & \subseteq & \mathcal{F} \ell_{n}
\end{array}
$$

Then $\nu_{n-1, n}^{*} \pi_{n}^{*} L_{\lambda}=\left.\mu_{n-1, n}^{*} \pi_{n-1, n}^{*} L_{\lambda}\right|_{\mathcal{F} \ell_{n-1}}$ and

$$
\left.L_{\lambda}\right|_{\mathcal{F} \ell_{n-1}}=\left(P_{n-1, n} \times \mathbb{C}^{\times}\right) \times_{B_{n} \times \mathbb{C}^{\times}} \mathbb{C}_{\lambda}
$$

But the diagram

$$
\begin{array}{lll}
Z_{n-1, n}^{\prime}(e)=\kappa_{n-1, n}^{-1}\left(Z_{n-1}(e)\right) \simeq Y_{n-1, n} \xrightarrow{\kappa_{n-1, n}} & Y_{n-1} \simeq Z_{n-1}(e) \\
& \searrow & \pi_{n-1} \\
& \mathcal{F} \ell_{n-1}
\end{array}
$$

shows

$$
\left.\pi_{n-1, n}^{*} L_{\lambda}\right|_{\mathcal{F} \ell_{n-1}}=\kappa_{n-1, n}^{*}\left(\pi_{n-1}^{*}\left(\left(P_{n-1, n} \times \mathbb{C}^{\times}\right) \times_{B_{n} \times \mathbb{C}^{\times}} \mathbb{C}_{\lambda}\right)\right)
$$

Hence, $\theta_{\lambda} \mapsto \theta_{\lambda}$, for $\lambda \in \operatorname{Hom}\left(T_{n}, \mathbb{C}^{\times}\right)$.
As the generators b_{i} and θ_{λ} correspond correctly, it is an isomorphism of $R\left(L_{n-1, n} \times \mathbb{C}^{\times}\right)$-algebras, which is identified with $H_{n-1} \otimes \mathbb{C}\left[X_{n}^{ \pm}\right] \hookrightarrow H_{n}$.
3.4. Specialized Hecke algebras. Let $\zeta \in \mathbb{C}$ be a primitive $e^{t h}$ root of unity, for $e \geq 2$. We fix a diagonal matrix $s=\operatorname{diag}\left(\zeta^{s_{1}}, \ldots, \zeta^{s_{n}}\right)$, and set $a=(s, \zeta) \in G_{n} \times \mathbb{C}^{\times}$. We denote by A the smallest closed algebraic subgroup of $G_{n} \times \mathbb{C}^{\times}$that contains a, namely the cyclic group $\langle a\rangle$ of order e in our case. Note that A is contained in $\left(G_{n-1} \times \mathbb{C}^{\times}\right) \times \mathbb{C}^{\times}$.

Let \mathbb{C}_{a} be the $R\left(T_{n} \times \mathbb{C}^{\times}\right)$-module defined by $X_{i} \mapsto \zeta^{s_{i}}$, for $1 \leq i \leq n$, and $q \mapsto \zeta .\left.\mathbb{C}_{a}\right|_{R\left(G_{n} \times \mathbb{C}^{\times}\right)}$defines a character $R\left(G_{n} \times \mathbb{C}^{\times}\right) \rightarrow \mathbb{C}$.

- The action of $R\left(T_{n} \times \mathbb{C}^{\times}\right)$factors through $R(A)$ and we may view \mathbb{C}_{a} as a $R(A)$-module. Thus, $\mathbb{C}_{a} \otimes_{R(A)}$ - makes sense.
- If we write $\mathbb{C}_{a} \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)}$-, we mean $\left.\mathbb{C}_{a}\right|_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)}$-. Note that this is the same as

$$
\mathbb{C}_{a} \otimes_{R(A)} R\left(T_{n} \times \mathbb{C}^{\times}\right) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)}-
$$

Definition 3.6. The \mathbb{C}-algebra $H_{n}^{a}=\mathbb{C}_{a} \otimes_{Z\left(H_{n}\right)} H_{n}$ is called the specialized Hecke algebra of rank n at a. The specialized algebra of the parabolic subalgebra $H_{n-1, n}$ is denoted $H_{n-1, n}^{a}:=\mathbb{C}_{a} \otimes_{Z\left(H_{n}\right)} H_{n-1, n}$.

As $H_{n} \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ and $H_{n-1, n} \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right)$ as $R\left(G_{n} \times \mathbb{C}^{\times}\right)$algebras, we identify the following \mathbb{C}-algebras respectively.
$H_{n}^{a}=\mathbb{C}_{a} \otimes_{R\left(G_{n} \times \mathbb{C} \times\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right), \quad H_{n-1, n}^{a}=\mathbb{C}_{a} \otimes_{R\left(G_{n} \times \mathbb{C} \times\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right)$.
Let I_{a} be the ideal of $R\left(T_{n} \times \mathbb{C}^{\times}\right)$generated by

$$
\left(e^{k \epsilon_{1}}+\cdots+e^{k \epsilon_{n}}\right)-\left(\zeta^{k s_{1}}+\cdots+\zeta^{k s_{n}}\right)
$$

for $k \geq 1$. Then, $R\left(T_{n} \times \mathbb{C}^{\times}\right) / I_{a}=\mathbb{C}_{a} \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} R\left(T_{n} \times \mathbb{C}^{\times}\right)$and we identify

$$
\mathbb{C}_{a} \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} R\left(T_{n} \times \mathbb{C}^{\times}\right)=\mathbb{C}_{a} \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}(e)\right)
$$

by identifying e^{λ} with $\left[\pi_{n}^{*} L_{\lambda}\right]$.
Ginzburg's theory tells us how to realize the specialized Hecke algebra in sheaf theory. The geometric proof of the modular branching rule we give in the next section is based on this theory. Our goal in this subsection is to state Theorem 3.12. Recall that A is isomorphic to the cyclic group of order $e \geq 2$. As the first step, we descend to A-equivariant K-theory in the following two lemmas. The first lemma is straightforward and we omit the proof.
Lemma 3.7. Let $L \rightarrow H$ be a morphism of affine algebraic groups over \mathbb{C}, and let X be an H-variety, $X=X_{0} \supseteq X_{1} \supseteq \cdots$ a sequence of closed H-subvarieties of X. Define $E_{i}=X_{i} \backslash X_{i+1}$.
(1) Suppose that
(a) $K_{1}^{H}\left(E_{i}\right)=0$ and
(b) $K^{H}\left(E_{i}\right)$ are free $R(H)$-modules of finite rank,
for all i. Then $K^{H}\left(X_{i}\right)$ are free $R(H)$-modules of finite rank and

$$
0 \rightarrow K^{H}\left(X_{i}\right) \rightarrow K^{H}\left(X_{i+1}\right) \rightarrow K^{H}\left(E_{i+1}\right) \rightarrow 0
$$

(2) Suppose further that the canonical map induces the isomorphism

$$
R(L) \otimes_{R(H)} K^{H}\left(E_{i}\right) \simeq K^{L}\left(E_{i}\right)
$$

In other words, the Künneth formula

$$
\begin{aligned}
K^{H}(H / L) \otimes_{R(H)} K^{H}\left(E_{i}\right) & \simeq K^{H}\left(H / L \times E_{i}\right) \\
& \simeq K^{H}\left(H \times_{L} E_{i}\right) \simeq K^{L}\left(E_{i}\right)
\end{aligned}
$$

holds. Then we have the isomorphism

$$
R(L) \otimes_{R(H)} K^{H}\left(X_{i}\right) \simeq K^{L}\left(X_{i}\right)
$$

for all i.
Suppose that H has a sequence of closed subgroups

$$
H \supseteq H_{0} \supseteq H_{1} \supseteq \cdots \supseteq H_{N}
$$

such that H_{i} / H_{i+1} is a H_{i}-module, for $0 \leq i<N$. If

$$
R(L) \otimes_{R(H)} K^{H}\left(H / H_{i}\right) \simeq K^{L}\left(H / H_{i}\right)
$$

holds for $i=0$ then it holds for $0 \leq i \leq N$. In fact, as $H / H_{i+1}=$ $H \times{ }_{H_{i}} H_{i} / H_{i+1}$ is a vector bundle over H / H_{i}, it follows from the Thom isomorphism. Note that we also have $K_{1}^{H}\left(H / H_{i}\right)=0$, for $0 \leq i \leq N$, in this case.

Example 3.8. We consider Schubert cells $S_{n}(w)$. Then,

$$
R(L) \otimes_{R\left(B_{n} \times \mathbb{C}^{\times}\right)} K^{B_{n} \times \mathbb{C}^{\times}}\left(S_{n}(w)\right) \simeq K^{L}\left(S_{n}(w)\right)
$$

for $L \subseteq B_{n} \times \mathbb{C}^{\times}$,
(a) $K_{1}^{B_{n} \times \mathbb{C}^{\times}}\left(S_{n}(w)\right)=0$ and
(b) $K^{B_{n} \times \mathbb{C}^{\times}}\left(S_{n}(w)\right)$ is a free $R\left(B_{n} \times \mathbb{C}^{\times}\right)$-module of rank 1 .

We add the proof to the next lemma for the reader's convenience.
Lemma 3.9. We may identify
$R(A) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right)=R(A) \otimes_{R\left(L_{n-1, n} \times \mathbb{C}^{\times}\right)} K^{L_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right)$,
which is a free $R(A)$-module of rank $(n-1)$! n !, and the following diagram of $R(A)$-algebras commutes.

$$
\begin{aligned}
R(A) \otimes_{R\left(L_{n-1, n} \times \mathbb{C}^{\times}\right)} K^{L_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right) & \simeq K^{A}\left(Z_{n-1, n}\right) \\
\| & \| \\
R(A) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right) & \simeq K^{A}\left(Z_{n-1, n}\right) \\
\iota_{n *} \downarrow & \downarrow \iota_{n *} \\
R(A) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right) & \simeq K^{A}\left(Z_{n}\right)
\end{aligned}
$$

In particular, by tensoring with the $R(A)$-module \mathbb{C}_{a}, we have the following commutative diagram.

$$
\begin{array}{ccc}
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1, n}\right) & \xrightarrow{\iota_{n *}} & \mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n}\right) \\
\| & & \| \\
H_{n-1, n}^{a} & \hookrightarrow & H_{n}^{a}
\end{array}
$$

Similarly, $Y_{n} \simeq Z_{n}(e) \hookrightarrow Z_{n-1, n}$ induces the following commutative diagram.

Proof. We choose a linear extension of the Bruhat order. Thus, the elements of \mathfrak{S}_{n} are $w_{1}, \ldots, w_{n!}$, where w_{1} is the identity and $w_{n!}$ is the longest element. Let $L=A \subseteq H=B_{n} \times \mathbb{C}^{\times}$and apply Lemma 3.7 to $\mathcal{F} \ell_{n}$ and the collection of closed H-subvarieties $\cup_{1 \leq j \leq i} X_{n}\left(w_{j}\right)$. Then we obtain

$$
R(A) \otimes_{R\left(T_{n} \times \mathbb{C}^{\times}\right)} K^{T_{n} \times \mathbb{C}^{\times}}\left(\mathcal{F} \ell_{n}\right) \simeq K^{A}\left(\mathcal{F} \ell_{n}\right)
$$

As it is known that

$$
\begin{aligned}
R\left(T_{n} \times \mathbb{C}^{\times}\right) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} R\left(T_{n} \times \mathbb{C}^{\times}\right) & \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(\mathcal{F} \ell_{n} \times \mathcal{F} \ell_{n}\right) \\
& \simeq K^{T_{n} \times \mathbb{C}^{\times}}\left(\mathcal{F} \ell_{n}\right)
\end{aligned}
$$

and $R\left(L_{n-1, n} \times \mathbb{C}^{\times}\right) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} R\left(T_{n} \times \mathbb{C}^{\times}\right) \simeq K^{L_{n-1, n} \times \mathbb{C}^{\times}}\left(\mathcal{F} \ell_{n}\right)$, we have

$$
\begin{gathered}
R(A) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(\mathcal{F} \ell_{n}\right) \simeq K^{A}\left(\mathcal{F} \ell_{n}\right) \\
R\left(L_{n-1, n} \times \mathbb{C}^{\times}\right) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(\mathcal{F} \ell_{n}\right) \simeq K^{L_{n-1, n} \times \mathbb{C}^{\times}}\left(\mathcal{F} \ell_{n}\right) .
\end{gathered}
$$

In particular, the first isomorphism implies

$$
\mathbb{C}_{a} \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Y_{n}\right) \simeq \mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Y_{n}\right)
$$

and Theorem 3.5 proves the last claim.
Next let $L \subseteq H=G_{n} \times \mathbb{C}^{\times}$and apply Lemma 3.7 to Z_{n} or $Z_{n-1, n}$ and the collection of closed H-subvarieties $\cup_{1 \leq j \leq i} Z_{n}\left(w_{j}\right)$. As $Z_{n}(w)$ is a vector bundle over $O_{n}(w)$, the Thom isomorphism implies that
(a) $K_{1}^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}(w)\right) \simeq K_{1}^{G_{n} \times \mathbb{C}^{\times}}\left(O_{n}(w)\right)=0$,
(b) The following isomorphic $R\left(G_{n} \times \mathbb{C}^{\times}\right)$-modules are free of rank n !.

$$
K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}(w)\right) \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(O_{n}(w)\right) \simeq R\left(T_{n} \times \mathbb{C}^{\times}\right)
$$

We choose the same sequence of closed subgroups

$$
B_{n} \times \mathbb{C}^{\times}=H_{0} \supseteq H_{1} \supseteq \cdots \supseteq H_{N}
$$

as in the $S_{n}(w)$ case. Then $O_{n}(w)=H / H_{N}, \mathcal{F} \ell_{n}=H / H_{0}$ and we have

$$
R(L) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(H / H_{i}\right) \simeq K^{L}\left(H / H_{i}\right)
$$

for $L=L_{n-1, n} \times \mathbb{C}^{\times}$or A, because it holds for $i=0$. Thus,

$$
R(L) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}(w)\right) \simeq K^{L}\left(Z_{n}(w)\right),
$$

for $L=L_{n-1, n} \times \mathbb{C}^{\times}$or A. Hence, the assumptions of Lemma 3.7 are satisfied, and the assertions follow from the consequences of Lemma 3.7 and Theorem 3.5.

Definition 3.10. We denote the A-fixed points of M by M^{a}, for $M=Z_{n}$, $Z_{n-1, n}, Y_{n}=T^{*} \mathcal{F} \ell_{n}, \mathcal{F} \ell_{n}$ etc.

Let $Y_{n}^{a} \times Y_{n}^{a} \subseteq Y_{n} \times Y_{n}$ be the closed embedding. Then, we have

$$
\begin{aligned}
i_{n}^{A} & : Z_{n}^{a}=Z_{n} \cap\left(Y_{n}^{a} \times Y_{n}^{a}\right) \hookrightarrow Z_{n}, \\
i_{n-1, n}^{A} & : Z_{n-1, n}^{a}=Z_{n-1, n} \cap\left(Y_{n}^{a} \times Y_{n}^{a}\right) \hookrightarrow Z_{n-1, n} .
\end{aligned}
$$

We define the pullback

$$
\begin{aligned}
\left(i_{n}^{A}\right)^{*}: & K^{A}\left(Z_{n}\right) & \longrightarrow K^{A}\left(Z_{n}^{a}\right), \\
\left(i_{n-1, n}^{A}\right)^{*}: & K^{A}\left(Z_{n-1, n}\right) & \longrightarrow K^{A}\left(Z_{n-1, n}^{a}\right),
\end{aligned}
$$

in terms of the embedding $Y_{n}^{a} \times Y_{n}^{a} \subseteq Y_{n} \times Y_{n}$.
We have the linear A-action on each fiber of the normal bundle $T_{Y_{n}^{a}} Y_{n}$ and its decomposition into isotropic components leads to the decomposition of the normal bundle into the direct sum of vector bundles N_{i}, for $i \in \mathbb{Z} / e \mathbb{Z}$, over Y_{n}^{a}. Define

$$
\lambda_{n}=\bigotimes_{i \in \mathbb{Z} / e \mathbb{Z}}\left(\sum_{j \geq 0}\left(-\zeta^{i}\right)^{j} \wedge^{j} N_{i}^{\vee}\right) \in K\left(Y_{n}^{a}\right) .
$$

Recall that our K-groups are always complexified.
λ_{n} is invertible [6, Proposition 5.10.3] and $1 \otimes \lambda_{n}^{-1} \in K\left(Y_{n}^{a} \times Y_{n}^{a}\right)$ acts on $K\left(Z_{n}^{a}\right)$ by the multiplication.

Theorem 3.11 below is [6, Theorem 5.11.10]. The point is that we appeal to Thomason's localization theorem but need the modification $1 \otimes \lambda_{n}^{-1}$ in order to make it an algebra homomorphism. The commutativity of the diagram in the theorem follows from the statement below.

Let $N \subseteq M$ be a closed embedding between smooth varieties, Z a closed subvariety of M. Let $Z^{\prime}=Z \cap N$ and denote

$$
\begin{array}{rll}
N & \xrightarrow{\psi} & M \\
\iota^{\prime} \uparrow & & \uparrow \iota \\
Z^{\prime} & \xrightarrow{\psi^{\prime}} & Z
\end{array}
$$

We define $\psi^{\prime *}$ with respect to these inclusions to smooth varieties. Then, $\psi^{*} \iota_{\iota}[\mathcal{F}]=\iota_{*}^{\prime} \psi^{*}[\mathcal{F}]$.
To see this, observe that both sides are essentially the same $\left[\psi_{*} \mathcal{O}_{N} \otimes_{\mathcal{O}_{M}}^{L} \iota_{*} \mathcal{F}\right]$ by the definition of $\psi^{\prime *}$.

Theorem 3.11. We have the map

$$
\operatorname{res}_{n}: K^{A}\left(Z_{n}\right) \xrightarrow{\left(i_{n}^{A}\right)^{*}} \mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n}^{a}\right) \simeq K\left(Z_{n}^{a}\right) \xrightarrow{1 \otimes \lambda_{n}^{-1}} K\left(Z_{n}^{a}\right)
$$

and res $_{n}$ defined similarly for $Z_{n-1, n}$ and $Z_{n}(e)$ such that these res $_{n}$ induce the following isomorphisms of \mathbb{C}-algebras.

$$
\begin{array}{rlc}
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Y_{n}\right) & \simeq & K\left(Y_{n}^{a}\right) \\
\downarrow & & \downarrow \\
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1, n}\right) & \simeq & K\left(Z_{n-1, n}^{a}\right) \\
\iota_{n *} \downarrow & & \downarrow \iota_{n *} \\
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n}\right) & \simeq & K\left(Z_{n}^{a}\right)
\end{array}
$$

The convolution products on both sides of the isomorphisms are defined in terms of the ambient spaces $Y_{n} \times Y_{n}$ and $Y_{n}^{a} \times Y_{n}^{a}$, respectively.

Next step in Ginzburg's theory is to use a modified Riemann-Roch map

$$
R R_{n}(\mathcal{F})=\operatorname{ch}(\mathcal{F})\left(1 \otimes t d_{Y_{n}^{a}}\right) \cap\left[Y_{n}^{a} \times Y_{n}^{a}\right]
$$

Then, [6, Theorem 5.11.11] shows that we have isomorphisms of \mathbb{C}-algebras $R R_{n}: K\left(Z_{n}^{a}\right) \xrightarrow{\sim} H_{*}^{B M}\left(Z_{n}^{a}, \mathbb{C}\right)$ and $R R_{n}: K\left(Z_{n-1, n}^{a}\right) \xrightarrow{\sim} H_{*}^{B M}\left(Z_{n-1, n}^{a}, \mathbb{C}\right)$.

The two Borel-Moore homology groups are \mathbb{C}-algebras whose product is given by the convolution product with respect to the common ambient space $Y_{n}^{a} \times Y_{n}^{a}$. Thus, we have reached Ginzburg's theorem stated below.

Theorem 3.12.

(1) We may identify $H_{n}^{a}=H_{*}^{B M}\left(Z_{n}^{a}, \mathbb{C}\right)$ by

$$
\mathbb{C}_{a} \otimes_{R(A)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right) \simeq \mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n}\right) \stackrel{r e s_{n}}{\sim} K\left(Z_{n}^{a}\right) \stackrel{R R_{n}}{\simeq} H_{*}^{B M}\left(Z_{n}^{a}, \mathbb{C}\right) .
$$

We may identify $H_{n-1, n}^{a}=H_{*}^{B M}\left(Z_{n-1, n}^{a}, \mathbb{C}\right)$ in the same way.
(2) The following diagram of \mathbb{C}-algebras commutes.

$$
\begin{array}{ccc}
H_{*}^{B M}\left(Z_{n-1, n}^{a}, \mathbb{C}\right) & \xrightarrow{\iota_{n *}} & H_{*}^{B M}\left(Z_{n}^{a}, \mathbb{C}\right) \\
\| & & \| \\
H_{n-1, n}^{a} & \hookrightarrow & H_{n}^{a}
\end{array}
$$

Similarly, $Y_{n}^{a} \rightarrow Z_{n-1, n}^{a}$ induces the following commutative diagram of \mathbb{C} algebras.

$$
\begin{array}{rccc}
H_{*}^{B M}\left(Y_{n}^{a}, \mathbb{C}\right) & \longrightarrow & H_{*}^{B M}\left(Z_{n-1, n}^{a}, \mathbb{C}\right) \\
\| & & \| \\
R\left(T_{n} \times \mathbb{C}^{\times}\right) / I_{a} & \hookrightarrow & H_{n-1, n}^{a}
\end{array}
$$

Recall that we have identified $e^{\lambda} \in R\left(T_{n} \times \mathbb{C}^{\times}\right)$with $\prod_{i=1}^{n} X_{i}^{\lambda_{i}} \in H_{n}$. Denote the product by X^{λ}. Then, in the above theorem, $X^{\lambda}+I_{a}$ is identified with

$$
\operatorname{ch}\left(\left.\pi_{n}^{*} L_{\lambda}\right|_{Y_{n}^{a}}\right) t d_{Y_{n}^{a}} \operatorname{ch}\left(\lambda_{n}\right)^{-1} \cap\left[Y_{n}^{a}\right] \in H_{*}^{B M}\left(Y_{n}^{a}, \mathbb{C}\right)
$$

In particular, the identity element of $H_{*}^{B M}\left(Y_{n}^{a}, \mathbb{C}\right)$ is $t d_{Y_{n}^{a}} \operatorname{ch}\left(\lambda_{n}\right)^{-1} \cap\left[Y_{n}^{a}\right]$ and the multiplication by X^{λ} is the same as the cap product $\operatorname{ch}\left(\left.\pi_{n}^{*} L_{\lambda}\right|_{Y_{n}^{a}}\right) \cap-$.

4. Geometric proof of the modular branching rule

In this section, we give a geometric proof of the modular branching rule.
4.1. The statement. First we explain the precise statement which we are going to prove. In fact, we have two versions according to the choice of the identification $H_{n}=K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$.

Definition 4.1. For an H_{n}-module M, define the i-restriction

$$
i-\operatorname{Res}(M)=\left\{m \in M \mid\left(X_{n}-\zeta^{i}\right)^{N} m=0, \text { for large enough } N .\right\}
$$

Then, the statement of the modular branching rule is as follows. The modules L_{ψ} will be introduced in 4.4.

Theorem 4.2. We identify H_{n} with $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ by $\theta_{\lambda}=\left[\delta_{n *} \pi_{n}^{*} L_{\lambda}\right]$ and $T_{i}=-\left[\mathcal{L}_{i}\right]-1$. Then, for the simple H_{n}-module L_{ψ} labelled by an aperiodic multisegment ψ, we have

$$
\operatorname{Soc}\left(i-\operatorname{Res}\left(L_{\psi}\right)\right)=L_{\tilde{e}_{i} \psi},
$$

where the crystal structure on the set of aperiodic multisegments is as in Theorem 2.10.

Let us consider the other identification of H_{n} with $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$. Recall the involution σ defined by $T_{i} \mapsto-q T_{i}^{-1}$ and $X_{i} \mapsto X_{i}^{-1}$.
Definition 4.3. An H_{n}-module obtained from L_{ψ} by twisting the action by σ and relabelling aperiodic multisegments by ρ is denoted by

$$
D_{\psi}={ }^{\sigma} L_{\rho(\psi)}
$$

Theorem 4.4. We identify H_{n} with $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ by $\theta_{\lambda}=\left[\delta_{n *} \pi_{n}^{*} L_{-\lambda}\right]$ and $T_{i}=\left[\mathcal{L}_{i}\right]+q$. Then, for the simple H_{n}-module D_{ψ} labelled by an aperiodic multisegment ψ, we have

$$
\operatorname{Soc}\left(i-\operatorname{Res}\left(D_{\psi}\right)\right)=D_{\tilde{e}_{i} \psi}
$$

where the crystal structure on the set of aperiodic multisegments is as in Theorem 2.17.

Theorem 4.4 follows from Theorem 4.2. In fact,

$$
\begin{aligned}
\operatorname{Soc}\left(i-\operatorname{Res}\left(D_{\psi}\right)\right) & \simeq \operatorname{Soc}\left({ }^{\sigma}\left((-i)-\operatorname{Res}\left(L_{\rho(\psi)}\right)\right)\right) \\
& \simeq{ }^{\sigma} \operatorname{Soc}\left((-i)-\operatorname{Res}\left(L_{\rho(\psi)}\right)\right) \simeq{ }^{\sigma} L_{\tilde{e}_{-i} \rho(\psi)}
\end{aligned}
$$

where \tilde{e}_{-i} is the Kashiwara operator with respect to the crystal structure in Theorem 4.2, so that it is isomorphic to ${ }^{\sigma} L_{\rho\left(\tilde{e}_{i} \psi\right)}=D_{\tilde{e}_{i} \psi}$ where \tilde{e}_{i} is the Kashiwara operator with respect to the crystal structure in Theorem 4.4.

In the rest of the section, we identify H_{n} with $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ as in Theorem 4.2 and prove the theorem.
4.2. Localization and eigenvalues of X_{n}. Let m_{i} be the multiplicity of ζ^{i} in $\left\{\zeta^{s_{1}}, \ldots, \zeta^{s_{n}}\right\}$. As $\left(X_{n}-\zeta^{s_{1}}\right) \cdots\left(X_{n}-\zeta^{s_{n}}\right)=0$ holds in $R\left(T_{n} \times \mathbb{C}^{\times}\right) / I_{a}$, we have the decomposition

$$
H_{*}^{B M}\left(Y_{n}^{a}, \mathbb{C}\right)=R\left(T_{n} \times \mathbb{C}^{\times}\right) / I_{a} \simeq \bigoplus_{i \in \mathbb{Z} / e \mathbb{Z}} \mathbb{C}\left[X_{n}^{ \pm}\right] /\left(\left(X_{n}-\zeta^{i}\right)^{m_{i}}\right)
$$

Definition 4.5. We denote by p_{i} the identity of $\mathbb{C}\left[X_{n}^{ \pm}\right] /\left(\left(X_{n}-\zeta^{i}\right)^{m_{i}}\right)$ which is viewed as an element of $H_{n-1, n}^{a}$. Thus, p_{i} are primitive idempotents of $H_{n-1, n}^{a}$ and $\sum p_{i}=1$ and $p_{i} p_{j}=p_{j} p_{i}=\delta_{i j} p_{i}$.

Definition 4.6. Let $(X, F) \in Y_{n}^{a}$. Then, $s X s^{-1}=\zeta X$ and F is such that F_{i} is obtained from F_{i-1} by adding some eigenvector of s. We denote the eigenvalue of the eigenvector by $\zeta^{\nu_{i}}$, for $\nu_{i} \in \mathbb{Z} / e \mathbb{Z}$, and write $\nu=$ $\left(\nu_{1}, \ldots, \nu_{n}\right)$. We call ν the flag type of (X, F). Note that ν is a permutation of $\left(s_{1}, \ldots, s_{n}\right)$.

Let $\left(X, F, F^{\prime}\right) \in Z_{n}^{a}=Y_{n}^{a} \times_{\mathcal{N}_{n}^{a}} Y_{n}^{a}$. Then, we say that the flag type of $\left(X, F, F^{\prime}\right)$ is $\left(\nu, \nu^{\prime}\right)$ if (X, F) has flag type ν and $\left(X, F^{\prime}\right)$ has flag type ν^{\prime}.

Now, we look at the decomposition of Y_{n}^{a} and $Z_{n-1, n}^{a}$ into connected components. On each component, the flag type is constant.
Definition 4.7. Let $p_{i} Y_{n}^{a}$ be the disjoint union of connected components of Y_{n}^{a} whose flag type ν satisfies $\nu_{n}=i$.

Similarly, we let $p_{i} Z_{n-1, n}^{a} p_{i}$ be the disjoint union of connected components of $Z_{n-1, n}^{a}$ whose flag type $\left(\nu, \nu^{\prime}\right)$ satisfies $\nu_{n}=\nu_{n}^{\prime}=i$.

The following lemma uses our choice of the identification of H_{n} with $K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ in this section.
Lemma 4.8. Under the identification $H_{*}^{B M}\left(Z_{n-1, n}^{a}, \mathbb{C}\right)=H_{n-1, n}^{a}$, we have

$$
H_{*}^{B M}\left(p_{i} Z_{n-1, n}^{a} p_{i}, \mathbb{C}\right)=p_{i} H_{n-1, n}^{a} p_{i}
$$

Proof. Let $\left(Y_{n}^{a}\right)_{\mu}$ be the set of $(X, F) \in Y_{n}^{a}$ such that the flag type is μ. First we show that

$$
H_{*}^{B M}\left(Y_{n}^{a}, \mathbb{C}\right) p_{i}=\bigoplus_{\mu \text { such that } \mu_{n}=i} H_{*}^{B M}\left(\left(Y_{n}^{a}\right)_{\mu}, \mathbb{C}\right)
$$

In fact, X_{n} acts on $\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Y_{n}^{a}\right)$ by

$$
\left.\pi_{n}^{*} L_{\epsilon_{n}}\right|_{Y_{n}^{a}} \otimes-
$$

by Theorem 3.12. Now, A acts on fiberwise over Y_{n}^{a}, and the fiber of $\pi_{n}^{*} L_{\epsilon_{n}}$ at (X, F) is \mathbb{C}^{n} / F_{n-1}. Thus, A acts as $\zeta^{\mu_{n}}$ on the fiber when the flag type
of (X, F) is μ. Then, X_{n} is $\left.\zeta^{\mu_{n}} \pi_{n}^{*} L_{\epsilon_{n}}\right|_{Y_{n}^{a}} \in K\left(\left(Y_{n}^{a}\right)_{\mu}\right)$, where $\left.\pi_{n}^{*} L_{\epsilon_{n}}\right|_{Y_{n}^{a}}$ is a line bundle without A-action, and Theorem 3.12 implies that X_{n} acts on $H_{*}^{B M}\left(\left(Y_{n}^{a}\right)_{\mu}, \mathbb{C}\right)$ by the cap product of

$$
\zeta^{\mu_{n}} \operatorname{ch}\left(\left.\pi_{n}^{*} L_{\epsilon_{n}}\right|_{Y_{n}^{a}}\right)=\zeta^{\mu_{n}}+\text { higher degree terms }
$$

Hence, $X_{n}-\zeta^{\mu_{n}}$ acts nilpotently on $H_{*}^{B M}\left(\left(Y_{n}^{a}\right)_{\mu}, \mathbb{C}\right)$. We have proved the claim.

Let ${ }_{\nu}\left(Z_{n-1, n}^{a}\right)_{\nu^{\prime}}$ be the set of $\left(X, F, F^{\prime}\right) \in Z_{n-1, n}^{a}$ such that the flag type is $\left(\nu, \nu^{\prime}\right)$. By the definition of the convolution product, the product

$$
H_{*}^{B M}\left(\left(Y_{n}^{a}\right)_{\mu}, \mathbb{C}\right) \cdot H_{*}^{B M}\left(\nu\left(Z_{n-1, n}^{a}\right)_{\nu^{\prime}}, \mathbb{C}\right)
$$

is nonzero only if $\mu=\nu$. Thus, $p_{i} H_{*}^{B M}\left(\nu\left(Z_{n-1, n}^{a}\right)_{\nu^{\prime}}, \mathbb{C}\right)=0$ if $\nu_{n} \neq i$, and the left multiplication by p_{i} acts as the identity map on $H_{*}^{B M}\left(\nu\left(Z_{n-1, n}^{a}\right)_{\nu^{\prime}}, \mathbb{C}\right)$ if $\nu_{n}=i$. Similar argument shows that $H_{*}^{B M}\left(\nu\left(Z_{n-1, n}^{a}\right), \mathbb{C}\right) p_{i}=0$ if $\nu_{n}^{\prime} \neq i$, and the right multiplication by p_{i} acts as the identity map on $H_{*}^{B M}\left({ }_{\nu}\left(Z_{n-1, n}^{a}\right)_{\nu^{\prime}}, \mathbb{C}\right)$ if $\nu_{n}^{\prime}=i$. We have proved $p_{i} H_{*}^{B M}\left(Z_{n-1, n}^{a}, \mathbb{C}\right) p_{i}=$ $H_{*}^{B M}\left(p_{i} Z_{n-1, n}^{a} p_{i}, \mathbb{C}\right)$.

By the identification, we have the algebra homomorphism ${ }^{1}$

$$
H_{*}^{B M}\left(p_{i} Z_{n-1, n}^{a} p_{i}, \mathbb{C}\right)=p_{i} H_{n-1, n}^{a} p_{i} \rightarrow H_{n-1}^{a}=H_{*}^{B M}\left(Z_{n-1}^{a}, \mathbb{C}\right)
$$

4.3. A functorial algebra homomorphism. Now we work in the derived categories of abelian categories of sheaves of \mathbb{C}-vector spaces. The following is proved in [6, Proposition 8.6.35].

Theorem 4.9. Let M_{1}, M_{2} and M_{3} be connected smooth varieties, N a variety and let $\mu_{i}: M_{i} \rightarrow N$ be proper maps. Let $\mathcal{A}_{i} \in D^{b}\left(M_{i}\right)$ be a constructible complex, for $i=1,2,3$. Define $Z_{i j}=M_{i} \times_{N} M_{j}$ and denote $\iota_{i j}: Z_{i j} \subseteq M_{i} \times M_{j}$ the inclusion map. Let $\mathcal{A}_{i j}=\iota_{i j}^{!}\left(\mathcal{A}_{i}^{\vee} \otimes \mathcal{A}_{j}\right)$. Then the following hold.
(1) Let $\mu_{i j}: Z_{i j} \rightarrow N$ be the projection map. Then

$$
R \mu_{i j_{*}} \mathcal{A}_{i j} \simeq R \mathcal{H o m}\left(R \mu_{i_{*}} \mathcal{A}_{i}, R \mu_{j_{*}} \mathcal{A}_{j}\right)
$$

Thus, we have isomorphisms of \mathbb{C}-algebras

$$
H^{*}\left(Z_{i j}, \mathcal{A}_{i j}\right)=H^{*}\left(N, R \mu_{i j_{*}} \mathcal{A}_{i j}\right) \simeq \operatorname{Ext}_{D^{b}(N)}^{*}\left(R \mu_{i *} \mathcal{A}_{i}, R \mu_{j_{*}} \mathcal{A}_{j}\right)
$$

(2) The convolution product

$$
H^{*}\left(Z_{i j}, \mathcal{A}_{i j}\right) \otimes H^{*}\left(Z_{j k}, \mathcal{A}_{j k}\right) \longrightarrow H^{*}\left(Z_{i k}, \mathcal{A}_{i k}\right)
$$

is identified with the Yoneda product

$$
\begin{aligned}
\operatorname{Ext}_{D^{b}(N)}^{*}\left(R \mu_{i_{*}} \mathcal{A}_{i}, R \mu_{j_{*}} \mathcal{A}_{j}\right) \otimes \operatorname{Ext}_{D^{b}(N)}^{*} & \left(R \mu_{j_{*}} \mathcal{A}_{j}, R \mu_{k_{*}} \mathcal{A}_{k}\right) \\
& \operatorname{Ext}_{D^{b}(N)}^{*}\left(R \mu_{i_{*}} \mathcal{A}_{i}, R \mu_{k_{*}} \mathcal{A}_{k}\right)
\end{aligned}
$$

under the isomorphisms in (1).

[^1]We view elements of \mathcal{N}_{n}^{a} as representations of the cyclic quiver of length e. Namely, we put $V_{i}=\left\{v \in \mathbb{C}^{n} \mid s v=\zeta^{i} v\right\}$ on the $i^{t h}$ node, for $i \in \mathbb{Z} / e \mathbb{Z}$, then $X \in \mathcal{N}_{n}^{a}$ defines $X: V_{i} \rightarrow V_{i+1}$, for $i \in \mathbb{Z} / e \mathbb{Z}$.

We fix $i \in \mathbb{Z} / e \mathbb{Z}$. Let $m+1=\operatorname{dim} V_{i}$ and \mathbb{P}^{m} the projective space consisting of m-dimensional subspaces of V_{i}. We have the following commutative diagram.

$$
\begin{array}{ccc}
p_{i} Y_{n}^{a} \underset{\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}}{\times} p_{i} Y_{n}^{a}=p_{i} Z_{n-1, n}^{a} p_{i} & \hookrightarrow & p_{i} Z_{n}^{a} p_{i}=p_{i} Y_{n}^{a} \underset{\mathcal{N}_{n}^{a}}{\times} p_{i} Y_{n}^{a} \\
\downarrow & & \downarrow \\
\mathcal{N}_{n}^{a} \times \mathbb{P}^{m} & \overrightarrow{\rho_{n}} & \mathcal{N}_{n}^{a}
\end{array}
$$

where $\rho_{n}(X, U)=X$ and the left vertical map is given by $\left(X, F, F^{\prime}\right) \mapsto$ $\left(X, F_{n-1}\right)$.

Lemma 4.10. Let $M \xrightarrow{f} X \xrightarrow{g} Y$ be proper maps and suppose that M is smooth. We consider the following diagram, in which all squares are cartesian.

$$
\begin{array}{rll}
M \times_{X} M & \xrightarrow{\tilde{\iota}} & M \times_{Y} M \xrightarrow{\tilde{\Delta}} M \times M \\
\pi \downarrow & & \downarrow \pi^{\prime} \\
X & \stackrel{\iota}{\longrightarrow} & X \times_{Y} X \xrightarrow{\Delta} X \times X \\
& g & \downarrow \pi^{\prime \prime} \quad \swarrow g^{\times 2} \\
& & Y \xrightarrow{\bar{\Delta}} Y \times Y
\end{array}
$$

Denote $\mathcal{A}=R f_{*} \mathbb{C}$ and $\mathcal{B}=R g_{*} \mathcal{A}$. Then the following hold.
(1) We have the following isomorphisms of \mathbb{C}-algebras.

$$
H_{*}^{B M}\left(M \times_{X} M, \mathbb{C}\right) \simeq \operatorname{Ext}_{D^{b}(X)}^{*}(\mathcal{A}, \mathcal{A}), \quad H_{*}^{B M}\left(M \times_{Y} M, \mathbb{C}\right) \simeq \operatorname{Ext}_{D^{b}(Y)}^{*}(\mathcal{B}, \mathcal{B})
$$

(2) $\tilde{\iota}_{*}: H_{*}^{B M}\left(M \times_{X} M, \mathbb{C}\right) \rightarrow H_{*}^{B M}\left(M \times_{Y} M, \mathbb{C}\right)$ is identified with the functorial algebra homomorphism

$$
R g_{*}: \operatorname{Ext}_{D^{b}(X)}^{*}(\mathcal{A}, \mathcal{A}) \longrightarrow \operatorname{Ext}_{D^{b}(Y)}^{*}(\mathcal{B}, \mathcal{B})
$$

Proof. (1) follows from Theorem 4.9. In fact, if we ignore degree shift then

$$
\begin{aligned}
H_{*}^{B M}\left(M \times_{X} M, \mathbb{C}\right) & \simeq H^{*}\left(M \times_{X} M, \tilde{\iota}^{!} \tilde{\Delta}^{!} \mathbb{C}\right) \simeq H^{*}\left(X, R \pi_{*} \tilde{l}^{!} \tilde{\Delta}^{!} \mathbb{C}\right) \\
& \simeq H^{*}\left(X, \iota^{!} R \pi_{*}^{\prime} \tilde{\Delta}^{!} \mathbb{C}\right) \simeq H^{*}\left(X, \iota^{!} \Delta^{!} R f_{*}^{\times 2} \mathbb{C}\right)
\end{aligned}
$$

As $\mathcal{A}^{\vee}=\left(R f_{*} \mathbb{C}\right)^{\vee}=R f_{!} \mathbb{C}^{\vee}=\oplus R f_{*} \mathbb{C}\left[2 \operatorname{dim} M_{i}\right]$, where the summation is over connected components M_{i} of M, if we ignore degree shift then

$$
R \mathcal{H o m} D_{D^{b}(X)}(\mathcal{A}, \mathcal{A})=(\Delta \circ \iota)^{!}\left(\mathcal{A}^{\vee} \otimes \mathcal{A}\right)=(\Delta \circ \iota)^{!} R f_{*}^{\times 2} \mathbb{C} .
$$

Hence, $H_{*}^{B M}\left(M \times_{X} M, \mathbb{C}\right) \simeq \operatorname{Ext}_{D^{b}(X)}^{*}(\mathcal{A}, \mathcal{A})$ is proved. We can prove the other isomorphism similarly.
(2) If we ignore degree shift, the pushforward ι_{*} of Borel-Moore homology groups is given by

$$
H^{*}\left(M \times M, R(\tilde{\Delta} \circ \tilde{\iota})_{*}(\tilde{\Delta} \circ \tilde{\iota})^{!}\left(\mathbb{C}^{\vee} \otimes \mathbb{C}\right)\right) \longrightarrow H^{*}\left(M \times M, R \tilde{\Delta}_{*} \tilde{\Delta}^{!}\left(\mathbb{C}^{\vee} \otimes \mathbb{C}\right)\right)
$$

First we claim that it is identified with

$$
\Gamma\left(X \times_{Y} X, R \iota_{*} \iota \Delta^{!}\left(\mathcal{A}^{\vee} \otimes \mathcal{A}\right)\right) \longrightarrow \Gamma\left(X \times_{Y} X, \Delta^{!}\left(\mathcal{A}^{\vee} \otimes \mathcal{A}\right)\right)
$$

To see this, let \mathcal{I}^{\bullet} be an injective resolution of $\tilde{\Delta}^{!}\left(\mathbb{C}^{\vee} \otimes \mathbb{C}\right)$. Then, for the complex of sheaves $\Gamma_{M \times{ }_{X} M}\left(\mathcal{I}^{\bullet}\right)$, which is defined by

$$
U \mapsto \Gamma_{M \times_{X} M}\left(\mathcal{I}^{\bullet}\right)(U)=\left\{s^{\bullet} \in \mathcal{I}^{\bullet}(U) \mid \operatorname{supp}\left(s^{i}\right) \subseteq M \times_{X} M, \text { for all } i .\right\}
$$

for open subsets $U \subseteq M \times_{Y} M$, the ι_{*} in question is obtained by taking the cohomology of the following morphism of complexes of \mathbb{C}-vector spaces.

$$
\Gamma\left(M \times_{Y} M, \Gamma_{M \times_{X} M}\left(\mathcal{I}^{\bullet}\right)\right) \longrightarrow \Gamma\left(M \times_{Y} M, \mathcal{I}^{\bullet}\right)
$$

For open subsets $U \subseteq X \times_{Y} X$, we have

$$
\begin{aligned}
\Gamma_{X}\left(\pi_{*}^{\prime} \mathcal{F}\right)(U) & =\operatorname{Ker}\left(\pi_{*}^{\prime} \mathcal{F}(U) \xrightarrow{\text { restriction }} \pi_{*}^{\prime} \mathcal{F}(U \backslash X)\right) \\
& =\operatorname{Ker}\left(\mathcal{F}\left(\pi^{\prime-1}(U)\right) \stackrel{\text { restriction }}{\longrightarrow} \mathcal{F}\left(\pi^{\prime-1}(U) \backslash M \times_{X} M\right)\right) \\
& =\Gamma_{M \times_{X} M}(\mathcal{F})\left(\pi^{\prime-1}(U)\right)
\end{aligned}
$$

for a sheaf \mathcal{F} on $X \times_{Y} X$, so that the above morphism of complexes of \mathbb{C}-vector spaces is nothing but

$$
\Gamma\left(X \times_{Y} X, \Gamma_{X}\left(\pi_{*}^{\prime} \mathcal{I}^{\bullet}\right)\right) \longrightarrow \Gamma\left(X \times_{Y} X, \pi_{*}^{\prime} \mathcal{I}^{\bullet}\right)
$$

and it is identified with

$$
\Gamma\left(X \times_{Y} X, R \iota_{*}!R \pi_{*}^{\prime} \tilde{\Delta}^{!}\left(\mathbb{C}^{\vee} \otimes \mathbb{C}\right)\right) \longrightarrow \Gamma\left(X \times_{Y} X, R \pi_{*}^{\prime} \tilde{\Delta}^{!}\left(\mathbb{C}^{\vee} \otimes \mathbb{C}\right)\right)
$$

Now we apply the natural transformation $R \iota_{*}!!\rightarrow$ Id to the isomorphism

$$
\left.R \pi_{*}^{\prime} \tilde{\Delta}^{!}\left(\mathbb{C}^{\vee} \otimes \mathbb{C}\right) \simeq \Delta^{!} R f_{*}^{\times 2}\left(\mathbb{C}^{\vee} \otimes \mathbb{C}\right) \simeq \Delta^{!}\left(\left(R f_{!} \mathbb{C}\right)^{\vee} \otimes R f_{*} \mathbb{C}\right)\right)
$$

to obtain the claim.
Next let \mathcal{I}^{\bullet} be an injective resolution of \mathcal{A}. Then, our morphism of complexes of \mathbb{C}-vector spaces is

$$
\Gamma\left(X \times_{Y} X, \Gamma_{X}\left(\mathcal{I}^{\bullet \vee} \otimes \mathcal{I}^{\bullet}\right)\right) \longrightarrow \Gamma\left(X \times_{Y} X, \Gamma_{X \times_{Y} X}\left(\mathcal{I}^{\bullet \vee} \otimes \mathcal{I}^{\bullet}\right)\right)
$$

For open subsets $U \subseteq X \times_{Y} X$, the map

$$
\Gamma_{X}\left(\mathcal{I}^{\bullet \vee} \otimes \mathcal{I}^{\bullet}\right)(U) \longrightarrow \Gamma_{X \times_{Y} X}\left(\mathcal{I}^{\bullet \vee} \otimes \mathcal{I}^{\bullet}\right)(U)
$$

sends $\sum \alpha_{i}^{\bullet} \otimes \beta_{i}^{\bullet}$, whose support is in X, to $\sum \alpha_{i}^{\bullet} \otimes \beta_{i}^{\bullet}$ itself. The left hand side is identified with $\operatorname{Ext}_{K^{b}(X)}^{*}\left(\mathcal{I}^{\bullet}, \mathcal{I}^{\bullet}\right)(U \cap X)$, where $K^{b}(X)$ is the homotopy category of the additive category of injective sheaves on X. On the other hand, if $U=\pi^{\prime \prime-1}(V)$, for an open subset $V \subseteq Y$, then $U \cap X=$ $g^{-1}(V)$ and

$$
\Gamma_{X_{\times_{Y} X}}\left(\mathcal{I}^{\bullet \vee} \otimes \mathcal{I}^{\bullet}\right)(U)=\Gamma_{\bar{\Delta}(Y)}\left(g_{*} \mathcal{I}^{\bullet \vee} \otimes g_{*} \mathcal{I}^{\bullet}\right)(V)
$$

as before, so that the right hand side is identified with $\operatorname{Ext}_{K^{b}(Y)}^{*}\left(g_{*} \mathcal{I}^{\bullet}, g_{*} \mathcal{I}^{\bullet}\right)(V)$. Therefore, the pushforward ι_{*} of the Borel-Moore homology groups is the functorial algebra homomorphism g_{*}, namely $V=Y$ in the collection of maps

$$
\begin{aligned}
g_{*}: \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{K^{b}\left(g^{-1}(V)\right)}\left(\left.\mathcal{I}^{\bullet}\right|_{g^{-1}(V)},\right. & \left.\left.\mathcal{I}^{\bullet}\right|_{g^{-1}(V)}[i]\right) \\
& \longrightarrow \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{K^{b}(V)}\left(\left.g_{*} \mathcal{I}\right|_{V},\left.g_{*} \mathcal{I}\right|_{V}[i]\right) .
\end{aligned}
$$

This is $R g_{*}: \operatorname{Ext}_{D^{b}(X)}^{*}(\mathcal{A}, \mathcal{A}) \rightarrow \operatorname{Ext}_{D^{b}(Y)}^{*}\left(R g_{*} \mathcal{A}, R g_{*} \mathcal{A}\right)$ as desired.
In the following, we write $\operatorname{Ext}_{D^{b}(X)}^{*}(\mathcal{A})$ for $\operatorname{Ext}_{D^{b}(X)}^{*}(\mathcal{A}, \mathcal{A})$, and we denote

$$
\pi_{n-1}^{a}: Y_{n-1}^{a} \longrightarrow \mathcal{N}_{n-1}^{a}, \quad \pi_{n-1, n}^{a}: p_{i} Y_{n}^{a} \longrightarrow \mathcal{N}_{n}^{a} \times \mathbb{P}^{m}, \pi_{n}^{a}: p_{i} Y_{n}^{a} \longrightarrow \mathcal{N}_{n}^{a}
$$

We remark that $\pi_{n}^{a}=\rho_{n} \circ \pi_{n-1, n}^{a}$.
Corollary 4.11. We have the isomorphisms

$$
\begin{gathered}
H_{n-1}^{a} \simeq \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right), \quad p_{i} H_{n}^{a} p_{i} \simeq \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(R \pi_{n!}^{a} \mathbb{C}\right) \\
p_{i} H_{n-1, n}^{a} p_{i} \simeq \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right)
\end{gathered}
$$

such that the following hold.
(1) The inclusion $p_{i} H_{n-1, n}^{a} p_{i} \hookrightarrow p_{i} H_{n}^{a} p_{i}$ is identified with the following functorial algebra homomorphism.

$$
R \rho_{n_{*}}: \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right) \longrightarrow \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(R \pi_{n!}^{a} \mathbb{C}\right)
$$

(2) The surjection $p_{i} H_{n-1, n}^{a} p_{i} \rightarrow H_{n-1}^{a}$ gives an algebra homomorphism

$$
\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right) \longrightarrow \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right)
$$

Proof. Set $M=p_{i} Y_{n}^{a}, X=\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}$ and $Y=\mathcal{N}_{n}^{a}$. Then Lemma 4.10 implies (1). (2) is obvious. We define the surjective algebra homomorphism such that the diagram

$$
\begin{array}{ccc}
\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right) & \longrightarrow & \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right) \\
\| & & \| \\
p_{i} H_{n-1, n}^{a} p_{i} & \longrightarrow & H_{n-1}^{a}
\end{array}
$$

commutes.
4.4. Some semisimple quotients. We may interprete the surjection of Corollary 4.11(2) in sheaf theory as in the appendix but it does not help much. Instead, we focus on the semisimple quotient of the algebras. Observe that the surjection $p_{i} H_{n-1, n}^{a} p_{i} \rightarrow H_{n-1}^{a}$ induces the isomorphism

$$
p_{i} H_{n-1, n}^{a} p_{i} / \operatorname{Rad}\left(p_{i} H_{n-1, n}^{a} p_{i}\right) \simeq H_{n-1}^{a} / \operatorname{Rad}\left(H_{n-1}^{a}\right)
$$

As simple H_{n-1}^{a}-modules are simple $p_{i} H_{n-1, n}^{a} p_{i}$-modules through the surjective map, we may identify the simple modules of both algebras. Thus, the isomorphism is given by the identity map

$$
\begin{aligned}
p_{i} H_{n-1, n}^{a} p_{i} / \operatorname{Rad}\left(p_{i} H_{n-1, n}^{a} p_{i}\right) & \simeq \oplus_{M} \operatorname{End}_{\mathbb{C}}(M) \\
& \longrightarrow \oplus_{M} \operatorname{End}_{\mathbb{C}}(M) \simeq H_{n-1}^{a} / \operatorname{Rad}\left(H_{n-1}^{a}\right)
\end{aligned}
$$

where M runs through the common complete set of isomorphism classes of simple modules.

On the other hand, the complete set of isomorphism classes of simple modules of $\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right)$ and $\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right)$ may be described by those simple perverse sheaves that appear in $R \pi_{n-1, n!}^{a} \mathbb{C}$ and $R \pi_{n-1!}^{a} \mathbb{C}$ after some shift, respectively. The degree of the shift depends on the perverse sheaf. As they are semisimple complexes by the decomposition theorem, we write

$$
R \pi_{n-1, n!}^{a} \mathbb{C} \simeq \sum_{\psi} \sum_{m \in \mathbb{Z}} I C_{\psi}[m]^{\oplus m_{\psi, m}}, \quad R \pi_{n-1!}^{a} \mathbb{C} \simeq \sum_{\varphi} \sum_{m \in \mathbb{Z}} I C_{\varphi}[m]^{\oplus n_{\varphi, m}}
$$

where $I C_{\psi}$ and $I C_{\varphi}$ are simple perverse sheaves on $\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}$ and \mathcal{N}_{n-1}^{a}, respectively. Let $L_{\psi, m}=\mathbb{C}^{m_{\psi, m}}$ and $L_{\varphi, m}=\mathbb{C}^{m_{\varphi, m}}$ be the multiplicity spaces of $I C_{\psi}[m]$ and $I C_{\varphi}[m]$, respectively. Define

$$
L_{\psi}=\bigoplus_{m \in \mathbb{Z}} L_{\psi, m}, \quad L_{\varphi}=\bigoplus_{m \in \mathbb{Z}} L_{\varphi, m}
$$

Then, we have

$$
\begin{aligned}
\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right) & \simeq \bigoplus_{\psi^{\prime}, \psi^{\prime \prime}} \operatorname{Ext}^{*}\left(I C_{\psi^{\prime}}, I C_{\psi^{\prime \prime}}\right) \otimes_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}}\left(L_{\psi^{\prime}}, L_{\psi^{\prime \prime}}\right) \\
\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right) & \simeq \bigoplus_{\varphi^{\prime}, \varphi^{\prime \prime}} \operatorname{Ext}^{*}\left(I C_{\varphi^{\prime}}, I C_{\varphi^{\prime \prime}}\right) \otimes_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}}\left(L_{\varphi^{\prime}}, L_{\varphi^{\prime \prime}}\right)
\end{aligned}
$$

In other words, $\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right)$ is the matrix algebra which has block partitions of rows and columns such that the blocks are labelled by ψ and the entries in the $\left(\psi^{\prime \prime}, \psi^{\prime}\right)$ component are elements of Ext* $\left(I C_{\psi^{\prime}}, I C_{\psi^{\prime \prime}}\right)$. In particular, its semisimple quotient is the block diagonal matrix algebra such that the entries of the (ψ, ψ)-component are

$$
\operatorname{Ext}^{\geq 0}\left(I C_{\psi}, I C_{\psi}\right) / \operatorname{Ext}^{>0}\left(I C_{\psi}, I C_{\psi}\right) \simeq \mathbb{C}
$$

We have the similar matrix algebra description for $\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right)$ as well.
4.5. Geometric construction of U_{v}^{-}. Let U_{v}^{-}as in section 2. By Lusztig's theory, we may realize U_{v}^{-}geometrically by using his geometric induction and restriction functors [19]. In fact, this is essentially the Hall algebra construction which we already explained in section 2 . We only need the special case which corresponds to the multiplication by f_{i}, which we shall explain here.

Recall that \mathbb{C}^{n} has the eigenspace decomposition $\mathbb{C}^{n}=\oplus_{i \in \mathbb{Z} / e \mathbb{Z}} V_{i}$ with respect to $s=\operatorname{diag}\left(\zeta^{s_{1}}, \ldots, \zeta^{s_{n}}\right)$. We suppose that $s_{n}=i$. Let $W_{i}=$ $V_{i} \cap \mathbb{C}^{n-1}$ and $W_{j}=V_{j}$, for $j \neq i$. Note that $W_{i} \neq V_{i}$. Then, we consider the diagram

$$
E_{W} \stackrel{p_{1}}{\rightleftarrows} G_{n}(s) \times_{U_{n-1, n}(s)} F_{V, W} \xrightarrow{p_{2}} G_{n}(s) \times_{P_{n-1, n}(s)} F_{V, W} \xrightarrow{p_{3}} E_{V}
$$

where E_{W}, E_{V} and $F_{V, W}$ are defined by

$$
\begin{gathered}
E_{W}=\bigoplus_{i \in \mathbb{Z} / e \mathbb{Z}} \operatorname{Hom}_{\mathbb{C}}\left(W_{i}, W_{i+1}\right), \quad E_{V}=\bigoplus_{i \in \mathbb{Z} / e \mathbb{Z}} \operatorname{Hom}_{\mathbb{C}}\left(V_{i}, V_{i+1}\right) \\
F_{V, W}=\left\{X \in E_{V} \mid X W_{i} \subseteq W_{i+1}, \text { for all } i \in \mathbb{Z} / e \mathbb{Z} .\right\}
\end{gathered}
$$

and $p_{1}(g, X)=\left.X\right|_{\mathbb{C}^{n-1}}, p_{2}(g, X)=(g, X)$ and $p_{3}(g, X)=g X g^{-1}$.
We only consider those objects whose supports are contained in the nullcones. This is the diagram which already appeared in a slightly different manner. Namely, we get the following subdiagram.
$\mathcal{N}_{n-1}^{a} \stackrel{\nu_{n-1, n}}{\longleftrightarrow} G_{n}(s) \times_{U_{n-1, n}(s)} \mathcal{N}_{n-1, n}^{a} \xrightarrow{\mu_{n-1, n}} G_{n}(s) \times_{P_{n-1, n}(s)} \mathcal{N}_{n-1, n}^{a} \xrightarrow{\rho_{n}} \mathcal{N}_{n}^{a}$.
Note that $G_{n}(s) \times_{P_{n-1, n}(s)} \mathcal{N}_{n-1, n}^{a}=\{(X, U) \mid X U \subseteq U\} \subseteq \mathcal{N}_{n}^{a} \times \mathbb{P}^{m}$.
\mathcal{N}_{n-1}^{a} has finitely many $G_{n-1}(s)$-orbits and the stabilizer group of a point in each orbit \mathcal{O}_{φ}, for a multisegment φ, is connected. We denote by

$$
I C_{\varphi}=I C\left(\overline{\mathcal{O}_{\varphi}}, \mathbb{C}\right)
$$

the intersection cohomology complex associated with the orbit \mathcal{O}_{φ} and the trivial local system on it. Then, $\nu_{n-1, n}^{*} I C_{\varphi}$ is a $L_{n-1, n}(s)$-equivariant simple perverse sheaf up to degree shift, and we may write $\nu_{n-1, n}^{*} I C_{\varphi} \simeq \mu_{n-1, n}^{*} I C_{\varphi}^{b}$ up to degree shift, for some simple perverse sheaf $I C_{\varphi}^{b}$ on $\mathcal{N}_{n}^{a} \times \mathbb{P}^{m} . I C_{\varphi}^{b}$ is unique up to isomorphism. In fact, we have an integer d independent of φ, given by the difference of the dimensions of the fibers of $\mu_{n-1, n}$ and $\nu_{n-1, n}$, such that $I C_{\varphi}^{b}={ }^{p} \mathcal{H}^{d}\left(\nu_{n-1, n_{*}} \mu_{n-1, n}^{*} I C_{\varphi}\right)$. We define a functor $\operatorname{Ind}_{i}^{b}$ by $\operatorname{Ind}_{i}^{b}\left(I C_{\varphi}\right)=I C_{\varphi}^{b}$. Then, we define the induction functor by

$$
\operatorname{Ind}_{i}=R \rho_{n *} \circ \operatorname{Ind}_{i}^{b}
$$

Now, as in the proof of 19, 9.2.3], we consider the diagram

$$
Y_{n-1}^{a} \longleftarrow G_{n}(s) \times_{U_{n-1, n}(s)} Y_{n-1, n}^{a} \longrightarrow G_{n}(s) \times_{P_{n-1, n}(s)} Y_{n-1, n}^{a}=p_{i} Y_{n}^{a}
$$

which "covers" the above diagram with cartesian squares. Then, we have the following equalities up to degree shift.

$$
\operatorname{Ind}_{i}^{\mathrm{b}}\left(R \pi_{n-1!}^{a} \mathbb{C}\right)=R \pi_{n-1, n!}^{a} \mathbb{C}, \quad \operatorname{Ind}_{i}\left(R \pi_{n-1!}^{a} \mathbb{C}\right)=R \pi_{n!}^{a} \mathbb{C}
$$

The main result of [19] is the geometric construction of the algebra U_{v}^{-} in terms of the induction functor. The simple perverse sheaves $I C_{\varphi}$ are part of the canonical basis and Ind_{i} corresponds the multiplication from the
left by f_{i}. The canonical basis defines the crystal $B(\infty)$. Combined with Kashiwara's result 114, Proposition 6.2.3], we have the following. ${ }^{2}$

Lemma 4.12.

(1) Let φ be a multisegment of size $n-1$. Then, we may write

$$
\operatorname{Ind}_{i}\left(I C_{\varphi}\right)=\sum_{j=0}^{\epsilon_{i}(\varphi)} I C_{\tilde{f}_{i} \varphi}\left[\epsilon_{i}(\varphi)-2 j\right]+\sum_{j \in \mathbb{Z}} R_{\varphi, j}[j]
$$

for certain perverse sheaves $R_{\varphi, j}$ on $\mathcal{N}_{n}^{a} .{ }^{3}$
(2) Suppose that $I C_{\psi}$, for a multisegment ψ of size n, appears in $R_{\varphi, j}$, for some j. Then, we have

$$
-\epsilon_{i}(\psi)+2 \leq j \leq \epsilon_{i}(\psi)-2
$$

4.6. A key result. We prove Theorem 4.14, which we will need in the geometric proof of the modular branching rule in the next subsection.

Define $\eta_{n-1, n}: \mathcal{N}_{n-1, n}^{a} \hookrightarrow \mathcal{N}_{n}^{a} \times \mathbb{P}^{m}, \kappa_{n-1, n}: \mathcal{N}_{n-1, n}^{a} \rightarrow \mathcal{N}_{n-1}^{a}$. We identify \mathcal{N}_{n-1}^{a} with the zero section of $\kappa_{n-1, n}$ and we obtain the closed embedding

$$
\epsilon_{n-1, n}: \mathcal{N}_{n-1}^{a} \hookrightarrow \mathcal{N}_{n}^{a} \times \mathbb{P}^{m}
$$

$\eta_{n-1, n}^{*} R \pi_{n-1, n!}^{a} \mathbb{C}$ is the pushforward of the constant sheaf on $Y_{n-1, n}^{a}$ to $\mathcal{N}_{n-1, n}^{a}$, and we have the following cartesian diagram.

$$
\begin{array}{ccc}
Y_{n-1, n}^{a} & \rightarrow & Y_{n-1}^{a} \\
\downarrow & & \downarrow \\
\mathcal{N}_{n-1, n}^{a} & \rightarrow & \mathcal{N}_{n-1}^{a}
\end{array}
$$

Thus, $\eta_{n-1, n}^{*} R \pi_{n-1, n!}^{a} \mathbb{C} \simeq \kappa_{n-1, n}^{*} R \pi_{n-1!}^{a} \mathbb{C}$ and we conclude that

$$
\epsilon_{n-1, n}^{*} R \pi_{n-1, n!}^{a} \mathbb{C} \simeq R \pi_{n-1!}^{a} \mathbb{C}
$$

Lemma 4.13. We consider the functorial algebra homomorphism

$$
\epsilon_{n-1, n}^{*}: \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right) \longrightarrow \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right)
$$

Then, it induces the isomorphism

$$
\begin{aligned}
& \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right) / \operatorname{Rad}\left(\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right)\right) \\
& \simeq \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right) / \operatorname{Rad}\left(\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right)\right)
\end{aligned}
$$

and it is identified with the identity map

$$
p_{i} H_{n-1, n}^{a} p_{i} / \operatorname{Rad}\left(p_{i} H_{n-1, n}^{a} p_{i}\right) \simeq H_{n-1}^{a} / \operatorname{Rad}\left(H_{n-1}^{a}\right)
$$

Further, its inverse is induced by the functorial algebra homomorphism

$$
\operatorname{Ind}_{i}^{b}: \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right) \longrightarrow \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right)
$$

[^2]Proof. Note that

$$
\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right)=\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(\oplus_{\varphi} I C_{\varphi} \otimes_{\mathbb{C}} L_{\varphi}\right)
$$

as \mathbb{C}-algebras. Thus, the functorial algebra homomorphism

$$
\operatorname{Ind}_{i}^{b}: \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(\oplus_{\varphi} I C_{\varphi} \otimes_{\mathbb{C}} L_{\varphi}\right) \rightarrow \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1, n}^{a}\right)}^{*}\left(\oplus_{\varphi} I C_{\varphi}^{b} \otimes_{\mathbb{C}} L_{\varphi}\right)
$$

induces the identity map

$$
\begin{aligned}
\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{0}\left(\oplus_{\varphi} I C_{\varphi}\right. & \left.\otimes_{\mathbb{C}} L_{\varphi}\right)=\oplus_{\varphi} \operatorname{End}_{\mathbb{C}}\left(L_{\varphi}\right) \\
& \longrightarrow \oplus_{\varphi} \operatorname{End}_{\mathbb{C}}\left(L_{\varphi}\right)=\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1, n}^{a}\right)}^{0}\left(\oplus_{\varphi} I C_{\varphi}^{b} \otimes_{\mathbb{C}} L_{\varphi}\right)
\end{aligned}
$$

That is, $\operatorname{Ind}_{i}^{b}$ induces the isomorphism

$$
\begin{aligned}
& \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right) / \operatorname{Rad}\left(\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right)\right) \\
& \quad \simeq \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right) / \operatorname{Rad}\left(\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1, n!}^{a} \mathbb{C}\right)\right)
\end{aligned}
$$

and it is identified with the identity map

$$
H_{n-1}^{a} / \operatorname{Rad}\left(H_{n-1}^{a}\right) \simeq p_{i} H_{n-1, n}^{a} p_{i} / \operatorname{Rad}\left(p_{i} H_{n-1, n}^{a} p_{i}\right)
$$

On the other hand, we have $\operatorname{Ind}_{i}^{b}\left(R \pi_{n-1!}^{a} \mathbb{C}\right) \simeq R \pi_{n-1, n!}^{a} \mathbb{C}$ up to degree shift, and $\epsilon_{n-1, n}^{*} R \pi_{n-1, n!}^{a} \mathbb{C} \simeq R \pi_{n-1!}^{a} \mathbb{C}$. Thus, Ind $_{i}^{b}$ and $\epsilon_{n-1, n}^{*}$ are inverse to the other on the semisimple quotients, and the claim follows.

Theorem 4.14. Consider the functorial algebra homomorphism

$$
\operatorname{Ind}_{i}: \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right) \longrightarrow \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(R \pi_{n!}^{a} \mathbb{C}\right)
$$

If M is a simple H_{n}^{a}-module, then the action of H_{n-1}^{a} on $\operatorname{Top}\left(p_{i} M\right)$ coincides with that given by Ind_{i} under the identification

$$
H_{n-1}^{a}=\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n-1}^{a}\right)}^{*}\left(R \pi_{n-1!}^{a} \mathbb{C}\right), \quad p_{i} H_{n}^{a} p_{i}=\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(R \pi_{n!}^{a} \mathbb{C}\right)
$$

Proof. Let $\left(Y_{n}^{a}\right)_{\nu}$ be the set of (X, F) such that the flag type is ν, as before. We denote $\pi_{n, \nu}:\left(Y_{n}^{a}\right)_{\nu} \rightarrow \mathcal{N}_{n}^{a}$ and

$$
\mathcal{M}_{\nu}=\bigoplus_{i \in \mathbb{Z}}{ }^{p} \mathcal{H}^{i}\left(R \pi_{n, \nu!} \mathbb{C}\right)
$$

Then, by our identification, we have

$$
H_{n}^{a}=\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(\oplus_{\nu} \mathcal{M}_{\nu}\right)
$$

where ν runs through flag types which are permutations of $\left(s_{1}, \ldots, s_{n}\right)$. Write

$$
\bigoplus_{\nu} \mathcal{M}_{\nu}=\bigoplus_{\psi} I C_{\psi} \otimes_{\mathbb{C}} L_{\psi}
$$

Then, $H_{n}^{a}=\bigoplus_{\psi^{\prime}, \psi^{\prime \prime}} \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(I C_{\psi^{\prime}}, I C_{\psi^{\prime \prime}}\right) \otimes_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}}\left(L_{\psi^{\prime}}, L_{\psi^{\prime \prime}}\right)$ and we view it as the block partitioned matrix algebra whose entries of the $\left(\psi^{\prime \prime}, \psi^{\prime}\right)$ component are elements of $\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(I C_{\psi^{\prime}}, I C_{\psi^{\prime \prime}}\right)$. Define

$$
P_{\psi}=\bigoplus_{\psi^{\prime}} \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(I C_{\psi}, I C_{\psi^{\prime}}\right) \otimes_{\mathbb{C}} L_{\psi^{\prime}}
$$

Then, it is a direct summand of H_{n}^{a} and we view it as the space of block partitioned column vectors whose entries in the block $L_{\psi^{\prime}}$ are elements of $\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(I C_{\psi}, I C_{\psi^{\prime}}\right)$.

$$
\begin{aligned}
\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(I C_{\psi^{\prime}}, I C_{\psi^{\prime \prime}}\right) \otimes_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}}\left(L_{\psi^{\prime}},\right. & \left.L_{\psi^{\prime \prime}}\right) \times \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(I C_{\psi}, I C_{\psi^{\prime}}\right) \otimes_{\mathbb{C}} L_{\psi^{\prime}} \\
& \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(I C_{\psi}, I C_{\psi^{\prime \prime}}\right) \otimes_{\mathbb{C}} L_{\psi^{\prime \prime}}
\end{aligned}
$$

shows that P_{ψ} is a left ideal of H_{n}^{a} so that it is a projective H_{n}^{a}-module. It is clear that

$$
L_{\psi}=\frac{\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{\geq 0}\left(I C_{\psi}, \oplus_{\nu} \mathcal{M}_{\nu}\right)}{\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}\left(I C_{\psi}, \oplus_{\nu} \mathcal{M}_{\nu}\right)}
$$

is a simple H_{n}^{a}-module or zero and that any simple H_{n}^{a}-module appears in this way. Thus, we assume that $M=L_{\psi}$. Then, Lemma 4.8 says that multiplication by p_{i} amounts to picking up the connected components $p_{i} Y_{n}^{a}$ so that

$$
p_{i} L_{\psi}=\frac{\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{\geq 0}\left(I C_{\psi}, \oplus_{\nu} \mathcal{M}_{\nu}\right)}{\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}\left(I C_{\psi}, \oplus_{\nu} \mathcal{M}_{\nu}\right)}
$$

where ν runs through permutations of $\left(s_{1}, \ldots, s_{n}\right)$ such that $\nu_{n}=i$. Suppose that $p_{i} L_{\psi} \neq 0$. It is a simple $p_{i} H_{n}^{a} p_{i}$-module. Let $\pi_{n-1, n, \nu}:\left(Y_{n}^{a}\right)_{\nu} \rightarrow$ $\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}$ and

$$
\mathcal{M}_{\nu}^{b}=\bigoplus_{i \in \mathbb{Z}}^{p} \mathcal{H}^{i}\left(R \pi_{n-1, n, \nu!} \mathbb{C}\right) .
$$

Then $p_{i} H_{n-1, n}^{a} p_{i}=\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}\left(\oplus_{\nu} \mathcal{M}_{\nu}^{b}\right)$, where ν runs through permutations of $\left(s_{1}, \ldots, s_{n}\right)$ such that $\nu_{n}=i$, and it acts on $p_{i} L_{\psi}$ through $R \rho_{n_{*}}$ by Corollary 4.11. Now, we consider $\operatorname{Top}\left(p_{i} L_{\psi}\right)$. Then, the action of $p_{i} H_{n-1, n}^{a} p_{i}$ factors through $H_{n-1}^{a} / \operatorname{Rad}\left(H_{n-1}^{a}\right)$ and Lemma 4.13 implies that it is given by $\operatorname{Ind}_{i}^{\mathrm{b}}$. Thus, we have proved that the action of H_{n-1}^{a} on $\operatorname{Top}\left(p_{i} L_{\psi}\right)$ coincides with the action of H_{n-1}^{a} given by the functorial algebra homomorphism Ind_{i}.
4.7. The geometric proof. Having proved Theorem 4.14, we are now able to give the promised geometric proof of the modular branching rule. We write each simple H_{n}^{a}-module as in the proof of the above theorem

$$
L_{\psi}=\frac{\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{>0}\left(I C_{\psi}, \oplus_{\nu} \mathcal{M}_{\nu}\right)}{\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}\left(I C_{\psi}, \oplus_{\nu} \mathcal{M}_{\nu}\right)} .
$$

Suppose that $p_{i} L_{\psi} \neq 0$. We want to show that $\operatorname{Top}\left(p_{i} L_{\psi}\right)$ contains $L_{\tilde{e}_{i} \psi}$. As the simple H_{n-1}^{a}-modules are the same as the simple $p_{i} H_{n-1, n}^{a} p_{i}$-modules, we consider the restriction of $p_{i} L_{\psi}$ to $p_{i} H_{n-1, n}^{a} p_{i}$. Let $\pi_{n, \nu}=\rho_{n} \circ \pi_{n-1, n, \nu}$. Then, we have

$$
R \pi_{n!} \mathbb{C}=\bigoplus_{\nu \text { such that } \nu_{n}=i} R \pi_{n, \nu!} \mathbb{C}
$$

which is equal to $\operatorname{Ind}_{i}\left(R \pi_{n-1!} \mathbb{C}\right)$ up to degree shift. Thus, we write

$$
\bigoplus_{\nu \text { such that } \nu_{n}=i} \mathcal{M}_{\nu}^{b}=\bigoplus_{\varphi} I C_{\varphi}^{b} \otimes_{\mathbb{C}} L_{\varphi}
$$

and restrict the action of $p_{i} H_{n} p_{i}$ on $p_{i} L_{\psi}$ to $p_{i} H_{n-1, n} p_{i}$ through $R \rho_{n *}$, the functorial algebra homomorphism given by

$$
\begin{aligned}
& p_{i} H_{n-1, n}^{a} p_{i}=\bigoplus_{\varphi^{\prime}, \varphi^{\prime \prime}} \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{*}\left(\operatorname{Ind}_{i}^{b} I C_{\varphi^{\prime}}, \operatorname{Ind}_{i}^{b} I C_{\varphi^{\prime \prime}}\right) \bigotimes_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}}\left(L_{\varphi^{\prime}}, L_{\varphi^{\prime \prime}}\right) \\
& \longrightarrow \bigoplus_{\varphi^{\prime}, \varphi^{\prime \prime}} \operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{*}\left(\operatorname{Ind}_{i} I C_{\varphi^{\prime}}, \operatorname{Ind}_{i} I C_{\varphi^{\prime \prime}}\right) \bigotimes_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}}\left(L_{\varphi^{\prime}}, L_{\varphi^{\prime \prime}}\right)=p_{i} H_{n}^{a} p_{i}
\end{aligned}
$$

To study this, we introduce a block algebra description of $p_{i} H_{n-1, n}^{a} p_{i^{-}}$ action on $p_{i} L_{\psi}$. As

$$
\bigoplus_{\nu \text { such that } \nu_{n}=i} \mathcal{M}_{\nu}=\bigoplus_{\varphi}\left(I C_{\tilde{f}_{i} \varphi}^{\oplus\left(\epsilon_{i}(\varphi)+1\right)}+\sum_{j} R_{\varphi, j}\right) \otimes_{\mathbb{C}} L_{\varphi}
$$

by Lemma 4.12(1), $p_{i} L_{\psi}$ has the decomposition

$$
p_{i} L_{\psi}=\bigoplus_{\varphi} \frac{\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{\geq 0}\left(I C_{\psi}, I C_{\tilde{\tilde{f}_{i} \varphi}}^{\oplus\left(\epsilon_{i}(\varphi)+1\right)}+\sum_{j} R_{\varphi, j}\right)}{\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{>0}\left(I C_{\psi}, I C_{\tilde{f_{i} \varphi}}^{\oplus\left(\epsilon_{i}(\varphi)+1\right)}+\sum_{j} R_{\varphi, j}\right)} \otimes_{\mathbb{C}} L_{\varphi}
$$

Thus, we have the corresponding block decomposition of $\operatorname{End}_{\mathbb{C}}\left(p_{i} L_{\psi}\right)$.
Observe that $I C_{\psi}$ appears in $L_{\varphi, j}$ only if $\epsilon_{i}(\varphi)<\epsilon_{i}\left(\tilde{e}_{i} \psi\right)$ and $I C_{\psi}$ appears in $I C_{\tilde{f}_{i} \varphi}^{\oplus\left(\epsilon_{i}(\varphi)+1\right)}$ only if $\varphi=\tilde{e}_{i} \psi$. Hence, only those blocks L_{φ} with $\epsilon_{i}(\varphi)<$ $\epsilon_{i}\left(\tilde{e}_{i} \psi\right)$ and $L_{\tilde{e}_{i} \psi}$ appear in the above block decomposition.

To obtain the $\left(\varphi^{\prime \prime}, \varphi^{\prime}\right)$-component of the representation of $p_{i} H_{n-1, n}^{a} p_{i}$ on $p_{i} L_{\psi}$, we consider the image of $\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a} \times \mathbb{P}^{m}\right)}^{k}\left(I C_{\varphi^{\prime}}^{b}, I C_{\varphi^{\prime \prime}}^{b}\right)$, for $k \geq 0$, through the action of

$$
\operatorname{Ext}_{D^{b}\left(\mathcal{N}_{n}^{a}\right)}^{k}\left(\operatorname{Ind}_{i}\left(I C_{\varphi^{\prime}}\right), \operatorname{Ind}_{i}\left(I C_{\varphi^{\prime \prime}}\right)\right)
$$

The image may be nonzero only when $I C_{\psi}\left[j^{\prime}\right]$, for some $j^{\prime} \in \mathbb{Z}$, appears in $\operatorname{Ind}_{i}\left(I C_{\varphi^{\prime}}\right)$ and $I C_{\psi}\left[j^{\prime \prime}\right]$, for some $j^{\prime \prime} \in \mathbb{Z}$, appears in $\operatorname{Ind}_{i}\left(I C_{\varphi^{\prime \prime}}\right)$ such that
$-j^{\prime}+j^{\prime \prime}+k=0$. In particular, $j^{\prime \prime} \leq j^{\prime}$ is necessary. Since

$$
\begin{aligned}
\operatorname{Ind}_{i}\left(I C_{\varphi^{\prime}}\right) & =\sum_{j^{\prime}=0}^{\epsilon_{i}\left(\varphi^{\prime}\right)} I C_{\tilde{f}_{i} \varphi^{\prime}}\left[\epsilon_{i}\left(\varphi^{\prime}\right)-2 j^{\prime}\right]+\sum_{j^{\prime} \in \mathbb{Z}} R_{\varphi^{\prime}, j^{\prime}}\left[j^{\prime}\right], \\
\operatorname{Ind}_{i}\left(I C_{\varphi^{\prime \prime}}\right) & =\sum_{j^{\prime \prime}=0}^{\epsilon_{i}\left(\varphi^{\prime \prime}\right)} I C_{\tilde{f}_{i} \varphi^{\prime \prime}}\left[\epsilon_{i}\left(\varphi^{\prime \prime}\right)-2 j^{\prime \prime}\right]+\sum_{j^{\prime \prime} \in \mathbb{Z}} R_{\varphi^{\prime \prime}, j^{\prime \prime}}\left[j^{\prime \prime}\right],
\end{aligned}
$$

there are four cases to consider.

- Suppose that $\varphi^{\prime}=\varphi^{\prime \prime}=\tilde{e}_{i} \psi$. We number the rows and columns of the block matrix by $0 \leq j^{\prime \prime}, j^{\prime} \leq \epsilon_{i}(\psi)-1$ such that $\epsilon_{i}(\psi)-1-2 j^{\prime \prime}$ and $\epsilon_{i}(\psi)-1-2 j^{\prime}$ are increasing. Then, the entries may be nonzero only when $\epsilon_{i}(\psi)-1-2 j^{\prime \prime} \leq \epsilon_{i}(\psi)-1-2 j^{\prime}$. Thus, we obtain an upper block triangular matrix whose diagonal block components are $\operatorname{End}_{\mathbb{C}}\left(L_{\tilde{e}_{i} \psi}\right)$.
- Suppose that $\varphi^{\prime} \neq \tilde{e}_{i} \psi=\varphi^{\prime \prime}$. We number the rows as before, and the columns such that j^{\prime} is increasing. If $I C_{\psi}$ appears in $L_{\varphi^{\prime}, j^{\prime}}$ then the entries may be nonzero only when $\epsilon_{i}(\psi)-1-2 j^{\prime \prime} \leq j^{\prime}$. Hence, each row has entries only after the column number $\epsilon_{i}(\psi)-1-2 j^{\prime \prime}$. Now, Lemma 4.12(2) implies that $j^{\prime} \leq \epsilon_{i}(\psi)-2$ so that $j^{\prime \prime}=0$ cannot happen. Hence, all the entries of the last row are zero.
- Suppose that $\varphi^{\prime}=\tilde{e}_{i} \psi \neq \varphi^{\prime \prime}$. Then, each column has entries only before some column number.
- Suppose that $\varphi^{\prime} \neq \tilde{e}_{i} \psi$ and $\varphi^{\prime \prime} \neq \tilde{e}_{i} \psi$. Then we have an upper block triangular matrix again.
The first two cases show that there is a $p_{i} H_{n-1, n}^{a} p_{i}$-submodule L_{ψ}^{\prime} of L_{ψ} such that $L_{\psi} / L_{\psi}^{\prime} \simeq L_{\tilde{e}_{i} \psi}$. Thus, $L_{\tilde{e}_{i} \psi}$ appears in $\operatorname{Top}\left(p_{i} L_{\psi}\right)$. Now, following [16], Grojnowski and Vazirani proved in Vazirani's thesis that $\operatorname{Soc}\left(p_{i} L_{\psi}\right)$ is simple [10]. By Specht module theory, the simple modules are self-dual so that $\operatorname{Top}\left(p_{i} L_{\psi}\right)$ is isomorphic to $\operatorname{Soc}\left(p_{i} L_{\psi}\right)$. Thus, we have proved that $\operatorname{Soc}\left(p_{i} L_{\psi}\right)=L_{\tilde{e}_{i} \psi}$. Thus, Theorem 4.2 and Theorem 4.4 follow.

5. Crystals of deformed Fock spaces

In this section, we recall results on deformed Fock spaces which are related to the combinatorial construction of simple H_{n}-modules.
5.1. Crystals of deformed Fock spaces. Let $l \in \mathbb{Z}_{>0}$ and we choose a multicharge

$$
\mathbf{v}=\left(\mathrm{v}_{0}, \ldots, \mathrm{v}_{l-1}\right) \in \mathbb{Z}^{l}
$$

We denote $\mathrm{v}_{i}+e \mathbb{Z} \in \mathbb{Z} / e \mathbb{Z}$ by $\overline{\bar{v}_{i}}$, for $1 \leq i \leq l$. Let Λ_{i}, for $i \in \mathbb{Z} / e \mathbb{Z}$, be the fundamental weights of \mathfrak{g}, and define a dominant weight Λ by

$$
\Lambda=\Lambda_{\overline{v_{0}}}+\cdots+\Lambda_{\overline{v_{l-1}}} .
$$

We consider various multicharges which give a fixed Λ.

Let $V_{v}(\Lambda)$ be the integrable highest weight $U_{v}(\mathfrak{g})$-module of highest weight Λ. We want to realize $V_{v}(\Lambda)$ as a $U_{v}(\mathfrak{g})$-submodule of the level l deformed Fock space $\mathcal{F}^{\mathbf{v}}$ associated with the multicharge \mathbf{v}.

As a $\mathbb{C}(v)$-vector space, the level l Fock space $\mathcal{F}^{\mathbf{v}}$ admits the set of all l-partitions as a natural basis. Namely, the underlying vector space is

$$
\mathcal{F}=\bigoplus_{n \geq 0} \bigoplus_{\boldsymbol{\lambda} \in \Pi_{l, n}} \mathbb{C}(v) \boldsymbol{\lambda}
$$

where $\Pi_{l, n}$ is the set of l-partitions of rank n. We do not give explicit formulas to define the $U_{v}(\mathfrak{g})$-module structure on $\mathcal{F}^{\mathbf{v}}$, but it is defined in terms of the total order $\prec_{\mathbf{v}}$ introduced below. This action was introduced by Jimbo, Misra, Miwa and Okado in (12]. Let

$$
L^{\mathbf{v}}=\bigoplus_{n \geq 0} \bigoplus_{\boldsymbol{\lambda} \in \Pi_{l, n}} R \boldsymbol{\lambda}, \quad B^{\mathbf{v}}=\bigsqcup_{n \geq 0} \Pi_{l, n}
$$

Then, $\left(L^{\mathbf{v}}, B^{\mathbf{v}}\right)$ is a crystal basis of $\mathcal{F}^{\mathbf{v}}$. In this article, it suffices to recall the crystal structure on the set of l-partitions. Before doing this, we explain basic terminology on l-partitions.

Let $\boldsymbol{\lambda}=\left(\lambda^{(0)}, \ldots, \lambda^{(l-1)}\right)$ be an l-partition, which is identified with the corresponding l-tuple of Young diagrams. Then, we can speak of nodes of $\boldsymbol{\lambda}$, which are nodes of the Young diagrams. We identify a node γ of $\boldsymbol{\lambda}$ with a triplet (a, b, c) where $c \in\{0, \ldots, l-1\}$ is such that γ is a node of $\lambda^{(c)}$, and a and b are the row and the column indices of the node γ in $\lambda^{(c)}$, respectively.
Definition 5.1. Let $\gamma=(a, b, c)$ be a node of an l-partition $\boldsymbol{\lambda}$. Then, its content $c(\gamma)$ and residue res (γ) are defined by

$$
c(\gamma)=b-a+\mathrm{v}_{c} \in \mathbb{Z} \text { and } \operatorname{res}(\gamma)=\overline{c(\gamma)} \in \mathbb{Z} / e \mathbb{Z}
$$

respectively.
Let γ be a node of $\boldsymbol{\lambda}$. Then we say that γ is an i-node, for $i \in \mathbb{Z} / e \mathbb{Z}$, if $\operatorname{res}(\gamma)=i$. Suppose that $\boldsymbol{\lambda} \backslash\{\gamma\}$ is again an l-partition, which we denote by $\boldsymbol{\mu}$. Then, we say that γ is a removable i-node of $\boldsymbol{\lambda}$ and γ is an addable i-node of $\boldsymbol{\mu}$. We introduce a total order $\prec_{\mathbf{v}}$ on the set of addable and removable i-nodes of an l-partition $\boldsymbol{\lambda}$.

Definition 5.2. Let $\gamma_{1}=\left(a_{1}, b_{1}, c_{1}\right)$ and $\gamma_{2}=\left(a_{2}, b_{2}, c_{2}\right)$ be i-nodes of $\boldsymbol{\lambda}$. We define the order $\prec_{\mathbf{v}}$ by

$$
\gamma_{1} \prec_{\mathbf{v}} \gamma_{2} \Longleftrightarrow\left\{\begin{array}{l}
c\left(\gamma_{1}\right)<c\left(\gamma_{2}\right), \text { or } \\
c\left(\gamma_{1}\right)=c\left(\gamma_{2}\right) \text { and } c_{1}>c_{2}
\end{array}\right.
$$

The order $\prec_{\mathbf{v}}$ depends on the choice of the multicharge \mathbf{v} when $l>1$.
Now, we can explain the crystal structure on $B^{\mathbf{v}}$, which is defined by the total order $\prec_{\mathbf{v}}$. Let $\boldsymbol{\lambda}$ be an l-partition as above. Let $N_{i}(\boldsymbol{\lambda})$, for $i \in \mathbb{Z} / e \mathbb{Z}$, be the number of i-nodes of $\boldsymbol{\lambda}$. Then we define

$$
\mathrm{wt}(\boldsymbol{\lambda})=\Lambda-\sum_{i \in \mathbb{Z} / e \mathbb{Z}} N_{i}(\boldsymbol{\lambda}) \alpha_{i}
$$

The rule to compute $\tilde{e}_{i} \boldsymbol{\lambda}$ is as follows. The rule to compute $\tilde{f}_{i} \boldsymbol{\lambda}$ is similar. We read addable and removable i-nodes of $\boldsymbol{\lambda}$ in the increasing order with respect to \prec_{v}. Then we delete a consecutive pair of a removable i-node and an addable i-node in this order as many as possible. We call this procedure $R A$ deletion.

- If there remains no removable i-node, define $\tilde{e}_{i} \boldsymbol{\lambda}=0$.
- Otherwise, we call the leftmost removable i-node, say γ, the good i-node of $\boldsymbol{\lambda}$, and define $\tilde{e}_{i} \boldsymbol{\lambda}=\boldsymbol{\lambda} \backslash\{\gamma\}$.
Finally, we define

$$
\epsilon_{i}(\boldsymbol{\lambda})=\max \left\{k \in \mathbb{Z}_{\geq 0} \mid \tilde{e}_{i}^{k} \boldsymbol{\lambda} \neq 0\right\}, \quad \varphi_{i}(\boldsymbol{\lambda})=\max \left\{k \in \mathbb{Z}_{\geq 0} \mid \tilde{f}_{i}^{k} \boldsymbol{\lambda} \neq 0\right\} .
$$

The empty l-partition $\emptyset=(\emptyset, \ldots, \emptyset)$ is a highest weight vector of weight Λ in $\mathcal{F}^{\mathbf{v}}$. We denote by $V_{v}(\mathbf{v})$ the $U_{v}(\mathfrak{g})$-submodule generated by \emptyset. Then, $V_{v}(\mathbf{v})$ is isomorphic to $V_{v}(\Lambda)$ as $U_{v}(\mathfrak{g})$-modules.

Definition 5.3. The crystal $B(\mathbf{v})$ is the connected subcrystal of $B^{\mathbf{v}}$ that contains the empty l-partition \emptyset. An l-partition in $B(\mathbf{v})$ is called an Uglov l-partition of multicharge \mathbf{v}.

As $B(\mathbf{v})$ is the subcrystal which corresponds to $V_{v}(\mathbf{v})$, it is isomorphic to the highest weight crystal $B(\Lambda)$.
5.2. FLOTW l-partitions. Define a set \mathcal{V}_{l} of multicharges by

$$
\mathcal{V}_{l}=\left\{\mathbf{v}=\left(\mathrm{v}_{0}, \ldots, \mathrm{v}_{l-1}\right) \mid \mathrm{v}_{0} \leq \cdots \leq \mathrm{v}_{l-1}<\mathrm{v}_{0}+e\right\} .
$$

For each l-partition $\boldsymbol{\lambda}=\left(\lambda^{(0)}, \ldots, \lambda^{(l-1)}\right)$, let $\lambda_{j}^{(c)}$, for $j=1,2, \cdots$, be the parts of $\lambda^{(c)}$. If $\lambda_{j}^{(c)}>0$ then we denote the residue of the right end node of the $j^{\text {th }}$ row of $\lambda^{(c)}$ by res $\left(\lambda_{j}^{(c)}\right)$, which is the residue of $\lambda_{j}^{(c)}-j+\mathrm{v}_{c}$.
Definition 5.4. Suppose that $\mathbf{v} \in \mathcal{V}_{l}$. A FLOTW l-partition of multicharge \mathbf{v} is an l-partition $\boldsymbol{\lambda}$ which satifies the following two conditions.
(i) We have the inequalities

$$
\lambda_{j}^{(c)} \geq \lambda_{j+\mathrm{v}_{c+1}-\mathrm{v}_{c}}^{(c+1)}, \text { for } 0 \leq c \leq l-2, \text { and } \lambda_{j}^{(l-1)} \geq \lambda_{j+e+\mathrm{v}_{0}-\mathrm{v}_{l-1}}^{(0)} .
$$

(ii) For each $k \in \mathbb{Z}_{>0}$, we have

$$
\left\{\operatorname{res}\left(\lambda_{j}^{(c)}\right) \mid \lambda_{j}^{(c)}=k\right\} \neq \mathbb{Z} / e \mathbb{Z}
$$

We denote by $\Phi(\mathbf{v})_{n}$ the set of FLOTW l-partitions of multicharge \mathbf{v} and rank n. Then, we define

$$
\Phi(\mathbf{v})=\bigsqcup_{n \geq 0} \Phi(\mathbf{v})_{n}, \quad \text { and } \quad \Phi=\bigsqcup_{\mathbf{v} \in \mathcal{V}_{l}} \Phi(\mathbf{v}) .
$$

We have the following result [7]
Proposition 5.5. Suppose that $\mathbf{v} \in \mathcal{V}_{l}$. Then, $B(\mathbf{v})=\Phi(\mathbf{v})$.
5.3. Kleshchev l-partitions. If $l=1$ then we have the level 1 deformed Fock spaces \mathcal{F}^{v}, for $\mathrm{v} \in \mathbb{Z}$. We consider the tensor product

$$
\mathcal{F}^{\mathrm{v}_{l-1}} \otimes \cdots \otimes \mathcal{F}^{\mathrm{v}_{0}}
$$

for a multicharge \mathbf{v}. Note that it depends only on $\overline{\mathbf{v}}=\left(\overline{\mathrm{v}}_{0}, \ldots, \overline{\mathrm{v}}_{l-1}\right)$. Then,

$$
\left(L^{\mathrm{v}_{l-1}} \otimes \cdots \otimes L^{\mathrm{v}_{0}}, B^{\mathrm{v}_{l-1}} \otimes \cdots \otimes B^{\mathrm{v}_{0}}\right)
$$

is a crystal basis of $\mathcal{F}^{\mathrm{v}_{l-1}} \otimes \cdots \otimes \mathcal{F}^{\mathrm{V}_{0}}$.
Definition 5.6. A Kleshchev l-partition is an l-partition $\boldsymbol{\lambda}$ such that the tensor product of the transpose of $\lambda^{(i)}$'s in the reversed order

$$
{ }^{t} \lambda^{(l-1)} \otimes \cdots \otimes^{t} \lambda^{(0)}
$$

belongs the connected component of $B^{\mathrm{v}_{l-1}} \otimes \cdots \otimes B^{\mathrm{v}_{0}}$ that contains $\emptyset \otimes \cdots \otimes \emptyset$.
We denote by Φ_{n}^{K} the set of Kleshchev l-partitions of rank n. Then we define

$$
\Phi^{K}=\bigsqcup_{n \geq 0} \Phi_{n}^{K}
$$

We need the transpose of partitions in the definition in order to make it compatible with Specht module theory of cyclotomic Hecke algebras, which we introduce later. Note that if $\boldsymbol{\lambda}$ is Kleshchev then each component $\lambda^{(j)}$ is e-restricted.
Φ^{K} inherits the crystal structure from $B^{\mathrm{v}_{l-1}} \otimes \cdots \otimes B^{\mathrm{v}_{0}}$, and Φ^{K} is isomorphic to the highest weight crystal $B(\Lambda)$, again.
5.4. Crystal isomorphisms. As $\Phi(\mathbf{v})$ and Φ^{K} are isomorphic, we have a unique isomophism of crystals between them, which we denote by

$$
\Gamma: \Phi(\mathbf{v}) \rightarrow \Phi^{K}
$$

We may compute this bijection explicitly. In fact, if we fix n and choose another multicharge w such that

- w_{j} is sufficiently smaller than w_{j+1}, for $0 \leq j \leq l-2$, and
- $\overline{\mathrm{v}}_{j}=\overline{\mathrm{w}}_{j}$, for $0 \leq j \leq l-1$,
then the bijection between $\Phi_{\leq n}^{K}$ and $B(\mathbf{w})_{\leq n}$ given by

$$
\left(\lambda^{(0)}, \ldots, \lambda^{(l-1)}\right) \mapsto\left({ }^{t} \lambda^{(0)}, \ldots,{ }^{t} \lambda^{(l-1)}\right)
$$

is compatible with the crystal structures on $\Phi_{\leq n}^{K}$ and $B(\mathbf{w})_{\leq n}$. Hence, it suffices to compute the crystal isomorphism between $B(\mathbf{v})$ and $B(\mathbf{w})$.

Let $\widehat{\mathfrak{S}}_{n}=e \mathbb{Z} \imath \mathfrak{S}_{n} \subseteq \operatorname{Aut}\left(\mathbb{Z}^{l}\right)$ be the extended affine symmetric group. Define $\sigma_{j} \in \operatorname{Aut}\left(\mathbb{Z}^{l}\right)$, for $0 \leq j \leq l-2$, by

$$
\sigma_{j}\left(\mathrm{v}_{0}, \ldots, \mathrm{v}_{j-1}, \mathrm{v}_{j}, \ldots, \mathrm{v}_{l-1}\right)=\left(\mathrm{v}_{0}, \ldots, \mathrm{v}_{j}, \mathrm{v}_{j-1}, \ldots, \mathrm{v}_{l-1}\right)
$$

and define $\tau \in \operatorname{Aut}\left(\mathbb{Z}^{l}\right)$ by $\tau\left(\mathrm{v}_{0}, \ldots, \mathrm{v}_{l-1}\right)=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{l-1}, \mathrm{v}_{0}+e\right)$. Then, $\widehat{\mathfrak{S}}_{n}$ is generated by these elements.

The following theorem was proved by the second and the third authors in [13]. As the multicharges \mathbf{v} and \mathbf{w} are in the same $\widehat{\mathfrak{S}}_{n}$-orbit, it allows us to compute the crystal isomorphism between $B(\mathbf{v})$ and $B(\mathbf{w})$ explicitly.

Theorem 5.7.

(1) The crystal isomorphism $B(\mathbf{v}) \rightarrow B(\tau \mathbf{v})$ is given by

$$
\left(\lambda^{(0)}, \ldots, \lambda^{(l-1)}\right) \mapsto\left(\lambda^{(1)}, \ldots, \lambda^{(l-1)}, \lambda^{(0)}\right)
$$

(2) The crystal isomorphism $B(\mathbf{v}) \rightarrow B\left(\sigma_{j} \mathbf{v}\right)$ is given by

$$
\left(\lambda^{(0)}, \ldots, \lambda^{(j-1)}, \lambda^{(j)}, \ldots, \lambda^{(l-1)}\right) \mapsto\left(\lambda^{(0)}, \ldots, \tilde{\lambda}^{(j)}, \tilde{\lambda}^{(j-1)}, \ldots, \lambda^{(l-1)}\right)
$$

where, $\tilde{\lambda}^{(j-1)}$ and $\tilde{\lambda}^{(j)}$ are defined by

$$
\lambda^{(j)} \otimes \lambda^{(j-1)} \mapsto \tilde{\lambda}^{(j-1)} \otimes \tilde{\lambda}^{(j)}
$$

under the following crystal isomorphism, called a combinatorial R-matrix, between $\mathfrak{g}\left(A_{\infty}\right)$-crystals.

$$
B\left(\Lambda_{\mathrm{v}_{j}}\right) \otimes B\left(\Lambda_{\mathrm{v}_{j-1}}\right) \rightarrow B\left(\Lambda_{\mathrm{v}_{j-1}}\right) \otimes B\left(\Lambda_{\mathrm{v}_{j}}\right)
$$

The combinatorial R-matrix may be computed in a purely combinatorial manner. See 113 for the details.
5.5. Crystal embedding to $B(\infty)$. Let $T_{\Lambda}=\left\{t_{\Lambda}\right\}_{\tilde{\sim}}$ be the crystal defined by $\operatorname{wt}\left(t_{\Lambda}\right)=\Lambda, \epsilon_{i}\left(t_{\Lambda}\right)=\varphi_{i}\left(t_{\Lambda}\right)=-\infty$ and $\tilde{e}_{i} t_{\Lambda}=\tilde{f}_{i} t_{\Lambda}=0$. Then, by the theory of crystals, we have the crystal embedding $B(\Lambda) \hookrightarrow B(\infty) \otimes T_{\Lambda}$ such that
(i) the image of the embedding is given by

$$
\left\{b \otimes t_{\Lambda} \in B(\infty) \otimes T_{\Lambda} \mid \epsilon_{i}\left(b^{*}\right) \leq \Lambda\left(\alpha_{i}^{\vee}\right)\right\}
$$

where $b \mapsto b^{*}$ is the involution on $B(\infty)$ which is induced by the anti-automorphism of U_{v}^{-}defined by $f_{i} \mapsto f_{i}$,
(ii) $b \otimes t_{\Lambda}$ belongs to the image if and only if $G_{v}(b) v_{\Lambda} \neq 0$, where v_{Λ} is the highest weight vector of $V_{v}(\Lambda)$.
We identify $B(\infty)$ with the crystal of aperiodic multisegments defined in Theorem 2.12 and used in Theorem 4.4. As $B(\mathbf{v})$ is isomorphic to $B(\Lambda)$, we have the crystal embedding

$$
B(\mathbf{v}) \hookrightarrow B(\infty) \otimes T_{\Lambda}
$$

in the language of Uglov l-partitions and multisegments.
We shall describe this embedding in subsequent subsections. By virtue of Theorem 5.7, we may assume that $\mathbf{v} \in \mathcal{V}_{l}$. Write the crystal embedding by $\boldsymbol{\lambda} \mapsto f(\boldsymbol{\lambda}) \otimes t_{\Lambda}$, and denote both the empty l-partition and the empty multisegment by the common symbol \emptyset. Then, the crystal embedding sends \emptyset to $\emptyset \otimes t_{\Lambda}$, and the tensor product rule shows that for any path

$$
\emptyset \xrightarrow{i_{1}} \boldsymbol{\lambda}_{1} \xrightarrow{i_{2}} \boldsymbol{\lambda}_{2} \xrightarrow{i_{3}} \cdots \xrightarrow{i_{n}} \boldsymbol{\lambda}_{n}
$$

in $B(\mathbf{v})$, we have the corresponding path

$$
\emptyset \xrightarrow{i_{1}} f\left(\boldsymbol{\lambda}_{1}\right) \xrightarrow{i_{2}} f\left(\boldsymbol{\lambda}_{2}\right) \xrightarrow{i_{3}} \cdots \xrightarrow{i_{n}} f\left(\boldsymbol{\lambda}_{n}\right)
$$

in $B(\infty)$, and vice versa. On the other hand, if one can prove this property for some map $f: B(\mathbf{v}) \rightarrow B(\infty)$ then it follows that

$$
\epsilon_{i}(\boldsymbol{\lambda})=\epsilon_{i}\left(f(\boldsymbol{\lambda}) \otimes t_{\Lambda}\right) \text { and } \quad \mathrm{wt}(\boldsymbol{\lambda})=\mathrm{wt}\left(f(\boldsymbol{\lambda}) \otimes t_{\Lambda}\right)
$$

so that we also have $\varphi_{i}(\boldsymbol{\lambda})=\varphi_{i}\left(f(\boldsymbol{\lambda}) \otimes t_{\Lambda}\right)$. Hence, we may conclude that the map $\boldsymbol{\lambda} \mapsto f(\boldsymbol{\lambda}) \otimes t_{\Lambda}$ is a crystal embedding in the sense of 14 and it must coincide with the crystal embedding $B(\mathbf{v}) \hookrightarrow B(\infty) \otimes T_{\Lambda}$.
5.6. Row lengths and the order $\prec_{\mathbf{v}}$. We prove two lemmas which relate the length of rows of an l-partition and the order $\prec_{\mathbf{v}}$.
Lemma 5.8. Let $\mathbf{v} \in \mathcal{V}_{l}$ and $\boldsymbol{\lambda}=\left(\lambda^{(0)}, \ldots, \lambda^{(l-1)}\right) \in \Phi(\mathbf{v})$. Suppose that $\gamma_{1}=\left(a_{1}, b_{1}, c_{1}\right)$ and $\gamma_{2}=\left(a_{2}, b_{2}, c_{2}\right)$ are i-nodes of $\boldsymbol{\lambda}$ such that each node is either addable or removale i-node. Then, $\lambda_{a_{1}}^{\left(c_{1}\right)}<\lambda_{a_{2}}^{\left(c_{2}\right)}$ implies $\gamma_{1} \prec_{\mathbf{v}} \gamma_{2}$.
Proof. We show that $\gamma_{2} \preceq_{\mathbf{v}} \gamma_{1}$ implies $\lambda_{a_{1}}^{\left(c_{1}\right)} \geq \lambda_{a_{2}}^{\left(c_{2}\right)}$. As an intermediate step, we first claim that $\gamma_{2} \preceq_{\mathbf{v}} \gamma_{1}$ implies $\lambda_{a_{1}}^{\left(c_{1}\right)} \geq \lambda_{b_{1}-b_{2}+a_{2}}^{\left(c_{2}\right)}$. Note that we have $c\left(\gamma_{1}\right) \geq c\left(\gamma_{2}\right)$ by $\gamma_{2} \preceq_{\mathbf{v}} \gamma_{1}$. Hence, we have

$$
a_{1} \leq b_{1}-b_{2}+a_{2}+\mathrm{v}_{c_{1}}-\mathrm{v}_{c_{2}}
$$

which implies $\lambda_{a_{1}}^{\left(c_{1}\right)} \geq \lambda_{b_{1}-b_{2}+a_{2}+v_{c_{1}}-v_{c_{2}}}^{\left(c_{1}\right)}$.
Suppose that $c_{1} \leq c_{2}$. As $\boldsymbol{\lambda}$ is a FLOTW l-partition, we have

$$
\lambda_{b_{1}-b_{2}+a_{2}+\mathrm{v}_{c_{1}}-\mathrm{v}_{c_{2}}}^{\left(c_{1}\right)} \geq \lambda_{b_{1}-b_{2}+a_{2}+\mathrm{v}_{c_{1}+1}-\mathrm{v}_{c_{2}}}^{\left(c_{1}+1\right)} \geq \cdots \geq \lambda_{b_{1}-b_{2}+a_{2}}^{\left(c_{2}\right)}
$$

Hence $\lambda_{a_{1}}^{\left(c_{1}\right)} \geq \lambda_{b_{1}-b_{2}+a_{2}}^{\left(c_{2}\right)}$ follows.
Suppose that $c_{1}>c_{2}$. Then, $c\left(\gamma_{1}\right)>c\left(\gamma_{2}\right)$ and we must have

$$
b_{1}-a_{1}+\mathrm{v}_{c_{1}} \geq b_{2}-a_{2}+\mathrm{v}_{c_{2}}+e
$$

because γ_{1} and γ_{2} have the same residue i. Hence, we have

$$
a_{1} \leq b_{1}-b_{2}+a_{2}+\mathrm{v}_{c_{1}}-\mathrm{v}_{c_{2}}-e
$$

which implies $\lambda_{a_{1}}^{\left(c_{1}\right)} \geq \lambda_{b_{1}-b_{2}+a_{2}+\mathrm{v}_{c_{1}}-\mathrm{v}_{c_{2}}-e}^{\left(c_{1}\right)}$. Then, by the same reasoning as above, we have

$$
\begin{aligned}
& \lambda_{b_{1}-b_{2}+a_{2}+\mathrm{v}_{c_{1}}-\mathrm{v}_{c_{2}}-e}^{\left(c_{1}\right.} \geq \lambda_{b_{1}-b_{2}+a_{2}+\mathrm{v}_{c_{1}+1}-\mathrm{v}_{c_{2}}-e}^{\left(c_{1}+1\right)} \geq \cdots \\
& \quad \geq \lambda_{b_{1}-b_{2}+a_{2}+\mathrm{v}_{l-1}-\mathrm{v}_{c_{2}}-e}^{(l-1)} \geq \lambda_{b_{1}-b_{2}+a_{2}+\mathrm{v}_{0}-\mathrm{v}_{c_{2}}}^{(0)} \geq \cdots \geq \lambda_{b_{1}-b_{2}+a_{2}}^{\left(c_{2}\right)}
\end{aligned}
$$

Hence $\lambda_{a_{1}}^{\left(c_{1}\right)} \geq \lambda_{b_{1}-b_{2}+a_{2}}^{\left(c_{2}\right)}$ follows again.
If $b_{1} \leq b_{2}$ then $b_{1}-b_{2}+a_{2} \leq a_{2}$ implies the desired inequality $\lambda_{a_{1}}^{\left(c_{1}\right)} \geq \lambda_{a_{2}}^{\left(c_{2}\right)}$. Suppose that $b_{1}>b_{2}$. As γ_{1} is either addable or removable i-node, we have either $b_{1}=\lambda_{a_{1}}^{\left(c_{1}\right)}+1$ or $b_{1}=\lambda_{a_{1}}^{\left(c_{1}\right)}$. Similarly, we have either $b_{2}=\lambda_{a_{2}}^{\left(c_{2}\right)}+1$ or $b_{2}=\lambda_{a_{2}}^{\left(c_{2}\right)}$. Hence, we have $\lambda_{a_{1}}^{\left(c_{1}\right)} \geq b_{1}-1 \geq b_{2} \geq \lambda_{a_{2}}^{\left(c_{2}\right)}$.

Lemma 5.9. Let $\boldsymbol{\lambda}$ be a FLOTW l-partition, and let $\gamma_{A}=\left(a^{\prime}, b+1, c^{\prime}\right)$ and $\gamma_{R}=(a, b, c)$ be addable and removable i-nodes of $\boldsymbol{\lambda}$ respectively. Then we have $\gamma_{R} \prec_{\mathbf{v}} \gamma_{A}$.

Proof. Suppose to the contrary that $\gamma_{A} \prec_{\mathbf{v}} \gamma_{R}$. Then we have either
(i) $c\left(\gamma_{A}\right)<c\left(\gamma_{R}\right)$, or
(ii) $c\left(\gamma_{A}\right)=c\left(\gamma_{R}\right)$ and $c^{\prime}>c$.

In case (i), $b-a+\mathrm{v}_{c} \geq b+1-a^{\prime}+\mathrm{v}_{c^{\prime}}+e$ so that $a+\mathrm{v}_{c^{\prime}}-\mathrm{v}_{c}+e \leq a^{\prime}-1$. As γ_{A} is an addable node, we also have $\lambda_{a^{\prime}-1}^{\left(c^{\prime}\right)}>\lambda_{a^{\prime}}^{\left(c^{\prime}\right)}$. Then, $a+\mathrm{v}_{c^{\prime}}-\mathrm{v}_{c}+e<a^{\prime}$ implies that

$$
\lambda_{a+\mathrm{v}_{c^{\prime}}-\mathrm{v}_{c}}^{\left(c^{\prime}\right.} \geq \lambda_{a+\mathrm{v}_{c^{\prime}}-\mathrm{v}_{c}+e}^{\left(c^{\prime}\right.}>\lambda_{a^{\prime}}^{\left(c^{\prime}\right)} .
$$

Now, using the assumption that $\boldsymbol{\lambda}$ is a FLOTW l-partition, we have

$$
\begin{cases}\lambda_{a}^{(c)} \geq \lambda_{a+c^{\prime}}^{\left(c^{\prime}\right)} & \text { if } c \leq c^{\prime}, \\ \lambda_{a}^{(c)} \geq \lambda_{a+v_{c^{\prime}}-v_{c}+e}^{\left(c^{\prime} c^{\prime}\right.}>\lambda_{a_{c}}^{\left(c^{\prime}\right)} & \text { if } c>c^{\prime} .\end{cases}
$$

However, $\lambda_{a}^{(c)}=b$ since γ_{R} is a removable node, and $\lambda_{a^{\prime}}^{\left(c^{\prime}\right)}=b$ since γ_{A} is an addable node. Thus, we have reached a contradiction.

In case (ii), $b-a+\mathrm{v}_{c}=b+1-a^{\prime}+\mathrm{v}_{c^{\prime}}$ implies $a+\mathrm{v}_{c^{\prime}}-\mathrm{v}_{c}+1=a^{\prime}$. As γ_{A} is an addable node, $\lambda_{a+\mathrm{v}_{c^{\prime}}-\mathrm{v}_{c}}^{\left(c^{\prime}\right)}>\lambda_{a^{\prime}}^{\left(c^{\prime}\right)}$. Thus, $c^{\prime}>c$ implies that

$$
\lambda_{a}^{(c)} \geq \lambda_{a+\mathrm{v}_{c^{\prime}}-\mathrm{v}_{c}}^{\left(c^{\prime}\right)}>\lambda_{a^{\prime}}^{\left(c^{\prime}\right)} .
$$

However, we have $\lambda_{a}^{(c)}=b$ and $\lambda_{a^{\prime}}^{\left(c^{\prime}\right)}=b$ as before, so that we have reached a contradiction again.
5.7. The map $f_{\mathbf{v}}$. For each FLOTW l-partition $\boldsymbol{\lambda} \in \Phi(\mathbf{v})$, we associate a multisegment which is a collection of segments

$$
\left[1-i+\mathrm{v}_{c} ; \lambda_{i}^{(c)}\right),
$$

where $\lambda_{i}^{(c)}$ are parts of $\lambda^{(c)}$, for $c=0, \ldots, l-1$. This defines a well-defined map $f_{\mathbf{v}}: \Phi(\mathbf{v}) \rightarrow B(\infty)$.
Example 5.10. Let $e=4$, and let $\boldsymbol{\lambda}=((2,1),(1)) \in \Phi((0,1))$. Then

$$
f_{(0,1)}(\boldsymbol{\lambda})=\{[0,1],[3],[1]\} .
$$

Next let $\boldsymbol{\lambda}=((2),(1),(1)) \in \Phi((0,1,3))$. Then we have the same result

$$
f_{(0,1,3)}(\boldsymbol{\lambda})=\{[0,1],[1],[3]\} .
$$

Then we may prove the following. Note that the fact itself was observed by several people including the first author years ago, but the authors do not know any reference which proves this.

Theorem 5.11. Suppose that $\mathbf{v} \in \mathcal{V}_{l}$. Then, the crystal embedding $\Phi(\mathbf{v}) \hookrightarrow$ $B(\infty) \otimes T_{\Lambda}$ is given by $\boldsymbol{\lambda} \mapsto f_{\mathbf{v}}(\boldsymbol{\lambda}) \otimes t_{\Lambda}$.

Proof. As was explained in the previous subsection, it suffices to show that there is an arrow

$$
\boldsymbol{\lambda} \xrightarrow{i} \boldsymbol{\mu}
$$

in $B(\mathbf{v})$ if and only if there is an arrow

$$
f_{\mathrm{v}}(\boldsymbol{\lambda}) \xrightarrow{i} f_{\mathrm{v}}(\boldsymbol{\mu})
$$

in $B(\infty)$.
We read the addable and removable i-nodes of $\boldsymbol{\mu}$ in increasing order with respect to the total order $\prec_{\mathbf{v}}$. Let $\gamma_{1} \ldots \gamma_{m}$ be the resulting word of the nodes. On the other hand, we read the same set of addable and removable i nodes of $\boldsymbol{\mu}$ in increasing order with respect to the length of the corresponding segments in $f_{\mathbf{v}}(\boldsymbol{\mu})$. If the length are the same, we declare that removable i nodes precede addable i-nodes. We denote the resulting word $\gamma_{\sigma(1)} \ldots \gamma_{\sigma(m)}$, for $\sigma \in \mathfrak{S}_{m}$.

Write $\gamma_{j}=\left(a_{j}, b_{j}, c_{j}\right)$, for $1 \leq j \leq m$. Then, Lemma 5.8 implies that if $\lambda_{a_{j}}^{\left(c_{j}\right)} \neq \lambda_{a_{k}}^{\left(c_{k}\right)}$ then $j<k$ implies $\sigma^{-1}(j)<\sigma^{-1}(k)$. On the other hand, Lemma 5.9 implies that if $\lambda_{a_{j}}^{\left(c_{j}\right)}=\lambda_{a_{k}}^{\left(c_{k}\right)}$ then $j<k$ implies $\sigma^{-1}(j)<\sigma^{-1}(k)$. We conclude that σ is the identity.

We define $S_{k, i}^{\prime}$ to be the number of addable i-nodes minus the number of removable i-nodes in $\left\{\gamma_{k}, \gamma_{k+1}, \ldots, \gamma_{m}\right\}$.

Suppose that $\tilde{e}_{i} \boldsymbol{\mu}=\boldsymbol{\lambda}$ and let $\gamma=(a, b, c)$ be the good i-node of $\boldsymbol{\mu}$. Then $\min _{k>0} S_{k, i}^{\prime}$ is attained at γ. Define k_{r}, for $r>0$, by

$$
k_{r}=\min \left\{j \mid \lambda_{a_{j}}^{\left(c_{j}\right)} \geq r\right\}
$$

It is clear that $\min _{k>0} S_{k, i}^{\prime}$ is attained only at removable nodes of the form $\gamma_{k_{r}}$, for some r. Now observe that addable and removable i-nodes of the multisegment $f_{\mathbf{v}}(\boldsymbol{\mu})$ which do not belong to $\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ come from pairs of consecutive rows of the same length in $\boldsymbol{\mu}$. Let $m_{(k ; i]}$ be the multiplicity of $(k ; i]$ in $f_{\mathbf{v}}(\boldsymbol{\mu})$. Then, by the above observation, we have

$$
S_{r, i}=\sum_{k \geq r}\left(m_{(k, i-1]}-m_{(k ; i]}\right)=S_{k_{r}, i}^{\prime},
$$

and $\min _{r>0} S_{r, i}$ is attained at $r=b$. Instead of proving that b is the unique r that attains the minimum, we shall show that $\tilde{f}_{i} f_{\mathbf{v}}(\boldsymbol{\lambda})=f_{\mathbf{v}}(\boldsymbol{\mu})$. As γ is the good removable i-node of $\boldsymbol{\mu}$, the following is clear.

If $r<b$ then, among the nodes γ_{j}, for $k_{r} \leq j<k_{b}$, the number of addable nodes is always greater than or equal to the number of removable nodes.
This implies that, if we change the status of γ from a removable node to an addable node, then $S_{r, i}>S_{b, i}$ if $r \leq b-1$, for the new values $S_{r, i}$ and $S_{b, i}$ computed after we change the status of γ. If we consider normal i-nodes which appear to the right of γ, it is also clear that $S_{r, i} \geq S_{b, i}$ if $r \geq b+1$, for the new values $S_{r, i}$. Thus, we obtain $\tilde{f}_{i} f_{\mathbf{v}}(\boldsymbol{\lambda})=f_{\mathbf{v}}(\boldsymbol{\mu})$.

Next suppose that $\tilde{f}_{i} f_{\mathbf{v}}(\boldsymbol{\lambda})=f_{\mathbf{v}}(\boldsymbol{\mu})$. We consider $S_{r, i}$ and suppose that $\min _{r>0} S_{r, i}$ is attained at $\ell_{0}<\ell_{1}<\cdots$. The minimum value is attained at a removable i-node which is the leftmost node among the nodes of the segments of the same length. Then, the minimality implies that the right neighbor of the removable node is addable. We denote this node by γ. We show that γ is the good addable i-node of $\boldsymbol{\lambda}$.

Suppose that γ is cancelled in the RA-deletion procedure. If the removable i-node which cancels R is not of the form $\gamma_{k_{r}}$, it contradicts the minimality of $S_{\ell_{0}, i}$. Thus, the removable node is $\gamma_{k_{b}}$, for some $b<\ell_{0}$. Then, $S_{b, i}=S_{\ell_{0}, i}$ implies $\ell_{0} \leq b$, which contradicts $b<\ell_{0}$. Hence, we have proved that γ is a normal addable i-node. If there was another normal addable i-node to the right of γ, it would contradict the minimality of $S_{\ell_{0}, i}$, so that γ is the good addable i-node of $\boldsymbol{\lambda}$. Thus, we obtain $\tilde{f}_{i} \boldsymbol{\lambda}=\boldsymbol{\mu}$.

Define $B^{\mathrm{ap}}(\Lambda)=\left\{\psi \in B(\infty) \mid \epsilon_{i}\left(\psi^{*}\right) \leq \Lambda\left(\alpha_{i}^{\vee}\right)\right\}$. As we have proved that $\boldsymbol{\lambda} \mapsto f_{\mathbf{v}}(\boldsymbol{\lambda}) \otimes t_{\Lambda}$ is the crystal embedding $B(\Lambda) \hookrightarrow B(\infty) \otimes T_{\Lambda}$ in the language of FLOTW and multisegment realizations, we have the following corollary. The basis in Corollary 5.12(2) is the canonical basis of $V_{v}(\Lambda)$.

Corollary 5.12.
(1) $f_{\mathbf{v}}(B(\mathbf{v}))=B^{\mathrm{a} p}(\Lambda)$.
(2) $\left\{G_{v}(\psi) v_{\Lambda} \mid \psi \in B^{\mathrm{ap}}(\mathrm{v})\right\}$ is a basis of $V_{v}(\Lambda)$.

6. Fock space theory for cyclotomic Hecke algebras

In this section, we give the combinatorial proof of the modular branching rule. The proof depends on Lemma 6.7, which says that isomorphisms of crystals give the correspondence of labels of a simple $\mathcal{H}_{n}^{\Lambda}$-module, which is labelled by various realizations of the crystal $B(\Lambda)$. Hence, the explicit description of the isomorphisms in the previous section gives us the module correspondence.
6.1. Cyclotomic Hecke algebras. Let \mathbf{v} be a multicharge as before. The cyclotomic Hecke algebra $\mathcal{H}_{n}^{\mathbf{v}}(q)$ is the quotient algebra $H_{n} / I_{\mathbf{v}}$ of the affine Hecke algebra H_{n}, where $I_{\mathbf{v}}$ is the ideal of H_{n} generated by the polynomial $\prod_{i=0}^{l-1}\left(X_{1}-q^{\mathrm{v}_{i}}\right)$. If we specialize $q=\zeta$, the algebra depends only on Λ, and we denote the algebra by $\mathcal{H}_{n}^{\Lambda}$. This is the main object of the study in the remaining part of the paper. As $\mathcal{H}_{n}^{\Lambda}$ is a quotient algebra of the affine Hecke algebra H_{n}, the set of simple $\mathcal{H}_{n}^{\Lambda}$-modules is a subset of simple H_{n}-modules. In fact, by Fock space theory for cyclotomic Hecke algebras we will explain in the next subsection, we know that it is the set $\left\{D_{\psi} \mid \psi \in B^{\mathrm{ap}}(\Lambda)\right\}$.

Definition 6.1. We denote by $\mathcal{H}_{n}^{\Lambda}-\bmod$ the category of finite-dimensional $\mathcal{H}_{n}^{\Lambda}$-modules.

Note that $\mathcal{H}_{n}^{\mathbf{v}}(q)$ is a cellular algebra in the sense of Graham and Lehrer: it has the Specht module theory developped by Dipper, James and Mathas.

Then, the first author showed that simple $\mathcal{H}_{n}^{\Lambda}$-modules are labelled by Kleshchev l-partitions. We refer to [1], Ch. 12] for details.

For $\boldsymbol{\lambda} \in \Phi^{K}$, we denote by $D^{\boldsymbol{\lambda}}$ the simple $\mathcal{H}_{n}^{\Lambda}$-module labelled by $\boldsymbol{\lambda}$. For $\boldsymbol{\lambda} \in \Phi(\mathbf{v})_{n}$, we define $\widetilde{D}^{\boldsymbol{\lambda}}$ by

$$
\widetilde{D}^{\boldsymbol{\lambda}}=D^{\Gamma(\boldsymbol{\lambda})}
$$

We will explain in the next subsection that this labelling coincides with the Geck-Rouquier-Jacon parametrization of simple $\mathcal{H}_{n}^{\Lambda}$-modules in terms of the canonical basic set.

Before giving the second proof, we complete the first proof. Namely, we prove Theorem 6.2 below, which compares the geometrically defined simple $\mathcal{H}_{n}^{\Lambda}$-modules and the combinatorially defined simple $\mathcal{H}_{n}^{\Lambda}$-modules by using Theorem 4.4.
Theorem 6.2. Let $\boldsymbol{\lambda}$ be an l-partition. Then, $\widetilde{D}^{\boldsymbol{\lambda}} \simeq D_{f_{\mathbf{v}}(\boldsymbol{\lambda})}$ as $H_{n-m o d u l e s . ~}^{\text {-m }}$
Proof. We have $i-\operatorname{Res}\left(D_{\psi}\right) \simeq D_{\tilde{e}_{i} \psi}$ by Theorem 4.4. On the other hand, we have $i-\operatorname{Res}\left(D^{\boldsymbol{\lambda}}\right) \simeq D^{\tilde{e}_{i} \boldsymbol{\lambda}}$, for $\boldsymbol{\lambda} \in \Phi^{K}$, in [2], Theorem 6.1]. Note that if $i-\operatorname{Res}\left(D^{\boldsymbol{\lambda}}\right) \simeq i-\operatorname{Res}\left(D_{\psi}\right) \neq 0$ then $D^{\boldsymbol{\lambda}} \simeq D_{\psi}$. This property of crystals is a consequence of the Frobenius reciprocity. Hence, we may prove the claim by induction on n.
6.2. Standard modules. We say a few words on the standard modules of the affine Hecke algebra. Let $X \in \mathcal{O}_{\psi}$ and consider

$$
\left(\mathcal{F} \ell_{n}^{a}\right)_{X}=\left\{F \in \mathcal{F} \ell_{n}^{a} \mid X F_{i} \subseteq F_{i-1}\right\}
$$

Then, $H_{*}\left(\left(\mathcal{F} \ell_{n}^{a}\right)_{X}, \mathbb{C}\right)$ is an $H_{*}^{B M}\left(Z_{n}^{a}, \mathbb{C}\right)$-module by the convolution action, and it is called the standard module. We denote it by M_{ψ}. Suppose that X is a principal nilpotent element so that $\psi=[i ; l)$ for some $i \in \mathbb{Z} / e \mathbb{Z}$ and $l \in \mathbb{Z}_{>0}$. Then, $\left(\mathcal{F} \ell_{n}^{a}\right)_{X}$ is a point, which is the flag

$$
0 \subseteq \operatorname{Ker}(X) \subseteq \operatorname{Ker}\left(X^{2}\right) \cdots \subseteq \operatorname{Ker}\left(X^{n}\right)=V
$$

of flag type $(i+l-1, \ldots, i+1, i)$, and the proof of Lemma 4.8 shows that, if we follow the identification $H_{n} \simeq K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n}\right)$ in 18], then M_{ψ} is the one dimensional H_{n}-module given by $T_{i} \mapsto-1$ and

$$
X_{1} \mapsto \zeta^{i+l-1}, \ldots, X_{n-1} \mapsto \zeta^{i+1}, X_{n} \mapsto \zeta^{i}
$$

Thus, M_{ψ} for general ψ coincides with the induced up module of the tensor product of such one dimensional modules over the affine Hecke algebras associated with segments in ψ, in the Grothendieck group of the module category of the affine Hecke algebra.

Now, we switch to the other identification used in Theorem 4.4, which we follow in the previous and this section. Define the standard module N_{ψ} by

$$
N_{\psi}={ }^{\sigma} M_{\rho(\psi)}
$$

Then N_{ψ} is given by $T_{i} \mapsto \zeta$ and

$$
X_{1} \mapsto \zeta^{i-l+1}, \ldots, X_{n-1} \mapsto \zeta^{i-1}, X_{n} \mapsto \zeta^{i}
$$

when $\psi=(l ; i]$. This is the standard module in [1]. Then, a key observation used in [1] was the equality

$$
G_{v=1}(\psi)=\sum_{\psi^{\prime}}\left[N_{\psi^{\prime}}: D_{\psi}\right] u_{\psi^{\prime}}
$$

in the Hall algebra in Theorem 2.12 evaluated at $v=1 .{ }^{4}$ Now we are able to give an example of Theorem 6.2.

Example 6.3. Let $e=3$. Then, we have

$$
G_{v=1}(\{(2 ; 2]\})=u_{\{(2 ; 2]\}}+u_{\{(1 ; 1],(1 ; 2]\}}, \quad G_{v=1}(\{(1 ; 1],(1 ; 2]\})=u_{\{(1 ; 1],(1 ; 2]\}} .
$$

Note that $N_{\{(1 ; 1]\}}$ and $N_{\{(1 ; 2]\}}$ are one dimensional H_{1}-modules defined by $X_{1} \mapsto \zeta$ and $X_{1} \mapsto \zeta^{2}$, respectively. Then, $N_{\{(2 ; 2]\}}=D_{\{(2 ; 2]\}}$ is the simple module defined by

$$
X_{1} \mapsto \zeta, \quad X_{2} \mapsto \zeta^{2}, \quad T_{1} \mapsto \zeta
$$

and $N_{\{(1 ; 1],(1 ; 2]\}}$ is the module induced from $N_{\{(1 ; 1]\}} \otimes N_{\{(1 ; 2]\}}$. Thus, we deduce that $D_{\{(1 ; 1],(1 ; 2]\}}$ is the simple module defined by

$$
X_{1} \mapsto \zeta^{2}, \quad X_{2} \mapsto \zeta, \quad T_{1} \mapsto-1
$$

(Ex.1) Suppose that $l=1$ and $\mathrm{v}=0$. Then,

$$
D^{(2)} \simeq D_{\{(2 ; 2]\}} \text { and } D^{\left(1^{2}\right)} \simeq D_{\{(1 ; 1],(1 ; 2]\}}
$$

for (2), $\left(1^{2}\right) \in \Phi_{2}^{K}$. This follows from explicit construction of Specht modules. Since $(2)=\tilde{f}_{2} \tilde{f}_{1} \emptyset$ and $\left(1^{2}\right)=\tilde{f}_{1} \tilde{f}_{2} \emptyset$ in Φ_{2}^{K}, we have $\Gamma((2))=(2)$ and $\Gamma\left(\left(1^{2}\right)\right)=\left(1^{2}\right)$, so that

$$
\widetilde{D}^{(2)} \simeq D_{\{(2 ; 2]\}} \text { and } \widetilde{D}^{\left(1^{2}\right)} \simeq D_{\{(1 ; 1],(1 ; 2]\}}
$$

(Ex.2) Suppose that $l=2$ and $\mathbf{v}=(1,2)$. Then, $\tilde{f}_{2} \tilde{f}_{1} \emptyset=((2), \emptyset)$ and $\tilde{f}_{1} \tilde{f}_{2} \emptyset=((1),(1))$ in $\Phi(\mathbf{v})$, so that

$$
\widetilde{D}^{((2), \emptyset)} \simeq D_{\{(2 ; 2]\}} \text { and } \widetilde{D}^{((1),(1))} \simeq D_{\{(1 ; 1],(1 ; 2]\}}
$$

6.3. Fock space theory. In this subsection, we explain the Fock space theory for cyclotomic Hecke algebras. In the following, $G_{v}(b), U_{v}^{-}$, etc. at $v=1$ are denoted by $G(b), U^{-}$, etc.

Let \mathcal{C}_{n} be the full subcategory of H_{n}-mod consisting of finite dimensional H_{n}-modules on which X_{1}, \ldots, X_{n} have eigenvalues in $\left\{1, \zeta, \ldots, \zeta^{e-1}\right\}$.

Definition 6.4. Let

$$
U_{n}=\operatorname{Hom}_{\mathbb{C}}\left(K_{0}\left(\mathcal{C}_{n}\right), \mathbb{C}\right) \text { and } V_{n}=\operatorname{Hom}_{\mathbb{C}}\left(K_{0}\left(\mathcal{H}_{n}^{\Lambda}-\bmod \right), \mathbb{C}\right)
$$

[^3]be the dual spaces of the Grothendieck groups of \mathcal{C}_{n} and $\mathcal{H}_{n}^{\Lambda}$-mod, and define
$$
U=\bigoplus_{n \geq 0} U_{n} \text { and } V=\bigoplus_{n \geq 0} V_{n}
$$

Hereafter, we identify V_{n} with the split Grothendieck group of the additive subcategory of $\mathcal{H}_{n}^{\Lambda}$-mod consisting of projective $\mathcal{H}_{n}^{\Lambda}$-modules.
U_{n} has the dual basis

$$
\left\{\left[D_{\psi}\right]^{*} \mid \psi \text { is an aperiodic multisegment of rank } n .\right\}
$$

which is dual to the basis consisting of simple $\mathcal{H}_{n}^{\Lambda}$-modules.
Let $\pi: U \rightarrow V$ be the natural map and define

$$
p: U^{-} \rightarrow V(\Lambda) \subseteq \mathcal{F}
$$

by $F \mapsto F v_{\Lambda}$, for $F \in U^{-}$.
The theorem below states the most basic result in the Fock space theory. See [1], Theorem 14.49] and its proof.

Theorem 6.5.
(1) U has structure of $a U^{-}$-module and V has structure of $a \mathfrak{g}$-module.
(2) U is isomorphic to the regular representation of U^{-}such that

$$
\left[D_{\psi}\right]^{*} \mapsto G(\psi) .
$$

(3) V is isomorphic to $V(\Lambda)$ and the basis

$$
\bigsqcup_{n \geq 0}\left\{[P] \mid P \text { is an indecomposable } \mathcal{H}_{n}^{\Lambda} \text {-module. }\right\}
$$

of V corresponds to the canonical basis of $V(\Lambda)$ under the isomorphism.
(4) The following diagram commutes:

$$
\begin{aligned}
U & \simeq U^{-} \\
\pi \downarrow & \\
V & \simeq V(\Lambda)
\end{aligned}
$$

6.4. The combinatorial proof. First we make it clear what we mean by "simple $\mathcal{H}_{n}^{\Lambda}$-modules are labelled by Uglov l-partitions".

Definition 6.6. We say that simple $\mathcal{H}_{n}^{\Lambda}$-modules are labelled by $B(\mathbf{v})$, if the projective cover of a simple $\mathcal{H}_{n}^{\Lambda}$-module is equal to $G(\boldsymbol{\lambda}) \in \mathcal{F}^{\mathbf{v}}$ in Theorem 6.5(3), for $\boldsymbol{\lambda} \in B(\mathbf{v})$, then the label of the simple module is $\boldsymbol{\lambda}$.

It is proved by the first author that Specht module theory is an example of the statement that simple $\mathcal{H}_{n}^{\Lambda}$-modules are labelled by $B(\mathbf{v})$. Another example is provided by the second author. Recall that Geck and Rouquier invented different theory to label simple modules by using Lusztig's a-values. The labelling set is called the canonical basic set. When we work with Hecke algebras of type B, it provides us with a set of bipartitions. The second author has generalized the theory to cyclotomic Hecke algebras and his result says that simple $\mathcal{H}_{n}^{\Lambda}$-modules are labelled by $\Phi(\mathbf{v})$, for $\mathbf{v} \in \mathcal{V}_{l}$.

If one uses Theorem 6.5, it is quite easy to identify simple $\mathcal{H}_{n}^{\Lambda}$-modules in various labellings.

Lemma 6.7.

(1) Suppose that simple $\mathcal{H}_{n}^{\Lambda}$-modules are labelled by $B(\mathbf{v})$. Let

$$
f_{\mathbf{v}, \infty}: B(\mathbf{v}) \simeq B^{\mathrm{a} p}(\Lambda) \subseteq B(\infty)
$$

be the unique crystal isomorphism. Then, $D^{\boldsymbol{\lambda}} \simeq D_{f_{\mathbf{v}}(\boldsymbol{\lambda})}$ as H_{n}-modules.
(2) For two labelling $B(\mathbf{v})$ and $B(\mathbf{w})$ of simple $\mathcal{H}_{n}^{\Lambda}$-modules, we denote the set of simple modules by

$$
\left\{D_{\mathbf{v}}^{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in B(\mathbf{v})\right\} \text { and }\left\{D_{\mathbf{w}}^{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in B(\mathbf{v})\right\}
$$

respectively. Let $f_{\mathbf{v}, \mathbf{w}}: B(\mathbf{v}) \simeq B(\mathbf{w})$ be the unique crystal isomorphism. Then, $D_{\mathbf{v}}^{\boldsymbol{\lambda}} \simeq D_{\mathbf{w}}^{f_{\mathbf{v}, \mathbf{w}}(\boldsymbol{\lambda})}$ as H_{n}-modules.

Proof. (1) Suppose that $f_{\mathbf{v}, \infty}(\boldsymbol{\lambda})=\psi$. Then, we have $G_{v}(\psi) \emptyset=G_{v}(\boldsymbol{\lambda})$. Specializing at $v=1$, we obtain $G(\psi)=P^{\boldsymbol{\lambda}}$. Then, using the commutativity of the diagram in Theorem $6.5(4)$, we conclude that $\pi\left(\left[D_{\psi}\right]^{*}\right)=\left[D^{\boldsymbol{\lambda}}\right]^{*}$, which is identified with $P^{\boldsymbol{\lambda}}$. Hence, $D_{\psi} \simeq D^{\boldsymbol{\lambda}}$ as H_{n}-modules.
(2) First we apply (1) to two crystal isomorphisms $B(\mathbf{v}) \simeq B^{\mathrm{ap}}(\Lambda)$ and $B^{\mathrm{ap}}(\Lambda) \simeq B(\mathbf{w})$. Then use the fact that $f_{\mathbf{v}, \mathbf{w}}=f_{\mathbf{w}, \infty}^{-1} \circ f_{\mathbf{v}, \infty}$.

As we have established Lemma 6.7, we can derive the modular branching rule for the affine Hecke algebra from this.

Theorem 6.8. For each aperiodic multisegment ψ, we have

$$
\operatorname{Soc}\left(i-\operatorname{Res}_{H_{n-1}}^{H_{n}}\left(D_{\psi}\right)\right) \simeq D_{\tilde{e}_{i} \psi}
$$

Proof. Choose Λ sufficiently large so that $f_{\mathbf{v}}(B(\mathbf{v}))=B^{\mathrm{ap}}(\Lambda)$ may contain any path

$$
\emptyset \xrightarrow{i_{1}} \psi_{1} \xrightarrow{i_{2}} \psi_{2} \xrightarrow{i_{3}} \cdots \xrightarrow{i_{n}} \psi_{n}=\psi
$$

in $B(\infty)$ from \emptyset to ψ. Let $i \in \mathbb{Z} / e \mathbb{Z}$ be such that $\tilde{e}_{i} \psi \neq 0$ and let $\boldsymbol{\lambda} \in B(\mathbf{v})$ be such that $f_{\mathbf{v}}(\boldsymbol{\lambda})=\psi$. Then $\tilde{e}_{i} \boldsymbol{\lambda} \neq 0$ and $f_{\mathbf{v}}\left(\tilde{e}_{i} \boldsymbol{\lambda}\right)=\tilde{e}_{i} \psi$. Then, the previous Lemma yields the isomorphisms

$$
D_{\psi} \simeq \widetilde{D}^{\boldsymbol{\lambda}} \text { and } D_{\tilde{e}_{i} \psi} \simeq \widetilde{D}^{\tilde{e}_{i} \boldsymbol{\lambda}}
$$

Thus,

$$
\operatorname{Soc}\left(i-\operatorname{Res}_{H_{n-1}}^{H_{n}}\left(D_{\psi}\right)\right) \simeq \operatorname{Soc}\left(i-\operatorname{Res}_{H_{n-1}}^{H_{n}}\left(D^{\boldsymbol{\lambda}}\right)\right) \simeq \widetilde{D}^{\tilde{e}_{i} \boldsymbol{\lambda}} \simeq D_{\tilde{e}_{i} \psi}
$$

where the middle isomorphism is the modular branching rule in the labelling by Kleshchev l-partitions [2] , Theorem 6.1]. We have proved the theorem.

7. Appendix

In this appendix, we explain that the surjection $H_{n-1, n}^{a}$ to H_{n-1}^{a} is also described in geometric language. Although we do not need this description, we add this section for the sake of completeness.
Lemma 7.1. $K^{B_{n} \times \mathbb{C}^{\times}}\left(\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{P_{n-1, n} \times \mathbb{C}^{\times}} Z_{n-1}\right)$ is isomorphic to

$$
R\left(B_{n} \times \mathbb{C}^{\times}\right) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{P_{n-1, n} \times \mathbb{C}^{\times}} Z_{n-1}\right)
$$

Proof. We apply Lemma 3.7 to $\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{P_{n-1, n} \times \mathbb{C}^{\times}} Z_{n-1}$. Then, we may prove the claim as in the second half of the proof of Lemma 3.9.

Proposition 3.5 and Lemma 3.9 imply that

$$
\begin{aligned}
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1, n}\right) & \simeq \mathbb{C}_{a} \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1, n}\right) \\
& \simeq \mathbb{C}_{a} \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{L_{n-1, n} \times \mathbb{C}^{\times}}\left(Z_{n-1}\right),
\end{aligned}
$$

which is isomorphic to

$$
\begin{aligned}
\mathbb{C}_{a} \otimes_{R\left(B_{n} \times \mathbb{C}^{\times}\right)} & R\left(B_{n} \times \mathbb{C}^{\times}\right) \otimes_{R\left(G_{n} \times \mathbb{C}^{\times}\right)} K^{G_{n} \times \mathbb{C}^{\times}}\left(\left(G_{n} \times \mathbb{C}^{\times}\right) \times{ }_{\left(P_{n-1, n} \times \mathbb{C}^{\times}\right)} Z_{n-1}\right) \\
& \simeq \mathbb{C}_{a} \otimes_{R\left(B_{n} \times \mathbb{C}^{\times}\right)} K^{B_{n} \times \mathbb{C}^{\times}}\left(\left(G_{n} \times \mathbb{C}^{\times}\right) \times{ }_{\left(P_{n-1, n} \times \mathbb{C}^{\times}\right)} Z_{n-1}\right) \\
& \simeq \bigoplus_{w \in \mathfrak{S}_{n} / \mathfrak{S}_{n-1}} \mathbb{C}_{a} \otimes_{R\left(T_{n} \times \mathbb{C}^{\times}\right)} K^{T_{n} \times \mathbb{C}^{\times}}\left(w \times Z_{n-1}\right)
\end{aligned}
$$

where, the $R\left(T_{n} \times \mathbb{C}^{\times}\right)$-module structure on $K^{T_{n} \times \mathbb{C}^{\times}}\left(w \times Z_{n-1}\right)$ is obtained from that of $K^{T_{n} \times \mathbb{C}^{\times}}\left(Z_{n-1}\right)$ by twisting by w.

We have proved the following isomorphism of \mathbb{C}-vector spaces,

$$
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1, n}\right) \simeq \bigoplus_{w \in \mathfrak{S}_{n} / \mathfrak{G}_{n-1}} \mathbb{C}_{w(a)} \otimes_{R(A)} K^{w^{-1} A w}\left(Z_{n-1}\right)
$$

where, $a \in A$ acts on Z_{n-1} by $w^{-1} a w$ in $K^{w^{-1} A w}\left(Z_{n-1}\right)$ and $\mathbb{C}_{w(a)}$.
As the generators correspond correctly by Proposition 3.5, the following is clear.

Proposition 7.2. The two identifications

$$
H_{n-1, n}^{a}=\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1, n}\right), \quad H_{n-1}^{a}=\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1}\right)
$$

are compatible. Namely, we have the following commutative diagram of \mathbb{C} algebras.

$$
\begin{array}{ccc}
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1, n}\right) & \stackrel{\epsilon_{n-1, n}^{*}}{\longrightarrow} & \mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1}\right) \\
\| & & \| \\
H_{n-1, n}^{a} & \longrightarrow & H_{n-1}^{a}
\end{array}
$$

We consider the embedding

$$
Y_{n-1} \times Y_{n-1} \subseteq\left(G_{n} \times \mathbb{C}^{\times}\right) \times_{P_{n-1, n} \times \mathbb{C}^{\times}}\left(Y_{n-1, n} \times Y_{n-1, n}\right)
$$

and define $\epsilon_{n-1, n}^{*}: K^{A}\left(Z_{n-1, n}\right) \rightarrow K^{A}\left(Z_{n-1}\right)$ as before. We saw that it coincides with $1 \otimes_{R(A)} \operatorname{Res}_{P_{n-1, n} \times \mathbb{C}^{\times}}^{G_{n} \times \mathbb{C}^{\times}}$. Similarly, the pullback

$$
\epsilon_{n-1, n}^{*}: K^{A}\left(Z_{n-1, n}^{a}\right) \rightarrow K^{A}\left(Z_{n-1}^{a}\right)
$$

is defined with respect to the embedding

$$
Y_{n-1}^{a} \times Y_{n-1}^{a} \subseteq\left(G_{n}(s) \times \mathbb{C}^{\times}\right) \times_{P_{n-1, n}(s) \times \mathbb{C} \times}\left(Y_{n-1, n}^{a} \times Y_{n-1, n}^{a}\right)
$$

and it coincides with $1 \otimes_{R(A)} \operatorname{Res}_{P_{n-1, n}(s) \times \mathbb{C} \times}^{G_{n}(s) \times \mathbb{C}^{\times}}$.
It is important that we do not use $Y_{n}^{a} \times Y_{n}^{a}$ as the ambient space. On the other hand, the multiplication by $1 \otimes \lambda_{n}$ or $\lambda_{n} \otimes \lambda_{n}$ and $r e s_{n}$ are with respect to the ambient space $Y_{n}^{a} \times Y_{n}^{a}$.

Hence, we use different ambient spaces in vertical arrows and horizontal arrows in the following lemma.

Lemma 7.3. The following diagram commutes.

$$
\begin{array}{ccc}
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1, n}\right) & \stackrel{\epsilon_{n-1, n}^{*}}{\longrightarrow} & \mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1}\right) \\
\left(\lambda_{n} \otimes \lambda_{n}\right)^{-1}\left(i_{n-1, n}^{A}\right)^{*} \downarrow & \downarrow\left(\lambda_{n-1} \otimes \lambda_{n-1}\right)^{-1}\left(i_{n-1}^{A}\right)^{*} \\
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1, n}^{a}\right) & \stackrel{\epsilon_{n-1, n}^{*}}{\longrightarrow} & \mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1}^{a}\right)
\end{array}
$$

Proof. As $\left(\lambda_{n} \otimes \lambda_{n}\right)^{-1}\left(i_{n-1, n}^{A}\right)^{*}$ and $\left(\lambda_{n-1} \otimes \lambda_{n-1}\right)^{-1}\left(i_{n-1}^{A}\right)^{*}$ are the inverse of $\left(i_{n-1, n}^{A}\right)_{*}$ and $\left(i_{n-1}^{A}\right)_{*}$, respectively, it suffices to show

$$
\epsilon_{n-1, n}^{*}\left(i_{n-1, n}^{A}\right)_{*}[\mathcal{F}]=\left(i_{n-1}^{A}\right)_{*} \epsilon_{n-1, n}^{*}[\mathcal{F}],
$$

for $[\mathcal{F}] \in K^{A}\left(Z_{n-1, n}^{a}\right)$. However, this is clear because both are the restriction of \mathcal{F} to Z_{n-1}^{a}.

Corollary 7.4. We have the following commutative diagrams such that the lower diagram is a commutative diagram of \mathbb{C}-algebras.

$$
\begin{array}{rlll}
\mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1, n}\right) \simeq K\left(Z_{n-1, n}^{a}\right) & \xrightarrow[\epsilon_{n-1, n}^{*}]{ } & K\left(Z_{n-1}^{a}\right) \simeq \mathbb{C}_{a} \otimes_{R(A)} K^{A}\left(Z_{n-1}\right) \\
\operatorname{res}_{n} \searrow \quad \downarrow & & \downarrow \\
K\left(Z_{n-1, n}^{a}\right) & \longrightarrow & \swarrow \operatorname{res}_{n-1} \\
\| & & \|\left(Z_{n-1}^{a}\right) \\
H_{n-1, n}^{a} & \longrightarrow & \| \\
& & H_{n-1}^{a}
\end{array}
$$

Here, the middle horizontal arrow is given by $\left(\lambda_{n-1} \otimes 1\right) \epsilon_{n-1, n}^{*}\left(\lambda_{n} \otimes 1\right)^{-1}$ and the vertical arrows are the isomorphisms given by the multiplication by $\lambda_{n} \otimes 1$ and $\lambda_{n-1} \otimes 1$ respectively.

Let $Z_{n-1, n}^{a} \subseteq\left(G_{n}(s) \times \mathbb{C}^{\times}\right) \times_{P_{n-1, n}(s) \times \mathbb{C} \times}\left(Y_{n-1, n}^{a} \times Y_{n-1, n}^{a}\right)$ as before. Then $Z_{n-1, n}^{a} \cap\left(Y_{n-1}^{a} \times Y_{n-1}^{a}\right)=Z_{n-1}^{a}$ and the Gysin map

$$
\epsilon_{n-1, n}^{*}: H_{*}^{B M}\left(Z_{n-1, n}^{a}, \mathbb{C}\right) \rightarrow H_{*}^{B M}\left(Z_{n-1}^{a}, \mathbb{C}\right)
$$

is defined by $\alpha \mapsto \alpha \cap\left[Y_{n-1}^{a} \times Y_{n-1}^{a}\right]$, the intersection product in the ambient space. See [9 , Proposition 8.1.2]. (The complexified Chow groups are isomorphic to the Borel-Moore homology groups in our case.)

Proposition 7.5. We have the following commutative diagram of \mathbb{C}-algebras.

$$
\begin{array}{rlll}
H_{*}^{B M}\left(Z_{n-1, n}^{a}, \mathbb{C}\right) & \longrightarrow & H_{*}^{B M}\left(Z_{n-1}^{a}, \mathbb{C}\right) \\
\| & & \| \\
H_{n-1, n}^{a} & \longrightarrow & H_{n-1}^{a}
\end{array}
$$

where, the upper horizontal arrow is given by

$$
\left(1 \otimes t d_{Y_{n-1}^{a}} \operatorname{ch}\left(\lambda_{n-1}\right)^{-1}\right) \epsilon_{n-1, n}^{*}\left(1 \otimes t d_{Y_{n}^{a}}^{-1} \operatorname{ch}\left(\lambda_{n}\right)\right)
$$

As we have obtained the description of the map $H_{n-1, n}^{a} \rightarrow H_{n-1}^{a}$ in the Borel-Moore homology, we may rewrite it into sheaf language as before. But, it is not so helpful and we stop here.

References

[1] S. Ariki, Representations of Quantum Algebras and Combinatorics of Young tableaux, A. M. S. Univ. Lec. Ser. 26, 2002.
[2] S. Ariki, Proof of the modular branching rule for cyclotomic Hecke algebras, J. Algebra 306 (2006), 290-300.
[3] A. Bialynicki-Birula, Quotients by Actions of Groups, in "Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action", 1-82, Encycl. Math. Sci. 131, Springer, 2002.
[4] M. Brion and S. Kumar, Frobenius Splitting Methods in Geometry and Representation Theory, Progress in Math. 231, Birkhäuser, 2005.
[5] C. Bessenrodt and J.B. Olsson, On residue symbols and the Mullineux conjecture. J. Alg. Combin. 7 (1998), 227-251.
[6] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, 1997.
[7] O. Foda, B. Leclerc, M. Okado, J.-Y. Thibon and T. Welsh, Branching functions of $A_{n-1}^{(1)}$ and Jantzen-Seitz problem for Ariki-Koike algebras, Adv. Math. 141 (1999), 322-365.
[8] W. Fulton, Young Tableaux, with Applications to Representation Theory and Geometry, London Math. Soc. Student Texts 35, Cambridge Univ. Press, 1997.
[9] W. Fulton, Intersection Theory 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, A series of Modern Surveys in Math. 2, Springer, 1998.
[10] I. Grojnowski and M. Vazirani, Strong multiplicity one theorems for affine Hecke algebras of type A, Transform. Groups 6 (2001), 143-155.
[11] Jin Yun Guo, The Hall polynomials of a cyclic serial algebra, Comm. Algebra 23 (1995), 743-751.
[12] M. Jimbo, K. C. Misra, T. Miwa and M. Okado, Combinatorics of representations of $\mathcal{U}_{q}(\widehat{s l}(n))$ at $q=0$, Comm. Math. Phys. 136 (1991), 543-566.
[13] N. Jacon and C.Lecouvey, Crystal isomorphisms for irreducible highest weight $\mathcal{U}_{v}\left(\hat{\mathfrak{s}}_{e}\right)$-modules of higher level, to appear in Algebras and Rep. Theory, http://arxiv.org/abs/0706.0680.
[14] M. Kashiwara, Bases cristallines des groupes quantiques, Colle ction SMF, Cours specialises 9, Societe Mathematique de France, 2002.
[15] M. Kashiwara, On crystal bases, Canad. Math. Soc. Conference Proceedings, 16 (1995), 155-197.
[16] A. Kleshchev, Branching rules for modular representations of symmetric groups III: some corollaries and a problem of Mullineux, J. London Math. Soc. 54 (1996), 25-38.
[17] B. Leclerc, J-Y. Thibon, E. Vasserot, Zelevinsky's involution at roots of unity. J. Reine Angew. Math. 513 (1999), 33-51.
[18] G. Lusztig, Bases in equivariant K-theory, Represent. Th. 2 (1998), 298-369.
[19] G. Lusztig, Introduction to Quantum Groups, Progress in Math. 110, Birkhäuser, 1993.
[20] G. Lusztig, Canonical basis and Hall algebras, Lectures at the summer school on representation theory and algebraic geometry, Montreal (1997). Page number !!
[21] V. L. Popov and E. B. Vinberg, Invariant Theory, in "Algebraic Geometry IV. Linear algebraic groups. Invariant theory.", Encycl. Math. Sci. 55, Springer, 1994.
[22] C. Ringel, The composition algebra of a cyclic quiver, Proc. London Math. Soc. 66 (1993) 507-537.
[23] R. W. Thomason, Algebraic K-theory of group scheme actions, in "Algebaric Topology and Algebraic K-Theory", 539-563, Ann. Math. Stud. 113, Princeton Univ. Press, 1987.
[24] M. Vazirani Parametrizing Hecke algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs, Transform. Groups 7 (2002), 267-303.
S.A.: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail address: ariki@kurims.kyoto-u.ac.jp
N.J.:Université de Franche-Comté, UFR Sciences et Techniques, 16 route de Gray, 25030 Besançon, France.

E-mail address: njacon@univ-fcomte.fr
C. L.: Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Centre Universitaire de la Mi-Voix B.P. 69962228 Calais France

E-mail address: Cedric.Lecouvey@lmpa.univ-littoral.fr

[^0]: Date: Aug 27, 2008.

[^1]: ${ }^{1}$ We may describe this homomorphism as in Proposition 7.5, but we do not need this.

[^2]: ${ }^{2}$ It is known that 14, Proposition 6.2.3] may be proved in this geometric framework.
 ${ }^{3}$ The summation means the direct sum.

[^3]: ${ }^{4}$ In fact, the choice of the identification played no role in [1] because it sufficed for us to prove the statement that the canonical basis evaluated at $v=1$ coincides with the dual basis of simples in the Fock space, and we did not need compare individual simple modules.

