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THE MODULAR BRANCHING RULE FOR AFFINE
HECKE ALGEBRAS OF TYPE A

SUSUMU ARIKI, NICOLAS JACON AND CEDRIC LECOUVEY

ABSTRACT. For the affine Hecke algebra of type A at roots of unity,
we make explicit the correspondence between geometrically constructed
simple modules and combinatorially constructed simple modules and
prove the modular branching rule. The latter generalizes work by Vazi-
rani.

1. INTRODUCTION

In [§], Ginzburg explains his geometric construction of simple modules
over (extended) affine Hecke algebras H,, defined over C. In this paper, we
consider the affine Hecke algebra of type A whose parameter is a root of
unity. Then, the simple modules are labelled by aperiodic multisegments.

On the other hand, Dipper, James and Mathas’ Specht module theory
gives us a combinatorial construction of simple modules of cyclotomic Hecke
algebras, and they exhaust all the simple modules of the affine Hecke algebra.
The simple modules are labelled by Kleshchev multipartitions.

If one wants more than mere labelling of simples, the combinatorially
defined simple modules often have more advantage than the geometrically
defined simple modules. For example, we may work over any algebraically
closed field other than C when we use the combinatorially defined simple
modules. Hence, explicit description of the module correspondence between
the two constructions is desirable.

We provide this explicit description of the module correspondence in this
article. Note that both the set of aperiodic multisegments and the set of
Kleshchev multipartitions have structure of Kashiwara crystals. Then, we
show that the crystal embedding gives the module correspondence.

Closely related to this result is the modular branching rule. One may
prove the result on the module correspondence by using this, which is our
first proof, or one may prove the modular branching rule by first establishing
the result on the module correspondence, which is our second proof.

Let Ly be the simple module labelled by a multisegment 1), whose precise
meaning will be explained in section 4. The modular branching rule is a rule
to describe Soc(Resgz_1 (Ly)), or equivalently Top(Reng_1 (Ly)). We show
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that

Soc(Resgz_l(Lw) = @ Le,y,
S

where €; is the Kashiwara operator. We give a geometric proof of this rule in
the framework of Lusztig and Ginzburg’s theory. This gives the first proof.
On the other hand, if one uses results in ] and [J], both become easier, and
this is the second proof.

Recall that the main result of [24] is the modular branching rule when
the parameter of the affine Hecke algebra is not a root of unity. Hence our
result generalizes [24, Theorem 3.1] and we may deduce other results in [24]
from this.

The paper is organized as follows. In section 2, we review basic facts on

the crystal B(oo) of type AS)I. In section 3, we prepare for a geometric
proof of the modular branching rule of the affine Hecke algebra. The proof
is carried out in the framework of Lusztig and Ginzburg’s theory, so that we
explain the theory in some detail. This part may be read as a concise re-
view of the theory. In section 4, we give the geometric proof of the modular
branching rule. In section 5, we introduce crystals of deformed Fock spaces
and state results to compute crystal isomorphisms among them. In section
6, we prove a lemma on the module correspondence of simple modules in
various labellings and give a combinatorial proof of the modular branching
rule in the framework of Fock space theory for cyclotomic Hecke algebras.
The reader would be surprised at how easy the second proof is.

Acknowledgements. Part of this work was done while the authors were
visiting the MSRI in Berkeley in 2008. The authors wish to thank the in-
stitute for the hospitality and the organizers of the two programs for their
invitation. The second author is also grateful to Hyohe Miyachi for fruitful
discussions there. The second author is supported by the “Agence Nationale
de laRecherche” (project JCOT7-192339).

2. PRELIMINARIES

Let e > 2 be a fixed integer, g the Kac-Moody Lie algebra of type AS)I.
We denote by U, the negative part of the quantum affine algebra U,(g),
which is generated by the Chevalley generators f;, where i € Z/eZ, subject
to the quantum Serre relations. In this section, we review basic facts on U,

and its crystal. We denote the simple roots by «;, and the simple coroots
by o, for i € Z/eZ.

2.1. The crystal B(co). Let us introduce the Kashiwara operator f;, for
i € ZJel, on U, . Let e;, i € Z/eZ, be Chevalley generators of the positive
part of U,(g) and t; = v’ . The following two lemmas are due to Kashiwara.
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Lemma 2.1. For each u € U, , there exist unique v’ and u" in U, such
that we have
tiu/ _ t;lul/

c;UuU —ue; = 1

I

We define an operator ¢, on U, by e¢ju = u”, for u € U, . The algebra

generated by { fi}icz/ez and {€]}icz ez is called the Kashiwara algebra. Let
fi(n) be the n'" divided power of f;.

Lemma 2.2. Let P € U, . For each i € Z/eZ, there exists uy, in U, , for
n € Zxo, such that eu, =0, for alln, and P = zn€Z>0 fl.(")un.

We define &;P = > ., fi(nfl)un and fiP = ZnEZ>0 fi(nﬂ)un. They

are well-defined. Let R be the subring of C(v) consisting of elements which
are regular at v = 0. Then, we define

L(OO)Z Z Z Rf.il...f.’iNl
NE€Z>o (i1,....in)E(Z/eZ)N

and
B(o0) = (UNEZZO Uir,in)e@/emyy Jin - - fiy 1+ UL(OO)> \ {0}.

B(oo) is a basis of the C-vector space L(oco)/vL(c0). U, admits a root
space decomposition U, = @acq, (Uy )—a, Where Q1 = > 0707 L0,
and it follows that
B(o0) = |_| B(00)_q.
acQ+
We define wt(b) = —a if b € B(00)_qo. Then, by defining

€;(b) = max{k € Z>q | &Fb # 0} and ¢;(b) = ¢;(b) + wt(b)(a)),
for b € B(c0), (B(00), wt, €;, 4, &, fi) is a g-crystal in the sense of Kashiwara

4, p.48].

We define the bar operation on U, by o = v~! and f; = f;. Lusztig and
Kashiwara independently constructed the canonical basis/the global basis

{Gu(b) | b€ B(o0)}
of U, ", which is characterized by the property that
Gy(b) = Gy(b), Gy(b) +vL(c0) =b.

Example 2.3. Let e = 3. Then, e and f; commute so that e, f; = 0

and fofi = fof: follows. Similarly, fifs = fifo. Thus, {fifa, fof1} is

the canonical basis of (U, )_q,—a,- For the null root 6 = oy + a1 + ag,

{fof1f2, faf1fo, fof2f1, f1fof2} is the canonical basis of (U, )_s. Of course,

more complex linear combination of monomials in f; appear in the canonical

basis of other (U, )_q.
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2.2. Hall algebras. The crystal B(co) has a concrete description. Let I" be
the cyclic quiver of length e. This is an oriented graph with vertices Z/eZ
and edges {(i,i +1),i € Z/eZ}. Let V = ®j;cz/ezVi be a finite dimensional
7 /eZ-graded vector space, and define

By = € Home(V;, Vig1) € Ende(V).
1€EL/el

An element X € Ey is called a representation of ' on V. If V runs through
all finite dimensional Z/eZ-graded vector spaces, we obtain the category of
representations of I'. It is the same as the category of finite dimensional
CI'-modules, where CI' is the path algebra of I'. The simple modules are
labelled by Z/eZ. For each i € Z/eZ, we define the corresponding simple
module S; by V=V; =C and X = 0.

If X is nilpotent as an endomorphism of V', the representation is called
nilpotent. We denote by Ny the subset of nilpotent representations in Ey .
The vector

dim V' = (dimvi)iEZ/eZ

is called the dimension vector of the representation.
Let Gy = HiGZ/eZ GL(V;). It acts on Ey and Ny by conjugation and two
representations are equivalent if and only if they are in the same Gy -orbit.

Example 2.4. Let G,, = GL,,(C) and suppose that s € G,, has order e.
Let ¢ be a primitive e” root of unity, V = C", and let Vj; be the eigenspace
of s for the eigenvalue ¢*. If X € Endc(V) is such that sXs™! = (X then
XV; C Viy1. Thus, X defines a representation of I' on V. Note that Gy is
the centralizer group G, (s) in this case.

By linear algebra, the isomorphism classes of nilpotent representations
are labelled by (Z/eZ-valued) multisegments.

Definition 2.5. Let | € Z~o and i € Z/eZ. The segment of length | and
head i is the sequence of consecutive residues [i,i+1,...,i4+1—1]. We denote
it by [i;1). Similarly, The segment of length | and tail i is the sequence of
consecutive residues [i —[+1,...,7— 1,i]. We denote it by ([;i]. We say that
[i;1) has a removable i-node and [i + 1;1) has an addable i-node.

A collection of segments is called a multisegment. If the collection is the
empty set, we call it the empty multisegment.

Each [i;1) defines an indecomposable nilpotent CI-module C(4;1], which
is characterized by the property that
Cl[i;1) is a uniserial module and Top(CJ[i;1)) = S;.

Hence, a complete set of isomorphism classes of nilpotent representations is
given by the modules

My= €  clin®m,
i€Z/eL, €~
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which is labelled by the multisegment

Y = {[i; )™ Yiez ez 1670 -
We denote the corresponding Gy-orbit in Ny by Oy.
Now, we introduce the Hall polynomials. Let F, be a finite field, and

consider [F,I'-modules. Then, they are classified by multisegments again.
Let V, T and W be Z/eZ-graded vector spaces over F, such that

dimV =dim T + dim W.

Let ¢1, ¢2 and 9 be multisegments such that O, C Nr, Oy, C Ny and
Oy C Ny. If the number of submodules U of M, that satisfies U ~ M,
and My /U ~ M, is polynomial in ¢ = card(F,), then this polynomial is

called the Hall polynomial and we denote it by F;pl,w (¢). The existence of
Hall polynomials in our case was proved by Jin Yun Guo [, Theorem 2.7].
For a and b in Z¢ we define a bilinear form m by

m(a, b) = Z (aibi+1 + albl)
€L/l

We remark that this is not the Euler form used by Ringel to define his
(twisted) Hall algebra, but the one used by Lusztig, which comes from the
difference of dimensions of the fibers of two fiber bundles which appear in his
geometric definition of the product, namely in the definition of the induction
functor. In his theory, the Euler form appears in the definition of coproduct,
namely in the definition of the restriction functor.

Now, Lusztig’s version of the Hall algebra associated to I' is the C(v)-
algebra with basis {uy | 9 is a multisegment} and product is given by

_ m(dlmT dim W) —2
Upy Upy = § : 12 (V) Uy

Note that [i;1) is the multisegment which labels the simple module .S;, for
i € Z/eZ. Then the C(v)-subalgebra generated by these uy,y) is called the
composition algebra, and we may and do identify it with U, by uj;,1) — fi.
This isomorphism between the composition algebra and U, was proved by
Ringel and Lusztig independently.

Definition 2.6. For each multisegment v, we define I, = pdim Oy uy. The
set {Ey | ¥ is a multisegment. } is called the PBW basis of the Hall algebra.

Example 2.7. In the previous example, we have

fife = Equay +vEqin oy, fofi = B2y

Similarly, we have

fofif2 =E{0;3)} + 2vE{[1,2) 0,1} + ¥ E{[o 1),[1:1),[2D)}
fafifo —E{p L} T 0B 05, [150) 211}
fofef1 =E{0,2),2:1)) T VEq{[0;1),[131),12:1)}»

B

fifofe = )00y T vE0:1),1151),12:1)}-
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Note that Fy,1) 1;1),;2;1)) does not appear with coefficient 1. This is
general phenomenon. See Theorem . below.

Definition 2.8. A multisegment v is aperiodic if, for every | € Z~, there
exists some ¢ € Z/eZ such that the segment of length | and head i does
not appear in . Equivalently, a multisegment v is aperiodic if, for each
| € Z~o, there exists some ¢ € Z/eZ such that the segment of length [ and
tail ¢ does not appear in .

The notion of aperiodicity and the following theorem are due to Lusztig.

Theorem 2.9. For each b € B(c0), the canonical basis element G,(b) has
the form
Go(0) = By + Y eppr(v)Ey,
P'FEY
for a unique aperiodic multisegment v, such that cy g (v) € C(v) is reqular
at v =0 and cy 4 (0) = 0.

Hence, we may label elements of B(co) by aperiodic multisegments. We
identify B(oco) with the set of aperiodic multisegments. Then, we denote
the canonical basis by G, (1), for multisegments v, hereafter.

Leclerc, Thibon and Vasserot described the crystal structure on the set
of aperiodic multisegments B(co) in [[[4, Theorem 4.1], by using a result by
Reineke.

Let 9 be a multisegment. Let t>; be the multisegment obtained from
by deleting multisegments of length less than [, for [ € Z~¢. Let my;,;) be
the multiplicity of [i;1) in ¢. Then, for ¢ € Z/eZ, we consider

Sii = Z(m[z’Jrl;k) — Misk))s
k>l
that is, the number of addable i-nodes of 1>; minus the number of removable
i-nodes of 9>;. Let £y < £1 < --- be those [ that attain min;~qS;;. The
following is the description of the crystal structure given by Leclerc, Thibon
and Vasserot.

Theore~m 2.10. Let 1) be a multisegment, i € Z/eZ and let £y be as above.
Then, fih = 1y, i, where 1y, ; is obtained from 1 by adding [i;1) if o =1,
and by replacing [i + 1;0y — 1) with [i;£g) if £y > 1.

2.3. An anti-automorphism of U, . As the identification of the affine
Hecke algebra with the convolution algebra K&»*C™(Z,), which will be
explained in the next section, is not canonical, we go back and forth between
two identifications. For this reason, we need another labelling by aperiodic
multisegments.

Let V' = ®;ez/ezVi be a graded vector space as before, and define its dual
graded vector space by V* = @;cz/.zV;* where V;* = Homc(V_;, C). Then,
by sending X € FEy to its transpose, we have a linear isomorphism

By =~ By« = ®jez)ez Home (V, V).
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Using the standard basis of Ey and its dual basis in Fy+«, we identify the
underlying spaces Fy and Ey«. Note that the Gy-action on this Ey is the
conjugation by the transpose inverse of g € GGy, while the Gy/-action on the
original Fy is the conjugation by g € Gy. Then, p is an isomorphism of two
Gy-varieties By so that the Gy-orbit Oy in the original Ey corresponds to
the Gy-orbit O in the new Ey, where p(1) is defined by p([4;1)) = (I; —1].
Thus, we have a linear isomorphism of the Hall algebras on both sides, which
we also denote by p, such that

p(Ey) = By and p(Gy (1)) = Gy(p(v)) if 1 is aperiodic.

That is, this gives a relabelling of the PBW basis and the canonical basis.
However, if we take the algebra structure into account, p induces the anti-
automorphism of U, given by f; — f_;, which is clear from the definition
of the multiplication of the Hall algebra. In particular, the crystal structure
on the set of aperiodic multisegments is changed in this new labelling, and
the Kashiwara operators & and f; correspond to the Kashiwara operators
¢_; and f_; in this new crystal structure. In the new crystal structure, we
change the definition of addable and removable i-nodes as follows.

Definition 2.11. We say that (;4] has a removable i-node and (I;7— 1] has
an addable i-node.

We consider Sy ; = 15 (M(r;i—1] — M(ry]), that is, the number of addable
i-nodes of 1>; minus the number of removable i-nodes of >; in the new
definition of removable and addable i-nodes. Let £y < ¢1 < --- be those [
that attain min;~o S;;. Then, the crystal structure in the new labelling is
given as follows. In fact, this version is stated in [[L7].

Theore~m 2.12. Let 1) be a multisegment, i € Z/eZ and let £y be as above.
Then, fih = 1y, i, where 1)y, ; is obtained from 1) by adding (1;3] if o = 1,
and by replacing (by — 1;1 — 1] with (o;1i] if €9 > 1.

To compute ¢€;9, for a multisegment ¢, we consider the same S;;. If
miny~q Sy is attained at more than one [, then ¢€;1) = 0. Otherwise, let £
be the unique [ that attains min;~qS;;. Then, €;19 is obtained from 1 by
replacing (¢p; 1] with (¢p — 1;3 — 1].

We use the crystal structure on the set of aperiodic multisegments in
Theorem when we choose the identification of R(G,, x C*)-algebras
H, ~ K&*C"(z.) following Lusztig [[§], while we use that in Theorem P.13
when we choose the identification H,, ~ K% *C*(Z,) following Ginzburg
[Hl. We note that the second crystal structure is the star crystal structure
of the first.

3. AFFINE HECKE ALGEBRAS

Let H, be the extended affine Hecke algebra associated with G,. It is
the C[qT]-algebra generated by Tj, for 1 < i < n, and Xii, for 1 <i < n,
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subject to the relations
(T, —a)(T; +1) =0, ¢ 'TLX/Ti = X, etc.

In this section, we recall the geometric realization of affine Hecke algebras by
Lusztig and Ginzburg, and of specialized affine Hecke algebras by Ginzburg.

3.1. Varieties. Let G,, = GL,(C) as before, and B,, the Borel subgroup of
upper triangular matrices. We denote the unipotent radical of B,, by Uy, and
the maximal torus of diagonal matrices by T,,. Write C" = Ce; ® - - - & Ce,,
and let F¥¢, be the flag variety, which consists of increasing subspaces F' =
(Fi)o<i<n in C" such that dim F; = i, for all i. G, /B, ~ F/, through the
map gB,, — F defined by F; = Cge; @ --- & Cge;, for 1 < i < n. Define the
Schubert cell S, (w) and the Schubert variety X, (w), for w € &,,, by

Sp(w) ={F € Fl, | dim(F;NC7) = #fk | 1 <k <i, 1 <w(k) < j}},
Xp(w) = {F € Fly, | dim(F;NCY) > #{k |1 < k <i, 1 <w(k) <j}}.
The Bruhat order on &,, has the following description: y < w if and only if
HEIT<k<i 1<y(k)<j} 28k 1<k <i, 1 <wk) <},

for all ¢ and j. We have X, (w) = Uy<wSn(y) and dim S, (y) = £(y). Sp(w)
has the unique T,-fixed point F, defined by (Fy); = Cey1) @ -+ @ Ceyy(yy-
It is well-known that X (w) are normal varieties. See [, Theorem 3.2.2] for
example.

Now we consider the diagonal G,,-action on F¥¢, x F{,. Then, GG,,-orbits
in F¢, x F¥, are in bijection with Bj,-orbits in F¥¢,, and we denote the orbits

On(w) = {(F, F') € FloxFln | dim(FNEF)) = #{k [ 1 <k <i, 1 <w(k) < j}}
A pair of flags (F, F’) belongs to O, (w) if and only if

FinE; _r G=wl)
FanF+FNF_, 0  (otherwise)

dim

We denote by N, the set of nilpotent elements in Mat,(C) and write
T*Fl, ={(X,F) e Ny, x Fb, | XF; C F;_1}.
Then the Steinberg variety is defined by
Zn =T*Fly, xp, T*F,,
={(X,F,F') € Ny x Fly x Fly | XF; C F;_1,XF] C Fj_,}.
Zn is a G, x C*-variety by the action
(9, (X, F,F') = (¢ 'gXg ™', gF, gF'),

for (g,¢) € G, x C* and (X, F, F') € Z,.
We consider the complexified K-group of the abelian category of G, x C*-
equivariant coherent sheaves on Z,. Using the closed embedding Z,, C
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T*Fl, x T*F(,, we have the convolution algebra KGn*C* (Z,). Zy, has a
partition Z,, = Uyee, Zn(w), where

Zn(w) ={(X,F,F') € Z, | (F,F') € Op(w)}.

We have dim Z,(w) = n(n — 1) and Z,(w) is a (@ — {(w))-dimensional
vector bundle over O, (w). Then, {Z,(w)}yes, is the set of the irreducible
components of Z,. Define

Zprm ={(X,F.F') € Z, | Fuuy = F._|}.

The condition F,,_; = F]_; is equivalent to (F,F’) € Uyees,_,On(w), be-
cause F.nF o
N
di =dim —F—=1
B F A NF +FnE | R+

if and only if F,,_; = F,_,. Hence, Z,_1 , = Uyes, ,Zn(w).

Similarly, (F, F") € On(e) UOn(si) = On(s;) if and only if Fj = I, for all
j #i. It follows that

Zn(si) ={(X,F,F') € Z, | F; = F}, for all j #1i, XF;;1 C F;_1}.

The pushforward of Oz—— Zn(o0) with respect to the closed embedding Z, ( i) €
Zy is also denoted by Oz—— NED) by abuse of notation. We denote

bi =07 5l € K€ (7,).

Let @; i+1 be the parabolic subgroup of G, which corresponds to s;, n; ;41
the nilradical of its Lie algebra. Then

Zn(sl) = (Gn X CX) XQM_HX(CX (]P’l X Pl X ni7i+1)

is a vector bundle over Oy (s;) = (Gn x C*) Xq, ,,, xcx (P' X P!). We denote
by L; the pullback of the line bundle
(Gn X C*) Xq, ;41 xcx (Op1(=1) @ Opr(—1))

over Oy (s;) to Zy(s;).
For A\ € Zey @ - -- @ Ze,, = Hom(T,,, C*), let Cy be the B,, x C*-module
associated with A and define the associated line bundle Ly on F¥,, by

L)\ = (Gn X (CX) X B,, xCx (C)\.
When we consider A as a character of T},, we denote it by e’.
identify K¢*C"(F¢,) = R(T, x C*) via Ly — € as usual.
Let us denote m, : T*F¥,, — Ft, and 6, : Z,(e) C Z,. We consider the
diagram

Then, we

Fl, & T*Fl, ~ Zy(e) 22 Z,

and we denote

Ox = [6pumiL_y] € K9 <C(Z,).
By the Thom isomorphism, {[7:L,] | A € Hom(7T,,C*)} is a basis of
K (Z(e)).
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Definition 3.1. We define T; = [£;] + ¢, for 1 < i < n, and X; = 0, for
1< <n.
We have 6 =[], Xf‘i, for X =" | Nie;. Using the exact sequence
0— O]P)l(—l) ® O]P)l(—l) — O]pl X O]pl — OApl — 0

where AP C P! x P! is the diagonal, we know that [£;] = b; — (1 — ¢f,,).
Then, T;, for 1 < i < n, and Xii, for 1 < i < n, satisfy the defining
relations of H,. In particular, we have the Bernstein relation

0 — 0,
Ty = 00 Th + (1 — ) >——2,
0_a, — 1
where a; = —¢; + €;41. This follows from the next theorem. The theorem

was found by Lusztig and the action of T; is called the Demazure-Lusztig
operator.

Theorem 3.2. Through the Thom isomorphism, we identify Kn*C” (T*F¢y,)
with

K>S (F1,) = R(T,, x C).
Then the convolution action of K> (Z,) on K> (T*Ft,) is given
by
f—sf [—eYsif

e — 1 e¥i — 1

T.f =

) Xzf: equ.

It is well-known that this is a faithful representation of H,,. Note that we
have chosen the isomorphism H,, ~ K%*C*(Z,) to have the same formulas
as [, Theorem 7.2.16,Proposition 7.6.38]. When we follow [[[§], we define

O\ = [Opsm, L)) and T; = —[L;] — 1.

Then, the formulas for the convolution action on R(T,, x C*) change to those
in [[§, p.335]. The two identifications of H,, ~ K& *C*(Z,) are related by

the involution ¢ defined by
T —qTY, X — XL

In the rest of this section, we follow the identification in [I§].

The center Z(H,) of H, is the C[g™]-subalgebra consisting of all the
symmetric Laurent polynomials in Xi,...,X,. Thus, we identify Z(H,)
with R(G,, x C*). We also identify C[¢*][X5, ..., X;F] with R(T,, x CX).

Let KGnxC* (Zy—1,n) be the convolution algebra with respect to the em-
bedding Z,,_1,, C T*Fl, x T*F{,. Let

e H,_1, be the parabolic subalgebra H,_1 ®c C[Xf] of H,,, and
® iy Zp_1n C Zy, be the inclusion map.

)

As Lusztig originally stated the next theorem as an isomorphism of bi-
modules, we attribute the next theorem to Ginzburg and Lusztig.

Theorem 3.3.
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(1) We have an isomorphism of R(G,, x C*)-algebras H, ~ K*C*(Z,) by
the above choice of T; and X; in KGn*C” (Zy).

(2) The inclusion map t,, induces the following commutative diagram of Z(Hy,)-
algebras.

bt KGO (Z, 1) — K& (Z,)

! l
Hn—l,n - Hn

where the vertical arrows are isomorphisms.
It is also clear that the inclusion map Y;, ~ Z,(e) — Z,_1,, induces
KT (Y,) = KO (7, )
and it is identified with R(T;, x C*) — Hp_1 5.

3.2. Faithfully flat descent. In the proof of 23, Proposition 6.2], the
following is shown by using faithfully flat descent.

Proposition 3.4. Let G and H be affine algebraic groups such that H is a
closed subgroup of G and that H acts on a quasi-projective variety X. Then
we have the category equivalence

Coh®(G x i X) ~ Coh™ (X)

where, Coh® (G x  X) is the category of G-equivariant coherent sheaves on
G xg X and Coh™ (X)) is the category of H-equivariant coherent sheaves on
X.

We denote the induced isomorphism of Grothendieck groups
Res% : K9(G xy X) S KH(X).

The left hand side is a K“(G/H)-module through the projection G x iy X —
G/H, and Res$, is a R(H)-module isomorphism.

We add the assumption that X is quasi-projective in order to assure that
G xp X is also a variety [B, Theorem 4.6.1]. G Xy X is smooth (resp.
normal) if and only if X is smooth (resp. normal) [R1], Proposition 4.22].

Note that the action of H on G'x X, which is given by h(g, ) = (gh™!, hx),
is free, namely the map H x G x X — (G x X) x (G x X) which is defined by
(h,g,z) — (gh~', hx) x (g, ) is a closed embedding, thus G x X — G xyg X
is faithfully flat.

The category equivalence is given in a very explicit manner. Consider

GxHxX — HxX

1 )
GxXx % X
vl

GXHX
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The double vertical arrows on the left are the action map a' : (g,h,x) —
(gh~!, h) and the projection map p : (g, h,z) — (g,2), and similarly, the
double vertical arrows on the right are (h,z) — hz and (h,x) — x. u is the
map (g, z) — x. All the maps in the diagram are flat. Now, we identify

GxHxX~(GxX)Xagxyx (GxX)

by (g, h,x) — (gh~!,hx) x (g,z). Then the projection to the first and the
second components are a! and pf. Thus, the theory of faithful descent
implies that Coh® (G x r X) is equivalent to the category of G-equivariant
sheaves on G x X with descent data, but the latter category is nothing but
Coh®*H (G x X) by the above identification. Now we identify

GxGExX~(GExX)xx (GxX)

by (g1, g2, ) — (9192, g2, x). Then the projection to the first and the second
on the right are a® : (g1, 92,2) — (9192, ) and p% : (g1, g2, ) — (g2, ) on
the left. Thus, Coh®*H (G x X) is the category of H-equivariant sheaves on
G x X with descent data, which is equivalent to Coh!(X).

Hence, for F € Coh®(G xpz X), there exists a unique sheaf F# up to
isomorphism such that p*F*# ~ v*F, and the category equivalence is given
by F — FE.

Let ¢ : X — G xg X be the closed embedding. Namely, ¢ = v o 1) where
n: X — G x X is the section of pu defined by = +— (e,x). Then, we may
compute the pullback i* : Coh% (G x iy X) — Coh(X) of sheaves as follows.

VF =" F gt PP = FR
Thus, Res% is given by the explicit formula [F] +— [1*F].
Suppose that X is smooth. Then, we may define the pullback in K-theory
K9G xpg X) — K (X)

by [F] — Zjez(_l)j [TOT?GXHX (txOx, F)]. Thus, if F is the sheaf of sec-
tions of a vector bundle then

Resi([F]) = ["F] = [ F),

which implies that Res% ([F]) = *[F], for all F € Coh®(G xy X), since X
is smooth. Thus, we have *[F] = [*F].

Now, let Z C X be a closed H-variety, which is not necessarily smooth.
Then, X N (G xg Z) = Z and we may define the pullback

K9G xy Z2)— K1(2)

with respect to the embedding of smooth varieties X C G xg X. As we
consider K¢ (G x 7 Z) as a subspace of K% (G x i X), we have Res% ([F]) =
[F] = [*F), for F € Coh®(G xy Z), as well.
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3.3. The embedding of H,_;, into H,. Let
No—in={X €N, | XCtccr}
and we denote
Y1 =T"Flp1, Yoo1n=T"Fly|re, ,, Yn=T"Fl,.
Here, we identify F¢, 1 = {F € Ft, | F,_1 = C""'}. We define

/
n—1,n = In-1n XNn—l,n Ynflyn

={(X,F,FYe Z, | F,_1=F, _, =C"'}.

Let P,_1,, be the maximal parabolic subgroup of G, that stabilizes cr1
The Levi part Ly, 1, X C* of P,,_1 , x C* is (Gj—1 X C*) x C*, which acts on
Zn—1 by letting the middle component act trivially. We denote the unipotent
radical of P,,—1, by Up—1,. It is also the unipotent radical of P,_1, x C*.
Explicitly,

_ anl 0 _ 1n71 *
Ln—l,n - ( 0 CX> ) Un—l,n - {( 0 1) } .

We consider the following diagram as before.

Zy i Hoezie (GuxC*)xZ), 4, i (GuxC)Xp,_\ xex<Zp10 = Zn-1n:
Then, Proposition B.4 says that we have the restriction map
(1) Resg® s KO (2, ,) = Koz ),

Zy, 1y is a Lp_1, x CX-equivariant vector bundle of rank n — 1 over
Zp—1 and we write £,_1p : Z;L_Ln — Zp-1. Then kj_; , gives the Thom
isomorphism

KLnfl,nXCX( ! )(1 KLnfl,nX(CX (Zn—l)-

n—1n

Noting that
K Pt xC (Zp_10) K b1 xC% (Zy,_1.,) by the forgetful map, and
Kl € (Z, ) = KO (Z,) @c C[X,],
we have
(2) KPn—l,nX(CX (Z/

n—1mn

)~ KG1XT" (2, 1) @ CIXE].
We identify Z,_1 with the zero section of k,_1, and denote the embed-
ding
€n—1mn : Lpn-1 — Zn—1n-
Let us consider the embedding of smooth varieties
(Gn xC*) xp, | xex Y1 X Yoo1n) 2 Y1 X Y1,
Then, Zp,—1, N (Yp—1 X Y1) = Z,—1 and we define

€1 KO (2, 4 ) = KPinxC (7, ).

n—1n

with respect to this embedding of smooth varieties.
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Next proposition gives the geometric description of the embedding H,,—1
into H,.

Proposition 3.5. Combining the isomorphisms (1) and (3), we have the
following isomorphism of R(Ly_1 ., x C*)-algebras

*
€n 1,n

K€ (2,) 2 K€ (Z,_1,,) =" KG=*C (7, 1) @c C[X7),

which gets identified with Hy, O Hyp_1, = Hy,—1 ®c C[XF] through the iso-
morphisms

KGn—lXCX (Zn—l) ~ Hn_1’ KG"’X(CX (Zn_l’n) ~ Hn—Lna KGRX(CX (Zn) =~ Hn
given by Theorem @

Proof. We only have to show that b; — b;, for 1 <¢ <n — 1, and 0 — 0,.
Define

Z o (81) ={(X,F,F') € Z,_ 1, | Fj = Fj for all j #4, XFi;1 C F;_1}.

Then v ', (Zn(5:)) = (G x C*) x Z!

n—1,n 7—1n(81) and we have

* _ * ). ), _ *
un,l,n(’)zn(&) = :U'nfl,n(/z;kl’n(si)v Oz o) “nfl,nozn_l(si)-

n—1,n

Hence, b; — b;, for 1 <i<n—1.
Let Z;, 1 ,(e) ={(X,F,F') € Z,,_,,, | F' = F"} and consider the diagram

n—1n
Vr:fll,n(Zn(e)) = (Gn X (CX) X Zrlz—l,n(e)
/ l Un—1n
Znan(€) =Yp_1, C Yy > Zn(e)
Tn—1,n ! 1
ffnfl g ffn

* * o *
Then anl,nﬂ-nLA - :U’nfl,nﬂ-nfl,nLﬂ]:fn—l and

L)\‘]:gn_l = (Pn—l,n X (CX) XBnX(CX (C)\.

But the diagram

;l—l,n(e) = ’k';r_zil,n(ZN—l(e)) ~Yn1n =y n—1~ Zn-1(e)
N b T

fen—l
shows
T 1 LalFt,_y = K1 (M1 (Pao1n X C*) X g, wcx Cy)) -

Hence, 6y — 6, for A\ € Hom(7,,,C*).
As the generators b; and 6, correspond correctly, it is an isomorphism of
R(Lyp—1.n x C*)-algebras, which is identified with H,,_1 @ C[XF] — H,,. O
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3.4. Specialized Hecke algebras. Let ( € C be a primitive e root of
unity, for e > 2. We fix a diagonal matrix s = diag(¢®!,...,(*"), and set
a = (s,¢) € G, xC*. We denote by A the smallest closed algebraic subgroup
of G,, x C* that contains a, namely the cyclic group (a) of order e in our
case. Note that A is contained in (G,—; x C*) x C*.

Let C, be the R(T,, x C*)-module defined by X; — (%, for 1 < i < n,

and ¢ — ¢. Cu|gr(q, xcx) defines a character R(G, x C*) — C.
e The action of R(T,, x C*) factors through R(A) and we may view

C, as a R(A)-module. Thus, C, ®p4) — makes sense.

o If we write C, ®@p(q,xcx) — We mean Culp(@, xcx) @R(GnxCx) —
Note that this is the same as

Co @pay R(Ty x C*) @pG, xcx) —

Definition 3.6. The C-algebra Hy; = C, ®z(g,,) Hy, is called the specialized
Hecke algebra of rank n at a. The specialized algebra of the parabolic
subalgebra H,,_1 5 is denoted Hpy_; , = Ca ®@z(m,) Hn-1n-

As H, ~ K>*C(Z,) and H,,_1,, ~ K*C(Z,_1,) as R(G,, x C*)-
algebras, we identify the following C-algebras respectively.

Hg = Ca@R(GnXCX)KG’”XCX (Zn), a — Ca@R(an(CX)KGnXCX (anLn),

n—1n

Let I, be the ideal of R(T,, x C*) generated by
(€M oo efir) — (P e (P,
for k > 1. Then, R(T,, xC*)/I, = Ca®p(q, xcx) R(Th x C*) and we identify

(o ®R(an(CX) R(Tn X CX) =G, ®R(anCX) KGnXCX (Zn(e))

by identifying e* with [ L,].

Ginzburg’s theory tells us how to realize the specialized Hecke algebra in
sheaf theory. The geometric proof of the modular branching rule we give
in the next section is based on this theory. Our goal in this subsection is
to state Theorem B.1J. Recall that A is isomorphic to the cyclic group of
order e > 2. As the first step, we descend to A-equivariant K-theory in the
following two lemmas. The first lemma is straightforward and we omit the
proof.

Lemma 3.7. Let L — H be a morphism of affine algebraic groups over
C, and let X be an H-variety, X = Xg 2 X1 2 -+ a sequence of closed
H -subvarieties of X. Define E; = X; \ X;11.
(1) Suppose that

(a) K{{(E;) =0 and

(b) KH(E;) are free R(H)-modules of finite rank,
for all i. Then K(X;) are free R(H)-modules of finite rank and

0— K1(X;) - K(Xi) —» K% (E;;,) — 0.
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(2) Suppose further that the canonical map induces the isomorphism
R(L) ®@pemy KY(E;) ~ K"(E;).
In other words, the Kinneth formula
K"(H/L) ®@pury K" (E;) ~ K" (H/L x E;)
~ KH(H x E;) ~ K*(E;)
holds. Then we have the isomorphism
R(L) @y KM(X) = KM (X5),
for all 1.
Suppose that H has a sequence of closed subgroups
HD>OHy2H 2---2Hy
such that H;/H;1 is a H;-module, for 0 < i < N. If
R(L) @y K (H/ Hy) ~ K*(H/H,)

holds for ¢ = 0 then it holds for 0 < i < N. In fact, as H/H;11 =
H xp, Hi/H;}+1 is a vector bundle over H/H;, it follows from the Thom
isomorphism. Note that we also have K{(H/H;) = 0, for 0 < i < N, in
this case.

Example 3.8. We consider Schubert cells S,,(w). Then,
R(L) @, xcx) K7 (Sn(w)) = KE(Sp(w),
for L C B,, x C*,

(a) KP2*C°(S,(w)) =0 and
(b) KB»xC* (S, (w)) is a free R(B,, x C*)-module of rank 1.

We add the proof to the next lemma for the reader’s convenience.

Lemma 3.9. We may identify
R(A)®R(Gn><<C><)I(Gn><(c>< (anl,n) = R(A)®R(Ln_1,n><(C><)]{Lnil’nX(C>< (anl,n)a
which is a free R(A)-module of rank (n — 1)!n!, and the following diagram
of R(A)-algebras commutes.

R(A) @1, yoxcx) K2y 10) = KA (Zn-1n)

| |
R(A) ®R(Gn><<c><) KG’nXCX (Zn—l,n) = KA(Zn—l,n)
lnx | L tns

R(A) ®R(an(CX) KGnX(CX (Zn) = KA(Zn)
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In particular, by tensoring with the R(A)-module C,, we have the following
commutative diagram.

Co @p(a) KN Zn-1n) =5 Ca®pa) K (Zn)

| |

gz—l,n — Hg
Similarly, Y, ~ Zy(e) — Z,,_1, induces the following commutative diagram.

Co ®r(a) K'(Yn) — Ca®pay K (Zn-1)

| |
R(T,, x C)/I, — Hy i,

Proof. We choose a linear extension of the Bruhat order. Thus, the elements
of &, are wy, ..., wy, where w; is the identity and w,, is the longest element.
Let L=AC H = B,, x C* and apply Lemma B.7 to F¢,, and the collection
of closed H-subvarieties Uj<j<; X, (w;). Then we obtain

R(A) ® ger, xcxy KT (F,) = KA(FLy,).
As it is known that
R(Ty, x C°) @, xcx) R(T, x C°) = K9*C(Fe, x Fiy,)
~ KT C (Fey,),
and R(Ly—1, X C) ®p(q, xcx) R(Tp x C*) a2 KEn-10%C" (F4,) we have
R(A) ®@pc, xcx) KO (Fl,) ~ KA(Fty),
R(Ln-1,n x C*) ® (G, xcx) KX C(Fly,) = Kl C (Fy,).
In particular, the first isomorphism implies
Ca ® (g, xcx) KT (V) = Co @ gay KA (V)

and Theorem B.J proves the last claim.

Next let L C H = G,, x C* and apply Lemma B.q to Z, or Zn—1,n and
the collection of closed H-subvarieties Ui<j<; Z,(w;). As Z,(w) is a vector
bundle over O,,(w), the Thom isomorphism implies that

(a) KlGnXCX (Zn(w)) ~ KlGnXCX (On(w)) =0,
(b) The following isomorphic R(G,, x C*)-modules are free of rank n!.

KT (7, (w)) ~ K%*C" (0, (w)) ~ R(T,, x C*).
We choose the same sequence of closed subgroups
B, xC*=Hy2>H 2---2Hy
as in the S, (w) case. Then O, (w) = H/Hy, Ft, = H/H, and we have
R(L) ® p(q, xcxy KO (H/H;) ~ K*(H/H;),
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for L = L,,_1, x C* or A, because it holds for ¢ = 0. Thus,
R(L) @ p(xcx) K (Za(w) = KH(Za(w)),

for L = Ly,—1, x C* or A. Hence, the assumptions of Lemma @ are
satisfied, and the assertions follow from the consequences of Lemma B.7 and

Theorem @ O

Definition 3.10. We denote the A-fixed points of M by M?%, for M = Z,,
Zn-1ny Yn =T Fly,, Fl, etc.

Let Y x V¢ CY, xY, be the closed embedding. Then, we have
it 20 =Z, N (Y, xY2) — Zy,

n

Z‘é—l,n : g—l,n = Zn-1a N (Y X Y3) = Zp_1p.
We define the pullback
(i)" - KN (Zn) — KA(Zy),
(1) KN Zno1n) — KNZ5_1 ),

in terms of the embedding V¢ x Y, C Y, x Y.

We have the linear A-action on each fiber of the normal bundle Ty.Y,,
and its decomposition into isotropic components leads to the decomposition
of the normal bundle into the direct sum of vector bundles Nj;, for i € Z/eZ,
over Y. Define

M= QS NN | e kv,
i€Z/eZ \j>0
Recall that our K-groups are always complexified.

Ay, is invertible [f], Proposition 5.10.3] and 1® \,;! € K(Y,2 x Y;2) acts on
K(Z%) by the multiplication.

Theorem below is [fl, Theorem 5.11.10]. The point is that we appeal
to Thomason’s localization theorem but need the modification 1 ® A;! in
order to make it an algebra homomorphism. The commutativity of the
diagram in the theorem follows from the statement below.

Let N C M be a closed embedding between smooth varieties,
Z a closed subvariety of M. Let Z’ = Z N N and denote

N % M
T Tt
7 ¥z

We define ¢'* with respect to these inclusions to smooth
varieties. Then, ¢*1,[F] = (Lo [F].
To see this, observe that both sides are essentially the same [¢.On ®£7)M 1 F)
by the definition of ¢'*.
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Theorem 3.11. We have the map

Z-A * —1
resn s K4(Zy) U0 €, @pony KA(28) ~ K(28) '23 K (29)

and resy, defined similarly for Z,_1, and Z,(e) such that these res,, induce
the following isomorphisms of C-algebras.

Ca ®pay KA(Y,) ~ KV
! !
Ca ®R(4) KA(Zn—Ln) ~ K( g—l,n)
lns | b tns

Co @peay K4 (Zn) ~  K(Z3)

The convolution products on both sides of the isomorphisms are defined in
terms of the ambient spaces Yy, X Y, and Y,! x Y%, respectively.

Next step in Ginzburg’s theory is to use a modified Riemann-Roch map
RR,(F) = ch(F)1 @ tdys) N Y, x Y,7].

Then, [, Theorem 5.11.11] shows that we have isomorphisms of C-algebras

RR, : K(z%) = HPM(Z2,C) and RR, : K(Z}_,,) > HM(Z:_,,.C).

The two Borel-Moore homology groups are C-algebras whose product is
given by the convolution product with respect to the common ambient space
Y2 x Y2 Thus, we have reached Ginzburg’s theorem stated below.

Theorem 3.12.
(1) We may identify HX = HPM(Z% C) by

X resn ay BEn a
Co Op(ay K (Zn) ~ Ca ®@pay K(Zn) =" K(Z3) =" HPM (Z3,C).

We may identify HY _,,, = HEM(Z;LL”, C) in the same way.
(2) The following diagram of C-algebras commutes.

HPM(zo | C) 5 HPM(ze C)

n—1n»

I |
H} — H?

n—1n
Similarly, Y3 — Z;_,, induces the following commutative diagram of C-

algebras.

HAM(YC) — HM(Z7,.C)

n—1,n»

| |
R(T, x C /I, < Hy i,
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Recall that we have identified e* € R(T;, x C*) with []l, X;‘i € H,.
Denote the product by X*. Then, in the above theorem, X*+1, is identified
with

ch(mh Ly|ye)tdyach(N,) "t N[V € HPM (Y2, C).
In particular, the identity element of HZM (Y%, C) is tdyach(\,) "' N[Y;%] and
the multiplication by X* is the same as the cap product ch(m};Ly|ya) N —.

4. GEOMETRIC PROOF OF THE MODULAR BRANCHING RULE

In this section, we give a geometric proof of the modular branching rule.

4.1. The statement. First we explain the precise statement which we are
going to prove. In fact, we have two versions according to the choice of the
identification H,, = K¢*C*(Z,).

Definition 4.1. For an H,-module M, define the i-restriction
i-Res(M) = {m € M | (X,, — ¢)Nm = 0, for large enough N.}.
Then, the statement of the modular branching rule is as follows. The

modules Ly, will be introduced in 4.4.

Theorem 4.2. We identify H,, with K¢ (Z,) by ) = [6p. 7 Ly] and
T; = —[L;]) — 1. Then, for the simple Hy-module Ly labelled by an aperiodic
multisegment 1, we have

Soc(i-Res(Ly)) = Lé;ps
where the crystal structure on the set of aperiodic multisegments is as in

Theorem [2.14.

Let us consider the other identification of H,, with K¢*C*(Z,). Recall
the involution ¢ defined by T; — —quf1 and X; — X;l.

Definition 4.3. An H,-module obtained from L, by twisting the action
by ¢ and relabelling aperiodic multisegments by p is denoted by

Dy =Ly

Theorem 4.4. We identify H, with K¢*C*(Z,) by 05 = [6p,75L_)] and
T; = [Li] + q. Then, for the simple H,-module Dy, labelled by an aperiodic
multisegment 1, we have

Soc(i-Res(Dy)) = D,
where the crystal structure on the set of aperiodic multisegments is as in
Theorem [2.13.
Theorem [£4 follows from Theorem [£.3. In fact,
Soc(i- Res(Dy)) = Soc(7((—i)- Res(L,y)))

~ 7 Soc((—1)- Res(Lp(w))) ~ 7L p(w)s
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where é_; is the Kashiwara operator with respect to the crystal structure
in Theorem [£.9, so that it is isomorphic to 7L y@;y) = De;y where ¢€; is the
Kashiwara operator with respect to the crystal structure in Theorem [.4.

In the rest of the section, we identify H, with K&n*C* (Zy) as in Theorem
[-3 and prove the theorem.

4.‘2. Localization and eigenvalues of X,. Let m; be the multiplicity of
Chin {¢®, ..., ("} As (X, —C®Y) -+ (X, — (%) = 0 holds in R(T,, xC*)/I,,
we have the decomposition

HIM(Y3,C) = R(Ty x C) /1o~ @ CIX;1/((Xn = ¢)™):
€L /el

Definition 4.5. We denote by p; the identity of C[XF]/((X,,—¢*)™) which
is viewed as an element of Hy;_;,. Thus, p; are primitive idempotents of

Hy_, and Y p; =1 and pipj = pjpi = 0ijpi-

Definition 4.6. Let (X,F) € Y,%. Then, sXs ! = (X and F is such
that F; is obtained from F;_; by adding some eigenvector of s. We denote
the eigenvalue of the eigenvector by (%, for v; € Z/eZ, and write v =
(v1,...,n). We call v the flag type of (X, F'). Note that v is a permutation
of (81,...,8n).

Let (X,F,F') € Z3 = Y,? xne Y,¢. Then, we say that the flag type of
(X,F, F") is (v,V) if (X, F) has flag type v and (X, F’) has flag type /.

Now, we look at the decomposition of Y;' and Zj_, into connected

components. On each component, the flag type is constant.

Definition 4.7. Let p;Y,? be the disjoint union of connected components of
Y whose flag type v satisfies v, = i.

Similarly, we let p; Z5_; ,p; be the disjoint union of connected components
of Z¢

n_1., Whose flag type (v,V') satisfies v, = v, = i.

The following lemma uses our choice of the identification of H, with
KG&>C*(Z,) in this section.

Lemma 4.8. Under the identification HPM(Z2

n—1,n’
H*BM(piZg—ani? (C) = pngL—an’l"

Proof. Let (Y,?), be the set of (X, F) € Y,? such that the flag type is p.
First we show that

HPMY  Cpi= @ HPM(Y)uC).
w such that pp,=1

In fact, X, acts on C, ®p(a) KA(Y,%) by

C)=H? we have

n—1n’

*
7TnL€n |Y7‘f ® -

by Theorem B.12. Now, A acts on fiberwise over Y,, and the fiber of 7 L,
at (X, F) is C"/F,—1. Thus, A acts as (" on the fiber when the flag type
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of (X,F) is p. Then, X, is ¢**7myLe,|ye € K((Y,?)u), where 7 L, |ya is
a line bundle without A-action, and Theorem implies that X,, acts on
HBM((y2),,C) by the cap product of

¢Hmeh(my, Le, lya) = ¢ + higher degree terms.

Hence, X,, — ¢#* acts nilpotently on HPM ((Y,2),,,C). We have proved the
claim.
Let u(Zﬁ_Ln)l/ be the set of (X, F,F’) € Zy_1 ., such that the flag type

is (v,7'). By the definition of the convolution product, the product
HPM (Y, C) - HPY (,(Z3_y )t C)

n—1mn

is nonzero only if u = v. Thus, p; HBM (,( n_1n)vsC) = 0if v, # i, and the
left multiplication by p; acts as the identity map on HZM (w(Zy-1.0)v,C)
if v, = i. Similar argument shows that HZM(,( n_1nvsCpi = 0 if

vl, # i, and the right multiplication by p; acts as the identity map on
HBM(,(Zz%_ | )., C) if v/ = i. We have proved pinM(ngl,n,(C)pi =

n—1n

HEM(piZa—l,npi’C)' O

n

By the identification, we have the algebra homomorphism !

HPM(piZy_ ,pi, C) = piHyy_y opi — Hyy_y = HPM (Z 4, C).

n n—1

4.3. A functorial algebra homomorphism. Now we work in the derived
categories of abelian categories of sheaves of C-vector spaces. The following
is proved in [fl, Proposition 8.6.35].

Theorem 4.9. Let My, My and Mj3 be connected smooth wvarieties, N a
variety and let p; : M; — N be proper maps. Let A; € DY(M;) be a con-
structible complex, for i = 1,2,3. Define Z;; = M; xn M; and denote
Lij © Zij € M; x M; the inclusion map. Let A;; = Léj(.A;/ ® Aj). Then the
following hold.

(1) Let p;j : Zij — N be the projection map. Then

Rpij Aij ~ RHom(Rpi As, Ry, Aj).
Thus, we have isomorphisms of C-algebras
H*(Zi;, Aij) = H* (N, Rpij, Aij) ~ ExtBb(N) (RpiyAi, R Aj).
(2) The convolution product
H™(Zij, Aig) @ H(Zjiy Ajre) — H*(Zik, Air))

is identified with the Yoneda product

Exth ) (RpiAis Rptj Aj) @ Extp ) (R Ajy Rt Ak)

N Ext’l‘)b(N) (Ru; Aiy Rk A)

under the isomorphisms in (1).

lwe may describe this homomorphism as in Proposition @, but we do not need this.
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We view elements of N¢ as representations of the cyclic quiver of length
e. Namely, we put V; = {v € C" | sv = (*v} on the i*" node, for i € Z/eZ,
then X € N2 defines X : V; — Vi1, for i € Z/eZ.

We fix i € Z/eZ. Let m+1 = dim V; and P the projective space consist-
ing of m-dimensional subspaces of V;. We have the following commutative
diagram.

Y, Ngipm piYy =piZy 120 = DiZapi = piYy) /\>f<;; Yy,

! !
NEXB N

Pn
where p,(X,U) = X and the left vertical map is given by (X, F, F’) —
(X, F\_y).

Lemma 4.10. Let M 5 X %V pe proper maps and suppose that M
is smooth. We consider the following diagram, in which all squares are
cartesian.

Mxx M —— MxyM-=25MxM
| L L2
X -4 Xxy X2 XxX
g\, | /g
Y 2y <y

Denote A = Rf,C and B = Rg.A. Then the following hold.
(1) We have the following isomorphisms of C-algebras.

HPM(Mxx M, C) = Ext}y, (A, A), HPY (Mxy M, C) = Ext},, (B, B).

(2) Ty : HBM(M xx M,C) — HEM(M xy M, C) is identified with the func-
torial algebra homomorphism

Ryg. : ExtEb(X) (A, A) — ExtEb(Y) (B,B).
Proof. (1) follows from Theorem [L.g. In fact, if we ignore degree shift then
HBM(M xx M,C) ~ H*(M xx M,'A'C) ~ H*(X, Rm,i' A'C)
~ H*(X,/'Rr’,A'C) ~ H*(X,/A'Rf}*C).

As AY = (Rf.C)Y = RfiCY = ®Rf.C[2dim M;], where the summation is
over connected components M; of M, if we ignore degree shift then

RHompyx)(A, A) = (Ao 1) (A ® A) = (Ao)'Rf)*C.

Hence, HBM (M x x M,C) ~ ExtEb(X)(.A, A) is proved. We can prove the
other isomorphism similarly.
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(2) If we ignore degree shift, the pushforward ¢, of Borel-Moore homology
groups is given by
H*(M x M,R(A01),(AoD)'(CY®C)) — H*(M x M, RA,A'(CY @ C)).
First we claim that it is identified with
(X xy X, R 'AY(AY @ A)) — T'(X xy X,A'(AY © A)).

To see this, let Z® be an injective resolution of A'(CY ® C). Then, for the
complex of sheaves I"prx  17(Z®), which is defined by

U T (Z°)(U) = {s* € Z*(U) | supp(s’) € M xx M, for all i.},

for open subsets U C M xy M, the ¢, in question is obtained by taking the
cohomology of the following morphism of complexes of C-vector spaces.

F(M Xy M,PMXXM(Z.)) — F(M Xy M,I.).
For open subsets U C X xy X, we have
Px(w.F)(U) = Ker (L F(U) 4" w F(U\ X))

restriction
—

— Ker (f(w’*(U))

= Darsex ar(F) (71 (U)),

for a sheaf F on X Xy X, so that the above morphism of complexes of
C-vector spaces is nothing but

X xy X, Tx(7.Z°%) — (X xy X,7,T°%),
and it is identified with
(X xy X, Ri,.'Rr.AY(CY ® C)) — I'(X xy X, Rr,AY(CY & C)).

F(@HU)\ M xx M))

Now we apply the natural transformation Re.t' — Id to the isomorphism
RrIACY @ C) ~ A'Rf3HCY @ C) ~ A'((RAC)Y ® Rf.C))

to obtain the claim.
Next let Z® be an injective resolution of A. Then, our morphism of
complexes of C-vector spaces is

N(X xy X,Tx(Z* ®T%) — I'(X xy X,Txxy x(Z*' @ I%)).
For open subsets U C X xy X, the map
Ix(Z* @I°)(U) — Txxyx(Z* @ I°)(U)
sends Y af ® 7, whose support is in X, to Y af ® (7 itself. The left

hand side is identified with Ext}b(x)(f',f')(U N X), where K*(X) is the

homotopy category of the additive category of injective sheaves on X. On
the other hand, if U = 7"~ *(V), for an open subset V C Y, then U N X =
g 1(V) and

DXy x(Z* @ L°)(U) = Tz (91 ® 9. I°)(V)
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as before, so that the right hand side is identified with Ext}b(y) (9+Z°%, g Z°)(V).
Therefore, the pushforward ¢, of the Borel-Moore homology groups is the
functorial algebra homomorphism g,, namely V = Y in the collection of
maps

g¢ : @ Homper g1y (T°g-1(v), g1 [1])

€7
— @B Hom o1y (9:Z° v, g Z°| v [i]).
1€Z
This is Rgs : Ext*Db(X)(A, A) — ExtBb(Y)(Rg*A, Rg.A) as desired. O

In the following, we write Ext’bb(x) (A) for ExtEb(X) (A, A), and we denote

a . vya a a . a a m a . a a
Tp—1 - Yn—l Nn—l’ Tp—1n * piYn Nn x P, T, - piYn Nn

We remark that 73 = pp omp,_q .
Corollary 4.11. We have the isomorphisms
HY | ~ EXt*Db(N;;fl)(RWgL—l!C)’ piHyp; ~ Ext*Db(Ng)(RWfL!(C),

n
piHZ_l,npi = EXtEb(/\/g XPM)(RW(TIL—l,n!C)
such that the following hold.
(1) The inclusion piHy_, ,p; — piHyp; is identified with the following
functorial algebra homomorphism.

Rpp, - EXtEb(NgxPM)(Rﬂgfl,mC) — EXtEb(Ng)(RﬂZ!C)-

(2) The surjection pily_1 ,pi — Hy_y gives an algebra homomorphism

EXt*Db(N;f XPm) (Rﬂ-;'ll—l,nl(c) — EXtEb(Nﬁ,l) (RTI‘Z_UC)

Proof. Set M = p;Y,?, X = N x P™ and Y = N¢. Then Lemma
implies (1). (2) is obvious. We define the surjective algebra homomorphism
such that the diagram

EXt’lﬁ)b(Ngme)(Rﬂgfl,mC) — EXtEb(Ng_l)(RWZ—hC)
I |
pily_1 npi — no1
commutes. OJ

4.4. Some semisimple quotients. We may interprete the surjection of
Corollary [.11(2) in sheaf theory as in the appendix but it does not help
much. Instead, we focus on the semisimple quotient of the algebras. Observe
that the surjection p;H,,_; ,pi — Hj_; induces the isomorphism

pngz—ani/ Rad(png—ani) ~ H,_,/Rad(H;_,).
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As simple H?_;-modules are simple piHy_4 ,pi-modules through the surjec-
tive map, we may identify the simple modules of both algebras. Thus, the
isomorphism is given by the identity map

piHy_1 ,pi/ Rad(piHy_q ,,pi) ~ ©n Ende (M)
— @&np Endc(M) ~ Hy_/Rad(H,_y),

where M runs through the common complete set of isomorphism classes of
simple modules.

On the other hand, the complete set of isomorphism classes of simple
modules of EXtEb(/\/g (R C) and EXt*Db(Ng,l)(RW?L—l!C) may be

xPm) n—1,n)

described by those simple perverse sheaves that appear in Rmj;_; ,, C and

Rmy,_4,C after some shift, respectively. The degree of the shift depends on
the perverse sheaf. As they are semisimple complexes by the decomposition

theorem, we write

Rﬂ-gfl,n!(c = Z Z IC¢ [m]@mw’m’ RW?Lfl!C ~ Z Z IC’@[m]@"W,

Y meZ ® meZ

where ICy and IC, are simple perverse sheaves on N x P™ and NJ_,
respectively. Let Ly, = C™¥m and L,,, = C™#™ be the multiplicity
spaces of ICy[m] and IC,[m]|, respectively. Define

Ly=EP Lym: Loy=EP Lom-

mEZL meZ
Then, we have

EXtEb(NgXIP’m)(Rﬂ-Z*Ln!C) ~ @ EXt*(ICw/7ICw//) e HOHIC(Lw/7Lw//)7
wlku
Extpona y(Rmp_1,C) = P Ext*(1Cy. IC,) @c Home(Ly, Lyr).
@ e

In other words, Ext7,, ( N;glem)(RW?zfl,n!(c) is the matrix algebra which has
block partitions of rows and columns such that the blocks are labelled by
and the entries in the (¢)”, ") component are elements of Ext*(ICy, ICyn).
In particular, its semisimple quotient is the block diagonal matrix algebra

such that the entries of the (¢, 1)-component are
Ext=*(ICy, I1Cy)/ Ext™(ICy, ICy) ~ C.

We have the similar matrix algebra description for Extj‘jb( N 1)(R7rfl_1!(C)

as well.

4.5. Geometric construction of U, . Let U, as in section 2. By Lusztig’s
theory, we may realize U, geometrically by using his geometric induction
and restriction functors [[[J]. In fact, this is essentially the Hall algebra
construction which we already explained in section 2. We only need the
special case which corresponds to the multiplication by f;, which we shall
explain here.
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Recall that C" has the eigenspace decomposition C" = @®;cz,/.7Vi with
respect to s = diag(¢®,...,(°"). We suppose that s, = i. Let W; =
V;NC" ! and W; =V}, for j # i. Note that W; # V;. Then, we consider
the diagram

Ew L n(S) XUn—1.m(s) FV,W LN Gn(S) X P 1.n(s) FV,W LN Ey,

where Ey, Ey and Fy s are defined by

Ew = @ Homc(W;,Wiy1), Ev = @ Home(V;,Vis1)
1€EL/el 1€EZL /el

Fyw={X e By | XW; C W44, forall i € Z/eZ.},

and p1(g, X) = X|cn-1, p2(g, X) = (9, X) and p3(g, X) = gXg ™.

We only consider those objects whose supports are contained in the null-
cones. This is the diagram which already appeared in a slightly different
manner. Namely, we get the following subdiagram.

Un—1,n Hn—1,n Pn
Nr(zl—l Gn(s) XUp—1,n(s) Ng—l,n Gn(s) X Pa_1,n(s) Nr(zl—l,n N;Ll

Note that Gi(s) Xp,_, ,.(s) Nyt {(X,U)| XU CU} CNF xP™

—1n —
N2 has finitely many G,,_1(s)-orbits and the stabilizer group of a point
in each orbit O, for a multisegment ¢, is connected. We denote by

IC, =IC(0,,C),
the intersection cohomology complex associated with the orbit O, and the
trivial local system on it. Then, v;_, ,ICy is a Ly, 1 n(s)-equivariant simple
perverse sheaf up to degree shift, and we may write v;,_, ,IC, ~ ,u,*%LnIC'LI;

up to degree shift, for some simple perverse sheaf I C’J; on N9 x P, T C'J;
is unique up to isomorphism. In fact, we have an integer d independent
of ¢, given by the difference of the dimensions of the fibers of j,—1, and

Un—1,n, such that IC’& = pHd(yn_Ln*u,*%LnIC@). We define a functor Indlz?
by Ind’(I C,)=1 C’g. Then, we define the induction functor by

Ind; = Rpp, © Indlz? .
Now, as in the proof of [[9, 9.2.3], we consider the diagram
Yﬁfl — G”(S) XUn—l,n(S) Yr?fl,n - Gn(S) XPn,Ln(s) Yr?fl,n = pin?,

which “covers” the above diagram with cartesian squares. Then, we have
the following equalities up to degree shift.
Ind}(Rr%_,,C) = Rr%_, ,,C, Ind;(Rr%_,,C)= Rr&C.

n—1,n

The main result of [[[J] is the geometric construction of the algebra U,
in terms of the induction functor. The simple perverse sheaves IC, are
part of the canonical basis and Ind; corresponds the multiplication from the
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left by f;. The canonical basis defines the crystal B(co). Combined with
Kashiwara’s result [[4, Proposition 6.2.3], we have the following. 2

Lemma 4.12.
(1) Let ¢ be a multisegment of size n — 1. Then, we may write
€i(p)
Ind;(ICy) = Y IC} lei(9) — 2i] + Y Rp i,
7=0 JEZ

for certain perverse sheaves Ry j on N&. 3
(2) Suppose that 1Cy, for a multisegment 1) of size n, appears in Ry ;, for
some j. Then, we have

—6(Y) +2<j < e¥) —2.

4.6. A key result. We prove Theorem [.14, which we will need in the

geometric proof of the modular branching rule in the next subsection.
Define np 1.5 : N1, = Ny xP™ k10 0 Nit_y,, — Ny We identify

N¢_, with the zero section of Kn—1,» and we obtain the closed embedding

n
€n—1,n ZN,g,l — ./\/;g x P™,

Mn—1nBm_1,,C is the pushforward of the constant sheaf on Y, to
N 1, and we have the following cartesian diagram.
Yilin — Yo
! !

a a
n—1mn - anl

Thus, n,_y , Rrp 1, C = k54, Rrp_1,C and we conclude that

* a ~ a
En_l’nRT( Cr~ Rﬂn_ll(C.

n—1,n1
Lemma 4.13. We consider the functorial algebra homomorphism
€n—1m EXt*Db(Ngme)(RWgL—l,mC) — EXtEb(/\/g,l)(RW%—llc)'
Then, it induces the isomorphism
Ext e spmy (B 1.5, C)/ Rad(Extyy rrayepmy (B, 1 1, C))

= EXtBb(N;;fl)(RW?L—uC)/ Rad(EXtBb(/\/gﬂ)(RW?L—M(C))
and it is identified with the identity map

Pngfl,nPi/Rad(Pz‘Hﬁfl,nPi) ~ Hy_1/Rad(Hy_;).
Further, its inverse is induced by the functorial algebra homomorphism

Ind’ : EXt’lﬁ)b(Ng_l)(Rngl!C) — EXtEb(NgXPm)(Rﬂ-a C).

n—1,n

2It is known that [@, Proposition 6.2.3] may be proved in this geometric framework.
3The summation means the direct sum.
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Proof. Note that
ExtEb(Ng_l)(ng_h(C) = EXtBb(Ng_l)(@SOIC@ ®c L)
as C-algebras. Thus, the functorial algebra homomorphism

Ind; : Exthuna ) (®pIC, ®c Ly) = Exthne  (@.1C; Oc Ly)

a a
n—1 n—1,n

induces the identity map
Extly o ) (@p1C, @c Ly) = @, Ende(Ly)

b
— @, Ende(Ly) = EXtODb(N;},Ln)(@<PIC¢ ®c Ly).

That is, Ind? induces the isomorphism

EXt*Db(NﬁXPm)(Rﬂgl—ll(C)/Rad(EXt*Db(NﬁX]Pm)(Rﬂ—z—l!c))
~ EXtEb(Ng_l)(RWa C)/ Rad(ExtEb(Ng_l)(RW“ 0))

n—1,n n—1,n
and it is identified with the identity map
Hy_y/Rad(Hy_,) ~ pinfl,npi/Rad(pngfl,npi)'

On the other hand, we have Ind’(Rx®

n—11

C) ~ Rr?

n—1,n|

and €, 1 , R,y ,,C >~ Ry, C. Thus, Ind} and €n—1,n are inverse to the

other on the semisimple quotients, and the claim follows. O

C up to degree shift,

Theorem 4.14. Consider the functorial algebra homomorphism
Ind; : EXt’lg)b(Ng_l)(Rﬂngl!C) — EXtEb(Ng)(RW?L!C)-

If M is a simple H®-module, then the action of H?_; on Top(p; M) coincides
with that given by Ind; under the identification

ol = EXtEb(Ng_l)(ngfl!C)’ piHpi = EXtEb(Ng)(RW?L!C)-

Proof. Let (Y,%), be the set of (X, F') such that the flag type is v, as before.
We denote 7, , : (Y,%), — N$ and

M, = EPPH! (Rrp,,C).
1€Z
Then, by our identification, we have

Hff = EXtEb(Ng) (@VMU)

where v runs through flag types which are permutations of (si,...,sp).

Write
P M, =P 1c, @c Ly.
v (4
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Then, Hy = @y Ext*Db(Ng)(ICW, ICy)®cHome (Lyyr, Ly ) and we view
it as the block partitioned matrix algebra whose entries of the (¢, ')-
component are elements of Ext’bb( Na)(I Cyr, ICyr). Define

Py = P Extiyupa)(ICy, ICy) @c Ly
w/
Then, it is a direct summand of H} and we view it as the space of block
partitioned column vectors whose entries in the block Ly, are elements of

EXtEb(Ng) (ICy, ICy).
EXtEb(Ng) (Ing IC¢//)®(CHOHI(C(L¢/7 Lw//) X EXtEb(/\/’,‘f) (ICw, ICwl)(X)(CLw/
— EXt*Db(N;f) (ICw, IC,¢N) Kc L¢u
shows that Py is a left ideal of H,, so that it is a projective Hj-module. It

is clear that
L Ext 50 o) (10, By M)
Ext 70 oy ([Cy, &0 M,)
is a simple H2-module or zero and that any simple H2-module appears in
this way. Thus, we assume that M = L,. Then, Lemma [[.§ says that

multiplication by p; amounts to picking up the connected components p; Y,
so that

Ext 50 ey ([Cop, B M)
Extzg(j\/-g) (IC#,, @VMV)

piLy, =

where v runs through permutations of (s1, ..., s,) such that v, = i. Suppose
that p;Ly # 0. It is a simple p;Hyp;-module. Let mp_14, @ (Y,d), —
N2 x P™ and
M, = B H (R —1,0,C).
1€EZ

Then p;H}} 4 ,pi = ExtDb(NgXpm)(EByM,l’,), where v runs through permuta-
tions of (sy,...,sy,) such that v, =i, and it acts on p; Ly through Rp,, by
Corollary f.T1. Now, we consider Top(piLy). Then, the action of pilly_y i
factors through H? ,/Rad(H?_,) and Lemma implies that it is given
by Ind? . Thus, we have proved that the action of H?_; on Top(p;L.) coin-
cides with the action of H;_; given by the functorial algebra homomorphism

Indi . |

4.7. The geometric proof. Having proved Theorem [.14], we are now able
to give the promised geometric proof of the modular branching rule. We
write each simple H?-module as in the proof of the above theorem

. Ext7, iy TCu, & My)
p = :
Extzg(j\/-ﬁ) (ICqZ), @VMV)
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Suppose that p; Ly, # 0. We want to show that Top(p; L) contains Lg,y. As
the simple Hp_;-modules are the same as the simple p;Hp_; ,p;-modules,
we consider the restriction of p;Ly to piHy_q ,pi. Let mn = pp o 1.
Then, we have

Rm,C = EB Ry, C,

v such that v, =1
which is equal to Ind;(Rm,—1,C) up to degree shift. Thus, we write
b b
b M-=-PicecL,
v such that v, =1 ®

and restrict the action of p;H,p; on p;Ly to p;Hy,_1 ,p; through Rp,,, the
functorial algebra homomorphism given by

piHy 1 pi = €D Extiy (e pmy (Ind} IC,, nd} IC,n) @) Home (L, L)
o'
— @D Ext g (Indi IC,, Ind; IC,n) @Q Home(Lyr, Lgn) = piHyp;.
o'

To study this, we introduce a block algebra description of p;H,,_; ,,pi-
action on p; L. As

@ M, @ Icfgz(@-f—l i Z R(p,j Sc Lgoa

v such that v, =1 J

by Lemma [l.14(1), p; Ly has the decomposition

Ex tDb(Na)(IC IC@(EZ@ s + Z Riﬁ ])
pily = >0 @(Ez(tp )+1) ®c Lip.
EXtDb(Na)(ICw’ICf“p +zj R%j)

Thus, we have the corresponding block decomposition of Endc(p;Ly)-
Observe that ICy, appears in L, j only if €;(p) < €;(é;40) and ICy, appears

in [ C’;’igi(@ﬂ) only if ¢ = €;1). Hence, only those blocks L, with ¢;(¢) <
€i(€;%) and Lg,y, appear in the above block decomposition.

To obtain the (¢”,¢')-component of the representation of p;H; , ,pi
on p;Ly, we consider the image of Ext%b(NgXpm)(IC':),,IC’!;N), for £ > 0,
through the action of

EXt]z‘)b(Ng) (Il’ldi(_[c(p/), Indi(ICﬁpu)).

The image may be nonzero only when ICy[j'], for some j' € Z, appears in
Ind;(ICy) and ICy[j"], for some j” € Z, appears in Ind;(IC,) such that
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—j" 4+ 3" + k = 0. In particular, j” < j' is necessary. Since
€i(¢’)
Ind;(ICy) = Y IC; lei(@) =271+ Y Ry yli'),
5'=0 =
€i(p")
Ind;(ICyn) = > IC} ule(9") = 25"+ D Rowjnli"];
5"=0 =

there are four cases to consider.

e Suppose that ¢’ = ¢” = €;10. We number the rows and columns of
the block matrix by 0 < j”, ' < €;(¥)) — 1 such that €;(¢)) — 1 — 25"
and €;(¢)) — 1 — 24’ are increasing. Then, the entries may be nonzero
only when €;(¢0) — 1 — 25" < ¢;(¢b) — 1 — 25'. Thus, we obtain an
upper block triangular matrix whose diagonal block components are
End(C(Lém).

e Suppose that ¢’ # &9 = ¢”. We number the rows as before, and the
columns such that j’ is increasing. If ICy, appears in L, j: then the
entries may be nonzero only when ¢;(¢)) — 1 — 25" < j'. Hence, each
row has entries only after the column number ¢;(¢)) — 1 — 25”. Now,
Lemma [.13(2) implies that j" < ¢;(¥)) — 2 so that j” = 0 cannot
happen. Hence, all the entries of the last row are zero.

e Suppose that ¢ = &9 # ¢”. Then, each column has entries only
before some column number.

e Suppose that ¢’ # €;1) and ¢” # €;3. Then we have an upper block
triangular matrix again.

The first two cases show that there is a p;Hp_; ,p;i-submodule L;z; of Ly
such that L¢/L;p ~ Lg,. Thus, Lg,y appears in Top(p;Ly,). Now, following
6, Grojnowski and Vazirani proved in Vazirani’s thesis that Soc(p;Ly)
is simple [[[]]. By Specht module theory, the simple modules are self-dual

so that Top(p; L) is isomorphic to Soc(p;Ly). Thus, we have proved that
Soc(piLy) = Lg,y. Thus, Theorem 1.9 and Theorem 1.4 follow.

5. CRYSTALS OF DEFORMED FOCK SPACES

In this section, we recall results on deformed Fock spaces which are related
to the combinatorial construction of simple H,-modules.

5.1. Crystals of deformed Fock spaces. Let | € Z~y and we choose a
multicharge

vV = (Vo7 ...,Vlfl) S Zl.
We denote v; + eZ € Z/eZ by v;, for 1 <i <. Let A, for i € Z/eZ, be the
fundamental weights of g, and define a dominant weight A by
A=Aw+ -+ Ay

We consider various multicharges which give a fixed A.
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Let V,,(A) be the integrable highest weight U, (g)-module of highest weight
A. We want to realize V,,(A) as a U,(g)-submodule of the level | deformed
Fock space FV associated with the multicharge v.

As a C(v)-vector space, the level I Fock space FV admits the set of all
l-partitions as a natural basis. Namely, the underlying vector space is

F=E @ cwa,

n>0 Aell; ,,

where 1I;,, is the set of [-partitions of rank n. We do not give explicit
formulas to define the U,(g)-module structure on FV, but it is defined in
terms of the total order <, introduced below. This action was introduced
by Jimbo, Misra, Miwa and Okado in [[1J]. Let

LV:@ @ R\, BY = |_|H,7n.

n>0 Aell; , n>0

Then, (LY, BY) is a crystal basis of V. In this article, it suffices to recall
the crystal structure on the set of [-partitions. Before doing this, we explain
basic terminology on [-partitions.

Let A = (A\O ... A(=D) be an [-partition, which is identified with the
corresponding [-tuple of Young diagrams. Then, we can speak of nodes of
A, which are nodes of the Young diagrams. We identify a node v of A with
a triplet (a, b, ¢) where ¢ € {0, ...,1—1} is such that v is a node of A(¥), and «a
and b are the row and the column indices of the node 7 in A9, respectively.

Definition 5.1. Let v = (a,b,c) be a node of an [-partition A. Then, its
content c(y) and residue res(vy) are defined by

c(y)=b—a+v.€Z and res(y) = c(v) € Z/eZ,
respectively.

Let v be a node of A. Then we say that « is an i-node, for i € Z/eZ, if
res(y) = i. Suppose that A\{~} is again an [-partition, which we denote by
p. Then, we say that v is a removable i-node of X and y is an addable i-node
of p. We introduce a total order <, on the set of addable and removable
i-nodes of an [-partition .

Definition 5.2. Let 1 = (a1,b1,¢1) and 5 = (ag, be, c2) be i-nodes of A.
We define the order <, by

c(n) < ce(v2), or

T =v Y2 =
Y {C(’Yl) = ¢(72) and ¢1 > cp.

The order < depends on the choice of the multicharge v when [ > 1.

Now, we can explain the crystal structure on BY, which is defined by the
total order <y. Let A be an [-partition as above. Let N;(X), for i € Z/eZ,
be the number of i-nodes of A. Then we define

wtA) =A— D Ni(A)a.
S
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The rule to compute & is as follows. The rule to compute f;\ is similar.

We read addable and removable i-nodes of A in the increasing
order with respect to <,. Then we delete a consecutive pair
of a removable i-node and an addable i-node in this order as
many as possible. We call this procedure RA deletion.
e If there remains no removable i-node, define A = 0.
e Otherwise, we call the leftmost removable i-node, say +,
the good i-node of A, and define é;XA = A\{~}.

Finally, we define
ei(N) = max{k € Z>o | &FX £ 0},  @i(A) = max{k € Z>¢ | fFX #0}.

The empty [l-partition @ = (0, ...,0) is a highest weight vector of weight
A in FV. We denote by V,(v) the U,(g)-submodule generated by @. Then,
V,(v) is isomorphic to V,,(A) as U, (g)-modules.

Definition 5.3. The crystal B(v) is the connected subcrystal of BY that
contains the empty [-partition @. An [l-partition in B(v) is called an Uglov
l-partition of multicharge v.

As B(v) is the subcrystal which corresponds to V,(v), it is isomorphic to
the highest weight crystal B(A).

5.2. FLOTW [-partitions. Define a set V; of multicharges by
Vi={v=wo,...,vi1) | vo < <vj_1 <vg+e}
For each I-partition A = (A©), ... X(=1) Jet )\gc), for j =1,2,---, be the
parts of X, If A§c) > 0 then we denote the residue of the right end node of
the 5 row of A\(©) by res()\g»c)), which is the residue of )\gc) —J+ ve

Definition 5.4. Suppose that v € V;. A FLOTW [-partition of multicharge
v is an [-partition A which satifies the following two conditions.

(i) We have the inequalities

MDD for0<e<i—2 and ATV >0

(ii) For each k € Z~¢, we have
{res(\\) | A9 =k} # Z/ez.

We denote by ®(v), the set of FLOTW [-partitions of multicharge v and
rank n. Then, we define

O(v) = |_| ®(v),, and = |_| O(v).

n>0 vey,
We have the following result [f].
Proposition 5.5. Suppose that v € V;. Then, B(v) = ®(v).
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5.3. Kleshchev [-partitions. If [ = 1 then we have the level 1 deformed
Fock spaces FV, for v € Z. We consider the tensor product

Fi1®...@F",
for a multicharge v. Note that it depends only on v = (¥g,...,¥;_1). Then,
(LVlfl QLY B-1®...Q BVO)
is a crystal basis of FV-1 ® --- @ FYO.
Definition 5.6. A Kleshchev [-partition is an [-partition A such that the
tensor product of the transpose of A(®’s in the reversed order
A & ... m A0

belongs the connected component of BYVi-1®- - -® B0 that contains 0®- - 0.
We denote by ®& the set of Kleshchev I-partitions of rank n. Then we

define
of = | | ok,
n>0

We need the transpose of partitions in the definition in order to make it
compatible with Specht module theory of cyclotomic Hecke algebras, which
we introduce later. Note that if X is Kleshchev then each component A is
e-restricted.

®X inherits the crystal structure from BY'-! @ --- ® BY°, and ®¥ is iso-
morphic to the highest weight crystal B(A), again.

5.4. Crystal isomorphisms. As ®(v) and ®¥ are isomorphic, we have a
unique isomophism of crystals between them, which we denote by

I:d(v) — dF.
We may compute this bijection explicitly. In fact, if we fix n and choose
another multicharge w such that

e w; is sufficiently smaller than w; q, for 0 < j <[ -2, and
. Vj:Wj,fOI'OSjSZ—l,

then the bijection between @Ign and B(w)<y,, given by
WO AEDY S (O A=)

is compatible with the crystal structures on ®% and B(w)<,. Hence, it
suffices to compute the crystal isomorphism between B(v) and B(w).

Let &, = €Z1 6, C Aut(Z') be the extended affine symmetric group.
Define o; € Aut(Z'), for 0 < j <1—2, by

O'j(Vo,. ey Vi—1, V5, ,Vlfl) = (VQ, sy Vi Vi1, .. ,Vlfl)

and define 7 € Aut(Z') by 7(vo,...,vi_1) = (V1,...,Vi_1,Vo+e). Then, én
is generated by these elements.
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The following theorem was proved by the second and the third authors
in [L3]. As the multicharges v and w are in the same G&,-orbit, it allows us
to compute the crystal isomorphism between B(v) and B(w) explicitly.

Theorem 5.7.
(1) The crystal isomorphism B(v) — B(1v) is given by

AO XDy s AW AEED A0,
(2) The crystal isomorphism B(v) — B(o;Vv) is given by
MO, AG-D NG A-D) L (30,36 J6-D, | A6-D),
where, \U=D and A9 are defined by
A9 @ AU-D o N1 g N0)

under the following crystal isomorphism, called a combinatorial R-matriz,
between g(Aso)-crystals.

B(Ay;) ® B(Ay;_,) — B(Ay,_,) ® B(Ay;).

The combinatorial R-matrix may be computed in a purely combinatorial

manner. See [[[J] for the details.

5.5. Crystal embedding to B(occ). Let Th = {ta} be the crystal defined
by wt(tp) = A, €;(ta) = @i(ta) = —oo and é;tp = fitx = 0. Then, by the
theory of crystals, we have the crystal embedding B(A) < B(oo) ® T such
that

(i) the image of the embedding is given by
{b@tx € B(oo) @ Ty | &(b*) < Alay)},

where b — b* is the involution on B(oc) which is induced by the
anti-automorphism of U, defined by f; — fi,
(ii) b ® tp belongs to the image if and only if G, (b)us # 0, where vy is
the highest weight vector of V,(A).
We identify B(oo) with the crystal of aperiodic multisegments defined in
Theorem and used in Theorem [£.4. As B(v) is isomorphic to B(A), we
have the crystal embedding

B(v) < B(co) @ Ty

in the language of Uglov [-partitions and multisegments.

We shall describe this embedding in subsequent subsections. By virtue
of Theorem p.7, we may assume that v € V. Write the crystal embedding
by A — f(A) ®tp, and denote both the empty [-partition and the empty
multisegment by the common symbol (). Then, the crystal embedding sends
() to @ ® ta, and the tensor product rule shows that for any path

i1 @92 i3 )
—S AL = Xy = s S,
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in B(v), we have the corresponding path
B FO0) 2 F) B ()

in B(c0), and vice versa. On the other hand, if one can prove this property
for some map f: B(v) — B(co) then it follows that

€6i(A) = ei(f(A) @tn) and wt(A) = wi(f(A) @),

so that we also have p;(A) = ¢;(f(A) ® tp). Hence, we may conclude that
the map A — f(A) ® ty is a crystal embedding in the sense of [[4] and it
must coincide with the crystal embedding B(v) < B(co) ® Th.

5.6. Row lengths and the order <,.. We prove two lemmas which relate
the length of rows of an [-partition and the order <.

Lemma 5.8. Let v € V; and A = (A9, ..., A=D) € &(v). Suppose that
v = (a1,b1,c1) and 2 = (a2, ba, c2) are i-nodes of X such that each node is
either addable or removale i-node. Then, )\((fll) < )\((1622) mmplies y1 <v 2.

Proof. We show that v9 <y 7 implies )\Efll) > )\gf). As an intermediate
step, we first claim that 9 <y v implies )\,(11 1) > )\I()?Q)b tay Note that we
have ¢(v1) > ¢(72) by v2 =y 71. Hence, we have

a1 < by —ba + ag + ve, — Ve,

which implies )\((11 1) )\l(;f)b2 Fag+vey vy

Suppose that ¢; < co. As A is a FLOTW [-partition, we have
)\(Cl) > (c1+1) >0 > )\(02)

bi—bataz+ve; —Vey = Tb1—ba2taz+ve;41—Vey = b1 —ba+az”

Hence A&?’ > )\(62)b +a, follows.

Suppose that ¢; > co. Then, ¢(y1) > ¢(y2) and we must have
bi — a1 +ve, = by —az+ v, +e,
because v; and v, have the same residue ¢. Hence, we have
a1 <by—by+ag+ v — Ve, — e,

(01) > )\(01)

b1 —ba+az+ve; —Veq—€°

which implies Ay Then, by the same reasoning as

above, we have

(c1) (e1+1) .
)\bl bat+az+ve; —Vey,—€ 2 b1—bataz+ve +1—Vey—e€ z
(I-1) (0) (c2)
2 )\bl —ba2taz+vi_1—vey—e 2 Ab1—b2+a2+V0—Vc2 22 )\bl ba+az"
Hence Aéﬁl) > )‘l(n )b +a, follows again.

If b1 < bs then by —by+as < ao implies the desired inequality )\((fll) > )\((f;).
Suppose that by > by. As v is either addable or removable i-node, we have
either b = )\gclﬂ +1lorb = )\( v, Similarly, we have either by = ,\Ef;) +1or
by = )\((122) Hence, we have )\((11 ) >by—1>by > )\((122), 0
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Lemma 5.9. Let X be a FLOTW [-partition, and let v4 = (a’,b+1,c) and
Yr = (a,b,c) be addable and removable i-nodes of A respectively. Then we
have Yr <v YA-

Proof. Suppose to the contrary that v4 <y Yr. Then we have either

(i) e(ya) < c(yr), or

(ii) c(ya) = c¢(yg) and ¢ > c.
In case (i), b—a+v. > b+1—a +vy+eso that a+vy —ve+e < a'—1. As
(c/)l > )\gf). Then, a+vy —ve+e <a

74 is an addable node, we also have A,

implies that
)\(C/) > )\(C/)

at+v,—ve = “lat+v i —vete

> A9,
Now, using the assumption that A is a FLOTW [-partition, we have
{Afﬁ > A >A o<y,

a+v.—ve

A >\ S e s ¢

a+v. —vete

(c)

However, Ay’ = b since ~yg is a removable node, and A
addable node. Thus, we have reached a contradiction.

In case (ii), b—a+ve.=b+1—d + vy implies a+ vy —v.+1=d'. As
(c) > )\((lc, ), Thus, ¢ > ¢ implies that

a+v,—Ve

(C/’)

o = bsince 4 is an

~v4 is an addable node, A

A=A sal,

a+v. —Ve
However, we have /\Ef) =b and )\éc/l) = b as before, so that we have reached

a contradiction again. O

5.7. The map f,. For each FLOTW [-partition A € ®(v), we associate a
multisegment which is a collection of segments

[1—17+ve; )\(C)),

where )\Z(c) are parts of A9, for ¢ =0,...,1 — 1. This defines a well-defined

map fy : ®(v) — B(c0).

Example 5.10. Let e =4, and let A = ((2,1),(1)) € ®((0,1)). Then
fo.ny(A) = {[0,1], [3], [1]}-

Next let A = ((2), (1), (1)) € ®((0,1,3)). Then we have the same result
fo.13(A) = {[0,1], [1], [3]}-

Then we may prove the following. Note that the fact itself was observed
by several people including the first author years ago, but the authors do
not know any reference which proves this.

Theorem 5.11. Suppose that v € V. Then, the crystal embedding ®(v) —
B(oco) @ Ty is given by X — fy(A) @ ty.
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Proof. As was explained in the previous subsection, it suffices to show that
there is an arrow '
A5 p
in B(v) if and only if there is an arrow
) = o)
in B(oco).

We read the addable and removable i-nodes of p in increasing order with
respect to the total order <y. Let vy ...v, be the resulting word of the
nodes. On the other hand, we read the same set of addable and removable i-
nodes of p in increasing order with respect to the length of the corresponding
segments in fy(w). If the length are the same, we declare that removable i-
nodes precede addable i-nodes. We denote the resulting word v,(1) - - - Yo(m)>
for o € &,,.

Write v; = (aj,b;,¢;), for 1 < j < m. Then, Lemma p.§ implies that
if Aéjj) # )\gfk’“) then j < k implies 071(j) < o~ !(k). On the other hand,
Lemma p.9 implies that if )\((1?) = )\((fk’“) then j < k implies o~ 1(j) < o~ 1(k).
We conclude that o is the identity.

We define S} ; to be the number of addable i-nodes minus the number of
removable i-nodes in {Vg, Vit1,-- -, Ym }-

Suppose that é;; = A and let v = (a, b, ¢) be the good i-node of p. Then
mings( Sj, ; is attained at . Define k., for r > 0, by

k, = min{j | )\((lij) >r}.

It is clear that ming-( S}, ; is attained only at removable nodes of the form
Vk,., for some r. Now observe that addable and removable i-nodes of the
multisegment fy(p) which do not belong to {71,...,7m} come from pairs
of consecutive rows of the same length in p. Let m.; be the multiplicity
of (k;i] in fy(p). Then, by the above observation, we have

Sri = Z(m(m_u — Mksi]) = kv
k>r

and min,~o S,; is attained at » = b. Instead of proving that b is the unique
r that attains the minimum, we shall show that f;fy(A) = fy(p). As v is
the good removable i-node of u, the following is clear.

If » < b then, among the nodes v;, for k. < j < kp, the

number of addable nodes is always greater than or equal to

the number of removable nodes.
This implies that, if we change the status of v from a removable node to an
addable node, then S,; > Sp; if » < b — 1, for the new values S, ; and S ;
computed after we change the status of v. If we consider normal i-nodes
which appear to the right of v, it is also clear that S,; > Sp; if r > b+ 1,
for the new values S, ;. Thus, we obtain f;fyv(A) = fv ().
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Next suppose that f;fy(A) = fo(u). We consider Sy; and suppose that
min,~q S,; is attained at £y < ¢; < ---. The minimum value is attained
at a removable i-node which is the leftmost node among the nodes of the
segments of the same length. Then, the minimality implies that the right
neighbor of the removable node is addable. We denote this node by ~. We
show that ~ is the good addable i-node of A.

Suppose that v is cancelled in the RA-deletion procedure. If the removable
t-node which cancels R is not of the form ~,, it contradicts the minimality
of Sg, ;. Thus, the removable node is vy, , for some b < {y. Then, Sy ; = Se,
implies ¢y < b, which contradicts b < £y3. Hence, we have proved that v is a
normal addable ¢-node. If there was another normal addable i-node to the
right of v, it would contradict the minimality of Sy, ;, so that « is the good

addable i-node of X. Thus, we obtain f;\ = p. (]

Define B*?(A) = {¢) € B(c0) | €(¢*) < A(ey))}. As we have proved
that A — fy(X) ® tp is the crystal embedding B(A) < B(oo) ® Ty in the
language of FLOTW and multisegment realizations, we have the following
corollary. The basis in Corollary p.19(2) is the canonical basis of V,(A).

Corollary 5.12.
(1) fo(B(v)) = B®(A).
(2) {Gy(Y)va | € B¥(v)} is a basis of V,(A).

6. FOCK SPACE THEORY FOR CYCLOTOMIC HECKE ALGEBRAS

In this section, we give the combinatorial proof of the modular branching
rule. The proof depends on Lemma [.7, which says that isomorphisms of
crystals give the correspondence of labels of a simple Hﬁ—module, which
is labelled by various realizations of the crystal B(A). Hence, the explicit
description of the isomorphisms in the previous section gives us the module
correspondence.

6.1. Cyclotomic Hecke algebras. Let v be a multicharge as before. The
cyclotomic Hecke algebra HyY (q) is the quotient algebra H,, /I of the affine
Hecke algebra H,,, where I is the ideal of H,, generated by the polynomial
Hli;(l] (X1 — ¢"%). If we specialize ¢ = (, the algebra depends only on A, and
we denote the algebra by H2. This is the main object of the study in the
remaining part of the paper. As Hﬁb\ is a quotient algebra of the affine Hecke
algebra H,,, the set of simple Hﬁ—modules is a subset of simple H,,-modules.
In fact, by Fock space theory for cyclotomic Hecke algebras we will explain
in the next subsection, we know that it is the set {Dy, | ¢ € B*(A)}.

Definition 6.1. We denote by M2 -mod the category of finite-dimensional
HA-modules.

Note that HY(q) is a cellular algebra in the sense of Graham and Lehrer:
it has the Specht module theory developped by Dipper, James and Mathas.
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Then, the first author showed that simple Hﬁ—modules are labelled by
Kleshchev [-partitions. We refer to [fl, Ch. 12] for details.

For A € ®¥ we denote by D> the simple Hﬁ—module labelled by A. For
A € B(V)n, we define D> by

D* = D',

We will explain in the next subsection that this labelling coincides with the
Geck-Rouquier-Jacon parametrization of simple Hﬁ—modules in terms of the
canonical basic set.

Before giving the second proof, we complete the first proof. Namely, we
prove Theorem .9 below, which compares the geometrically defined simple
HA-modules and the combinatorially defined simple H2-modules by using
Theorem [£.4]

Theorem 6.2. Let A be an l-partition. Then, D> ~ Dy, (x) as Hp-modules.

Proof. We have i- Res(Dy) ~ Dz, by Theorem 4. On the other hand,
we have i- Res(D*) ~ D% for A € ®% in [}], Theorem 6.1]. Note that if
i- Res(D*) ~ i-Res(Dy) # 0 then D* ~ D,,. This property of crystals is
a consequence of the Frobenius reciprocity. Hence, we may prove the claim
by induction on n. O

6.2. Standard modules. We say a few words on the standard modules of
the affine Hecke algebra. Let X € O, and consider
(Fti)x ={F € Ft& | XF; C F;_1}.
Then, H,((F¢%)x,C) is an HBM(Z2 C)-module by the convolution action,
and it is called the standard module. We denote it by M,. Suppose that
X is a principal nilpotent element so that ¢ = [i;[) for some i € Z/eZ and
l € Z~q. Then, (F(%)x is a point, which is the flag
0 C Ker(X) € Ker(X?)--- CKer(X") =V
of flag type (i+1—1,...,i+1,4), and the proof of Lemma [£.§ shows that, if
we follow the identification H,, ~ K¢>*¢*(Z,) in [L§], then My is the one
dimensional H,-module given by T; — —1 and
Xl = Ci+l717 s 7Xn—1 = Ci+17Xn = CZ

Thus, My, for general ¢ coincides with the induced up module of the tensor
product of such one dimensional modules over the affine Hecke algebras
associated with segments in ¢, in the Grothendieck group of the module
category of the affine Hecke algebra.

Now, we switch to the other identification used in Theorem [[.4, which we
follow in the previous and this section. Define the standard module Ny, by

Ny =" Mp(y).-
Then Ny, is given by T; — (¢ and
Xy ¢ X e (T X e
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when ¢ = (;4]. This is the standard module in [f[]. Then, a key observation
used in [l was the equality

Go1(¥) = > [Ny : Dyluy
w/
in the Hall algebra in Theorem evaluated at v = 1. 4 Now we are able
to give an example of Theorem f.9.

Example 6.3. Let ¢ = 3. Then, we have

Go=1({(2;2]}) = ugeany + a2y Go=1 ({151, (1;2]}) = uga, 2y
Note that Ny(,13 and Ny(.9)) are one dimensional Hi-modules defined by
X — ¢ and X — (2, respectively. Then, Ny@221y = Dy(2;2)) is the simple
module defined by

X1 ¢ Xom (P T G
and Ny(1;1),(1;2)y is the module induced from Ny.1y ® Ny1;9)3- Thus, we
deduce that Dy1,1],(1;2y is the simple module defined by

Xl = <2, X2 — C’ Tl — —1.
(Ex.1) Suppose that { =1 and v = 0. Then,
2) ~ 12) o
D = Doy and D) = Dy a2,

for (2),(12) € ®L. This follows from explicit construction of Specht
modules. Since (2) = fofil) and (12) = f1fof in ®X, we have
I'((2)) = (2) and I'((1?)) = (1?), so that

D® ~ Dy and D) = Dy 1z

(Ex.2) Suppose that | = 2 and v = (1,2). Then, fofi® = ((2),0) and
Fifod = ((1),(1)) in ®(v), so that

D@D~ Dygoy and DWW = Dyyy 1.

6.3. Fock space theory. In this subsection, we explain the Fock space
theory for cyclotomic Hecke algebras. In the following, G,(b), U, ", etc. at
v =1 are denoted by G(b), U™, etc.

Let C,, be the full subcategory of H,,-mod consisting of finite dimensional
H,-modules on which Xi,..., X, have eigenvalues in {1,¢,...,¢¢ '}

Definition 6.4. Let
U, = Home(Ko(Cr),C) and V,, = Home (Ko(H2 -mod), C)

-

4n fact, the choice of the identification played no role in [ﬂ] because it sufficed for us
to prove the statement that the canonical basis evaluated at v = 1 coincides with the
dual basis of simples in the Fock space, and we did not need compare individual simple
modules.
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be the dual spaces of the Grothendieck groups of C, and Hﬁ -mod, and

define
U:@Un and V = @vn.
n>0 n>0

Hereafter, we identify V,, with the split Grothendieck group of the additive
subcategory of HA -mod consisting of projective H2-modules.
U,, has the dual basis

{[Dy]" | ¥ is an aperiodic multisegment of rank n.}

which is dual to the basis consisting of simple H2-modules.
Let m: U — V be the natural map and define
p: U —=V(A)CF

by F +— Fup, for F e U™.
The theorem below states the most basic result in the Fock space theory.
See [, Theorem 14.49] and its proof.

Theorem 6.5.
(1) U has structure of a U™ -module and V' has structure of a g-module.
(2) U is isomorphic to the regular representation of U~ such that

[Dy]" = G(1).
(3) V is isomorphic to V(A) and the basis
|_| {[P] | P is an indecomposable H’-module.}
n>0

of V' corresponds to the canonical basis of V(A) under the isomorphism.
(4) The following diagram commutes:

U ~ U~
Tl Ip
V.~ V(A

6.4. The combinatorial proof. First we make it clear what we mean by
“simple HA-modules are labelled by Uglov I-partitions”.

Definition 6.6. We say that simple H2-modules are labelled by B(v), if the
projective cover of a simple Hﬁ—module is equal to G(A) € FV in Theorem
B-H(3), for A € B(v), then the label of the simple module is A.

It is proved by the first author that Specht module theory is an example
of the statement that simple H2-modules are labelled by B(v). Another
example is provided by the second author. Recall that Geck and Rouquier
invented different theory to label simple modules by using Lusztig’s a-values.
The labelling set is called the canonical basic set. When we work with
Hecke algebras of type B, it provides us with a set of bipartitions. The
second author has generalized the theory to cyclotomic Hecke algebras and
his result says that simple H2-modules are labelled by ®(v), for v € V.
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If one uses Theorem B.5, it is quite easy to identify simple ’Hﬁ—modules
in various labellings.

Lemma 6.7.
(1) Suppose that simple H2-modules are labelled by B(v). Let

fyv,oo : B(v) >~ B*(A) C B(c0)

be the unique crystal isomorphism. Then, D> ~ Dy, () as Hp-modules.

(2) For two labelling B(v) and B(w) of simple H>-modules, we denote the
set of simple modules by

{DX| X e B(v)} and {DX| X e B(v)},
respectively. Let fyw : B(v) ~ B(w) be the unique crystal isomorphism.
Then, D?,‘ ~ D{J”W(A) as H,,-modules.

Proof. (1) Suppose that fyoo(A) = . Then, we have G,(¥)) = G,(N).
Specializing at v = 1, we obtain G(¢)) = P*. Then, using the commutativity
of the diagram in Theorem [-§(4), we conclude that 7([Dy]*) = [D?]*, which
is identified with P*. Hence, Dy ~ D as H,-modules.

(2) First we apply (1) to two crystal isomorphisms B(v) ~ B*(A) and
B?(A) ~ B(w). Then use the fact that fyw = ‘;7100 0 fy.co- O

As we have established Lemma [.7, we can derive the modular branching
rule for the affine Hecke algebra from this.

Theorem 6.8. For each aperiodic multisegment 1, we have
Soc(i—Resgzil(Dw)) ~ D,

Proof. Choose A sufficiently large so that fy(B(v)) = B*(A) may contain
any path

Boahy By B Iy =)

in B(o0) from () to 1. Let i € Z/eZ be such that é;1) # 0 and let XA € B(v)
be such that fy(A) = ¢. Then X # 0 and fy(&;A) = é;. Then, the

previous Lemma yields the isomorphisms
Dy ~ D> and Dz, =~ D&,
Thus,
. Hy, . n A NEIA
Soc(i- Resy" | (Dy)) =~ Soc(i- Resy” (D)) ~ D" =~ Dg,y,

where the middle isomorphism is the modular branching rule in the labelling
by Kleshchev [-partitions [fl, Theorem 6.1]. We have proved the theorem. [
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7. APPENDIX

In this appendix, we explain that the surjection H,_,, to H,_, is also
described in geometric language. Although we do not need this description,
we add this section for the sake of completeness.

Lemma 7.1. KB<C*((G, x C*) X Pp_1 oxCx Zn—1) 18 isomorphic to
R(Bp x C*) ®Rg(Gnxcx) KO (G x ©) X Pt xCx Zn—1)-

Proof. We apply Lemma B.7 to (G, x C*) X P,_1axCx Zn—1. Then, we may
prove the claim as in the second half of the proof of Lemma B.9. O

Proposition B.J and Lemma B.9 imply that
Ca @4y K (Zn-10) ~ Ca ®p(c, xcx) K (Zn1,0)
~ Co ®p(a, ) K17 (Zy),
which is isomorphic to
Ca ®R(p, xcx) R(Bn x C) @pa, xcx) KO (G x C) X (p,_, , xcx) Zn-1)
~ Ca ®p(p,xcx) K2 (G x C) X (p,_,  xcx) Zn-1)

~ P Co®@rmxcn K (wx Z,1)
’U}EGn/anl

where, the R(T}, x C*)-module structure on K*C (w x Z,_1) is obtained
from that of K™*C*(Z,_,) by twisting by w.
We have proved the following isomorphism of C-vector spaces,

w™ Aw
Ca ®R(A) KA(anl,n) = @ (Cw(a) ®R(A) K A (anl)
weES,/Gp_1

where, a € A acts on Z,_1 by wlaw in K* 4 (Z,_) and Cuw(a)-
As the generators correspond correctly by Proposition B.5, the following
is clear.

Proposition 7.2. The two identifications
n1n = Ca ®p(ay KN Zn1n), Hi_y = Co®peay K(Zn1)

are compatible. Namely, we have the following commutative diagram of C-
algebras.

Ca @p(a) KA(Zn—l,n) = Ca @p(a) KA(ZN—l)

a a
n—1n n—1

We consider the embedding
Yn—l X Yn—l - (Gn X CX) ><Pn,17n><(C>< (Yn—l,n X Yn—l,n)
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and define € : KANZy—10) — K4(Z,_1) as before. We saw that it

n—1,n
coincides with 1 ®p(4) ReSG" XI(C . Similarly, the pullback
E:L—l,n'KA( n— 1n)_>KA( n— 1)

is defined with respect to the embedding
Yoy X Yl ©(Gu(s) x CF) xp,_y syxex (Yo, X Yoly,)

n(s)xC*
Pr_1,n(s)xCx"
It is important that we do not use Y, x Y,¢ as the ambient space. On

the other hand, the multiplication by 1 ® A\, or A\, ® A, and res,, are with
respect to the ambient space Y, x Y,%.

Hence, we use different ambient spaces in vertical arrows and horizontal
arrows in the following lemma.

and it coincides with 1 ®p(4) Res?”

Lemma 7.3. The following diagram commutes.

Ca ®R(A) KA(Zn—l,n) gn Cq ®R(A) K (Z )
(A ® Xa) ™ (iny0)" | L a1 @ Ano1) LA )"

Ca ®peay K23 1,) oot Co @peay KA (Z2_1)
Proof As (A, ® A )* (4 ) and (A\_1 ® A\p_1)"1(i )* are the inverse

n—1,n n—1
of (i4_, )« and (i2_|)+, respectively, it suffices to show

62—1,n(i£—1,n)*[7‘—] = (ié—l)*ejz—lm[]:]’

for [F] € K4(Z%_, n)- However, this is clear because both are the restriction

of F to Z;_;. U

Corollary 7.4. We have the following commutative diagrams such that the
lower diagram is a commutative diagram of C-algebras.

Ca @R(a) KA(Zn—Ln) ~ K(Zy_1,) = K(Zy_1) = Cq ®p(a) KA(Zn—l)

n—1,n
res, \, i} i} /res, 1
K( 5—1,n) —  K(Z,_4)
| |
g—l,n - n—1

Here, the middle horizontal arrow is given by (Ay—1 @ 1) €1, (An ® 1)
and the vertical arrows are the isomorphisms given by the multzplz'cation by
A ®1 and A1 ® 1 respectively.

Let Zg 1, € (Gn(s)XCX) X p,_ (s)xcx (Y10 XYy ) as before. Then
/s (Y ' x Y% )= Z%_, and the Gysin map

n—1,n
6:1 HBM( n— 1n’C) HBM( n— 1’(:)
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is defined by a — anN Y, ; x Y, ], the intersection product in the ambi-
ent space. See [fl, Proposition 8.1.2]. (The complexified Chow groups are
isomorphic to the Borel-Moore homology groups in our case.)

Proposition 7.5. We have the following commutative diagram of C-algebras.
HIM (231, C) — HPM(Z,,©)

n—1n» n—1»

| |
?Lfl,n - n—1
where, the upper horizontal arrow is given by
(1@ tdys  ch(A-1)"") 61 (1 ® tdyach(n)).

As we have obtained the description of the map Hy_,, — H;_, in the

Borel-Moore homology, we may rewrite it into sheaf language as before. But,
it is not so helpful and we stop here.
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