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THE MODULAR BRANCHING RULE FOR AFFINE

HECKE ALGEBRAS OF TYPE A

SUSUMU ARIKI, NICOLAS JACON AND CÉDRIC LECOUVEY

Abstract. For the affine Hecke algebra of type A at roots of unity,
we make explicit the correspondence between geometrically constructed
simple modules and combinatorially constructed simple modules and
prove the modular branching rule. The latter generalizes work by Vazi-
rani.

1. Introduction

In [6], Ginzburg explains his geometric construction of simple modules
over (extended) affine Hecke algebras Hn defined over C. In this paper, we
consider the affine Hecke algebra of type A whose parameter is a root of
unity. Then, the simple modules are labelled by aperiodic multisegments.

On the other hand, Dipper, James and Mathas’ Specht module theory
gives us a combinatorial construction of simple modules of cyclotomic Hecke
algebras, and they exhaust all the simple modules of the affine Hecke algebra.
The simple modules are labelled by Kleshchev multipartitions.

If one wants more than mere labelling of simples, the combinatorially
defined simple modules often have more advantage than the geometrically
defined simple modules. For example, we may work over any algebraically
closed field other than C when we use the combinatorially defined simple
modules. Hence, explicit description of the module correspondence between
the two constructions is desirable.

We provide this explicit description of the module correspondence in this
article. Note that both the set of aperiodic multisegments and the set of
Kleshchev multipartitions have structure of Kashiwara crystals. Then, we
show that the crystal embedding gives the module correspondence.

Closely related to this result is the modular branching rule. One may
prove the result on the module correspondence by using this, which is our
first proof, or one may prove the modular branching rule by first establishing
the result on the module correspondence, which is our second proof.

Let Lψ be the simple module labelled by a multisegment ψ, whose precise
meaning will be explained in section 4. The modular branching rule is a rule
to describe Soc(ResHnHn−1

(Lψ)), or equivalently Top(ResHnHn−1
(Lψ)). We show
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that

Soc(ResHnHn−1
(Lψ)) =

⊕

i∈Z/eZ

Lẽiψ,

where ẽi is the Kashiwara operator. We give a geometric proof of this rule in
the framework of Lusztig and Ginzburg’s theory. This gives the first proof.
On the other hand, if one uses results in [1] and [2], both become easier, and
this is the second proof.

Recall that the main result of [24] is the modular branching rule when
the parameter of the affine Hecke algebra is not a root of unity. Hence our
result generalizes [24, Theorem 3.1] and we may deduce other results in [24]
from this.

The paper is organized as follows. In section 2, we review basic facts on

the crystal B(∞) of type A
(1)
e−1. In section 3, we prepare for a geometric

proof of the modular branching rule of the affine Hecke algebra. The proof
is carried out in the framework of Lusztig and Ginzburg’s theory, so that we
explain the theory in some detail. This part may be read as a concise re-
view of the theory. In section 4, we give the geometric proof of the modular
branching rule. In section 5, we introduce crystals of deformed Fock spaces
and state results to compute crystal isomorphisms among them. In section
6, we prove a lemma on the module correspondence of simple modules in
various labellings and give a combinatorial proof of the modular branching
rule in the framework of Fock space theory for cyclotomic Hecke algebras.
The reader would be surprised at how easy the second proof is.

Acknowledgements. Part of this work was done while the authors were
visiting the MSRI in Berkeley in 2008. The authors wish to thank the in-
stitute for the hospitality and the organizers of the two programs for their
invitation. The second author is also grateful to Hyohe Miyachi for fruitful
discussions there. The second author is supported by the “Agence Nationale
de laRecherche” (project JCO7-192339).

2. Preliminaries

Let e ≥ 2 be a fixed integer, g the Kac-Moody Lie algebra of type A
(1)
e−1.

We denote by U−
v the negative part of the quantum affine algebra Uv(g),

which is generated by the Chevalley generators fi, where i ∈ Z/eZ, subject
to the quantum Serre relations. In this section, we review basic facts on U−

v

and its crystal. We denote the simple roots by αi, and the simple coroots
by α∨

i , for i ∈ Z/eZ.

2.1. The crystal B(∞). Let us introduce the Kashiwara operator f̃i, for
i ∈ Z/eZ, on U−

v . Let ei, i ∈ Z/eZ, be Chevalley generators of the positive

part of Uv(g) and ti = vα
∨
i . The following two lemmas are due to Kashiwara.



Affine Hecke algebras of type A 3

Lemma 2.1. For each u ∈ U−
v , there exist unique u′ and u′′ in U−

v such
that we have

eiu− uei =
tiu

′ − t−1
i u′′

v − v−1
.

We define an operator e′i on U−
v by e′iu = u′′, for u ∈ U−

v . The algebra
generated by {fi}i∈Z/eZ and {e′i}i∈Z/eZ is called the Kashiwara algebra. Let

f
(n)
i be the nth divided power of fi.

Lemma 2.2. Let P ∈ U−
v . For each i ∈ Z/eZ, there exists un in U−

v , for

n ∈ Z≥0, such that e′iun = 0, for all n, and P =
∑

n∈Z≥0
f

(n)
i un.

We define ẽiP =
∑

n∈Z≥1
f

(n−1)
i un and f̃iP =

∑
n∈Z≥0

f
(n+1)
i un. They

are well-defined. Let R be the subring of C(v) consisting of elements which
are regular at v = 0. Then, we define

L(∞) =
∑

N∈Z≥0

∑

(i1,...,iN )∈(Z/eZ)N

Rf̃i1 · · · f̃iN 1

and

B(∞) =
(
∪N∈Z≥0

∪(i1,...,iN )∈(Z/eZ)N f̃i1 · · · f̃iN1 + vL(∞)
)
\ {0}.

B(∞) is a basis of the C-vector space L(∞)/vL(∞). U−
v admits a root

space decomposition U−
v = ⊕α∈Q+(U−

v )−α, where Q+ =
∑

i∈Z/eZ Z≥0αi,

and it follows that

B(∞) =
⊔

α∈Q+

B(∞)−α.

We define wt(b) = −α if b ∈ B(∞)−α. Then, by defining

ǫi(b) = max{k ∈ Z≥0 | ẽ
k
i b 6= 0} and ϕi(b) = ǫi(b) + wt(b)(α∨

i ),

for b ∈ B(∞), (B(∞),wt, ǫi, ϕi, ẽi, f̃i) is a g-crystal in the sense of Kashiwara
[14, p.48].

We define the bar operation on U−
v by v̄ = v−1 and f̄i = fi. Lusztig and

Kashiwara independently constructed the canonical basis/the global basis

{Gv(b) | b ∈ B(∞)}

of U−
v , which is characterized by the property that

Gv(b) = Gv(b), Gv(b) + vL(∞) = b.

Example 2.3. Let e = 3. Then, e2 and f1 commute so that e′2f1 = 0

and f̃2f1 = f2f1 follows. Similarly, f̃1f2 = f1f2. Thus, {f1f2, f2f1} is
the canonical basis of (U−

v )−α1−α2 . For the null root δ = α0 + α1 + α2,
{f0f1f2, f2f1f0, f0f2f1, f1f0f2} is the canonical basis of (U−

v )−δ. Of course,
more complex linear combination of monomials in fi appear in the canonical
basis of other (U−

v )−α.
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2.2. Hall algebras. The crystal B(∞) has a concrete description. Let Γ be
the cyclic quiver of length e. This is an oriented graph with vertices Z/eZ
and edges {(i, i + 1), i ∈ Z/eZ}. Let V = ⊕i∈Z/eZVi be a finite dimensional
Z/eZ-graded vector space, and define

EV =
⊕

i∈Z/eZ

HomC(Vi, Vi+1) ⊆ EndC(V ).

An element X ∈ EV is called a representation of Γ on V . If V runs through
all finite dimensional Z/eZ-graded vector spaces, we obtain the category of
representations of Γ. It is the same as the category of finite dimensional
CΓ-modules, where CΓ is the path algebra of Γ. The simple modules are
labelled by Z/eZ. For each i ∈ Z/eZ, we define the corresponding simple
module Si by V = Vi = C and X = 0.

If X is nilpotent as an endomorphism of V , the representation is called
nilpotent. We denote by NV the subset of nilpotent representations in EV .
The vector

dim V = (dimVi)i∈Z/eZ

is called the dimension vector of the representation.
Let GV =

∏
i∈Z/eZ GL(Vi). It acts on EV and NV by conjugation and two

representations are equivalent if and only if they are in the same GV -orbit.

Example 2.4. Let Gn = GLn(C) and suppose that s ∈ Gn has order e.
Let ζ be a primitive eth root of unity, V = C

n, and let Vi be the eigenspace
of s for the eigenvalue ζi. If X ∈ EndC(V ) is such that sXs−1 = ζX then
XVi ⊆ Vi+1. Thus, X defines a representation of Γ on V . Note that GV is
the centralizer group Gn(s) in this case.

By linear algebra, the isomorphism classes of nilpotent representations
are labelled by (Z/eZ-valued) multisegments.

Definition 2.5. Let l ∈ Z>0 and i ∈ Z/eZ. The segment of length l and
head i is the sequence of consecutive residues [i, i+1, ..., i+ l−1]. We denote
it by [i; l). Similarly, The segment of length l and tail i is the sequence of
consecutive residues [i− l+1, ..., i−1, i]. We denote it by (l; i]. We say that
[i; l) has a removable i-node and [i+ 1; l) has an addable i-node.

A collection of segments is called a multisegment. If the collection is the
empty set, we call it the empty multisegment.

Each [i; l) defines an indecomposable nilpotent CΓ-module C(ℓ; i], which
is characterized by the property that

C[i; l) is a uniserial module and Top(C[i; l)) = Si.

Hence, a complete set of isomorphism classes of nilpotent representations is
given by the modules

Mψ =
⊕

i∈Z/eZ,l∈Z>0

C[i, l)⊕m[i;l) ,
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which is labelled by the multisegment

ψ = {[i; l)⊕m[i;l)}i∈Z/eZ,l∈Z>0
.

We denote the corresponding GV -orbit in NV by Oψ.
Now, we introduce the Hall polynomials. Let Fq be a finite field, and

consider FqΓ-modules. Then, they are classified by multisegments again.
Let V , T and W be Z/eZ-graded vector spaces over Fq such that

dim V = dim T + dim W.

Let ϕ1, ϕ2 and ψ be multisegments such that Oϕ1 ⊆ NT , Oϕ2 ⊆ NW and
Oψ ⊆ NV . If the number of submodules U of Mψ that satisfies U ≃ Mϕ2

and Mψ/U ≃ Mϕ1 is polynomial in q = card(Fq), then this polynomial is

called the Hall polynomial and we denote it by Fψϕ1,ϕ2(q). The existence of
Hall polynomials in our case was proved by Jin Yun Guo [11, Theorem 2.7].

For a and b in Z
e we define a bilinear form m by

m(a, b) =
∑

i∈Z/eZ

(aibi+1 + aibi).

We remark that this is not the Euler form used by Ringel to define his
(twisted) Hall algebra, but the one used by Lusztig, which comes from the
difference of dimensions of the fibers of two fiber bundles which appear in his
geometric definition of the product, namely in the definition of the induction
functor. In his theory, the Euler form appears in the definition of coproduct,
namely in the definition of the restriction functor.

Now, Lusztig’s version of the Hall algebra associated to Γ is the C(v)-
algebra with basis {uψ | ψ is a multisegment} and product is given by

uϕ1uϕ2 = vm(dim T, dim W )
∑

ψ

Fψϕ1,ϕ2
(v−2)uψ.

Note that [i; 1) is the multisegment which labels the simple module Si, for
i ∈ Z/eZ. Then the C(v)-subalgebra generated by these u[i;1) is called the

composition algebra, and we may and do identify it with U−
v by u[i;1) 7→ fi.

This isomorphism between the composition algebra and U−
v was proved by

Ringel and Lusztig independently.

Definition 2.6. For each multisegment ψ, we define Eψ = vdimOψuψ. The
set {Eψ | ψ is a multisegment.} is called the PBW basis of the Hall algebra.

Example 2.7. In the previous example, we have

f1f2 = E{[1;2)} + vE{[1;1),[2;1)}, f2f1 = E{[1;1),[2;1)}.

Similarly, we have

f0f1f2 =E{[0;3)} + 2vE{[1;2),[0;1)} + v2E{[0;1),[1;1),[2;1)},

f2f1f0 =E{[2;2),[1;1)} + vE{[0;1),[1;1),[2;1)},

f0f2f1 =E{[0;2),[2;1)} + vE{[0;1),[1;1),[2;1)},

f1f0f2 =E{[1;2),[0;1)} + vE{[0;1),[1;1),[2;1)}.
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Note that E{[0;1),[1;1),[2;1)} does not appear with coefficient 1. This is
general phenomenon. See Theorem 2.9 below.

Definition 2.8. A multisegment ψ is aperiodic if, for every l ∈ Z>0, there
exists some i ∈ Z/eZ such that the segment of length l and head i does
not appear in ψ. Equivalently, a multisegment ψ is aperiodic if, for each
l ∈ Z>0, there exists some i ∈ Z/eZ such that the segment of length l and
tail i does not appear in ψ.

The notion of aperiodicity and the following theorem are due to Lusztig.

Theorem 2.9. For each b ∈ B(∞), the canonical basis element Gv(b) has
the form

Gv(b) = Eψ +
∑

ψ′ 6=ψ

cψ,ψ′(v)Eψ′ ,

for a unique aperiodic multisegment ψ, such that cψ,ψ′(v) ∈ C(v) is regular
at v = 0 and cψ,ψ′(0) = 0.

Hence, we may label elements of B(∞) by aperiodic multisegments. We
identify B(∞) with the set of aperiodic multisegments. Then, we denote
the canonical basis by Gv(ψ), for multisegments ψ, hereafter.

Leclerc, Thibon and Vasserot described the crystal structure on the set
of aperiodic multisegments B(∞) in [17, Theorem 4.1], by using a result by
Reineke.

Let ψ be a multisegment. Let ψ≥l be the multisegment obtained from ψ
by deleting multisegments of length less than l, for l ∈ Z>0. Let m[i;l) be
the multiplicity of [i; l) in ψ. Then, for i ∈ Z/eZ, we consider

Sl,i =
∑

k≥l

(m[i+1;k) −m[i;k)),

that is, the number of addable i-nodes of ψ≥l minus the number of removable
i-nodes of ψ≥l. Let ℓ0 < ℓ1 < · · · be those l that attain minl>0 Sl,i. The
following is the description of the crystal structure given by Leclerc, Thibon
and Vasserot.

Theorem 2.10. Let ψ be a multisegment, i ∈ Z/eZ and let ℓ0 be as above.

Then, f̃iψ = ψℓ0,i, where ψℓ0,i is obtained from ψ by adding [i; 1) if ℓ0 = 1,
and by replacing [i+ 1; ℓ0 − 1) with [i; ℓ0) if ℓ0 > 1.

2.3. An anti-automorphism of U−
v . As the identification of the affine

Hecke algebra with the convolution algebra KGn×C×

(Zn), which will be
explained in the next section, is not canonical, we go back and forth between
two identifications. For this reason, we need another labelling by aperiodic
multisegments.

Let V = ⊕i∈Z/eZVi be a graded vector space as before, and define its dual
graded vector space by V ∗ = ⊕i∈Z/eZV

∗
i where V ∗

i = HomC(V−i,C). Then,
by sending X ∈ EV to its transpose, we have a linear isomorphism

EV ≃ EV ∗ = ⊕i∈Z/eZ HomC(V ∗
i , V

∗
i+1).
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Using the standard basis of EV and its dual basis in EV ∗ , we identify the
underlying spaces EV and EV ∗ . Note that the GV -action on this EV is the
conjugation by the transpose inverse of g ∈ GV , while the GV -action on the
original EV is the conjugation by g ∈ GV . Then, ρ is an isomorphism of two
GV -varieties EV so that the GV -orbit Oψ in the original EV corresponds to
the GV -orbitOρ(ψ) in the new EV , where ρ(ψ) is defined by ρ([i; l)) = (l;−i].
Thus, we have a linear isomorphism of the Hall algebras on both sides, which
we also denote by ρ, such that

ρ(Eψ) = Eρ(ψ) and ρ(Gv(ψ)) = Gv(ρ(ψ)) if ψ is aperiodic.

That is, this gives a relabelling of the PBW basis and the canonical basis.
However, if we take the algebra structure into account, ρ induces the anti-
automorphism of U−

v given by fi 7→ f−i, which is clear from the definition
of the multiplication of the Hall algebra. In particular, the crystal structure
on the set of aperiodic multisegments is changed in this new labelling, and
the Kashiwara operators ẽi and f̃i correspond to the Kashiwara operators
ẽ−i and f̃−i in this new crystal structure. In the new crystal structure, we
change the definition of addable and removable i-nodes as follows.

Definition 2.11. We say that (l; i] has a removable i-node and (l; i−1] has
an addable i-node.

We consider Sl,i =
∑

k≥l(m(k;i−1]−m(k;i]), that is, the number of addable
i-nodes of ψ≥l minus the number of removable i-nodes of ψ≥l in the new
definition of removable and addable i-nodes. Let ℓ0 < ℓ1 < · · · be those l
that attain minl>0 Sl,i. Then, the crystal structure in the new labelling is
given as follows. In fact, this version is stated in [17].

Theorem 2.12. Let ψ be a multisegment, i ∈ Z/eZ and let ℓ0 be as above.

Then, f̃iψ = ψℓ0,i, where ψℓ0,i is obtained from ψ by adding (1; i] if ℓ0 = 1,
and by replacing (ℓ0 − 1; i − 1] with (ℓ0; i] if ℓ0 > 1.

To compute ẽiψ, for a multisegment ψ, we consider the same Sl,i. If
minl>0 Sl,i is attained at more than one l, then ẽiψ = 0. Otherwise, let ℓ0
be the unique l that attains minl>0 Sl,i. Then, ẽiψ is obtained from ψ by
replacing (ℓ0; i] with (ℓ0 − 1; i− 1].

We use the crystal structure on the set of aperiodic multisegments in
Theorem 2.10 when we choose the identification of R(Gn × C

×)-algebras

Hn ≃ K
Gn×C×

(Zn) following Lusztig [18], while we use that in Theorem 2.12

when we choose the identification Hn ≃ KGn×C×
(Zn) following Ginzburg

[6]. We note that the second crystal structure is the star crystal structure
of the first.

3. Affine Hecke algebras

Let Hn be the extended affine Hecke algebra associated with Gn. It is
the C[q±]-algebra generated by Ti, for 1 ≤ i < n, and X±

i , for 1 ≤ i ≤ n,
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subject to the relations

(Ti − q)(Ti + 1) = 0, q−1TiXiTi = Xi+1, etc.

In this section, we recall the geometric realization of affine Hecke algebras by
Lusztig and Ginzburg, and of specialized affine Hecke algebras by Ginzburg.

3.1. Varieties. Let Gn = GLn(C) as before, and Bn the Borel subgroup of
upper triangular matrices. We denote the unipotent radical of Bn by Un, and
the maximal torus of diagonal matrices by Tn. Write C

n = Ce1 ⊕ · · · ⊕Cen
and let Fℓn be the flag variety, which consists of increasing subspaces F =
(Fi)0≤i≤n in C

n such that dimFi = i, for all i. Gn/Bn ≃ Fℓn through the
map gBn 7→ F defined by Fi = Cge1 ⊕ · · · ⊕Cgei, for 1 ≤ i ≤ n. Define the
Schubert cell Sn(w) and the Schubert variety Xn(w), for w ∈ Sn, by

Sn(w) = {F ∈ Fℓn | dim(Fi ∩ C
j) = ♯{k | 1 ≤ k ≤ i, 1 ≤ w(k) ≤ j}},

Xn(w) = {F ∈ Fℓn | dim(Fi ∩ C
j) ≥ ♯{k | 1 ≤ k ≤ i, 1 ≤ w(k) ≤ j}}.

The Bruhat order on Sn has the following description: y ≤ w if and only if

♯{k | 1 ≤ k ≤ i, 1 ≤ y(k) ≤ j} ≥ ♯{k | 1 ≤ k ≤ i, 1 ≤ w(k) ≤ j},

for all i and j. We have Xn(w) = ⊔y≤wSn(y) and dimSn(y) = ℓ(y). Sn(w)
has the unique Tn-fixed point Fw defined by (Fw)i = Cew(1) ⊕ · · · ⊕ Cew(i).
It is well-known that X(w) are normal varieties. See [4, Theorem 3.2.2] for
example.

Now we consider the diagonal Gn-action on Fℓn ×Fℓn. Then, Gn-orbits
in Fℓn×Fℓn are in bijection with Bn-orbits in Fℓn and we denote the orbits

On(w) = {(F,F ′) ∈ Fℓn×Fℓn | dim(Fi∩F
′
j) = ♯{k | 1 ≤ k ≤ i, 1 ≤ w(k) ≤ j}}.

A pair of flags (F,F ′) belongs to On(w) if and only if

dim
Fi ∩ F

′
j

Fi−1 ∩ F ′
j + Fi ∩ F ′

j−1

=

{
1 (j = w(i))

0 (otherwise)
.

We denote by Nn the set of nilpotent elements in Matn(C) and write

T ∗Fℓn = {(X,F ) ∈ Nn ×Fℓn | XFi ⊆ Fi−1}.

Then the Steinberg variety is defined by

Zn = T ∗Fℓn ×Nn T
∗Fℓn

= {(X,F, F ′) ∈ Nn ×Fℓn ×Fℓn | XFi ⊆ Fi−1,XF
′
i ⊆ F

′
i−1}.

Zn is a Gn × C
×-variety by the action

(g, c)(X,F, F ′) = (c−1gXg−1, gF, gF ′),

for (g, c) ∈ Gn ×C
× and (X,F, F ′) ∈ Zn.

We consider the complexified K-group of the abelian category of Gn×C
×-

equivariant coherent sheaves on Zn. Using the closed embedding Zn ⊆
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T ∗Fℓn × T
∗Fℓn, we have the convolution algebra KGn×C×

(Zn). Zn has a
partition Zn = ⊔w∈SnZn(w), where

Zn(w) = {(X,F, F ′) ∈ Zn | (F,F
′) ∈ On(w)}.

We have dimZn(w) = n(n− 1) and Zn(w) is a (n(n−1)
2 − ℓ(w))-dimensional

vector bundle over On(w). Then, {Zn(w)}w∈Sn is the set of the irreducible
components of Zn. Define

Zn−1,n = {(X,F, F ′) ∈ Zn | Fn−1 = F ′
n−1}.

The condition Fn−1 = F ′
n−1 is equivalent to (F,F ′) ∈ ⊔w∈Sn−1On(w), be-

cause

dim
Fn ∩ F

′
n

Fn−1 ∩ F ′
n + Fn ∩ F ′

n−1

= dim
C
n

Fn−1 + F ′
n−1

= 1

if and only if Fn−1 = F ′
n−1. Hence, Zn−1,n = ⊔w∈Sn−1Zn(w).

Similarly, (F,F ′) ∈ On(e)⊔On(si) = On(si) if and only if Fj = F ′
j , for all

j 6= i. It follows that

Zn(si) = {(X,F, F ′) ∈ Zn | Fj = F ′
j , for all j 6= i, XFi+1 ⊆ Fi−1}.

The pushforward of OZn(si)
with respect to the closed embedding Zn(si) ⊆

Zn is also denoted by O
Zn(si)

by abuse of notation. We denote

bi = [O
Zn(si)

] ∈ KGn×C×

(Zn).

Let Qi,i+1 be the parabolic subgroup of Gn which corresponds to si, ni,i+1

the nilradical of its Lie algebra. Then

Zn(si) = (Gn × C
×)×Qi,i+1×C× (P1 × P

1 × ni,i+1)

is a vector bundle over On(si) = (Gn×C
×)×Qi,i+1×C× (P1×P

1). We denote
by Li the pullback of the line bundle

(Gn × C
×)×Qi,i+1×C× (OP1(−1)⊗OP1(−1))

over On(si) to Zn(si).
For λ ∈ Zǫ1 ⊕ · · · ⊕ Zǫn = Hom(Tn,C

×), let Cλ be the Bn × C
×-module

associated with λ and define the associated line bundle Lλ on Fℓn by

Lλ = (Gn × C
×)×Bn×C× Cλ.

When we consider λ as a character of Tn, we denote it by eλ. Then, we

identify KGn×C×
(Fℓn) = R(Tn × C

×) via Lλ 7→ eλ as usual.
Let us denote πn : T ∗Fℓn → Fℓn and δn : Zn(e) ⊆ Zn. We consider the

diagram

Fℓn
πn←− T ∗Fℓn ≃ Zn(e)

δn−→ Zn

and we denote
θλ = [δn∗π

∗
nL−λ] ∈ K

Gn×C×

(Zn).

By the Thom isomorphism, {[π∗nLλ] | λ ∈ Hom(Tn,C
×)} is a basis of

KGn×C×

(Zn(e)).
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Definition 3.1. We define Ti = [Li] + q, for 1 ≤ i < n, and Xi = θǫi , for
1 ≤ i ≤ n.

We have θλ =
∏n
i=1X

λi
i , for λ =

∑n
i=1 λiǫi. Using the exact sequence

0→ OP1(−1)⊗OP1(−1)→ OP1 ⊗OP1 → O∆P1 → 0

where ∆P
1 ⊆ P

1 × P
1 is the diagonal, we know that [Li] = bi − (1− qθαi).

Then, Ti, for 1 ≤ i < n, and X±
i , for 1 ≤ i ≤ n, satisfy the defining

relations of Hn. In particular, we have the Bernstein relation

Tiθλ = θsiλTi + (1− q)
θλ − θsiλ
θ−αi − 1

,

where αi = −ǫi + ǫi+1. This follows from the next theorem. The theorem
was found by Lusztig and the action of Ti is called the Demazure-Lusztig
operator.

Theorem 3.2. Through the Thom isomorphism, we identify KGn×C×
(T ∗Fℓn)

with

KGn×C×

(Fℓn) = R(Tn × C
×).

Then the convolution action of KGn×C×
(Zn) on KGn×C×

(T ∗Fℓn) is given
by

Tif =
f − sif

eαi − 1
− q

f − eαisif

eαi − 1
, Xif = e−ǫif.

It is well-known that this is a faithful representation of Hn. Note that we

have chosen the isomorphism Hn ≃ K
Gn×C×

(Zn) to have the same formulas
as [6, Theorem 7.2.16,Proposition 7.6.38]. When we follow [18], we define

θλ = [δn∗π
∗
nLλ] and Ti = −[Li]− 1.

Then, the formulas for the convolution action on R(Tn×C
×) change to those

in [18, p.335]. The two identifications of Hn ≃ KGn×C×
(Zn) are related by

the involution σ defined by

Ti 7→ −qT
−1
i , Xi 7→ X−1

i .

In the rest of this section, we follow the identification in [18].
The center Z(Hn) of Hn is the C[q±]-subalgebra consisting of all the

symmetric Laurent polynomials in X1, . . . ,Xn. Thus, we identify Z(Hn)
with R(Gn × C

×). We also identify C[q±][X±
1 , . . . ,X

±
n ] with R(Tn × C

×).

Let KGn×C×
(Zn−1,n) be the convolution algebra with respect to the em-

bedding Zn−1,n ⊆ T
∗Fℓn × T

∗Fℓn. Let

• Hn−1,n be the parabolic subalgebra Hn−1 ⊗C C[X±
n ] of Hn, and

• ιn : Zn−1,n ⊆ Zn be the inclusion map.

As Lusztig originally stated the next theorem as an isomorphism of bi-
modules, we attribute the next theorem to Ginzburg and Lusztig.

Theorem 3.3.
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(1) We have an isomorphism of R(Gn×C
×)-algebras Hn ≃ K

Gn×C×
(Zn) by

the above choice of Ti and Xi in KGn×C×

(Zn).
(2) The inclusion map ιn induces the following commutative diagram of Z(Hn)-
algebras.

ιn∗ : KGn×C×

(Zn−1,n) → KGn×C×

(Zn)

↓ ↓

Hn−1,n ⊆ Hn

where the vertical arrows are isomorphisms.

It is also clear that the inclusion map Yn ≃ Zn(e) →֒ Zn−1,n induces

KGn×C×

(Yn)→ KGn×C×

(Zn−1,n)

and it is identified with R(Tn × C
×) →֒ Hn−1,n.

3.2. Faithfully flat descent. In the proof of [23, Proposition 6.2], the
following is shown by using faithfully flat descent.

Proposition 3.4. Let G and H be affine algebraic groups such that H is a
closed subgroup of G and that H acts on a quasi-projective variety X. Then
we have the category equivalence

CohG(G×H X) ≃ CohH(X)

where, CohG(G×H X) is the category of G-equivariant coherent sheaves on
G×HX and CohH(X) is the category of H-equivariant coherent sheaves on
X.

We denote the induced isomorphism of Grothendieck groups

ResGH : KG(G×H X)
∼
→ KH(X).

The left hand side is a KG(G/H)-module through the projection G×HX →
G/H, and ResGH is a R(H)-module isomorphism.

We add the assumption that X is quasi-projective in order to assure that
G ×H X is also a variety [3, Theorem 4.6.1]. G ×H X is smooth (resp.
normal) if and only if X is smooth (resp. normal) [21, Proposition 4.22].

Note that the action ofH on G×X, which is given by h(g, x) = (gh−1, hx),
is free, namely the map H×G×X → (G×X)×(G×X) which is defined by
(h, g, x) 7→ (gh−1, hx)× (g, x) is a closed embedding, thus G×X → G×HX
is faithfully flat.

The category equivalence is given in a very explicit manner. Consider

G×H ×X → H ×X

↓↓ ↓↓

G×X
µ
→ X

ν ↓

G×H X
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The double vertical arrows on the left are the action map aH : (g, h, x) 7→
(gh−1, hx) and the projection map pH : (g, h, x) 7→ (g, x), and similarly, the
double vertical arrows on the right are (h, x) 7→ hx and (h, x) 7→ x. µ is the
map (g, x) 7→ x. All the maps in the diagram are flat. Now, we identify

G×H ×X ≃ (G×X)×G×HX (G×X)

by (g, h, x) 7→ (gh−1, hx) × (g, x). Then the projection to the first and the
second components are aH and pH . Thus, the theory of faithful descent
implies that CohG(G ×H X) is equivalent to the category of G-equivariant
sheaves on G×X with descent data, but the latter category is nothing but
CohG×H(G×X) by the above identification. Now we identify

G×G×X ≃ (G×X)×X (G×X)

by (g1, g2, x) 7→ (g1g2, g2, x). Then the projection to the first and the second
on the right are aG : (g1, g2, x) 7→ (g1g2, x) and pG : (g1, g2, x) 7→ (g2, x) on
the left. Thus, CohG×H(G×X) is the category of H-equivariant sheaves on
G×X with descent data, which is equivalent to CohH(X).

Hence, for F ∈ CohG(G ×H X), there exists a unique sheaf F ♯ up to
isomorphism such that µ∗F ♯ ≃ ν∗F , and the category equivalence is given
by F 7→ F ♯.

Let ι : X →֒ G×H X be the closed embedding. Namely, ι = ν ◦ η where
η : X → G × X is the section of µ defined by x 7→ (e, x). Then, we may
compute the pullback i∗ : CohG(G×HX)→ CohH(X) of sheaves as follows.

ι∗F = η∗ν∗F ≃ η∗µ∗F ♯ = F ♯.

Thus, ResGH is given by the explicit formula [F ] 7→ [ι∗F ].
Suppose that X is smooth. Then, we may define the pullback in K-theory

ι∗ : KG(G×H X)→ KH(X)

by [F ] 7→
∑

j∈Z
(−1)j [T or

OG×HX

j (ι∗OX ,F)]. Thus, if F is the sheaf of sec-
tions of a vector bundle then

ResGH([F ]) = [ι∗F ] = ι∗[F ],

which implies that ResGH([F ]) = ι∗[F ], for all F ∈ CohG(G×H X), since X
is smooth. Thus, we have ι∗[F ] = [ι∗F ].

Now, let Z ⊆ X be a closed H-variety, which is not necessarily smooth.
Then, X ∩ (G×H Z) = Z and we may define the pullback

ι∗ : KG(G×H Z)→ KH(Z)

with respect to the embedding of smooth varieties X ⊆ G ×H X. As we
consider KG(G×H Z) as a subspace of KG(G×H X), we have ResGH([F ]) =
ι∗[F ] = [ι∗F ], for F ∈ CohG(G×H Z), as well.
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3.3. The embedding of Hn−1,n into Hn. Let

Nn−1,n = {X ∈ Nn | XC
n−1 ⊆ C

n−1}

and we denote

Yn−1 = T ∗Fℓn−1, Yn−1,n = T ∗Fℓn|Fℓn−1 , Yn = T ∗Fℓn.

Here, we identify Fℓn−1 = {F ∈ Fℓn | Fn−1 = C
n−1}. We define

Z ′
n−1,n = Yn−1,n ×Nn−1,n Yn−1,n

= {(X,F, F ′) ∈ Zn | Fn−1 = F ′
n−1 = C

n−1}.

Let Pn−1,n be the maximal parabolic subgroup of Gn that stabilizes C
n−1.

The Levi part Ln−1,n×C
× of Pn−1,n×C

× is (Gn−1×C
×)×C

×, which acts on
Zn−1 by letting the middle component act trivially. We denote the unipotent
radical of Pn−1,n by Un−1,n. It is also the unipotent radical of Pn−1,n ×C

×.
Explicitly,

Ln−1,n =

(
Gn−1 0

0 C
×

)
, Un−1,n =

{(
1n−1 ∗

0 1

)}
.

We consider the following diagram as before.

Z ′
n−1,n

µn−1,n
←− (Gn×C

×)×Z ′
n−1,n

νn−1,n
−→ (Gn×C

×)×Pn−1,n×C×Z ′
n−1,n = Zn−1,n.

Then, Proposition 3.4 says that we have the restriction map

(1) ResGn×C×

Pn−1,n×C× : KGn×C×

(Zn−1,n) ≃ K
Pn−1,n×C×

(Z ′
n−1,n).

Z ′
n−1,n is a Ln−1,n × C

×-equivariant vector bundle of rank n − 1 over

Zn−1 and we write κn−1,n : Z ′
n−1,n → Zn−1. Then κ∗n−1,n gives the Thom

isomorphism

KLn−1,n×C×

(Z ′
n−1,n)

∼
← KLn−1,n×C×

(Zn−1).

Noting that

KPn−1,n×C×

(Z ′
n−1,n) ≃ K

Ln−1,n×C×

(Z ′
n−1,n) by the forgetful map, and

KLn−1,n×C×

(Zn−1) ≃ K
Gn−1×C×

(Zn−1)⊗C C[X±
n ],

we have

(2) KPn−1,n×C×

(Z ′
n−1,n) ≃ K

Gn−1×C×

(Zn−1)⊗C C[X±
n ].

We identify Zn−1 with the zero section of κn−1,n and denote the embed-
ding

ǫn−1,n : Zn−1 → Zn−1,n.

Let us consider the embedding of smooth varieties

(Gn × C
×)×Pn−1,n×C× (Yn−1,n × Yn−1,n) ⊇ Yn−1 × Yn−1.

Then, Zn−1,n ∩ (Yn−1 × Yn−1) = Zn−1 and we define

ǫ∗n−1,n : KGn×C×

(Zn−1,n)→ KPn−1,n×C×

(Zn−1).

with respect to this embedding of smooth varieties.
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Next proposition gives the geometric description of the embeddingHn−1,n

into Hn.

Proposition 3.5. Combining the isomorphisms (1) and (2), we have the
following isomorphism of R(Ln−1,n × C

×)-algebras

KGn×C×

(Zn) ⊇ K
Gn×C×

(Zn−1,n)
ǫ∗n−1,n
≃ KGn−1×C×

(Zn−1)⊗C C[X±
n ],

which gets identified with Hn ⊇ Hn−1,n = Hn−1 ⊗C C[X±
n ] through the iso-

morphisms

KGn−1×C×

(Zn−1) ≃ Hn−1, KGn×C×

(Zn−1,n) ≃ Hn−1,n, KGn×C×

(Zn) ≃ Hn

given by Theorem 3.3.

Proof. We only have to show that bi 7→ bi, for 1 ≤ i < n − 1, and θλ 7→ θλ.
Define

Z ′
n−1,n(si) = {(X,F, F ′) ∈ Z ′

n−1,n | Fj = F ′
j for all j 6= i, XFi+1 ⊆ Fi−1}.

Then ν−1
n−1,n(Zn(si)) = (Gn × C

×)× Z ′
n−1,n(si) and we have

ν∗n−1,nOZn(si)
= µ∗n−1,nOZ′

n−1,n(si)
, O

Z′
n−1,n(si)

= κ∗n−1,nOZn−1(si)
.

Hence, bi 7→ bi, for 1 ≤ i < n− 1.
Let Z ′

n−1,n(e) = {(X,F, F ′) ∈ Z ′
n−1,n | F = F ′} and consider the diagram

ν−1
n−1,n(Zn(e)) = (Gn × C

×)× Z ′
n−1,n(e)

ւ ↓ νn−1,n

Z ′
n−1,n(e) ≃ Yn−1,n ⊆ Yn ≃ Zn(e)

πn−1,n ↓ ↓ πn

Fℓn−1 ⊆ Fℓn

Then ν∗n−1,nπ
∗
nLλ = µ∗n−1,nπ

∗
n−1,nLλ|Fℓn−1 and

Lλ|Fℓn−1 = (Pn−1,n × C
×)×Bn×C× Cλ.

But the diagram

Z ′
n−1,n(e) = κ−1

n−1,n(Zn−1(e)) ≃ Yn−1,n
κn−1,n
−→ Yn−1 ≃ Zn−1(e)

ց ↓ πn−1

Fℓn−1

shows

π∗n−1,nLλ|Fℓn−1 = κ∗n−1,n

(
π∗n−1((Pn−1,n ×C

×)×Bn×C× Cλ)
)
.

Hence, θλ 7→ θλ, for λ ∈ Hom(Tn,C
×).

As the generators bi and θλ correspond correctly, it is an isomorphism of
R(Ln−1,n×C

×)-algebras, which is identified with Hn−1⊗C[X±
n ] →֒ Hn. �
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3.4. Specialized Hecke algebras. Let ζ ∈ C be a primitive eth root of
unity, for e ≥ 2. We fix a diagonal matrix s = diag(ζs1, . . . , ζsn), and set
a = (s, ζ) ∈ Gn×C

×. We denote by A the smallest closed algebraic subgroup
of Gn × C

× that contains a, namely the cyclic group 〈a〉 of order e in our
case. Note that A is contained in (Gn−1 × C

×)× C
×.

Let Ca be the R(Tn × C
×)-module defined by Xi 7→ ζsi, for 1 ≤ i ≤ n,

and q 7→ ζ. Ca|R(Gn×C×) defines a character R(Gn × C
×)→ C.

• The action of R(Tn × C
×) factors through R(A) and we may view

Ca as a R(A)-module. Thus, Ca ⊗R(A) − makes sense.
• If we write Ca ⊗R(Gn×C×) −, we mean Ca|R(Gn×C×) ⊗R(Gn×C×) −.

Note that this is the same as

Ca ⊗R(A) R(Tn × C
×)⊗R(Gn×C×) −.

Definition 3.6. The C-algebra Ha
n = Ca⊗Z(Hn)Hn is called the specialized

Hecke algebra of rank n at a. The specialized algebra of the parabolic
subalgebra Hn−1,n is denoted Ha

n−1,n := Ca ⊗Z(Hn) Hn−1,n.

As Hn ≃ KGn×C×

(Zn) and Hn−1,n ≃ KGn×C×

(Zn−1,n) as R(Gn × C
×)-

algebras, we identify the following C-algebras respectively.

Ha
n = Ca⊗R(Gn×C×)K

Gn×C×

(Zn), Ha
n−1,n = Ca⊗R(Gn×C×)K

Gn×C×

(Zn−1,n).

Let Ia be the ideal of R(Tn × C
×) generated by

(ekǫ1 + · · ·+ ekǫn)− (ζks1 + · · ·+ ζksn),

for k ≥ 1. Then, R(Tn×C
×)/Ia = Ca⊗R(Gn×C×)R(Tn×C

×) and we identify

Ca ⊗R(Gn×C×) R(Tn × C
×) = Ca ⊗R(Gn×C×) K

Gn×C×

(Zn(e))

by identifying eλ with [π∗nLλ].
Ginzburg’s theory tells us how to realize the specialized Hecke algebra in

sheaf theory. The geometric proof of the modular branching rule we give
in the next section is based on this theory. Our goal in this subsection is
to state Theorem 3.12. Recall that A is isomorphic to the cyclic group of
order e ≥ 2. As the first step, we descend to A-equivariant K-theory in the
following two lemmas. The first lemma is straightforward and we omit the
proof.

Lemma 3.7. Let L → H be a morphism of affine algebraic groups over
C, and let X be an H-variety, X = X0 ⊇ X1 ⊇ · · · a sequence of closed
H-subvarieties of X. Define Ei = Xi \Xi+1.

(1) Suppose that

(a) KH
1 (Ei) = 0 and

(b) KH(Ei) are free R(H)-modules of finite rank,

for all i. Then KH(Xi) are free R(H)-modules of finite rank and

0→ KH(Xi)→ KH(Xi+1)→ KH(Ei+1)→ 0.
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(2) Suppose further that the canonical map induces the isomorphism

R(L)⊗R(H) K
H(Ei) ≃ K

L(Ei).

In other words, the Künneth formula

KH(H/L)⊗R(H) K
H(Ei) ≃ K

H(H/L×Ei)

≃ KH(H ×L Ei) ≃ K
L(Ei)

holds. Then we have the isomorphism

R(L)⊗R(H) K
H(Xi) ≃ K

L(Xi),

for all i.

Suppose that H has a sequence of closed subgroups

H ⊇ H0 ⊇ H1 ⊇ · · · ⊇ HN

such that Hi/Hi+1 is a Hi-module, for 0 ≤ i < N . If

R(L)⊗R(H) K
H(H/Hi) ≃ K

L(H/Hi)

holds for i = 0 then it holds for 0 ≤ i ≤ N . In fact, as H/Hi+1 =
H ×Hi Hi/Hi+1 is a vector bundle over H/Hi, it follows from the Thom
isomorphism. Note that we also have KH

1 (H/Hi) = 0, for 0 ≤ i ≤ N , in
this case.

Example 3.8. We consider Schubert cells Sn(w). Then,

R(L)⊗R(Bn×C×) K
Bn×C×

(Sn(w)) ≃ KL(Sn(w)),

for L ⊆ Bn × C
×,

(a) KBn×C×

1 (Sn(w)) = 0 and

(b) KBn×C×
(Sn(w)) is a free R(Bn × C

×)-module of rank 1.

We add the proof to the next lemma for the reader’s convenience.

Lemma 3.9. We may identify

R(A)⊗R(Gn×C×)K
Gn×C×

(Zn−1,n) = R(A)⊗R(Ln−1,n×C×)K
Ln−1,n×C×

(Zn−1,n),

which is a free R(A)-module of rank (n − 1)!n!, and the following diagram
of R(A)-algebras commutes.

R(A)⊗R(Ln−1,n×C×) K
Ln−1,n×C×

(Zn−1,n) ≃ KA(Zn−1,n)

‖ ‖

R(A)⊗R(Gn×C×) K
Gn×C×

(Zn−1,n) ≃ KA(Zn−1,n)

ιn∗ ↓ ↓ ιn∗

R(A)⊗R(Gn×C×) K
Gn×C×

(Zn) ≃ KA(Zn)
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In particular, by tensoring with the R(A)-module Ca, we have the following
commutative diagram.

Ca ⊗R(A) K
A(Zn−1,n)

ιn∗−→ Ca ⊗R(A) K
A(Zn)

‖ ‖

Ha
n−1,n →֒ Ha

n

Similarly, Yn ≃ Zn(e) →֒ Zn−1,n induces the following commutative diagram.

Ca ⊗R(A) K
A(Yn) −→ Ca ⊗R(A) K

A(Zn−1,n)

‖ ‖

R(Tn ×C
×)/Ia →֒ Ha

n−1,n

Proof. We choose a linear extension of the Bruhat order. Thus, the elements
of Sn are w1, . . . , wn!, where w1 is the identity and wn! is the longest element.
Let L = A ⊆ H = Bn×C

× and apply Lemma 3.7 to Fℓn and the collection
of closed H-subvarieties ∪1≤j≤iXn(wj). Then we obtain

R(A)⊗R(Tn×C×) K
Tn×C×

(Fℓn) ≃ K
A(Fℓn).

As it is known that

R(Tn × C
×)⊗R(Gn×C×) R(Tn ×C

×) ≃ KGn×C×

(Fℓn ×Fℓn)

≃ KTn×C×

(Fℓn),

and R(Ln−1,n × C
×)⊗R(Gn×C×) R(Tn ×C

×) ≃ KLn−1,n×C×

(Fℓn), we have

R(A)⊗R(Gn×C×) K
Gn×C×

(Fℓn) ≃ K
A(Fℓn),

R(Ln−1,n × C
×)⊗R(Gn×C×) K

Gn×C×

(Fℓn) ≃ K
Ln−1,n×C×

(Fℓn).

In particular, the first isomorphism implies

Ca ⊗R(Gn×C×) K
Gn×C×

(Yn) ≃ Ca ⊗R(A) K
A(Yn)

and Theorem 3.5 proves the last claim.
Next let L ⊆ H = Gn × C

× and apply Lemma 3.7 to Zn or Zn−1,n and
the collection of closed H-subvarieties ∪1≤j≤iZn(wj). As Zn(w) is a vector
bundle over On(w), the Thom isomorphism implies that

(a) KGn×C×

1 (Zn(w)) ≃ KGn×C×

1 (On(w)) = 0,
(b) The following isomorphic R(Gn × C

×)-modules are free of rank n!.

KGn×C×

(Zn(w)) ≃ KGn×C×

(On(w)) ≃ R(Tn × C
×).

We choose the same sequence of closed subgroups

Bn × C
× = H0 ⊇ H1 ⊇ · · · ⊇ HN

as in the Sn(w) case. Then On(w) = H/HN , Fℓn = H/H0 and we have

R(L)⊗R(Gn×C×) K
Gn×C×

(H/Hi) ≃ K
L(H/Hi),
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for L = Ln−1,n × C
× or A, because it holds for i = 0. Thus,

R(L)⊗R(Gn×C×) K
Gn×C×

(Zn(w)) ≃ KL(Zn(w)),

for L = Ln−1,n × C
× or A. Hence, the assumptions of Lemma 3.7 are

satisfied, and the assertions follow from the consequences of Lemma 3.7 and
Theorem 3.5. �

Definition 3.10. We denote the A-fixed points of M by Ma, for M = Zn,
Zn−1,n, Yn = T ∗Fℓn, Fℓn etc.

Let Y a
n × Y

a
n ⊆ Yn × Yn be the closed embedding. Then, we have

iAn : Zan = Zn ∩ (Y a
n × Y

a
n ) →֒ Zn,

iAn−1,n : Zan−1,n = Zn−1,n ∩ (Y a
n × Y

a
n ) →֒ Zn−1,n.

We define the pullback

(iAn )∗ : KA(Zn) −→ KA(Zan),

(iAn−1,n)
∗ : KA(Zn−1,n) −→ KA(Zan−1,n),

in terms of the embedding Y a
n × Y

a
n ⊆ Yn × Yn.

We have the linear A-action on each fiber of the normal bundle TY an Yn
and its decomposition into isotropic components leads to the decomposition
of the normal bundle into the direct sum of vector bundles Ni, for i ∈ Z/eZ,
over Y a

n . Define

λn =
⊗

i∈Z/eZ




∑

j≥0

(−ζi)j ∧j N∨
i


 ∈ K(Y a

n ).

Recall that our K-groups are always complexified.
λn is invertible [6, Proposition 5.10.3] and 1⊗λ−1

n ∈ K(Y a
n ×Y

a
n ) acts on

K(Zan) by the multiplication.
Theorem 3.11 below is [6, Theorem 5.11.10]. The point is that we appeal

to Thomason’s localization theorem but need the modification 1 ⊗ λ−1
n in

order to make it an algebra homomorphism. The commutativity of the
diagram in the theorem follows from the statement below.

Let N ⊆M be a closed embedding between smooth varieties,
Z a closed subvariety of M . Let Z ′ = Z ∩N and denote

N
ψ
→ M

ι′ ↑ ↑ ι

Z ′ ψ′

→ Z

We define ψ′∗ with respect to these inclusions to smooth
varieties. Then, ψ∗ι∗[F ] = ι′∗ψ

′∗[F ].

To see this, observe that both sides are essentially the same [ψ∗ON⊗
L
OM

ι∗F ]

by the definition of ψ′∗.
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Theorem 3.11. We have the map

resn : KA(Zn)
(iAn )∗

−→ Ca ⊗R(A) K
A(Zan) ≃ K(Zan)

1⊗λ−1
n−→ K(Zan)

and resn defined similarly for Zn−1,n and Zn(e) such that these resn induce
the following isomorphisms of C-algebras.

Ca ⊗R(A) K
A(Yn) ≃ K(Y a

n )

↓ ↓

Ca ⊗R(A) K
A(Zn−1,n) ≃ K(Zan−1,n)

ιn∗ ↓ ↓ ιn∗

Ca ⊗R(A) K
A(Zn) ≃ K(Zan)

The convolution products on both sides of the isomorphisms are defined in
terms of the ambient spaces Yn × Yn and Y a

n × Y
a
n , respectively.

Next step in Ginzburg’s theory is to use a modified Riemann-Roch map

RRn(F) = ch(F)(1 ⊗ tdY an ) ∩ [Y a
n × Y

a
n ].

Then, [6, Theorem 5.11.11] shows that we have isomorphisms of C-algebras

RRn : K(Zan)
∼
→ HBM

∗ (Zan,C) and RRn : K(Zan−1,n)
∼
→ HBM

∗ (Zan−1,n,C).

The two Borel-Moore homology groups are C-algebras whose product is
given by the convolution product with respect to the common ambient space
Y a
n × Y

a
n . Thus, we have reached Ginzburg’s theorem stated below.

Theorem 3.12.

(1) We may identify Ha
n = HBM

∗ (Zan,C) by

Ca ⊗R(A) K
Gn×C×

(Zn) ≃ Ca ⊗R(A) K
A(Zn)

resn
≃ K(Zan)

RRn
≃ HBM

∗ (Zan,C).

We may identify Ha
n−1,n = HBM

∗ (Zan−1,n,C) in the same way.

(2) The following diagram of C-algebras commutes.

HBM
∗ (Zan−1,n,C)

ιn∗−→ HBM
∗ (Zan,C)

‖ ‖

Ha
n−1,n →֒ Ha

n

Similarly, Y a
n → Zan−1,n induces the following commutative diagram of C-

algebras.

HBM
∗ (Y a

n ,C) −→ HBM
∗ (Zan−1,n,C)

‖ ‖

R(Tn × C
×)/Ia →֒ Ha

n−1,n
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Recall that we have identified eλ ∈ R(Tn × C
×) with

∏n
i=1X

λi
i ∈ Hn.

Denote the product by Xλ. Then, in the above theorem, Xλ+Ia is identified
with

ch(π∗nLλ|Y an )tdY an ch(λn)
−1 ∩ [Y a

n ] ∈ HBM
∗ (Y a

n ,C).

In particular, the identity element ofHBM
∗ (Y a

n ,C) is tdY an ch(λn)
−1∩[Y an ] and

the multiplication by Xλ is the same as the cap product ch(π∗nLλ|Y an ) ∩ −.

4. Geometric proof of the modular branching rule

In this section, we give a geometric proof of the modular branching rule.

4.1. The statement. First we explain the precise statement which we are
going to prove. In fact, we have two versions according to the choice of the

identification Hn = KGn×C×
(Zn).

Definition 4.1. For an Hn-module M , define the i-restriction

i- Res(M) = {m ∈M | (Xn − ζ
i)Nm = 0, for large enough N .}.

Then, the statement of the modular branching rule is as follows. The
modules Lψ will be introduced in 4.4.

Theorem 4.2. We identify Hn with KGn×C×
(Zn) by θλ = [δn∗π

∗
nLλ] and

Ti = −[Li]− 1. Then, for the simple Hn-module Lψ labelled by an aperiodic
multisegment ψ, we have

Soc(i- Res(Lψ)) = Lẽiψ,

where the crystal structure on the set of aperiodic multisegments is as in
Theorem 2.10.

Let us consider the other identification of Hn with KGn×C×

(Zn). Recall
the involution σ defined by Ti 7→ −qT

−1
i and Xi 7→ X−1

i .

Definition 4.3. An Hn-module obtained from Lψ by twisting the action
by σ and relabelling aperiodic multisegments by ρ is denoted by

Dψ = σLρ(ψ).

Theorem 4.4. We identify Hn with KGn×C×

(Zn) by θλ = [δn∗π
∗
nL−λ] and

Ti = [Li] + q. Then, for the simple Hn-module Dψ labelled by an aperiodic
multisegment ψ, we have

Soc(i-Res(Dψ)) = Dẽiψ,

where the crystal structure on the set of aperiodic multisegments is as in
Theorem 2.12.

Theorem 4.4 follows from Theorem 4.2. In fact,

Soc(i- Res(Dψ)) ≃ Soc(σ((−i)- Res(Lρ(ψ))))

≃ σ Soc((−i)- Res(Lρ(ψ))) ≃
σLẽ−iρ(ψ),
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where ẽ−i is the Kashiwara operator with respect to the crystal structure
in Theorem 4.2, so that it is isomorphic to σLρ(ẽiψ) = Dẽiψ where ẽi is the
Kashiwara operator with respect to the crystal structure in Theorem 4.4.

In the rest of the section, we identify Hn with KGn×C×
(Zn) as in Theorem

4.2 and prove the theorem.

4.2. Localization and eigenvalues of Xn. Let mi be the multiplicity of
ζi in {ζs1, . . . , ζsn}. As (Xn−ζ

s1) · · · (Xn−ζ
sn) = 0 holds in R(Tn×C

×)/Ia,
we have the decomposition

HBM
∗ (Y a

n ,C) = R(Tn × C
×)/Ia ≃

⊕

i∈Z/eZ

C[X±
n ]/((Xn − ζ

i)mi).

Definition 4.5. We denote by pi the identity of C[X±
n ]/((Xn−ζ

i)mi) which
is viewed as an element of Ha

n−1,n. Thus, pi are primitive idempotents of

Ha
n−1,n and

∑
pi = 1 and pipj = pjpi = δijpi.

Definition 4.6. Let (X,F ) ∈ Y a
n . Then, sXs−1 = ζX and F is such

that Fi is obtained from Fi−1 by adding some eigenvector of s. We denote
the eigenvalue of the eigenvector by ζνi , for νi ∈ Z/eZ, and write ν =
(ν1, . . . , νn). We call ν the flag type of (X,F ). Note that ν is a permutation
of (s1, . . . , sn).

Let (X,F, F ′) ∈ Zan = Y a
n ×N a

n
Y a
n . Then, we say that the flag type of

(X,F, F ′) is (ν, ν ′) if (X,F ) has flag type ν and (X,F ′) has flag type ν ′.

Now, we look at the decomposition of Y a
n and Zan−1,n into connected

components. On each component, the flag type is constant.

Definition 4.7. Let piY
a
n be the disjoint union of connected components of

Y a
n whose flag type ν satisfies νn = i.
Similarly, we let piZ

a
n−1,npi be the disjoint union of connected components

of Zan−1,n whose flag type (ν, ν ′) satisfies νn = ν ′n = i.

The following lemma uses our choice of the identification of Hn with

KGn×C×
(Zn) in this section.

Lemma 4.8. Under the identification HBM
∗ (Zan−1,n,C) = Ha

n−1,n, we have

HBM
∗ (piZ

a
n−1,npi,C) = piH

a
n−1,npi.

Proof. Let (Y a
n )µ be the set of (X,F ) ∈ Y a

n such that the flag type is µ.
First we show that

HBM
∗ (Y a

n ,C)pi =
⊕

µ such that µn=i

HBM
∗ ((Y a

n )µ,C).

In fact, Xn acts on Ca ⊗R(A) K
A(Y a

n ) by

π∗nLǫn |Y an ⊗−

by Theorem 3.12. Now, A acts on fiberwise over Y a
n , and the fiber of π∗nLǫn

at (X,F ) is C
n/Fn−1. Thus, A acts as ζµn on the fiber when the flag type



22 Susumu Ariki, Nicolas Jacon and Cédric Lecouvey

of (X,F ) is µ. Then, Xn is ζµnπ∗nLǫn |Y an ∈ K((Y a
n )µ), where π∗nLǫn |Y an is

a line bundle without A-action, and Theorem 3.12 implies that Xn acts on
HBM

∗ ((Y a
n )µ,C) by the cap product of

ζµnch(π∗nLǫn |Y an ) = ζµn + higher degree terms.

Hence, Xn − ζ
µn acts nilpotently on HBM

∗ ((Y a
n )µ,C). We have proved the

claim.
Let ν(Z

a
n−1,n)ν′ be the set of (X,F, F ′) ∈ Zan−1,n such that the flag type

is (ν, ν ′). By the definition of the convolution product, the product

HBM
∗ ((Y a

n )µ,C) ·HBM
∗ (ν(Z

a
n−1,n)ν′ ,C)

is nonzero only if µ = ν. Thus, piH
BM
∗ (ν(Z

a
n−1,n)ν′ ,C) = 0 if νn 6= i, and the

left multiplication by pi acts as the identity map on HBM
∗ (ν(Z

a
n−1,n)ν′ ,C)

if νn = i. Similar argument shows that HBM
∗ (ν(Z

a
n−1,n)ν′ ,C)pi = 0 if

ν ′n 6= i, and the right multiplication by pi acts as the identity map on
HBM

∗ (ν(Z
a
n−1,n)ν′ ,C) if ν ′n = i. We have proved piH

BM
∗ (Zan−1,n,C)pi =

HBM
∗ (piZ

a
n−1,npi,C). �

By the identification, we have the algebra homomorphism 1

HBM
∗ (piZ

a
n−1,npi,C) = piH

a
n−1,npi → Ha

n−1 = HBM
∗ (Zan−1,C).

4.3. A functorial algebra homomorphism. Now we work in the derived
categories of abelian categories of sheaves of C-vector spaces. The following
is proved in [6, Proposition 8.6.35].

Theorem 4.9. Let M1, M2 and M3 be connected smooth varieties, N a
variety and let µi : Mi → N be proper maps. Let Ai ∈ D

b(Mi) be a con-
structible complex, for i = 1, 2, 3. Define Zij = Mi ×N Mj and denote

ιij : Zij ⊆ Mi ×Mj the inclusion map. Let Aij = ι!ij(A
∨
i ⊗ Aj). Then the

following hold.
(1) Let µij : Zij → N be the projection map. Then

Rµij∗Aij ≃ RHom(Rµi∗Ai, Rµj∗Aj).

Thus, we have isomorphisms of C-algebras

H∗(Zij ,Aij) = H∗(N,Rµij∗Aij) ≃ Ext∗Db(N)(Rµi∗Ai, Rµj∗Aj).

(2) The convolution product

H∗(Zij ,Aij)⊗H
∗(Zjk,Ajk) −→ H∗(Zik,Aik)

is identified with the Yoneda product

Ext∗Db(N)(Rµi∗Ai, Rµj∗Aj)⊗ Ext∗Db(N)(Rµj∗Aj , Rµk∗Ak)

−→ Ext∗Db(N)(Rµi∗Ai, Rµk∗Ak)

under the isomorphisms in (1).

1We may describe this homomorphism as in Proposition 7.5, but we do not need this.
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We view elements of N a
n as representations of the cyclic quiver of length

e. Namely, we put Vi = {v ∈ C
n | sv = ζiv} on the ith node, for i ∈ Z/eZ,

then X ∈ N a
n defines X : Vi → Vi+1, for i ∈ Z/eZ.

We fix i ∈ Z/eZ. Let m+1 = dimVi and P
m the projective space consist-

ing of m-dimensional subspaces of Vi. We have the following commutative
diagram.

piY
a
n ×

N a
n×Pm

piY
a
n = piZ

a
n−1,npi →֒ piZ

a
npi = piY

a
n ×

N a
n

piY
a
n

↓ ↓

N a
n × P

m →
ρn

N a
n

where ρn(X,U) = X and the left vertical map is given by (X,F, F ′) 7→
(X,Fn−1).

Lemma 4.10. Let M
f
→ X

g
→ Y be proper maps and suppose that M

is smooth. We consider the following diagram, in which all squares are
cartesian.

M ×X M
ι̃
−→ M ×Y M

∆̃
−→M ×M

π ↓ ↓ π′ ↓ f×2

X
ι
−→ X ×Y X

∆
−→ X ×X

g ց ↓ π′′ ւ g×2

Y
∆
−→ Y × Y

Denote A = Rf∗C and B = Rg∗A. Then the following hold.
(1) We have the following isomorphisms of C-algebras.

HBM
∗ (M×XM,C) ≃ Ext∗Db(X)(A,A), HBM

∗ (M×YM,C) ≃ Ext∗Db(Y )(B,B).

(2) ι̃∗ : HBM
∗ (M ×X M,C)→ HBM

∗ (M ×Y M,C) is identified with the func-
torial algebra homomorphism

Rg∗ : Ext∗Db(X)(A,A) −→ Ext∗Db(Y )(B,B).

Proof. (1) follows from Theorem 4.9. In fact, if we ignore degree shift then

HBM
∗ (M ×X M,C) ≃ H∗(M ×X M, ι̃!∆̃!

C) ≃ H∗(X,Rπ∗ι̃
!∆̃!

C)

≃ H∗(X, ι!Rπ′∗∆̃
!
C) ≃ H∗(X, ι!∆!Rf×2

∗ C).

As A∨ = (Rf∗C)∨ = Rf! C
∨ = ⊕Rf∗C[2 dimMi], where the summation is

over connected components Mi of M , if we ignore degree shift then

RHomDb(X)(A,A) = (∆ ◦ ι)!(A∨ ⊗A) = (∆ ◦ ι)!Rf×2
∗ C.

Hence, HBM
∗ (M ×X M,C) ≃ Ext∗Db(X)(A,A) is proved. We can prove the

other isomorphism similarly.
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(2) If we ignore degree shift, the pushforward ι∗ of Borel-Moore homology
groups is given by

H∗(M ×M,R(∆̃ ◦ ι̃)∗(∆̃ ◦ ι̃)
!(C∨ ⊗ C)) −→ H∗(M ×M,R∆̃∗∆̃

!(C∨ ⊗ C)).

First we claim that it is identified with

Γ(X ×Y X,Rι∗ι
!∆!(A∨ ⊗A)) −→ Γ(X ×Y X,∆

!(A∨ ⊗A)).

To see this, let I• be an injective resolution of ∆̃!(C∨ ⊗ C). Then, for the
complex of sheaves ΓM×XM (I•), which is defined by

U 7→ ΓM×XM (I•)(U) = {s• ∈ I•(U) | supp(si) ⊆M ×X M, for all i.},

for open subsets U ⊆M ×Y M , the ι∗ in question is obtained by taking the
cohomology of the following morphism of complexes of C-vector spaces.

Γ(M ×Y M,ΓM×XM (I•)) −→ Γ(M ×Y M,I•).

For open subsets U ⊆ X ×Y X, we have

ΓX(π′∗F)(U) = Ker
(
π′∗F(U)

restriction
−→ π′∗F(U \X)

)

= Ker
(
F(π′

−1
(U))

restriction
−→ F(π′

−1
(U) \M ×X M)

)

= ΓM×XM (F)(π′
−1

(U)),

for a sheaf F on X ×Y X, so that the above morphism of complexes of
C-vector spaces is nothing but

Γ(X ×Y X,ΓX(π′∗I
•)) −→ Γ(X ×Y X,π

′
∗I

•),

and it is identified with

Γ(X ×Y X,Rι∗ι
!Rπ′∗∆̃

!(C∨ ⊗ C)) −→ Γ(X ×Y X,Rπ
′
∗∆̃

!(C∨ ⊗ C)).

Now we apply the natural transformation Rι∗ι
! → Id to the isomorphism

Rπ′∗∆̃
!(C∨ ⊗ C) ≃ ∆!Rf×2

∗ (C∨ ⊗ C) ≃ ∆!((Rf!C)∨ ⊗Rf∗C))

to obtain the claim.
Next let I• be an injective resolution of A. Then, our morphism of

complexes of C-vector spaces is

Γ(X ×Y X,ΓX(I•∨ ⊗ I•)) −→ Γ(X ×Y X,ΓX×Y X(I•∨ ⊗ I•)).

For open subsets U ⊆ X ×Y X, the map

ΓX(I•∨ ⊗ I•)(U) −→ ΓX×YX(I•∨ ⊗ I•)(U)

sends
∑
α•
i ⊗ β•i , whose support is in X, to

∑
α•
i ⊗ β•i itself. The left

hand side is identified with Ext∗Kb(X)(I
•,I•)(U ∩ X), where Kb(X) is the

homotopy category of the additive category of injective sheaves on X. On
the other hand, if U = π′′−1(V ), for an open subset V ⊆ Y , then U ∩X =
g−1(V ) and

ΓX×YX(I•∨ ⊗ I•)(U) = Γ∆(Y )(g∗I
•∨ ⊗ g∗I

•)(V )
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as before, so that the right hand side is identified with Ext∗Kb(Y )(g∗I
•, g∗I

•)(V ).

Therefore, the pushforward ι∗ of the Borel-Moore homology groups is the
functorial algebra homomorphism g∗, namely V = Y in the collection of
maps

g∗ :
⊕

i∈Z

HomKb(g−1(V ))(I
•|g−1(V ),I

•|g−1(V )[i])

−→
⊕

i∈Z

HomKb(V )(g∗I
•|V , g∗I

•|V [i]).

This is Rg∗ : Ext∗Db(X)(A,A)→ Ext∗Db(Y )(Rg∗A, Rg∗A) as desired. �

In the following, we write Ext∗Db(X)(A) for Ext∗Db(X)(A,A), and we denote

πan−1 : Y a
n−1 −→ N

a
n−1, πan−1,n : piY

a
n −→ N

a
n × P

m, πan : piY
a
n −→ N

a
n .

We remark that πan = ρn ◦ π
a
n−1,n.

Corollary 4.11. We have the isomorphisms

Ha
n−1 ≃ Ext∗Db(N a

n−1)(Rπ
a
n−1!C), piH

a
npi ≃ Ext∗Db(N a

n )(Rπ
a
n!C),

piH
a
n−1,npi ≃ Ext∗Db(N a

n×Pm)(Rπ
a
n−1,n!

C)

such that the following hold.

(1) The inclusion piH
a
n−1,npi →֒ piH

a
npi is identified with the following

functorial algebra homomorphism.

Rρn∗ : Ext∗Db(N a
n×Pm)(Rπ

a
n−1,n!

C) −→ Ext∗Db(N a
n )(Rπ

a
n!C).

(2) The surjection piH
a
n−1,npi → Ha

n−1 gives an algebra homomorphism

Ext∗Db(N a
n×Pm)(Rπ

a
n−1,n!

C) −→ Ext∗Db(N a
n−1)(Rπ

a
n−1!

C).

Proof. Set M = piY
a
n , X = N a

n × P
m and Y = N a

n . Then Lemma 4.10
implies (1). (2) is obvious. We define the surjective algebra homomorphism
such that the diagram

Ext∗Db(N a
n×Pm)(Rπ

a
n−1,n!

C) −→ Ext∗Db(N a
n−1)(Rπ

a
n−1!

C)

‖ ‖

piH
a
n−1,npi −→ Ha

n−1

commutes. �

4.4. Some semisimple quotients. We may interprete the surjection of
Corollary 4.11(2) in sheaf theory as in the appendix but it does not help
much. Instead, we focus on the semisimple quotient of the algebras. Observe
that the surjection piH

a
n−1,npi → Ha

n−1 induces the isomorphism

piH
a
n−1,npi/Rad(piH

a
n−1,npi) ≃ H

a
n−1/Rad(Ha

n−1).
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As simple Ha
n−1-modules are simple piH

a
n−1,npi-modules through the surjec-

tive map, we may identify the simple modules of both algebras. Thus, the
isomorphism is given by the identity map

piH
a
n−1,npi/Rad(piH

a
n−1,npi) ≃ ⊕M EndC(M)

−→ ⊕M EndC(M) ≃ Ha
n−1/Rad(Ha

n−1),

where M runs through the common complete set of isomorphism classes of
simple modules.

On the other hand, the complete set of isomorphism classes of simple
modules of Ext∗Db(N a

n×Pm)(Rπ
a
n−1,n!

C) and Ext∗Db(N a
n−1)(Rπ

a
n−1!

C) may be

described by those simple perverse sheaves that appear in Rπan−1,n!
C and

Rπan−1!
C after some shift, respectively. The degree of the shift depends on

the perverse sheaf. As they are semisimple complexes by the decomposition
theorem, we write

Rπan−1,n!
C ≃

∑

ψ

∑

m∈Z

ICψ[m]⊕mψ,m , Rπan−1!C ≃
∑

ϕ

∑

m∈Z

ICϕ[m]⊕nϕ,m ,

where ICψ and ICϕ are simple perverse sheaves on N a
n × P

m and N a
n−1,

respectively. Let Lψ,m = C
mψ,m and Lϕ,m = C

mϕ,m be the multiplicity
spaces of ICψ[m] and ICϕ[m], respectively. Define

Lψ =
⊕

m∈Z

Lψ,m, Lϕ =
⊕

m∈Z

Lϕ,m.

Then, we have

Ext∗Db(N a
n×Pm)(Rπ

a
n−1,n!

C) ≃
⊕

ψ′,ψ′′

Ext∗(ICψ′ , ICψ′′)⊗C HomC(Lψ′ , Lψ′′),

Ext∗Db(N a
n−1)(Rπ

a
n−1!C) ≃

⊕

ϕ′,ϕ′′

Ext∗(ICϕ′ , ICϕ′′)⊗C HomC(Lϕ′ , Lϕ′′).

In other words, Ext∗Db(N a
n×Pm)(Rπ

a
n−1,n!

C) is the matrix algebra which has

block partitions of rows and columns such that the blocks are labelled by ψ
and the entries in the (ψ′′, ψ′) component are elements of Ext∗(ICψ′ , ICψ′′).
In particular, its semisimple quotient is the block diagonal matrix algebra
such that the entries of the (ψ,ψ)-component are

Ext≥0(ICψ, ICψ)/Ext>0(ICψ, ICψ) ≃ C.

We have the similar matrix algebra description for Ext∗Db(N a
n−1)(Rπ

a
n−1!

C)

as well.

4.5. Geometric construction of U−
v . Let U−

v as in section 2. By Lusztig’s
theory, we may realize U−

v geometrically by using his geometric induction
and restriction functors [19]. In fact, this is essentially the Hall algebra
construction which we already explained in section 2. We only need the
special case which corresponds to the multiplication by fi, which we shall
explain here.
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Recall that C
n has the eigenspace decomposition C

n = ⊕i∈Z/eZVi with
respect to s = diag(ζs1 , . . . , ζsn). We suppose that sn = i. Let Wi =
Vi ∩ C

n−1 and Wj = Vj , for j 6= i. Note that Wi 6= Vi. Then, we consider
the diagram

EW
p1
←− Gn(s)×Un−1,n(s) FV,W

p2
−→ Gn(s)×Pn−1,n(s) FV,W

p3
−→ EV ,

where EW , EV and FV,W are defined by

EW =
⊕

i∈Z/eZ

HomC(Wi,Wi+1), EV =
⊕

i∈Z/eZ

HomC(Vi, Vi+1)

FV,W = {X ∈ EV | XWi ⊆Wi+1, for all i ∈ Z/eZ.},

and p1(g,X) = X|Cn−1 , p2(g,X) = (g,X) and p3(g,X) = gXg−1.
We only consider those objects whose supports are contained in the null-

cones. This is the diagram which already appeared in a slightly different
manner. Namely, we get the following subdiagram.

N a
n−1

νn−1,n
←− Gn(s)×Un−1,n(s) N

a
n−1,n

µn−1,n
−→ Gn(s)×Pn−1,n(s) N

a
n−1,n

ρn
−→ N a

n .

Note that Gn(s)×Pn−1,n(s) N
a
n−1,n = {(X,U) | XU ⊆ U} ⊆ N a

n × P
m.

N a
n−1 has finitely many Gn−1(s)-orbits and the stabilizer group of a point

in each orbit Oϕ, for a multisegment ϕ, is connected. We denote by

ICϕ = IC(Oϕ,C),

the intersection cohomology complex associated with the orbit Oϕ and the
trivial local system on it. Then, ν∗n−1,nICϕ is a Ln−1,n(s)-equivariant simple

perverse sheaf up to degree shift, and we may write ν∗n−1,nICϕ ≃ µ
∗
n−1,nIC

♭
ϕ

up to degree shift, for some simple perverse sheaf IC♭ϕ on N a
n × P

m. IC♭ϕ
is unique up to isomorphism. In fact, we have an integer d independent
of ϕ, given by the difference of the dimensions of the fibers of µn−1,n and

νn−1,n, such that IC♭ϕ = pHd(νn−1,n∗µ
∗
n−1,nICϕ). We define a functor Ind♭i

by Ind♭i(ICϕ) = IC♭ϕ. Then, we define the induction functor by

Indi = Rρn∗ ◦ Ind♭i .

Now, as in the proof of [19, 9.2.3], we consider the diagram

Y a
n−1 ←− Gn(s)×Un−1,n(s) Y

a
n−1,n −→ Gn(s)×Pn−1,n(s) Y

a
n−1,n = piY

a
n ,

which “covers” the above diagram with cartesian squares. Then, we have
the following equalities up to degree shift.

Ind♭i(Rπ
a
n−1!C) = Rπan−1,n!

C, Indi(Rπ
a
n−1!C) = Rπan!C.

The main result of [19] is the geometric construction of the algebra U−
v

in terms of the induction functor. The simple perverse sheaves ICϕ are
part of the canonical basis and Indi corresponds the multiplication from the
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left by fi. The canonical basis defines the crystal B(∞). Combined with
Kashiwara’s result [14, Proposition 6.2.3], we have the following. 2

Lemma 4.12.

(1) Let ϕ be a multisegment of size n− 1. Then, we may write

Indi(ICϕ) =

ǫi(ϕ)∑

j=0

ICf̃iϕ[ǫi(ϕ)− 2j] +
∑

j∈Z

Rϕ,j[j],

for certain perverse sheaves Rϕ,j on N a
n . 3

(2) Suppose that ICψ, for a multisegment ψ of size n, appears in Rϕ,j, for
some j. Then, we have

−ǫi(ψ) + 2 ≤ j ≤ ǫi(ψ) − 2.

4.6. A key result. We prove Theorem 4.14, which we will need in the
geometric proof of the modular branching rule in the next subsection.

Define ηn−1,n : N a
n−1,n →֒ N

a
n ×P

m, κn−1,n : N a
n−1,n → N

a
n−1. We identify

N a
n−1 with the zero section of κn−1,n and we obtain the closed embedding

ǫn−1,n : N a
n−1 →֒ N

a
n × P

m.

η∗n−1,nRπ
a
n−1,n!

C is the pushforward of the constant sheaf on Y a
n−1,n to

N a
n−1,n, and we have the following cartesian diagram.

Y a
n−1,n → Y a

n−1

↓ ↓

N a
n−1,n → N a

n−1

Thus, η∗n−1,nRπ
a
n−1,n!

C ≃ κ∗n−1,nRπ
a
n−1!

C and we conclude that

ǫ∗n−1,nRπ
a
n−1,n!

C ≃ Rπan−1!C.

Lemma 4.13. We consider the functorial algebra homomorphism

ǫ∗n−1,n : Ext∗Db(N a
n×Pm)(Rπ

a
n−1,n!

C) −→ Ext∗Db(N a
n−1)(Rπ

a
n−1!

C).

Then, it induces the isomorphism

Ext∗Db(N a
n×Pm)(Rπ

a
n−1,n!

C)/Rad(Ext∗Db(N a
n×Pm)(Rπ

a
n−1,n!

C))

≃ Ext∗Db(N a
n−1)(Rπ

a
n−1!

C)/Rad(Ext∗Db(N a
n−1)(Rπ

a
n−1!

C))

and it is identified with the identity map

piH
a
n−1,npi/Rad(piH

a
n−1,npi) ≃ H

a
n−1/Rad(Ha

n−1).

Further, its inverse is induced by the functorial algebra homomorphism

Ind♭i : Ext∗Db(N a
n−1)(Rπ

a
n−1!

C) −→ Ext∗Db(N a
n×Pm)(Rπ

a
n−1,n!

C).

2It is known that [14, Proposition 6.2.3] may be proved in this geometric framework.
3The summation means the direct sum.
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Proof. Note that

Ext∗Db(N a
n−1)(Rπ

a
n−1!C) = Ext∗Db(N a

n−1)(⊕ϕICϕ ⊗C Lϕ)

as C-algebras. Thus, the functorial algebra homomorphism

Ind♭i : Ext∗Db(N a
n−1)(⊕ϕICϕ ⊗C Lϕ)→ Ext∗Db(N a

n−1,n)(⊕ϕIC
♭
ϕ ⊗C Lϕ)

induces the identity map

Ext0Db(N a
n−1)(⊕ϕICϕ ⊗C Lϕ) = ⊕ϕ EndC(Lϕ)

−→ ⊕ϕ EndC(Lϕ) = Ext0Db(N a
n−1,n)(⊕ϕIC

♭
ϕ ⊗C Lϕ).

That is, Ind♭i induces the isomorphism

Ext∗Db(N a
n×Pm)(Rπ

a
n−1!C)/Rad(Ext∗Db(N a

n×Pm)(Rπ
a
n−1!C))

≃ Ext∗Db(N a
n−1)(Rπ

a
n−1,n!

C)/Rad(Ext∗Db(N a
n−1)(Rπ

a
n−1,n!

C))

and it is identified with the identity map

Ha
n−1/Rad(Ha

n−1) ≃ piH
a
n−1,npi/Rad(piH

a
n−1,npi).

On the other hand, we have Ind♭i(Rπ
a
n−1!

C) ≃ Rπan−1,n!
C up to degree shift,

and ǫ∗n−1,nRπ
a
n−1,n!

C ≃ Rπan−1!
C. Thus, Ind♭i and ǫ∗n−1,n are inverse to the

other on the semisimple quotients, and the claim follows. �

Theorem 4.14. Consider the functorial algebra homomorphism

Indi : Ext∗Db(N a
n−1)(Rπ

a
n−1!

C) −→ Ext∗Db(N a
n )(Rπ

a
n!C).

If M is a simple Ha
n-module, then the action of Ha

n−1 on Top(piM) coincides
with that given by Indi under the identification

Ha
n−1 = Ext∗Db(N a

n−1)(Rπ
a
n−1!C), piH

a
npi = Ext∗Db(N a

n )(Rπ
a
n!C).

Proof. Let (Y a
n )ν be the set of (X,F ) such that the flag type is ν, as before.

We denote πn,ν : (Y a
n )ν → N

a
n and

Mν =
⊕

i∈Z

pHi(Rπn,ν !C).

Then, by our identification, we have

Ha
n = Ext∗Db(N a

n )(⊕νMν)

where ν runs through flag types which are permutations of (s1, . . . , sn).
Write ⊕

ν

Mν =
⊕

ψ

ICψ ⊗C Lψ.
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Then, Ha
n =

⊕
ψ′,ψ′′ Ext∗Db(N a

n )(ICψ′ , ICψ′′)⊗CHomC(Lψ′ , Lψ′′) and we view

it as the block partitioned matrix algebra whose entries of the (ψ′′, ψ′)-
component are elements of Ext∗Db(N a

n )(ICψ′ , ICψ′′). Define

Pψ =
⊕

ψ′

Ext∗Db(N a
n )(ICψ, ICψ′)⊗C Lψ′ .

Then, it is a direct summand of Ha
n and we view it as the space of block

partitioned column vectors whose entries in the block Lψ′ are elements of
Ext∗Db(N a

n )(ICψ, ICψ′).

Ext∗Db(N a
n )(ICψ′ , ICψ′′)⊗CHomC(Lψ′ , Lψ′′)×Ext∗Db(N a

n )(ICψ, ICψ′)⊗CLψ′

−→ Ext∗Db(N a
n )(ICψ, ICψ′′)⊗C Lψ′′

shows that Pψ is a left ideal of Ha
n so that it is a projective Ha

n-module. It
is clear that

Lψ =
Ext≥0

Db(N a
n )

(ICψ,⊕νMν)

Ext>0
Db(N a

n )
(ICψ,⊕νMν)

is a simple Ha
n-module or zero and that any simple Ha

n-module appears in
this way. Thus, we assume that M = Lψ. Then, Lemma 4.8 says that
multiplication by pi amounts to picking up the connected components piY

a
n

so that

piLψ =
Ext≥0

Db(N a
n )

(ICψ,⊕νMν)

Ext>0
Db(N a

n )
(ICψ,⊕νMν)

where ν runs through permutations of (s1, . . . , sn) such that νn = i. Suppose
that piLψ 6= 0. It is a simple piH

a
npi-module. Let πn−1,n,ν : (Y a

n )ν →
N a
n × P

m and

M♭
ν =

⊕

i∈Z

pHi(Rπn−1,n,ν !C).

Then piH
a
n−1,npi = ExtDb(N a

n×Pm)(⊕νM
♭
ν), where ν runs through permuta-

tions of (s1, . . . , sn) such that νn = i, and it acts on piLψ through Rρn∗ by
Corollary 4.11. Now, we consider Top(piLψ). Then, the action of piH

a
n−1,npi

factors through Ha
n−1/Rad(Ha

n−1) and Lemma 4.13 implies that it is given

by Ind♭i. Thus, we have proved that the action of Ha
n−1 on Top(piLψ) coin-

cides with the action of Ha
n−1 given by the functorial algebra homomorphism

Indi. �

4.7. The geometric proof. Having proved Theorem 4.14, we are now able
to give the promised geometric proof of the modular branching rule. We
write each simple Ha

n-module as in the proof of the above theorem

Lψ =
Ext≥0

Db(N a
n )

(ICψ,⊕νMν)

Ext>0
Db(N a

n )
(ICψ,⊕νMν)

.
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Suppose that piLψ 6= 0. We want to show that Top(piLψ) contains Lẽiψ. As
the simple Ha

n−1-modules are the same as the simple piH
a
n−1,npi-modules,

we consider the restriction of piLψ to piH
a
n−1,npi. Let πn,ν = ρn ◦ πn−1,n,ν.

Then, we have

Rπn!C =
⊕

ν such that νn = i

Rπn,ν !C,

which is equal to Indi(Rπn−1!C) up to degree shift. Thus, we write

⊕

ν such that νn = i

M♭
ν =

⊕

ϕ

IC♭ϕ ⊗C Lϕ

and restrict the action of piHnpi on piLψ to piHn−1,npi through Rρn∗, the
functorial algebra homomorphism given by

piH
a
n−1,npi =

⊕

ϕ′,ϕ′′

Ext∗Db(N a
n×Pm)(Ind♭i ICϕ′ , Ind♭i ICϕ′′)

⊗

C

HomC(Lϕ′ , Lϕ′′)

−→
⊕

ϕ′,ϕ′′

Ext∗Db(N a
n )(Indi ICϕ′ , Indi ICϕ′′)

⊗

C

HomC(Lϕ′ , Lϕ′′) = piH
a
npi.

To study this, we introduce a block algebra description of piH
a
n−1,npi-

action on piLψ. As

⊕

ν such that νn = i

Mν =
⊕

ϕ


IC⊕(ǫi(ϕ)+1)

f̃iϕ
+

∑

j

Rϕ,j


⊗C Lϕ,

by Lemma 4.12(1), piLψ has the decomposition

piLψ =
⊕

ϕ

Ext≥0
Db(N a

n )
(ICψ, IC

⊕(ǫi(ϕ)+1)

f̃iϕ
+

∑
j Rϕ,j)

Ext>0
Db(N a

n )
(ICψ, IC

⊕(ǫi(ϕ)+1)

f̃iϕ
+

∑
j Rϕ,j)

⊗C Lϕ.

Thus, we have the corresponding block decomposition of EndC(piLψ).
Observe that ICψ appears in Lϕ,j only if ǫi(ϕ) < ǫi(ẽiψ) and ICψ appears

in IC
⊕(ǫi(ϕ)+1)

f̃iϕ
only if ϕ = ẽiψ. Hence, only those blocks Lϕ with ǫi(ϕ) <

ǫi(ẽiψ) and Lẽiψ appear in the above block decomposition.
To obtain the (ϕ′′, ϕ′)-component of the representation of piH

a
n−1,npi

on piLψ, we consider the image of ExtkDb(N a
n×Pm)(IC

♭
ϕ′ , IC♭ϕ′′), for k ≥ 0,

through the action of

ExtkDb(N a
n )(Indi(ICϕ′), Indi(ICϕ′′)).

The image may be nonzero only when ICψ[j′], for some j′ ∈ Z, appears in
Indi(ICϕ′) and ICψ[j′′], for some j′′ ∈ Z, appears in Indi(ICϕ′′) such that
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−j′ + j′′ + k = 0. In particular, j′′ ≤ j′ is necessary. Since

Indi(ICϕ′) =

ǫi(ϕ′)∑

j′=0

ICf̃iϕ′ [ǫi(ϕ
′)− 2j′] +

∑

j′∈Z

Rϕ′,j′[j
′],

Indi(ICϕ′′) =

ǫi(ϕ
′′)∑

j′′=0

ICf̃iϕ′′ [ǫi(ϕ
′′)− 2j′′] +

∑

j′′∈Z

Rϕ′′,j′′ [j
′′],

there are four cases to consider.

• Suppose that ϕ′ = ϕ′′ = ẽiψ. We number the rows and columns of
the block matrix by 0 ≤ j′′, j′ ≤ ǫi(ψ) − 1 such that ǫi(ψ) − 1− 2j′′

and ǫi(ψ)− 1− 2j′ are increasing. Then, the entries may be nonzero
only when ǫi(ψ) − 1 − 2j′′ ≤ ǫi(ψ) − 1 − 2j′. Thus, we obtain an
upper block triangular matrix whose diagonal block components are
EndC(Lẽiψ).
• Suppose that ϕ′ 6= ẽiψ = ϕ′′. We number the rows as before, and the

columns such that j′ is increasing. If ICψ appears in Lϕ′,j′ then the
entries may be nonzero only when ǫi(ψ)− 1− 2j′′ ≤ j′. Hence, each
row has entries only after the column number ǫi(ψ)− 1− 2j′′. Now,
Lemma 4.12(2) implies that j′ ≤ ǫi(ψ) − 2 so that j′′ = 0 cannot
happen. Hence, all the entries of the last row are zero.
• Suppose that ϕ′ = ẽiψ 6= ϕ′′. Then, each column has entries only

before some column number.
• Suppose that ϕ′ 6= ẽiψ and ϕ′′ 6= ẽiψ. Then we have an upper block

triangular matrix again.

The first two cases show that there is a piH
a
n−1,npi-submodule L′

ψ of Lψ
such that Lψ/L

′
ψ ≃ Lẽiψ. Thus, Lẽiψ appears in Top(piLψ). Now, following

[16], Grojnowski and Vazirani proved in Vazirani’s thesis that Soc(piLψ)
is simple [10]. By Specht module theory, the simple modules are self-dual
so that Top(piLψ) is isomorphic to Soc(piLψ). Thus, we have proved that
Soc(piLψ) = Lẽiψ. Thus, Theorem 4.2 and Theorem 4.4 follow.

5. Crystals of deformed Fock spaces

In this section, we recall results on deformed Fock spaces which are related
to the combinatorial construction of simple Hn-modules.

5.1. Crystals of deformed Fock spaces. Let l ∈ Z>0 and we choose a
multicharge

v = (v0, ..., vl−1) ∈ Z
l.

We denote vi + eZ ∈ Z/eZ by vi, for 1 ≤ i ≤ l. Let Λi, for i ∈ Z/eZ, be the
fundamental weights of g, and define a dominant weight Λ by

Λ = Λv0 + · · ·+ Λvl−1
.

We consider various multicharges which give a fixed Λ.
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Let Vv(Λ) be the integrable highest weight Uv(g)-module of highest weight
Λ. We want to realize Vv(Λ) as a Uv(g)-submodule of the level l deformed
Fock space Fv associated with the multicharge v.

As a C(v)-vector space, the level l Fock space Fv admits the set of all
l-partitions as a natural basis. Namely, the underlying vector space is

F =
⊕

n≥0

⊕

λ∈Πl,n

C(v)λ,

where Πl,n is the set of l-partitions of rank n. We do not give explicit
formulas to define the Uv(g)-module structure on Fv, but it is defined in
terms of the total order ≺v introduced below. This action was introduced
by Jimbo, Misra, Miwa and Okado in [12]. Let

Lv =
⊕

n≥0

⊕

λ∈Πl,n

Rλ, Bv =
⊔

n≥0

Πl,n.

Then, (Lv, Bv) is a crystal basis of Fv. In this article, it suffices to recall
the crystal structure on the set of l-partitions. Before doing this, we explain
basic terminology on l-partitions.

Let λ = (λ(0), . . . , λ(l−1)) be an l-partition, which is identified with the
corresponding l-tuple of Young diagrams. Then, we can speak of nodes of
λ, which are nodes of the Young diagrams. We identify a node γ of λ with
a triplet (a, b, c) where c ∈ {0, ..., l−1} is such that γ is a node of λ(c), and a

and b are the row and the column indices of the node γ in λ(c), respectively.

Definition 5.1. Let γ = (a, b, c) be a node of an l-partition λ. Then, its
content c(γ) and residue res(γ) are defined by

c(γ) = b− a+ vc ∈ Z and res(γ) = c(γ) ∈ Z/eZ,

respectively.

Let γ be a node of λ. Then we say that γ is an i-node, for i ∈ Z/eZ, if
res(γ) = i. Suppose that λ\{γ} is again an l-partition, which we denote by
µ. Then, we say that γ is a removable i-node of λ and γ is an addable i-node
of µ. We introduce a total order ≺v on the set of addable and removable
i-nodes of an l-partition λ.

Definition 5.2. Let γ1 = (a1, b1, c1) and γ2 = (a2, b2, c2) be i-nodes of λ.
We define the order ≺v by

γ1 ≺v γ2 ⇐⇒

{
c(γ1) < c(γ2), or

c(γ1) = c(γ2) and c1 > c2.

The order ≺v depends on the choice of the multicharge v when l > 1.
Now, we can explain the crystal structure on Bv, which is defined by the

total order ≺v. Let λ be an l-partition as above. Let Ni(λ), for i ∈ Z/eZ,
be the number of i-nodes of λ. Then we define

wt(λ) = Λ−
∑

i∈Z/eZ

Ni(λ)αi.
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The rule to compute ẽiλ is as follows. The rule to compute f̃iλ is similar.

We read addable and removable i-nodes of λ in the increasing
order with respect to ≺v. Then we delete a consecutive pair
of a removable i-node and an addable i-node in this order as
many as possible. We call this procedure RA deletion.
• If there remains no removable i-node, define ẽiλ = 0.
• Otherwise, we call the leftmost removable i-node, say γ,

the good i-node of λ, and define ẽiλ = λ\{γ}.

Finally, we define

ǫi(λ) = max{k ∈ Z≥0 | ẽ
k
i λ 6= 0}, ϕi(λ) = max{k ∈ Z≥0 | f̃

k
i λ 6= 0}.

The empty l-partition ∅ = (∅, ..., ∅) is a highest weight vector of weight
Λ in Fv. We denote by Vv(v) the Uv(g)-submodule generated by ∅. Then,
Vv(v) is isomorphic to Vv(Λ) as Uv(g)-modules.

Definition 5.3. The crystal B(v) is the connected subcrystal of Bv that
contains the empty l-partition ∅. An l-partition in B(v) is called an Uglov
l-partition of multicharge v.

As B(v) is the subcrystal which corresponds to Vv(v), it is isomorphic to
the highest weight crystal B(Λ).

5.2. FLOTW l-partitions. Define a set Vl of multicharges by

Vl = {v = (v0, . . . , vl−1) | v0 ≤ · · · ≤ vl−1 < v0 + e}.

For each l-partition λ = (λ(0), . . . , λ(l−1)), let λ
(c)
j , for j = 1, 2, · · · , be the

parts of λ(c). If λ
(c)
j > 0 then we denote the residue of the right end node of

the jth row of λ(c) by res(λ
(c)
j ), which is the residue of λ

(c)
j − j + vc.

Definition 5.4. Suppose that v ∈ Vl. A FLOTW l-partition of multicharge
v is an l-partition λ which satifies the following two conditions.

(i) We have the inequalities

λ
(c)
j ≥ λ

(c+1)
j+vc+1−vc

, for 0 ≤ c ≤ l − 2, and λ
(l−1)
j ≥ λ

(0)
j+e+v0−vl−1

.

(ii) For each k ∈ Z>0, we have

{res(λ
(c)
j ) | λ

(c)
j = k} 6= Z/eZ.

We denote by Φ(v)n the set of FLOTW l-partitions of multicharge v and
rank n. Then, we define

Φ(v) =
⊔

n≥0

Φ(v)n, and Φ =
⊔

v∈Vl

Φ(v).

We have the following result [7].

Proposition 5.5. Suppose that v ∈ Vl. Then, B(v) = Φ(v).
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5.3. Kleshchev l-partitions. If l = 1 then we have the level 1 deformed
Fock spaces Fv, for v ∈ Z. We consider the tensor product

Fvl−1 ⊗ · · · ⊗ Fv0 ,

for a multicharge v. Note that it depends only on v = (v0, . . . , vl−1). Then,

(Lvl−1 ⊗ · · · ⊗ Lv0 , Bvl−1 ⊗ · · · ⊗Bv0)

is a crystal basis of Fvl−1 ⊗ · · · ⊗ Fv0 .

Definition 5.6. A Kleshchev l-partition is an l-partition λ such that the
tensor product of the transpose of λ(i)’s in the reversed order

tλ(l−1) ⊗ · · · ⊗ tλ(0)

belongs the connected component of Bvl−1⊗· · ·⊗Bv0 that contains ∅⊗· · ·⊗∅.
We denote by ΦK

n the set of Kleshchev l-partitions of rank n. Then we
define

ΦK =
⊔

n≥0

ΦK
n .

We need the transpose of partitions in the definition in order to make it
compatible with Specht module theory of cyclotomic Hecke algebras, which
we introduce later. Note that if λ is Kleshchev then each component λ(j) is
e-restricted.

ΦK inherits the crystal structure from Bvl−1 ⊗ · · · ⊗ Bv0 , and ΦK is iso-
morphic to the highest weight crystal B(Λ), again.

5.4. Crystal isomorphisms. As Φ(v) and ΦK are isomorphic, we have a
unique isomophism of crystals between them, which we denote by

Γ : Φ(v)→ ΦK .

We may compute this bijection explicitly. In fact, if we fix n and choose
another multicharge w such that

• wj is sufficiently smaller than wj+1, for 0 ≤ j ≤ l − 2, and
• vj = wj , for 0 ≤ j ≤ l − 1,

then the bijection between ΦK
≤n and B(w)≤n given by

(λ(0), . . . , λ(l−1)) 7→ (tλ(0), . . . , tλ(l−1))

is compatible with the crystal structures on ΦK
≤n and B(w)≤n. Hence, it

suffices to compute the crystal isomorphism between B(v) and B(w).

Let Ŝn = eZ ≀ Sn ⊆ Aut(Zl) be the extended affine symmetric group.
Define σj ∈ Aut(Zl), for 0 ≤ j ≤ l − 2, by

σj(v0, . . . , vj−1, vj , . . . , vl−1) = (v0, . . . , vj , vj−1, . . . , vl−1)

and define τ ∈ Aut(Zl) by τ(v0, . . . , vl−1) = (v1, . . . , vl−1, v0 + e). Then, Ŝn

is generated by these elements.
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The following theorem was proved by the second and the third authors

in [13]. As the multicharges v and w are in the same Ŝn-orbit, it allows us
to compute the crystal isomorphism between B(v) and B(w) explicitly.

Theorem 5.7.

(1) The crystal isomorphism B(v)→ B(τv) is given by

(λ(0), . . . , λ(l−1)) 7→ (λ(1), . . . , λ(l−1), λ(0)).

(2) The crystal isomorphism B(v)→ B(σjv) is given by

(λ(0), . . . , λ(j−1), λ(j), . . . , λ(l−1)) 7→ (λ(0), . . . , λ̃(j), λ̃(j−1), . . . , λ(l−1)),

where, λ̃(j−1) and λ̃(j) are defined by

λ(j) ⊗ λ(j−1) 7→ λ̃(j−1) ⊗ λ̃(j)

under the following crystal isomorphism, called a combinatorial R-matrix,
between g(A∞)-crystals.

B(Λvj )⊗B(Λvj−1)→ B(Λvj−1)⊗B(Λvj ).

The combinatorial R-matrix may be computed in a purely combinatorial
manner. See [13] for the details.

5.5. Crystal embedding to B(∞). Let TΛ = {tΛ} be the crystal defined

by wt(tΛ) = Λ, ǫi(tΛ) = ϕi(tΛ) = −∞ and ẽitΛ = f̃itΛ = 0. Then, by the
theory of crystals, we have the crystal embedding B(Λ) →֒ B(∞)⊗TΛ such
that

(i) the image of the embedding is given by

{b⊗ tΛ ∈ B(∞)⊗ TΛ | ǫi(b
∗) ≤ Λ(α∨

i )},

where b 7→ b∗ is the involution on B(∞) which is induced by the
anti-automorphism of U−

v defined by fi 7→ fi,
(ii) b ⊗ tΛ belongs to the image if and only if Gv(b)vΛ 6= 0, where vΛ is

the highest weight vector of Vv(Λ).

We identify B(∞) with the crystal of aperiodic multisegments defined in
Theorem 2.12 and used in Theorem 4.4. As B(v) is isomorphic to B(Λ), we
have the crystal embedding

B(v) →֒ B(∞)⊗ TΛ

in the language of Uglov l-partitions and multisegments.
We shall describe this embedding in subsequent subsections. By virtue

of Theorem 5.7, we may assume that v ∈ Vl. Write the crystal embedding
by λ 7→ f(λ) ⊗ tΛ, and denote both the empty l-partition and the empty
multisegment by the common symbol ∅. Then, the crystal embedding sends
∅ to ∅ ⊗ tΛ, and the tensor product rule shows that for any path

∅
i1→ λ1

i2→ λ2
i3→ · · ·

in→ λn
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in B(v), we have the corresponding path

∅
i1→ f(λ1)

i2→ f(λ2)
i3→ · · ·

in→ f(λn)

in B(∞), and vice versa. On the other hand, if one can prove this property
for some map f : B(v)→ B(∞) then it follows that

ǫi(λ) = ǫi(f(λ)⊗ tΛ) and wt(λ) = wt(f(λ)⊗ tΛ),

so that we also have ϕi(λ) = ϕi(f(λ) ⊗ tΛ). Hence, we may conclude that
the map λ 7→ f(λ) ⊗ tΛ is a crystal embedding in the sense of [14] and it
must coincide with the crystal embedding B(v) →֒ B(∞)⊗ TΛ.

5.6. Row lengths and the order ≺v. We prove two lemmas which relate
the length of rows of an l-partition and the order ≺v.

Lemma 5.8. Let v ∈ Vl and λ = (λ(0), . . . , λ(l−1)) ∈ Φ(v). Suppose that
γ1 = (a1, b1, c1) and γ2 = (a2, b2, c2) are i-nodes of λ such that each node is

either addable or removale i-node. Then, λ
(c1)
a1 < λ

(c2)
a2 implies γ1 ≺v γ2.

Proof. We show that γ2 �v γ1 implies λ
(c1)
a1 ≥ λ

(c2)
a2 . As an intermediate

step, we first claim that γ2 �v γ1 implies λ
(c1)
a1 ≥ λ

(c2)
b1−b2+a2

. Note that we

have c(γ1) ≥ c(γ2) by γ2 �v γ1. Hence, we have

a1 ≤ b1 − b2 + a2 + vc1 − vc2,

which implies λ
(c1)
a1 ≥ λ

(c1)
b1−b2+a2+vc1−vc2

.

Suppose that c1 ≤ c2. As λ is a FLOTW l-partition, we have

λ
(c1)
b1−b2+a2+vc1−vc2

≥ λ
(c1+1)
b1−b2+a2+vc1+1−vc2

≥ · · · ≥ λ
(c2)
b1−b2+a2

.

Hence λ
(c1)
a1 ≥ λ

(c2)
b1−b2+a2

follows.

Suppose that c1 > c2. Then, c(γ1) > c(γ2) and we must have

b1 − a1 + vc1 ≥ b2 − a2 + vc2 + e,

because γ1 and γ2 have the same residue i. Hence, we have

a1 ≤ b1 − b2 + a2 + vc1 − vc2 − e,

which implies λ
(c1)
a1 ≥ λ

(c1)
b1−b2+a2+vc1−vc2−e

. Then, by the same reasoning as

above, we have

λ
(c1)
b1−b2+a2+vc1−vc2−e

≥ λ
(c1+1)
b1−b2+a2+vc1+1−vc2−e

≥ · · ·

≥ λ
(l−1)
b1−b2+a2+vl−1−vc2−e

≥ λ
(0)
b1−b2+a2+v0−vc2

≥ · · · ≥ λ
(c2)
b1−b2+a2

.

Hence λ
(c1)
a1 ≥ λ

(c2)
b1−b2+a2

follows again.

If b1 ≤ b2 then b1−b2+a2 ≤ a2 implies the desired inequality λ
(c1)
a1 ≥ λ

(c2)
a2 .

Suppose that b1 > b2. As γ1 is either addable or removable i-node, we have

either b1 = λ
(c1)
a1 + 1 or b1 = λ

(c1)
a1 . Similarly, we have either b2 = λ

(c2)
a2 + 1 or

b2 = λ
(c2)
a2 . Hence, we have λ

(c1)
a1 ≥ b1 − 1 ≥ b2 ≥ λ

(c2)
a2 . �
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Lemma 5.9. Let λ be a FLOTW l-partition, and let γA = (a′, b+1, c′) and
γR = (a, b, c) be addable and removable i-nodes of λ respectively. Then we
have γR ≺v γA.

Proof. Suppose to the contrary that γA ≺v γR. Then we have either

(i) c(γA) < c(γR), or
(ii) c(γA) = c(γR) and c′ > c.

In case (i), b−a+vc ≥ b+1−a′+vc′ +e so that a+vc′−vc+e ≤ a
′−1. As

γA is an addable node, we also have λ
(c′)
a′−1 > λ

(c′)
a′ . Then, a+vc′−vc+e < a′

implies that

λ
(c′)
a+vc′−vc ≥ λ

(c′)
a+vc′−vc+e > λ

(c′)
a′ .

Now, using the assumption that λ is a FLOTW l-partition, we have
{
λ

(c)
a ≥ λ

(c′)
a+vc′−vc > λ

(c′)
a′ if c ≤ c′,

λ
(c)
a ≥ λ

(c′)
a+vc′−vc+e > λ

(c′)
a′ if c > c′.

However, λ
(c)
a = b since γR is a removable node, and λ

(c′)
a′ = b since γA is an

addable node. Thus, we have reached a contradiction.
In case (ii), b− a+ vc = b+ 1− a′ + vc′ implies a+ vc′ − vc + 1 = a′. As

γA is an addable node, λ
(c′)
a+vc′−vc > λ

(c′)
a′ . Thus, c′ > c implies that

λ(c)
a ≥ λ

(c′)
a+vc′−vc > λ

(c′)
a′ .

However, we have λ
(c)
a = b and λ

(c′)
a′ = b as before, so that we have reached

a contradiction again. �

5.7. The map fv. For each FLOTW l-partition λ ∈ Φ(v), we associate a
multisegment which is a collection of segments

[1− i+ vc;λ
(c)
i ),

where λ
(c)
i are parts of λ(c), for c = 0, . . . , l − 1. This defines a well-defined

map fv : Φ(v)→ B(∞).

Example 5.10. Let e = 4, and let λ = ((2, 1), (1)) ∈ Φ((0, 1)). Then

f(0,1)(λ) = {[0, 1], [3], [1]}.

Next let λ = ((2), (1), (1)) ∈ Φ((0, 1, 3)). Then we have the same result

f(0,1,3)(λ) = {[0, 1], [1], [3]}.

Then we may prove the following. Note that the fact itself was observed
by several people including the first author years ago, but the authors do
not know any reference which proves this.

Theorem 5.11. Suppose that v ∈ Vl. Then, the crystal embedding Φ(v) →֒
B(∞)⊗ TΛ is given by λ 7→ fv(λ)⊗ tΛ.
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Proof. As was explained in the previous subsection, it suffices to show that
there is an arrow

λ
i
→ µ

in B(v) if and only if there is an arrow

fv(λ)
i
→ fv(µ)

in B(∞).
We read the addable and removable i-nodes of µ in increasing order with

respect to the total order ≺v. Let γ1 . . . γm be the resulting word of the
nodes. On the other hand, we read the same set of addable and removable i-
nodes of µ in increasing order with respect to the length of the corresponding
segments in fv(µ). If the length are the same, we declare that removable i-
nodes precede addable i-nodes. We denote the resulting word γσ(1) . . . γσ(m),
for σ ∈ Sm.

Write γj = (aj , bj, cj), for 1 ≤ j ≤ m. Then, Lemma 5.8 implies that

if λ
(cj)
aj 6= λ

(ck)
ak then j < k implies σ−1(j) < σ−1(k). On the other hand,

Lemma 5.9 implies that if λ
(cj)
aj = λ

(ck)
ak then j < k implies σ−1(j) < σ−1(k).

We conclude that σ is the identity.
We define S′

k,i to be the number of addable i-nodes minus the number of

removable i-nodes in {γk, γk+1, . . . , γm}.
Suppose that ẽiµ = λ and let γ = (a, b, c) be the good i-node of µ. Then

mink>0 S
′
k,i is attained at γ. Define kr, for r > 0, by

kr = min{j | λ
(cj)
aj ≥ r}.

It is clear that mink>0 S
′
k,i is attained only at removable nodes of the form

γkr , for some r. Now observe that addable and removable i-nodes of the
multisegment fv(µ) which do not belong to {γ1, . . . , γm} come from pairs
of consecutive rows of the same length in µ. Let m(k;i] be the multiplicity
of (k; i] in fv(µ). Then, by the above observation, we have

Sr,i =
∑

k≥r

(m(k,i−1] −m(k;i]) = S′
kr,i,

and minr>0 Sr,i is attained at r = b. Instead of proving that b is the unique

r that attains the minimum, we shall show that f̃ifv(λ) = fv(µ). As γ is
the good removable i-node of µ, the following is clear.

If r < b then, among the nodes γj , for kr ≤ j < kb, the
number of addable nodes is always greater than or equal to
the number of removable nodes.

This implies that, if we change the status of γ from a removable node to an
addable node, then Sr,i > Sb,i if r ≤ b − 1, for the new values Sr,i and Sb,i
computed after we change the status of γ. If we consider normal i-nodes
which appear to the right of γ, it is also clear that Sr,i ≥ Sb,i if r ≥ b + 1,

for the new values Sr,i. Thus, we obtain f̃ifv(λ) = fv(µ).
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Next suppose that f̃ifv(λ) = fv(µ). We consider Sr,i and suppose that
minr>0 Sr,i is attained at ℓ0 < ℓ1 < · · · . The minimum value is attained
at a removable i-node which is the leftmost node among the nodes of the
segments of the same length. Then, the minimality implies that the right
neighbor of the removable node is addable. We denote this node by γ. We
show that γ is the good addable i-node of λ.

Suppose that γ is cancelled in the RA-deletion procedure. If the removable
i-node which cancels R is not of the form γkr , it contradicts the minimality
of Sℓ0,i. Thus, the removable node is γkb , for some b < ℓ0. Then, Sb,i = Sℓ0,i
implies ℓ0 ≤ b, which contradicts b < ℓ0. Hence, we have proved that γ is a
normal addable i-node. If there was another normal addable i-node to the
right of γ, it would contradict the minimality of Sℓ0,i, so that γ is the good

addable i-node of λ. Thus, we obtain f̃iλ = µ. �

Define Bap(Λ) = {ψ ∈ B(∞) | ǫi(ψ
∗) ≤ Λ(α∨

i )}. As we have proved
that λ 7→ fv(λ) ⊗ tΛ is the crystal embedding B(Λ) →֒ B(∞) ⊗ TΛ in the
language of FLOTW and multisegment realizations, we have the following
corollary. The basis in Corollary 5.12(2) is the canonical basis of Vv(Λ).

Corollary 5.12.

(1) fv(B(v)) = Bap(Λ).
(2) {Gv(ψ)vΛ | ψ ∈ B

ap(v)} is a basis of Vv(Λ).

6. Fock space theory for cyclotomic Hecke algebras

In this section, we give the combinatorial proof of the modular branching
rule. The proof depends on Lemma 6.7, which says that isomorphisms of
crystals give the correspondence of labels of a simple HΛ

n -module, which
is labelled by various realizations of the crystal B(Λ). Hence, the explicit
description of the isomorphisms in the previous section gives us the module
correspondence.

6.1. Cyclotomic Hecke algebras. Let v be a multicharge as before. The
cyclotomic Hecke algebra Hv

n(q) is the quotient algebra Hn/Iv of the affine
Hecke algebra Hn, where Iv is the ideal of Hn generated by the polynomial∏l−1
i=0(X1 − q

vi). If we specialize q = ζ, the algebra depends only on Λ, and

we denote the algebra by HΛ
n . This is the main object of the study in the

remaining part of the paper. As HΛ
n is a quotient algebra of the affine Hecke

algebra Hn, the set of simple HΛ
n -modules is a subset of simple Hn-modules.

In fact, by Fock space theory for cyclotomic Hecke algebras we will explain
in the next subsection, we know that it is the set {Dψ | ψ ∈ B

ap(Λ)}.

Definition 6.1. We denote by HΛ
n -mod the category of finite-dimensional

HΛ
n -modules.

Note that Hv

n(q) is a cellular algebra in the sense of Graham and Lehrer:
it has the Specht module theory developped by Dipper, James and Mathas.



Affine Hecke algebras of type A 41

Then, the first author showed that simple HΛ
n -modules are labelled by

Kleshchev l-partitions. We refer to [1, Ch. 12] for details.
For λ ∈ ΦK , we denote by Dλ the simple HΛ

n -module labelled by λ. For

λ ∈ Φ(v)n, we define D̃λ by

D̃λ = DΓ(λ).

We will explain in the next subsection that this labelling coincides with the
Geck-Rouquier-Jacon parametrization of simple HΛ

n -modules in terms of the
canonical basic set.

Before giving the second proof, we complete the first proof. Namely, we
prove Theorem 6.2 below, which compares the geometrically defined simple
HΛ
n -modules and the combinatorially defined simple HΛ

n -modules by using
Theorem 4.4.

Theorem 6.2. Let λ be an l-partition. Then, D̃λ ≃ Dfv(λ) as Hn-modules.

Proof. We have i- Res(Dψ) ≃ Dẽiψ by Theorem 4.4. On the other hand,

we have i- Res(Dλ) ≃ Dẽiλ, for λ ∈ ΦK , in [2, Theorem 6.1]. Note that if
i- Res(Dλ) ≃ i- Res(Dψ) 6= 0 then Dλ ≃ Dψ. This property of crystals is
a consequence of the Frobenius reciprocity. Hence, we may prove the claim
by induction on n. �

6.2. Standard modules. We say a few words on the standard modules of
the affine Hecke algebra. Let X ∈ Oψ and consider

(Fℓan)X = {F ∈ Fℓan | XFi ⊆ Fi−1}.

Then, H∗((Fℓ
a
n)X ,C) is an HBM

∗ (Zan,C)-module by the convolution action,
and it is called the standard module. We denote it by Mψ. Suppose that
X is a principal nilpotent element so that ψ = [i; l) for some i ∈ Z/eZ and
l ∈ Z>0. Then, (Fℓan)X is a point, which is the flag

0 ⊆ Ker(X) ⊆ Ker(X2) · · · ⊆ Ker(Xn) = V

of flag type (i+ l−1, . . . , i+1, i), and the proof of Lemma 4.8 shows that, if

we follow the identification Hn ≃ KGn×C×
(Zn) in [18], then Mψ is the one

dimensional Hn-module given by Ti 7→ −1 and

X1 7→ ζi+l−1, . . . ,Xn−1 7→ ζi+1,Xn 7→ ζi.

Thus, Mψ for general ψ coincides with the induced up module of the tensor
product of such one dimensional modules over the affine Hecke algebras
associated with segments in ψ, in the Grothendieck group of the module
category of the affine Hecke algebra.

Now, we switch to the other identification used in Theorem 4.4, which we
follow in the previous and this section. Define the standard module Nψ by

Nψ = σMρ(ψ).

Then Nψ is given by Ti 7→ ζ and

X1 7→ ζi−l+1, . . . ,Xn−1 7→ ζi−1,Xn 7→ ζi.
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when ψ = (l; i]. This is the standard module in [1]. Then, a key observation
used in [1] was the equality

Gv=1(ψ) =
∑

ψ′

[Nψ′ : Dψ]uψ′

in the Hall algebra in Theorem 2.12 evaluated at v = 1. 4 Now we are able
to give an example of Theorem 6.2.

Example 6.3. Let e = 3. Then, we have

Gv=1({(2; 2]}) = u{(2;2]} + u{(1;1],(1;2]}, Gv=1({(1; 1], (1; 2]}) = u{(1;1],(1;2]}.

Note that N{(1;1]} and N{(1;2]} are one dimensional H1-modules defined by

X1 7→ ζ and X1 7→ ζ2, respectively. Then, N{(2;2]} = D{(2;2]} is the simple
module defined by

X1 7→ ζ, X2 7→ ζ2, T1 7→ ζ,

and N{(1;1],(1;2]} is the module induced from N{(1;1]} ⊗ N{(1;2]}. Thus, we
deduce that D{(1;1],(1;2]} is the simple module defined by

X1 7→ ζ2, X2 7→ ζ, T1 7→ −1.

(Ex.1) Suppose that l = 1 and v = 0. Then,

D(2) ≃ D{(2;2]} and D(12) ≃ D{(1;1],(1;2]},

for (2), (12) ∈ ΦK
2 . This follows from explicit construction of Specht

modules. Since (2) = f̃2f̃1∅ and (12) = f̃1f̃2∅ in ΦK
2 , we have

Γ((2)) = (2) and Γ((12)) = (12), so that

D̃(2) ≃ D{(2;2]} and D̃(12) ≃ D{(1;1],(1;2]}.

(Ex.2) Suppose that l = 2 and v = (1, 2). Then, f̃2f̃1∅ = ((2), ∅) and

f̃1f̃2∅ = ((1), (1)) in Φ(v), so that

D̃((2),∅) ≃ D{(2;2]} and D̃((1),(1)) ≃ D{(1;1],(1;2]}.

6.3. Fock space theory. In this subsection, we explain the Fock space
theory for cyclotomic Hecke algebras. In the following, Gv(b), U

−
v , etc. at

v = 1 are denoted by G(b), U−, etc.
Let Cn be the full subcategory of Hn -mod consisting of finite dimensional

Hn-modules on which X1, . . . ,Xn have eigenvalues in {1, ζ, . . . , ζe−1}.

Definition 6.4. Let

Un = HomC(K0(Cn),C) and Vn = HomC(K0(H
Λ
n -mod),C)

4In fact, the choice of the identification played no role in [1] because it sufficed for us
to prove the statement that the canonical basis evaluated at v = 1 coincides with the
dual basis of simples in the Fock space, and we did not need compare individual simple
modules.



Affine Hecke algebras of type A 43

be the dual spaces of the Grothendieck groups of Cn and HΛ
n -mod, and

define
U =

⊕

n≥0

Un and V =
⊕

n≥0

Vn.

Hereafter, we identify Vn with the split Grothendieck group of the additive
subcategory of HΛ

n -mod consisting of projective HΛ
n -modules.

Un has the dual basis

{[Dψ ]∗ | ψ is an aperiodic multisegment of rank n.}

which is dual to the basis consisting of simple HΛ
n -modules.

Let π : U → V be the natural map and define

p : U− → V (Λ) ⊆ F

by F 7→ FvΛ, for F ∈ U−.
The theorem below states the most basic result in the Fock space theory.

See [1, Theorem 14.49] and its proof.

Theorem 6.5.

(1) U has structure of a U−-module and V has structure of a g-module.
(2) U is isomorphic to the regular representation of U− such that

[Dψ ]∗ 7→ G(ψ).

(3) V is isomorphic to V (Λ) and the basis
⊔

n≥0

{[P ] | P is an indecomposable HΛ
n -module.}

of V corresponds to the canonical basis of V (Λ) under the isomorphism.
(4) The following diagram commutes:

U ≃ U−

π ↓ ↓ p
V ≃ V (Λ)

6.4. The combinatorial proof. First we make it clear what we mean by
“simple HΛ

n -modules are labelled by Uglov l-partitions”.

Definition 6.6. We say that simple HΛ
n -modules are labelled by B(v), if the

projective cover of a simple HΛ
n -module is equal to G(λ) ∈ Fv in Theorem

6.5(3), for λ ∈ B(v), then the label of the simple module is λ.

It is proved by the first author that Specht module theory is an example
of the statement that simple HΛ

n -modules are labelled by B(v). Another
example is provided by the second author. Recall that Geck and Rouquier
invented different theory to label simple modules by using Lusztig’s a-values.
The labelling set is called the canonical basic set. When we work with
Hecke algebras of type B, it provides us with a set of bipartitions. The
second author has generalized the theory to cyclotomic Hecke algebras and
his result says that simple HΛ

n -modules are labelled by Φ(v), for v ∈ Vl.
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If one uses Theorem 6.5, it is quite easy to identify simple HΛ
n -modules

in various labellings.

Lemma 6.7.

(1) Suppose that simple HΛ
n -modules are labelled by B(v). Let

fv,∞ : B(v) ≃ Bap(Λ) ⊆ B(∞)

be the unique crystal isomorphism. Then, Dλ ≃ Dfv(λ) as Hn-modules.

(2) For two labelling B(v) and B(w) of simple HΛ
n -modules, we denote the

set of simple modules by

{Dλ

v
| λ ∈ B(v)} and {Dλ

w
| λ ∈ B(v)},

respectively. Let fv,w : B(v) ≃ B(w) be the unique crystal isomorphism.

Then, Dλ
v
≃ D

fv,w(λ)
w as Hn-modules.

Proof. (1) Suppose that fv,∞(λ) = ψ. Then, we have Gv(ψ)∅ = Gv(λ).

Specializing at v = 1, we obtain G(ψ) = Pλ. Then, using the commutativity
of the diagram in Theorem 6.5(4), we conclude that π([Dψ ]∗) = [Dλ]∗, which

is identified with Pλ. Hence, Dψ ≃ D
λ as Hn-modules.

(2) First we apply (1) to two crystal isomorphisms B(v) ≃ Bap(Λ) and
Bap(Λ) ≃ B(w). Then use the fact that fv,w = f−1

w,∞ ◦ fv,∞. �

As we have established Lemma 6.7, we can derive the modular branching
rule for the affine Hecke algebra from this.

Theorem 6.8. For each aperiodic multisegment ψ, we have

Soc(i- ResHnHn−1
(Dψ)) ≃ Dẽiψ.

Proof. Choose Λ sufficiently large so that fv(B(v)) = Bap(Λ) may contain
any path

∅
i1→ ψ1

i2→ ψ2
i3→ · · ·

in→ ψn = ψ

in B(∞) from ∅ to ψ. Let i ∈ Z/eZ be such that ẽiψ 6= 0 and let λ ∈ B(v)
be such that fv(λ) = ψ. Then ẽiλ 6= 0 and fv(ẽiλ) = ẽiψ. Then, the
previous Lemma yields the isomorphisms

Dψ ≃ D̃
λ and Dẽiψ ≃ D̃

ẽiλ.

Thus,

Soc(i- ResHnHn−1
(Dψ)) ≃ Soc(i- ResHnHn−1

(Dλ)) ≃ D̃ẽiλ ≃ Dẽiψ,

where the middle isomorphism is the modular branching rule in the labelling
by Kleshchev l-partitions [2, Theorem 6.1]. We have proved the theorem. �
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7. Appendix

In this appendix, we explain that the surjection Ha
n−1,n to Ha

n−1 is also
described in geometric language. Although we do not need this description,
we add this section for the sake of completeness.

Lemma 7.1. KBn×C×

((Gn × C
×)×Pn−1,n×C× Zn−1) is isomorphic to

R(Bn × C
×)⊗R(Gn×C×) K

Gn×C×

((Gn × C
×)×Pn−1,n×C× Zn−1).

Proof. We apply Lemma 3.7 to (Gn ×C
×)×Pn−1,n×C× Zn−1. Then, we may

prove the claim as in the second half of the proof of Lemma 3.9. �

Proposition 3.5 and Lemma 3.9 imply that

Ca ⊗R(A) K
A(Zn−1,n) ≃ Ca ⊗R(Gn×C×) K

Gn×C×

(Zn−1,n)

≃ Ca ⊗R(Gn×C×) K
Ln−1,n×C×

(Zn−1),

which is isomorphic to

Ca ⊗R(Bn×C×) R(Bn ×C
×)⊗R(Gn×C×) K

Gn×C×

((Gn × C
×)×(Pn−1,n×C×) Zn−1)

≃ Ca ⊗R(Bn×C×) K
Bn×C×

((Gn × C
×)×(Pn−1,n×C×) Zn−1)

≃
⊕

w∈Sn/Sn−1

Ca ⊗R(Tn×C×) K
Tn×C×

(w × Zn−1)

where, the R(Tn×C
×)-module structure on KTn×C×

(w×Zn−1) is obtained

from that of KTn×C×

(Zn−1) by twisting by w.
We have proved the following isomorphism of C-vector spaces,

Ca ⊗R(A) K
A(Zn−1,n) ≃

⊕

w∈Sn/Sn−1

Cw(a) ⊗R(A) K
w−1Aw(Zn−1)

where, a ∈ A acts on Zn−1 by w−1aw in Kw−1Aw(Zn−1) and Cw(a).
As the generators correspond correctly by Proposition 3.5, the following

is clear.

Proposition 7.2. The two identifications

Ha
n−1,n = Ca ⊗R(A) K

A(Zn−1,n), Ha
n−1 = Ca ⊗R(A) K

A(Zn−1)

are compatible. Namely, we have the following commutative diagram of C-
algebras.

Ca ⊗R(A) K
A(Zn−1,n)

ǫ∗n−1,n
−→ Ca ⊗R(A) K

A(Zn−1)

‖ ‖

Ha
n−1,n −→ Ha

n−1

We consider the embedding

Yn−1 × Yn−1 ⊆ (Gn × C
×)×Pn−1,n×C× (Yn−1,n × Yn−1,n)
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and define ǫ∗n−1,n : KA(Zn−1,n) → KA(Zn−1) as before. We saw that it

coincides with 1⊗R(A) ResGn×C×

Pn−1,n×C× . Similarly, the pullback

ǫ∗n−1,n : KA(Zan−1,n)→ KA(Zan−1)

is defined with respect to the embedding

Y a
n−1 × Y

a
n−1 ⊆ (Gn(s)× C

×)×Pn−1,n(s)×C× (Y a
n−1,n × Y

a
n−1,n)

and it coincides with 1⊗R(A) Res
Gn(s)×C×

Pn−1,n(s)×C× .

It is important that we do not use Y a
n × Y

a
n as the ambient space. On

the other hand, the multiplication by 1⊗ λn or λn ⊗ λn and resn are with
respect to the ambient space Y a

n × Y
a
n .

Hence, we use different ambient spaces in vertical arrows and horizontal
arrows in the following lemma.

Lemma 7.3. The following diagram commutes.

Ca ⊗R(A) K
A(Zn−1,n)

ǫ∗n−1,n
−→ Ca ⊗R(A) K

A(Zn−1)

(λn ⊗ λn)
−1(iAn−1,n)

∗ ↓ ↓ (λn−1 ⊗ λn−1)
−1(iAn−1)

∗

Ca ⊗R(A) K
A(Zan−1,n)

ǫ∗n−1,n
−→ Ca ⊗R(A) K

A(Zan−1)

Proof. As (λn ⊗ λn)
−1(iAn−1,n)

∗ and (λn−1 ⊗ λn−1)
−1(iAn−1)

∗ are the inverse

of (iAn−1,n)∗ and (iAn−1)∗, respectively, it suffices to show

ǫ∗n−1,n(i
A
n−1,n)∗[F ] = (iAn−1)∗ǫ

∗
n−1,n[F ],

for [F ] ∈ KA(Zan−1,n). However, this is clear because both are the restriction
of F to Zan−1. �

Corollary 7.4. We have the following commutative diagrams such that the
lower diagram is a commutative diagram of C-algebras.

Ca ⊗R(A) K
A(Zn−1,n) ≃ K(Zan−1,n)

ǫ∗n−1,n
−→ K(Zan−1) ≃ Ca ⊗R(A) K

A(Zn−1)

resn ց ↓ ↓ ւ resn−1

K(Zan−1,n) −→ K(Zan−1)

‖ ‖

Ha
n−1,n −→ Ha

n−1

Here, the middle horizontal arrow is given by (λn−1 ⊗ 1) ǫ∗n−1,n (λn ⊗ 1)−1

and the vertical arrows are the isomorphisms given by the multiplication by
λn ⊗ 1 and λn−1 ⊗ 1 respectively.

Let Zan−1,n ⊆ (Gn(s)×C
×)×Pn−1,n(s)×C× (Y a

n−1,n×Y
a
n−1,n) as before. Then

Zan−1,n ∩ (Y a
n−1 × Y

a
n−1) = Zan−1 and the Gysin map

ǫ∗n−1,n : HBM
∗ (Zan−1,n,C)→ HBM

∗ (Zan−1,C)
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is defined by α 7→ α ∩ [Y a
n−1 × Y

a
n−1], the intersection product in the ambi-

ent space. See [9, Proposition 8.1.2]. (The complexified Chow groups are
isomorphic to the Borel-Moore homology groups in our case.)

Proposition 7.5. We have the following commutative diagram of C-algebras.

HBM
∗ (Zan−1,n,C) −→ HBM

∗ (Zan−1,C)

‖ ‖

Ha
n−1,n −→ Ha

n−1

where, the upper horizontal arrow is given by

(1⊗ tdY an−1
ch(λn−1)

−1) ǫ∗n−1,n (1⊗ td−1
Y an
ch(λn)).

As we have obtained the description of the map Ha
n−1,n → Ha

n−1 in the
Borel-Moore homology, we may rewrite it into sheaf language as before. But,
it is not so helpful and we stop here.

References

[1] S. Ariki, Representations of Quantum Algebras and Combinatorics of Young
tableaux, A. M. S. Univ. Lec. Ser. 26, 2002.

[2] S. Ariki, Proof of the modular branching rule for cyclotomic Hecke algebras, J.
Algebra 306 (2006), 290-300.

[3] A. Bialynicki-Birula, Quotients by Actions of Groups, in “Algebraic Quotients.
Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action”,
1-82, Encycl. Math. Sci. 131, Springer, 2002.

[4] M. Brion and S. Kumar, Frobenius Splitting Methods in Geometry and Represen-
tation Theory, Progress in Math. 231, Birkhäuser, 2005.

[5] C. Bessenrodt and J.B. Olsson, On residue symbols and the Mullineux conjecture.
J. Alg. Combin. 7 (1998), 227-251.

[6] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry,
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