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SUMMARY

We present a numerical approach, based on a spectral analysis, for the initiation of the
unstable slip on a finite fault region. First we focus on one fault model. We study
the relationship between the weakening parameter and the largest positive eigenvalue
of the dynamic spectral problem. Since the numerical approach based on the integral
equations proposed by Dascalu et al. (2000) is appropriate only for small eigenvalues we
use a finite element method which permits accurate computations for large eigenvalues.
We show the relation between fault length and the first eigenvalue that governs the
duration of initiation duration. The value of the weakening rate can be evaluated from
the strain field in the elastic medium over a domain of confidence. A specific pattern of
deformation represents the signature of the initiation phase. The spectral analysis and
the numerical methods used for the single fault model remain valid for more complex
fault systems. The interaction between two faults is examined. Finally, we introduce the
concept of spectral equivalence between a heterogeneous fault system and a homogeneous
fault with renormalized friction law.

Key words: initiation, fault system, spectral analysis.

1 INTRODUCT ION

Earthquake prediction is actually the Holy Grail of seismo-

logists and the existence of precursory deformation is a big issue.

Laboratory experiments on friction (Dieterich 1979; Ohnaka

et al. 1987; Ohnaka & Kuwahara 1990) point out the existence

of a phase of slow motion that precedes the propagation phase,

leading to the rupture. They pointed out that this preseismic

slip should be recognized as a manifestation of the initiation

process preceding the dynamic rupture. Throughout this paper,

we will refer to this phase as the rupture initiation or initiation.

Ohnaka et al. (1987) showed through high resolution friction

experiments, the relevance of the slip dependent friction law in

the initiation process. They showed the existence of a charac-

teristic length scale Lc, the critical slip. The shear stress degrades

from the initial state ti to a residual dynamic level of friction td

with the ongoing slip. They also demonstrated the existence of

a nucleation zone over which the nucleation process occurs.

The length of this zone can be related to the constitutive

parameters of the friction law.

On the basis of these experiments, Campillo & Ionescu

(1997) studied the initiation phase (Ida 1972) of an unstable

antiplane shear process on an infinite fault under linear slip-

weakening friction. They gave an analytical expression of the

slip, derived from an eigenvalue analysis. Considering only the

part of the displacement associated with positive eigenvalues,

they defined the dominant part wd(t, x, y) as follows:

wdðt, x, yÞ ¼ a
n
expð�ayÞ

ða
�a

ðþ?

0

ðþ?

�?
exp½�as þ imðx � uÞ�

|

�
cosh ct

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � m2

p� �
w0ðu, sÞ

þ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � m2

p sinh ct
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � m2

p� �
w1ðu, sÞ

�
du ds dm

(1)
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where a is the weakening rate on the fault (y=0) divided by

the rigidity, w0(x, y) and w1(x, y) the initial perturbation in

displacement and velocity respectively. a is given by the following

relation:

a ¼ ðks � kdÞS
GLc

(2)

where G, Lc, ms, md and S are respectively the rigidity modulus,

the critical slip, the static friction coefficient, the dynamic

friction coefficient and the normal stress. Eq. (1) shows that

wd(t, x, y) is characterized by an exponential growth with time

and a simple exponential dependence of the slip distribution

with respect to the coordinate perpendicular to the fault. In

response to a small perturbation (w0, w1) the instability will

develop in a limited spectral domain. The limiting wavenumber

is a function of the friction law and the elastic properties. The

dominant part gives an accurate description of initiation. This is

illustrated by the numerical comparison performed by Campillo

& Ionescu (1997). They demonstrated that the dominant part is

indistinguishable from the complete solution, except in the very

beginning of initiation, when the slip is of the order of the

perturbation and therefore negligible with respect to the final

amplitude of the solution. The expression of the dominant part

associated with positive real eigenvalues is obviously non-

causal, as remarked by Knopoff et al. (2000). Indeed, since all

the propagative terms are omitted, the dominant part is not

expected to be causal. During the initiation the dominant part

grows exponentially with time, while the propagative terms

scale with the perturbation. This means that the mismatch

between the full solution and the dominant part at the causality

limit also scales with the initial perturbation. In the context of

earthquake study, we suspect the early triggering event to be

small and in practice undetectable. For this reason violation

of causality in eq. (1), that is not a mathematical problem, is

not important from a physical point of view either, since the

measurable slip evolution is almost perfectly described by the

dominant part.

The slip during the initiation phase starts very slowly and

gradually increases with time. The transition from the initiation

phase to the propagation phase occurs at the point on the fault

which has slipped by Lc, the critical slip. At this time the crack

front begins to propagate along on the fault. The duration of

the initiation phase is approximated by:

Tc ¼
b

c
þ 1

ca
ln

nLc

2lðW0 þ W1=cÞ (3)

where l is the half width of the perturbation, b its distance to the

fault, c the S wave velocity, W0 and W1 the weighted average

of the initial perturbation (Campillo & Ionescu 1997). During

initiation the slip grows on a zone whose characteristic length is

given by:

lc ¼
nGLc

ðks � kdÞS
(4)

Note that lc is the only characteristic length scale associated

with the infinite fault model. Dascalu et al. (2000) studied

the initiation process on a 2-D finite fault of length 2a. They

introduced a non-dimensional parameter b=a.a, and performed

a stability analysis to determine a universal constant b0 that

depends only on the geometry of the antiplane problem. This

constant was found as:

b0&1:15777388 , (5)

and defines quantitatively the limit between stable (b<b0) and

unstable (b>b0) behaviour of the fault. For a given weakening

rate on the fault, the minimum length for an unstable behaviour

is:

2ac ¼
b0

a
¼ b0GLc

ðks � kdÞS
: (6)

The critical fault length 2ac for unstable behaviour is a completely

different concept from the critical crack length lc, defined in the

infinite fault context. As a consequence, when the fault length 2a

is much larger than 2ac, the pertinent characteristic length scale is

lc. The ‘free’ initiation process, as it would develop on an infinite

fault, provides a good description of what really happens on the

finite fault. The finite fault effect arises when the fault length

2ap2ac. One can feel that this time, the ‘free’ initiation process

(infinite problem) is unlikely to describe the real initiation pro-

cess. The fault finiteness will have an effect on the initiation

process. This effect was shown by Ionescu & Campillo (1999).

The main effect is that the duration of initiation is greatly

increased as the fault length 2a tends to 2ac. Indeed, as it follows

from Dascalu et al. (2000), the duration of initiation is Tc#l0
x1,

where l0
2 is the largest eigenvalue, and long initiation duration is

expected when bpb0. The goal is to determine how strongly the

initiation process is affected by the fault finiteness.

Since the numerical approach based on the integral equations

proposed by Dascalu et al. (2000) works only for small eigen-

values (i.e. b close to b0) we present here a numerical approach

to the initiation of unstable slip on a 2D finite fault, based

on a finite element method (FEM). We compute l0, the largest

positive eigenvalue of the dynamic spectral problem, as a function

of b for the finite fault model. We study the asymptotic

behaviour when bp? to deduce the infinite fault model. We

compute the associated eigenfunction W0(x, y) and the following

ratio:

c ¼ � Ly’0ðx, yÞ
’0ðx, yÞ , (7)

where hy is the partial derivative with respect to the perpen-

dicular coordinate. This ratio represents the information on the

weakening parameter (Campillo et al. 2001). In the infinite

case, this ratio exactly equals a everywhere in the elastic space.

In the case of the finite fault zone, we point out the existence

of an initiation pattern that develops in the elastic body. This

pattern is associated with the unstable behaviour of the fault

zone. Moreover, we show the existence of a domain over which

c is nearly constant. More precisely, in case of a single fault

segment, this ratio equals the weakening rate a over a so called

domain of confidence, whose size is an increasing function of a.

Hence, the weakening parameter that is defined only on the

fault can be estimated during the initiation phase outside of

the fault, inside the bulk. This analysis remains valid for more

complex fault systems. We first consider a system composed

of two identical segments. We show that b0 decreases as the

distance between the two segments also decreases. This proves

that fault segments may interact during the initiation process.

Then, we consider a more complex fault system, composed of

11 identical fault segments, separated by rigid barriers. Each

fault segment is characterized by the same weakening parameter
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blocal. We show the existence of the initiation pattern associated

with each of the segments (locally, the fault system is reduced to

only one fault segment). We also point out the existence of a

global initiation pattern that is associated with the unstable

behaviour of the whole fault system. We compute the dynamic

spectral problem and derive the largest eigenvalue of the hetero-

geneous system. With the help of the relation between l0 and b
computed in the one fault model, we get the corresponding

equivalent weakening parameter bequivalent. A simple homo-

geneous fault with a weakening rate b=bequivalent will have

the same largest eigenvalue l0, and therefore the same general

average behaviour during the initiation.

The global initiation pattern associated with the unstable

behaviour of the whole system is characterized by a wide domain

over which the ratio x{[hyW0(x, y)] [W0(x, y)]}=bequivalent/a.

Locally, close to the fault, each individual fault segment has

its own domain of confidence over which we can measure the

local weakening rate. The interaction of all segments produces

a global pattern of deformation at some distance from the fault

system. This collective domain of confidence provides an esti-

mation of bequivalent. There is a complete spectral equivalence,

in terms of the initiation process, between a complex fault

system with b=blocal and a simple homogeneous single fault

model with b=bequivalent.

2 SPECTRAL APPROACH OF RUPTURE
IN IT IAT ION ON A FIN ITE FAULT

The method presented hereafter is basically the same for an

infinite fault (Campillo & Ionescu 1997) or for a single finite fault

(Dascalu et al. 2000). For convenience we give the principal

steps of the spectral method in this section.

2.1 Problem statement

We consider the 2D antiplane shearing on a bounded fault

region Cf included in the plane y=0 in an homogeneous linear

elastic space. The fault region can be composed of a set of

simple faults on which the contact is described by a slip

dependent friction law. We assume an antiplane configuration,

that is the displacement field is 0 in directions Ox and Oy

and that uz does not depend on z. The displacement is there-

fore denoted simply by w(t, x, y). The elastic medium has the

shear rigidity G, the density r and the shear velocity c=
ffiffiffiffiffiffiffiffiffi
G=o

p
.

The nonvanishing shear stress components are szx=tx
?+

Ghxw(t, x, y) and szy=ty
?+Ghyw(t, x, y), and the normal

stress on the fault plane is syy=xS(S>0). The equation of

motion is

L2w

Lt2
ðt, x, yÞ ¼ c2+2wðt, x, yÞ (8)

for t>0 and (x, y) outside of the fault Cf. The boundary

conditions on Cf are

pzyðt, x, 0þÞ ¼ pzyðt, x, 0�Þ , x [!f , (9)

pzyðt, x, 0Þ ¼ kðdwðt, xÞÞS sign
Ldw

Lt
ðt, xÞ

� �
, x [!f , (10)

if htdw(t, x)l0 and

jpzyðt, x, 0Þjƒkðdwðt, xÞÞS , x [!f , (11)

if htdw(t, x)=0, where dw(t, x)=1/2[w(t, x, 0+)xw(t, x, 0x)]

is the half of the relative slip and m(dw) is the coefficient of

friction on the fault region. The initial conditions are denoted

by w0 and w1, that is,

wð0, x, yÞ ¼ w0ðx, yÞ , Lw

Lt
ð0, x, yÞ ¼ w1ðx, yÞ : (12)

Since it is our intention to study the evolution of the elastic

system near an unstable equilibrium position, we shall suppose

that ty
?=Sms, where ms=m(x, 0) is the static value of the

friction coefficient on the fault. We note that taking w as

a constant satisfies eqs (8)–(11); hence ww0 is a metastable

equilibrium position, and w0, w1 may be considered as a small

perturbation of the equilibrium. We shall assume that the

friction law has the form of a piecewise linear function:

kðx, dwÞ ¼ ks �
ks � kd

Lc
dw dwƒLc , (13)

kðdwÞ ¼ kd dw > Lc , (14)

where ms and md(ms>md) are the static and dynamic friction

coefficients, and Lc is the critical slip. Let us assume in the

following that the slip dw and the slip rate htdw are non-

negative. Bearing in mind that we deal with a fault plane

and with the evolution of one initial pulse, we may (for sym-

metry reasons) put w(t, x, y)=xw(t, x, xy), hence we con-

sider only one half-space y>0 in eqs (8) and (12). With these

assumptions, eqs (9)–(11) become

wðt, x, 0Þ ¼ 0 , for x1!f , (15)

Lw

Ly
ðt, x, 0Þ ¼ �awðt, x, 0þÞ if wðt, x, 0ÞƒLc , for x [!f ,

(16)

Lw

Ly
ðt, x, 0Þ ¼ �aLc if wðt, x, 0Þ > Lc , for x [!f , (17)

where a is given by eq. (2). Since the initial perturbation

(w0, w1) of the equilibrium state ww0, is small, we have

w(t, x, 0+)jLc for ts[0, Tc] for all x, where Tc is a critical

time for which the slip on the fault reaches the critical value Lc

at least at one point, that is, supxsCf
w(Tc, x, 0+)=Lc. Hence

for a first period [0, Tc], called in what follows the initiation

period, we deal with a linear initial and boundary value

problem (8), (12) and (16).

2.2 The nondimensional problem and its spectral
expansion

In order to obtain a non dimensional formulation let us

introduce a the characteristic length i.e. we put

x1 ¼:
x

a
, x2 ¼:

y

a

and we introduce the following nondimensional constant

b ¼ aa ¼ a
ðks � kdÞS

GLc
: (18)

Let us use the same notation Cf for the fault region in these new

coordinates (i.e. x1sCf if xsCf). From eqs (8), (12) and (16)
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we deduce

L2w

Lt2
ðt, x1, x2Þ ¼

c2

a2
+2wðt, x1, x2Þ (19)

wðt, x1, 0Þ ¼ 0 , for x11!f , (20)

Lw

Lx2
ðt, x1, 0Þ ¼ �bwðt, x1, 0Þ , for x1 [!f , (21)

wð0, x1, x2Þ ¼ w0ðx1, x2Þ ,
Lw

Lt
ð0, x1, x2Þ ¼ w1ðx1, x2Þ : (22)

Let us consider the following eigenvalue problem con-

nected to eqs (19)–(22): find W:RrR+pR and l2 such thatÐþ?
�?

Ðþ?
0 ’2ðx1, x2Þdx1dx2=1 and

+2’ðx1, x2Þ ¼ j2’ðx1, x2Þ for x2 > 0 , (23)

’ðx1, 0Þ ¼ 0 , for x11!f , (24)

L
Lx2

’ðx1, 0Þ ¼ �b’ðx1, 0Þ for x1[!f : (25)

Since we deal with a symmetric operator we have real-valued

eigenvalues l2, i.e. l is real or purely imaginary. This symmetry

property is specific to the slip dependent friction law used here.

The solution of eqs (19)–(22) can be generically written

(in its spectral expansion) as:

w ¼ wd þ ww ,

where wd is the ‘dominant part’ and ww is the ‘wave part’, given

by:

wdðt, x1, x2Þ

¼
XN�1

n¼0

coshðcjjnjt=aÞW 0
n þ a

sinhðcjjnjt=aÞ
cjjnj

W 1
n

� �
’nðx1, x2Þ ,

(26)

wwðt, x1, x2Þ

¼
X?
n¼N

cosðcjjnjt=aÞW 0
n þ a

sinðcjjnjt=aÞ
cjjnj

W 1
n

� �
’nðx1, x2Þ :

(27)

where (ln
2, Wn) are the associated eigenvalues and eigenfunctions

of eqs (23)–(25), and

W 0
n ¼

ðþ?

�?

ðþ?

0

’nðx1, x2Þw0ðx1, x2Þdx1dx2 , (28)

W 1
n ¼

ðþ?

�?

ðþ?

0

’nðx1, x2Þw1ðx1, x2Þdx1dx2 , (29)

the projections of the initial data on the eigenfunctions. Let N

be such that

j2
0 > j2

1 > ::: > j2
N�1 > 0 > j2

N > :::

The use of the expression of the dominant part wd instead of

w leads to a solution in which the perturbation is severely

smoothed by the finite wavenumber integration. However,

after a while, the propagative terms become negligible and the

shape of the slip distribution is almost perfectly described by

the dominant part.

2.3 Stability analysis; the static eigenproblem

One can easily remark that ww0 is a stable position if l0
2<0

(i.e. N=0). In this case the dominant part wd vanishes and the

system has a stable behaviour. Hence it is important to obtain a

condition on b, that determines the positiveness of the eigen-

values l2. Since b is nondimensional such a condition depends

only on the geometry of Cf (number of fault segments) and

completely characterizes the stability. In order to perform

a stability analysis let us introduce the eigenvalue problem

corresponding to the static case: find w:RrR+pR and b such

that
Ðþ?
�?

Ðþ?
0 r2ðx1, x2Þdx1dx2=1 and

+2rðx1, x2Þ ¼ 0 ; for x2 > 0 , (30)

rðx1, 0Þ ¼ 0 , for x11!f , (31)

Lx2
rðx1, 0Þ ¼ �brðx1, 0Þ for x1 [!f : (32)

This problem has a sequence of positive eigenvalues

0<b0<b1< . . . with limnp? bn=+?. The eigenvalues bk

are closely related to those of the dynamic eigenvalue

problem (23)–(25). Indeed, they correspond to the inter-

section points of the increasing curves bplk
2(b) with the axis

l2=0 (i.e. lk
2(bk)=0). The first eigenvalue b0 has a major

signification in the static stability analysis:

if a
ðks � kdÞS

GLc
¼ b < b0 then w:0 is stable : (33)

3 THE F IN ITE ELEMENT APPROACH

In order to use a FEM, the finite fault zone is embedded in

a bounded elastic domain V=]xL, L[r]0, L[. The infinite

elastic half space is limited by a fictitious boundary all over

which the displacement is negligible. So that we impose a null

displacement along Cd, the part of the boundary of V which is

not on the fault Cf (see Fig. 1). Let us give first the variational

formulation of (23)–(25) : find W :VpR and l2 such that W=0

on Cd andð
)
+’ðx1, x2Þ .+oðx1, x2Þdx1dx2 � b

ð
!f

’ðx1, 0Þoðx1, 0Þdx1

¼ �j2

ð
)
’ðx1, x2Þoðx1, x2Þdx1dx2 ,

for all functions osVh (Vh is a finite element space of dimension

N, composed of continuous and affine functions over each

triangle) such that o=0 on Cd. The domain V has a polygonal

boundary CdnCf. Therefore it is possible to cover exactly V
with triangles. V is meshed using Delaunay conditions. The size

of the elements decreases as we get closer to Cf, where a strong

variation of the stress is expected. Let {e1, e2, . . . , eN} be the

canonical base of Vh and let us denote by

Mij ¼
ð
)

eiðx1, x2Þejðx1, x2Þdx1dx2 ,

Kij ¼
ð
)
+eiðx1, x2Þ .+ejðx1, x2Þdx1dx2 ,

Bij ¼
ð
!f

aeiðx1, 0Þejðx1, 0Þdx1
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mass, stiffness and boundary matrices. If we put

’ðx1, x2Þ ¼
XN

i¼1

Fieiðx1, x2Þ , rðx1, x2Þ ¼
XN

i¼1

fieiðx1, x2Þ

then the eigenvalue problems (23)–(25) and (30)–(32) can be

written as :

ðK � BÞF ¼ � j2MF , Kf ¼ bBf : (34)

The stiffness matrix is factorized using a Cholevsky decom-

position. The results are fed to a numerical solver based upon

an Arnoldi-Lanczos algorithm that provides good approxi-

mations of the couples (li
2, Wi). The positive eigenvalues con-

tribute to the dominant part of the slip evolution. The largest

one, l0
2, governs the essential of the slip evolution and controls

the duration of the initiation phase.

4 THE CASE OF ONE HOMOGENEOUS
FAULT

We consider the case of one homogeneous fault of length 2a

embedded in an elastic half space V=[xL, L]r[0, L], as

shown in Fig. (1). We have chosen L large enough (L=10a) to

reduce the influence of the fictitious boundary conditions.

In order to verify the accuracy of the FEM we computed the

static spectral problem. We compare the eigenvalues obtained

by a FEM with 250 points on the fault with the results obtained

by Dascalu et al. (2000) with a more accurate integral equation

method with a finer grid of 1000 points along the fault. We

find that the finite element method employed here provides

good approximations of the {bi}. The resolution of this spectral

problem by two independent numerical methods validates both

of them.

Fig. (2) presents the normalized eigenfunction Q0(x, y) corres-

ponding to b0. The maximum amplitude is attained at the

centre of the fault. Outside the fault (y>0), the amplitude of

Q0 decays rapidly. The shape of Q0 agrees with the unstable

evolution of the slip velocity on the fault, as computed by a

finite difference method.

4.1 Influence of the weakening parameter on the
spectrum

For a finite fault of length 2a, the unstable behaviour is pro-

moted if the weakening parameter b=aa>b0. In the following,

we consider that this condition is always satisfied. The goal is

now to compute the dynamic positive eigenvalues associated

with the unstable behaviour. We focus here on the dependence

of the positive eigenvalues {li}i=1,n on the weakening para-

meter b. The curves l0=L0(b), l1=L1(b) and l2=L2(b)

are presented in Fig. 3. As expected, the number of positive

eigenvalues depends on the value of b. When b<b0, there

is no positive eigenvalue. We have seen that in such a case, the

fault is stable. When b0<b<b1, we have only one positive

eigenvalue and so on. l0
2, the largest positive dynamic eigen-

value plays a significant role in the unstable behaviour. It is

associated with the eigenfunction W0(x, y) that corresponds to

the fundamental mode of deformation of the system. The curve

l0=L0(b) is monotonically increasing. This means that large

values of b lead to very unstable behaviour. The asymptotic

behaviour of the function L0 when bp+? is l0=b, also

obtained for an infinite fault. For high weakening rate, a finite

Figure 1. Geometry of the problem. Cf=[xa, a] is the frictional surface. Cd is the fictitious boundary. V=[xL, L]r[0, L] is the elastic half

space. x and y are the two coordinates. For symmetry reasons, we consider only y>0 values. V is meshed with triangular elements using Delaunay

conditions. Note the increase in the number of elements near the fault Cf.
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fault behaves like an infinite fault. That is, the fault finiteness

is not important in the qualitative behaviour of the system.

Eq. (4) leads to:

lc ¼
an
b

(35)

Consequently, we have:

lim
b??

lc ¼ 0 (36)

Practically, when b is sufficiently high, we have lc%a. A ‘free’

initiation process is possible, like on an infinite fault. The same

qualitative behaviour would be expected if a was kept constant

and ap+?. When a is large enough, the relation lc%a is also

satisfied, and the finite fault behaves like a infinite fault.

4.2 Accuracy of the spectral approach

In the previous section, we focused on l0
2, the largest positive

eigenvalue. The underlying idea is that l0
2 and W0(x, y) are

associated with the dominant part of the unstable evolution.

The question is to know whether this assumption is correct, or

not. To clear this point, we compute the slip rate evolution on

a finite fault, either with a finite difference method or a finite

element method. We consider a linear slip dependent friction :

kðuÞ ¼ max ks �
ks � kd

Lc
u, kd

� 	

where u is the slip, ms and md the friction coefficients and Lc

the critical slip. We take ms=0.8, md=0.72, Lc=0.17 m. The

weakening rate a is given by eq. (2). S=rgz is the normal stress

computed at a depth of 5000 m, and G=rc2 is the rigidity

modulus. The fault half length a is 500 m. We finally get:

b=aa=1.3. According to Dascalu et al. (2000), we expect

only one positive eigenvalue l0. Fig. (4a) presents the slip rate

evolution on a finite fault, computed by a finite difference

method over a period of 2 s. The initial perturbation propagates

on the fault. After a few reflections, another process appears.

This is the development of the unstable behaviour, charac-

terized by an exponential growth with time. Fig. (4b) presents

the same slip rate evolution, computed with the finite element

spectral method. The agreement between the two methods

is good. The main difference is that the dominant part,

characterized by (l0
2,W0(x, y)) does not take into account the

propagative part of the solution. However, the dominant part

gives a correct description of the slip rate distribution. We can

conclude that the dominant part represents essentially the

unstable behaviour of the fault, and that the assumption that

we made is correct. The finite element method allows to

investigate the fault behaviour when bpb0, that is when l0p0.

For these values, long initiation duration are expected. Fig. (5)

presents the slip evolution on a finite fault with a weakening

parameter b=b0+e. The computation gives l0=5.10x4. The

corresponding critical time (initiation duration) is Tc=2000 s.

For such a value of Tc, the finite difference method is inefficient.

The slip evolution is so slow that numerical noise dominates

over the initiation process. The model and the numerical

method that we present here is able to produce long initiation

duration (more than 30 minutes in this example). The spectral

analysis that we propose is valid for any l0>0, even for really

small values close to zero. So it is theoretically possible to

produce a very broad range of initiation duration, even with

this extremely simple model of a finite fault with linear friction.

Figure 2. The first nondimensional static eigenfunction Q0(x, y). The maximum is located at the centre of the fault. The distribution of Q0 on the fault

is in good agreement with the slip distribution obtained by FDM. We note the rapid decay of Q0 with x2 the perpendicular coordinate.

Figure 3. The functions l0=L0(b), l1=L1(b), l2=L2(b) and the

asymptote l=b. Note that positive eigenvalues are reached when b>b0.

The static eigenvalues bi can be seen in connection with the dynamic

spectral problem. The bi are defined as it follows: {bi /Li(bi)=0}.
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5 FAULT INTERACT ION

Up to now, we have considered only a simple homogeneous

fault. However, it is obvious that faults are heterogeneous,

composed of segments that may or may not interact. This last

point is of importance in earthquake studies. The interaction of

fault segments is a key issue in the prediction of the highest

possible magnitude of the next event. In this section, we study

the possible interaction of fault segments during the initiation

process. This problem is completely different from the possible

interaction of fault segments during the propagation of the

rupture front.

5.1 Interaction of two fault segments

We consider here the case of a fault zone composed of two

identical frictional segments (each of length 2a) separated by a

rigid barrier of variable size. The goal is to show the reality of

the interaction between the two segments during the eventual

initiation process. We use the numerical approach already

described to investigate the behaviour of the fault system. The

distance between the two segments is variable. We solve the

static spectral problem and compute the value of b0 for different

spacing between the segments. The results are presented in

Fig. (6). As physically expected, the constant b0 for the system

decreases as the distance between the two segments decreases,

which proves the interaction between the two segments. On

the contrary, when the distance between the segments increases,

b0 also increases up to the constant of stability of an homo-

geneous fault. That is the two segments do not interact any-

more. The maximum distance of interaction is of the order of

10a, where a is the half length of a segment.

5.2 The case of an heterogeneous fault

We consider a fault composed of several (11) segments, all

identical, with the same weakening rate blocal, separated by rigid

barriers. We aim to show that the dynamic behaviour of this

complex fault system is equivalent to the dynamic behaviour of

a simple homogeneous fault with a weakening rate bequivalent.

The static spectral problem associated to this complex geometry

(a)

(b)

Slip Rate (m s_1)

Slip rate (m s_1)

Figure 4. Comparison of the finite difference (a) and the finite element (b) methods. The parameters are given in the text. We note that the dominant

part wd(t, x, y) provides a correct description of the unstable evolution of the slip.

Figure 5. The unstable behaviour of the slip evolution may take time

to develop as l0p0. In this example, the critical time Tc is about 2000

seconds. The beginning of the slip velocity evolution is so slow that it is

often qualified of ‘quasistatic’ growth.
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is solved. We get b0=10.3. The weakening parameter of each

individual segment has to be greater than b0 to promote the

unstable behaviour of the fault system. We choose blocal=
13.08. Then, the dynamic spectral problem is solved for this

particular geometry.

Fig. (7) presents the first dynamic eigenfunction W0
h corres-

ponding to the heterogeneous fault system. This eigenfunction

has to be compared to Q0, computed for one fault segment and

presented in Fig. (2). At the first glance, these two functions

look very similar. However, W0
h is highly heterogeneous in the

close vicinity of the fault. On the other hand, the global shape

(envelope) is similar to Q0, which seems to indicate that the

heterogeneous system behaves like an homogeneous one. The

largest eigenvalue is computed to be l0
h#4.6 and is associated

with W0
h. With the help of the curve l0=L0(b) (defined for

one homogeneous fault segment) presented in Fig. (3), it is

possible to derive the value of the corresponding weakening

parameter:

b ¼ "�1
0 ðjh

0Þ

A homogeneous fault with such a weakening rate will lead

to l0=l0
h. We argue that this particular value of b is the

Figure 7. First dynamic eigenfunction W0
h of the heterogeneous fault system.

Figure 6. Interaction of two fault segments. Two identical fault

segments (of length 2a) are distant from d, variable. The constant of

stability b0 of the system is computed. Note the decreasing of b0 as d

decreases. The distance of interaction is of the order of 10a. Over this

distance, the universal constant of stability is nearly constant and

equals the constant of stability of one fault segment (dashed line).
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equivalent weakening rate. That is:

bequivalent ¼ "�1
0 ðjh

0Þ (37)

This last hypothesis will be discussed in next section.

6 THE IN IT IAT ION PATTERN :
A POSS IBLE S IGNATURE OF
INSTAB IL ITY

6.1 Case of one homogeneous fault

Characterizing the unstable behaviour of a fault will be a step

in earthquake prediction. Through eq. (1) we have seen the

simple dependency of the dominant part of the unstable slip

evolution with respect to the y coordinate in the case of an

infinite fault. This can be presented as follows

� Lywdðt, x, yÞ
wdðt, x, yÞ ¼ a , everywhere in R|Rþ , (38)

i.e. during the initiation phase the linear weakening con-

dition on the fault is transmitted everywhere in the interior of

the elastic medium. This property can be a candidate for the

signature of the instable evolution of the finite fault model.

The question is how to find a similar property in case of a

finite fault. Let us suppose that we deal with a slow initiation

(i.e. N=1, l1
2<0<l0

2%1) or we can neglect the contribution

of all the other eigenfunctions with respect to the first one

(i.e. 0<l2
Nx1< . . .<l1

2%l0
2). In this case

wdðt, x1, x2Þ

& coshðcjj0jt=aÞW 0
0 þ a

sinhðcjj0jt=aÞ
cjjnj

W 1
0

� �
’0ðx1, x2Þ ,

and the associated ratio given by eq. (38) can be deduced as:

Bbðx1, x2Þ ¼ � Lx2
’0ðx1, x2Þ

’0ðx1, x2Þ
, (39)

This ratio represents the information about the weakening

rate of the fault, when it is defined. Actually, Bb is defined

everywhere on VxCd. On Cc (x2=0) we have the relation

Bb=b. Fig. (8) presents the function Bb0
(x1, x2) computed in

the static case. We have focused on the behaviour of Bb0
close

to the fault Cc. The minimum value of the function is b0. It is

reached on the fault and on a small domain close to the fault.

Note the typical shape of the function, organized in a band of

the size of the fault length. Fig. (9) presents some computations

for different weakening rates b for 1.2–5. The general shape of

Bb is the same for all b and then defines an initiation pattern

that qualitatively characterizes the unstable behaviour of the

fault. The most interesting point is the existence of a domain of

Bb over which Bb(x, y)=b. This signifies that the weakening

parameter can be measured in the surrounding elastic body. We

can define now the domain of confidence as the part of the

Figure 8. Map view of the function Bb0
(x1, x2). Note the typical shape of the function in the vicinity of the fault surface Cf (emphasized by the

black lines). Note also that the minimum of the function is b0 and that this minimum is reached on Cf and on a small domain close to the fault.
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elastic body where the previous property is satisfied:

DcðbÞ ¼ fðx1, x2Þ; Bbðx1, x2Þ ¼ bg (40)

The fault surface Cf is always included in Dc. The extension

of the domain of confidence is an increasing function of the

weakening rate b. From the relation between l0 and b (see

Fig. 3) and the measure of b over the domain of confidence,

it is possible to get the largest positive eigenvalue. Since the

initiation duration is inversely proportional to l0, we are able

to prescribe a critical time, that is we can predict the time of

occurrence of the future event.

6.2 Case of an heterogeneous fault

We consider the case of a fault zone composed of eleven

identical frictional segments (described in Section 5.2). We now

compute the function Bb(x1, x2) for this complex fault system.

The result is presented in Fig. (10). As already seen, close to

each individual fault segment, an initiation pattern develops in

the elastic medium, associated with a local domain of con-

fidence over which blocal can be measured. The striking feature

of Fig. (10) is the existence of a wide domain over which

Bb(x1, x2) is nearly constant, independent from the individual

fault segments but closely related to the whole fault system. All

over this domain, we have the following relation:

� Lx2
’0ðx1, x2Þ

’0ðx1, x2Þ
¼ bequivalent

That is, all over this wide domain, it is possible to measure

the collective behaviour of all the fault segments, similar to the

behaviour of an homogeneous fault with b=bequivalent. Some

strong results arise from these computations:

(i) An initiation pattern develops inside the elastic medium

and is characteristic of the unstable behaviour of the fault

system.

Figure 9. Map view of the Bb(x1, x2) in the vicinity of the fault for different values of the weakening parameter. From left to right and top to bottom:

b=1.2, 1.5, 3, 5. Note the same shape of the function in the four different cases. The black line emphasizes the limit of the domain of confidence over

which the function is nearly constant and equals b. The size of this domain is an increasing function of b.
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(ii) The collective behaviour of all the segments is transmitted

in the medium and can be measured over a wide domain.

(iii) There is a spectral equivalence between a complex

heterogeneous fault (blocal, l0
h, W0

h) and an homogeneous fault

(bequivalent=L0
x1(l0

h), l0=l0
h, W0).

These results are in perfect compliance with those of Campillo

et al. (2001), who used finite difference time domain com-

putations to demonstrate the accuracy of an effective friction

law deduced from the properties of the strain field inside the

elastic body.

7 D I SCUSS ION

The unstable behaviour of a fault is successfully modelled by

the dominant part of the slip rate evolution. The model that we

develop in this paper is rather simple: a finite homogeneous

fault under a linear slip dependent friction law, characterized

by the weakening rate a and its half length a through the para-

meter b=aa. This model produces long initiation duration, up

to at least 30 minutes, as presented in Fig. (5). Many other

processes may be involved in the initiation process over such a

long period of time. We do not argue that these physical

mechanisms, such as fluids effects, are not important, we just

show that a simple fault model can produce a very broad range

of initiation durations with no need for other mechanisms.

We have shown that the analysis we performed on a

finite homogeneous fault remains valid for a heterogeneous

fault. The collective behaviour of interacting fault segments is

very similar to the homogeneous finite fault behaviour. The

equivalent weakening rate is given by the relation l0=L0(b).

The equivalence is complete in terms of initiation process,

that is l0 is the same for the two faults. Therefore, the critical

time (the initiation duration) is the same in both cases. The

equivalent homogeneous fault is a sort of homogenization of

the complex fault. This technique may be used for different

scales of heterogeneity to provide a correct description of the

global behaviour of complex, highly heterogeneous fault systems.

However, the homogenization implicates the loss of infor-

mation on how the rupture process will develop in detail. The

rupture complexity observed both in laboratory experiments or

in strong motion inversions will be lost by these homogenization

techniques.

The transmission of information about the weakening rate

the elastic medium offers the possibility to constrain the time of

occurrence of the next event, even without knowing anything

on the fault. The existence of an initiation pattern associated

with the unstable behaviour of the fault and the measure of the

function Bb(x, y) is sufficient to give a good approximation

of l0, and therefore to prescribe the critical time. However

interesting these results may be, they have to be confirmed by

other methods, and moreover they have to be extended to the

3D case. Many other parameters have to be taken in account,

such as the fault geometry or the orientation of the fault plane.

This study appears like a first attempt to recognize and

characterize a possible signature of the unstable behaviour of a

fault, that is an initiation pattern.

Figure 10. Map view of the function Bb(x1, x2) in the vicinity of the fault zone, composed of 11 interacting fault segments. Note the local initiation

pattern associated with each of the fault segment, and also the global initiation pattern. The black line limits the global domain of confidence

associated with the unstable behaviour of the whole fault system. All over this domain, the function Bb(x1, x2)#bequivalent.
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8 CONCLUS IONS

We presented a numerical method based on the finite elements

techniques to study the problem of the initiation process on

a finite fault. This method allows accurate computations

for large eigenvalues which is not the case for the numerical

approach based on the integral equations proposed by Dascalu

et al. (2000). In case of an unstable fault, we show that the

catastrophic evolution of the slip rate is successfully modelled

by the dominant part, formed by the contributions of the

positive eigenvalues. We give the relation l0=L0(b) between

the weakening rate b and the largest positive eigenvalue l0 that

largely controls the unstable behaviour. We show that some

information about the weakening rate b is transmitted in the

elastic medium over a domain of confidence. We present the

initiation pattern associated with the unstable behaviour. This

analysis remains valid for more complex fault systems. We

show the complete equivalence, in terms of initiation process,

between a heterogeneous fault characterized by (blocal, l0
h, W0

h)

and a homogeneous fault characterized by (bequivalent, l0
h, W0)

where bequivalent=L0
x1(l0

h). These preliminary results have to be

confirmed by other methods, and moreover, they have to be

extended to the 3D case.
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