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Abstract. Numerical simulation of the rupture process is usually performed under 
an assumption of scale invariance of the friction process although heterogeneous 
fault properties are shown by both direct observations of surface crack geometry and 
slip inversion results. We investigate if it is possible to define an effective friction 
law for a finite fault with a small-scale heterogeneity, that is, with a distribution 
of narrow segments with a resistance to rupture higher than the rest of the fault. 
We consider a model where the local boundary condition corresponds to a linear 
slip-dependent friction law. We define the effective slip-dependent friction law by 
analogy with the theoretical spectral solution for the initiation phase in the case 
of a homogeneous infinite fault. We use finite difference simulations to test the 
validity of this approach. The results show a surprisingly good agreement between 
the calculations for the complete heterogeneous fault model and for a homogeneous 
fault with an effective friction law. The time of initiation and the average of the slip 
velocity on the fault are well predicted by the effective model. The effective friction 
law exhibits a nonlinear slip dependence with an initial weakening rate different 
from the one of the local laws. This initial weakening rate is related to the geometry 
of the heterogeneity and can be obtained by an eigenvalue analysis. The effective 
law shows a kink at a slip that corresponds to the average slip on the fault for which 
the stress concentration of the strong segments is sufficient to trigger their rupture. 
While based on a rather simple model of a fault, these results indicate that an 
effective friction can be defined and used for practical purposes. The heterogeneity 
of a fault tends to decrease the initial weakening rate of the local weak patches. 
Since the initial weakening rate controls the initiation duration, this last point 
indicates that the duration of initiation expected from actual heterogeneous faults 
is much larger than the one deduced from small-scale laboratory measurements. 
The actual fracture energy is not conservative in the rescaling of the friction law. 

1. Introduction 

Friction is a phenomenon that concerns both micro- 
scopic and macroscopic scales. The origin of friction has 
to be found in the hard contacts between two rough sur- 
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faces. The phenomenon is observed in seismology at the 
scale of the seismic waves, that is kilometric. Hence the 
fault heterogeneity described by the inversion of seismo- 
logical data by Hartzell and Heaton [1983], Archuleta 
[1984], and Cotton and Campillo [1995] is also of kilo- 
metric scale. The smallest scales of heterogeneity can- 
not be obtained directly. Even the laboratory measure- 
ments [Dieterich, 1979; Ohnaka and $hen, 1999] do not 
represent the local boundary condition at the micro- 
scopic scale but the macroscopic frictional behavior of 
the elastic bodies in contact at the scale of the samples. 
The geometry of the contact, let us say the roughness, 
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Figure 1. (a) Static friction coefficient on the fault. The extremities are assumed to be unbreak- 
able. (b) The friction law on the strong (solid line) and weak (dashed line) patches. 

has been shown to be a decisive parameter for frictional 
behavior [Scholz, 1990]. The contact can be modeled at 
different scales as a nonlinear process resulting in a fric- 
tion law. Models of a macroscopic slip-dependent fric- 
tion law have been proposed from the analysis of the mi- 
croscopic physical behavior of a rough surface of contact 
[see Matsu'ura et al., 1992]. In the classical approach 
of the nonlinear problem of slipping with weakening, 
the scale invariance is implicitly assumed for crack the- 
ory [Andrews, 1976; Madariaga, 1976; Fukuyama and 
Madariaga, 1998]. In these theories the same effective 
friction law is assumed for every time scale or space 
scale. The aim of this paper is to investigate this as- 
sumption using simple numerical experiments. We aim 
to check the assumption that there exists an equivalent 
macroscopic friction law for the problem of a fault with 
small scale strength heterogeneity. By equivalent, we 
mean that this "macroscopic" effective law is sufficient 
to describe the global behavior of the fault. 

Our analysis concerns primarily the initiation phase 
which is an unstable and highly dynamic stage of rup- 
ture. This stage corresponds to the evolution of the 
friction from its static level to its dynamic value. It 
is therefore the best stage to describe the friction evo- 
lution. Indeed, the friction law governs also the rup- 
ture propagation and one of our objectives is to test 
the accuracy of an effective friction law in the descrip- 
tion of the complete process. We performed numerical 
experiments based on the finite difference method de- 
scribed by Ionescu and Campillo [1999]. The present 

paper concentrates on a single change of scale from the 
point of view of classical mechanics. We expect that 
this type of approach can provide useful information 
about the rules of scaling that can be included in more 
general conceptual models of earthquake behavior such 
as those based on simplified interaction between ele- 
mentary patches [Burridge and Ii'nopoff, 1967; Carlson 
and Langer, 1989] or based on a hierarchical approach 
[Narteau et al., 2000]. 

2. Heterogeneous and Equivalen• 
Problems 

The macroscopic behavior of a fault with small-scale 
heterogeneity of rupture resistance is difficult to relate 
to the local properties of the fault. Since the friction 
law appears as a local boundary condition, the local 
(microscopic) properties are kept fixed in the global pro- 
cess. A formal measure of the friction on the fault itself 

would just be a local particular law, that is varying with 
the position along the fault. In this paper we focus on 
the following question: How can we obtain an effective 
(equivalent) friction law which, used on a homogeneous 
fault, leads to a slip evolution similar to the one pro- 
duced on the heterogeneous fault? 

We now present the heterogeneous and equivalent ho- 
mogeneous problems. In the following, we shall denote 
with the indexes h and ½ the fields, equations, laws, etc., 
attached to the heterogeneous and equivalent problem, 
respectively. If no index is used, it means that the field 
or equation is the same for both problems. 
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Figure 2. Comparison between the initiation on (left) a homogeneous and (right) an inho- 
mogeneous finite fault. The distribution of strength is presented on top of the evolution of slip 
velocity on the fault. 

We consider the antiplane shearing on a finite fault 
y = 0, IxJ < a of length 2a, denoted by rl, lim- 
ited by unbreakable barriers, in a homogeneous linear- 
elastic space. The contact on the fault is described by 
a slip-dependent friction law. We assume that the dis- 
placement field (u•, uy, uz) is 0 in directions Ox and Oy 
and that uz does not depend on z. The displacement 
u• is therefore denoted simply by w(t, x, y). The elas- 
tic medium has the shear rigidity G, the density p and 
the shear velocity c = V/G/p. The nonvanishing shear 
stress components are erz• = r• + GO•w(t, x, y) and 
er•y = r• + GOy w(t, x, y), and the normal stress on the 
fault plane is O'yy -- -S (S • O, that is the compression 
stress is negative). 

The equation of motion is 

02w (t x, y)- c2V2w(t x y) Or2 , , , , (1) 

for t > 0 and (x, y) outside of the fault ri. 
Concerning the boundary conditions on r i, we have 

and the friction law. For the heterogeneous problem, 
the slip-dependent friction law is 

for •]] I•1 < •, wh• 5,w•(t,•) = 1/2 [wh(t,x, 0 +) - 
w h (t, x, 0-)] is the half of the relative slip and ttn (x, 5w) 
is the coefficient of friction on the heterogeneous fault 
which will be described below. We consider here a se- 

ries of strong patches of width b which are evenly dis- 
tributed on the fault (see Figure l a). They form a sur- 
face of strong resistance r• with a large static Diction 
coefficient •] - yn(x,0) if x 6 F•. The other part 
of the fault, denoted F•, has a weak static resistance 
• - y•(x, 0) if x 6 F•. It is composed of a series of 
weak patches of width bw. We call • - • -• > 0 
the increase of static resistance on the barriers. Every- 
where on the fault we •sume a linear slip-weakening 
friction. The dynamic friction • and the critical slip Lc 
are assumed constant on the fault. In conclusion, the 
heterogeneous friction coefficient •n(x,5w) is a piece- 
wise linear function illustrated in Figure lb and given 
by 

• (•, •w) - • - ": - • •w ß e r• (•) Lc • • 
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for all 5w < Lc and 

5w > < a. (7) 

To simplify our analysis, we consider here the same dy- 
namic friction/•d on the weak and strong fault. 

On the equivalent fault we shall consider a homo- 
geneous friction law (i.e., ju is not dependent on the 
position x on the fault): 

= > o, (8) 

(9) 

for •n Izl < •, where Sw•(t, x) = 1/2 [w•(t, x, 0 +) - 
w•(t, x, 0-)] is the half of the relative slip and y•(dw) 
is the coefficient of friction on the equivalent (homo- 
geneous) fault. Note that for the equivalent problem 
we will not assume a linear slipweakening. Indeed, be- 
cause of the progressive breaking of the barriers, the 
slip-weakening properties of the heterogeneous fault are 
changing during the process. As a consequence, we ex- 
pect that the slipweakening of the effective fault have 
to change resulting in a nonlinear slip-weakening law. 
Since in the case considered here, the dynamic friction 
coefficient is homogenous on the heterogenous fault, the 
effective friction law will eventually exibit the same co- 
efficient when the weakening phase is finished every- 
where. 

The initial conditions are denoted by w0 and w•, that 
is, 

Ow 

w(O,x,y) -- wo(x,y), •(O,x,y) -- w•(x,y). (10) 
Since our intention is to study the evolution of the 

elastic system near an unstable equilibrium position, 
we shall suppose that r• - Sy• is the static value 
of the friction force on the weak part of the heteroge- 
neous fault. We remark that taking w as a constant 
satisfies (1)-(4); hence w • 0 is a met•table equilib- 
rium position, and w0, w• may be considered as small 
perturbation of the equilibrium. 

Finally, let us state the main goal of this paper: Find 
the equivalent friction law y• (5w) such that the equiva- 
lent displacement field w•(t,x, y) is a good approxima- 
tion for the beterogenous displacement field w•(t, x, y) 
obtained with a beterogenous friction law y•(x,5w) 
during the initiation and propagation stages. 

3. A Simple Heterogeneous Fault Model 

We consider a fault of finite length 2a with a - 3000 
m as presented in Figure I and described in the pre- 
vious Section 2. Note that this length can be scaled 
with respect to the friction parameters [Dascalu et al., 
2000]. A discussion of this scaling appears further in 
this section. The dynamic friction is assumed homoge- 
neous on the fault. The instability begins with a small 

perturbation of velocity at the center of the fault and 
the process is modeled with a finite difference scheme 
[Ionescu and Campillo, 1999]. We consider a medium 
with a density p - 3000 kg.m -a and a shear velocity 
c• - 3000 m.s -1. The friction law parameter for the 
weak patches are/• - 0.8, jud - 0.72 and Lc - 0.1m. 
The normal stress corresponds to a depth of 5000 m and 
its value is S = 1.4715 x 10 s Pa. These parameters of 
the models are kept constant all over the paper. 

In the first model we consider the presence of 11 weak 
patches of width b•o= 455 m separated by 10 strong 
patches of width b = 100 m corresponding to an in- 
crease of strength •/•, - 0.01 so that ju• - 0.81. While 
modest, this heterogeneity has a considerable influence 
on the development of the shear instability. This is il- 
lustrated in Figure 2. We compare the results obtained 
with and without the presence of the strong patches us- 
ing the same friction law. In the case of an homogeneous 
fault the instability develops rapidly and the slip veloc- 
ity profiles have smooth shapes. These features have 
been described by Campillo and Ionescu [1997] in the 
infinite case and by Dascalu et al. [2000] for finite faults. 
In presence of strength heterogeneity the slip velocity 
profiles display small irregularities that are indeed char- 
acteristic of the distribution of the strong patches. Fur- 
thermore, the instability development is much slower 
than for a homogeneous fault with ju, = 0.8. Our goal 
here is to check if the behavior of the heterogeneous 
fault can be reproduced by using a model of homoge- 
neous fault with an "effective" friction law. Let us first 

discuss the conditions of this numerical experiment with 
respect to the theoretical stability analysis of Dascalu et 
al., 2000. In the case of the homogeneous (weak) fault, 
i.e., 5/• = 0 in our case, they introduced a nondimen- 
sional weakening parameter/3 defined by 

/3 - ac•c c• - S(/• - ju•) (11) 
' GLc ' 

Dascalu et al. [2000] found that when/3 is larger than 
a critical value /3o = 1.15774, the instability can oc- 
cur. With the parameters used here /3 = 13.08 (i.e., 
much larger than the critical value/3o which limits the 
stability domain of the system) the homogeneous weak 
fault behaves like an infinite fault during the initiation. 
Let consider now the case of an isolated weak patch of 
the heterogeneous model. The value of/3 in this case 
is bwS(/u, w -/ua)/(2GLc) = 0.981 that is less than 
That means that such a weak patch is not long enough 
to allow the instability to develop with the friction law 
considered here. However as shown in Figure 2, the in- 
stability develops on a series of weak patches separated 
by narrow zones of resistance because of the elastic in- 
teraction between the slipping patches. This interaction 
is difficult to represent mathematically but one can eas- 
ily figure out the process by considering a simple anal- 
ogy. The presence of a series of weak patches lowers the 
apparent stiffness of the body and therefore leads to a 
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broader domain of instability than for a single isolated 
slipping patch. 

4. Dynamic Evaluation of the Effective 
Friction Law 

To obtain an effective friction law for the heteroge- 
neous fault, in this section, we rely on theoretical re- 
sults obtained for the initiation of an infinite homoge- 
neous fault. It is possible to extrapolate this results to 
the case of a finite fault when it is large enough that 
its finiteness has no influence on the initiation process, 
that is when the nondimensional parameter fi is much 
larger than /•0 = 1.1577 .... (as it was discussed in Sec- 
tion 3). For the infinite homogeneous fault, Campillo 
and Ionescu [1997] used a spectral method to separate 
the complete displacement we(t, x, y) into a "wave part" 
that corresponds to propagation of the initial perturba- 
tion and a "dominant part" w}(t,x,y) that describes 
the exponential time growth of the instability. Rapidly, 
the wave part becomes negligible and the solution can 
be identified to the dominant part, i.e., 

w • (t, x, y) •0 w}(t, x, y), 

spatial scale involved in the infinite problem. Never- 
theless, this shows that the local friction characteristics 
on the fault are governing the displacement field in an 
extended region around the fault. In this homogeneous 
case the local property on the fault (at the microscopic 
scale) is the same as the one inferred in the elastic bulk 
(at the macroscopic scale). Indeed, this reasoning is 
strictly valid in the domain of application of the lin- 
earization used by Campillo and Ionescu [1997]. When 
the slip reaches Lc, the crack propagation begins on a 
part of the fault and the problem becomes heteroge- 
neous. At the same time the stress on the fault remains 

constant and we can expect that at a point in the bulk 
close to the fault, the stress remains constant too. The 
stress-displacement relation in the bulk therefore mim- 
ics perfectly the friction on the fault, and we verify it 
numerically. For the infinite fault we saw that c•c can 
be obtained by computing the derivative of strain with 
respect to displacement. In the following, when more 
general configurations are considered, we will refer to 
this derivative as 

- 10az•y (t, x, y) 
7(t,x,y)- G Ow•(t,x,y)' (16) 

which has the form 

w}(t,x,y)- a•exp(-a•y){•_• c f0ø•/_ • __ 

-- c 

with 

where 

exp(-C•cS + ia(x - u))[ch(ctv/a• 2 - a2)wo(u, s) 

sh(ctv/•2 _ •2) (u, s)]dudsd•}, (13) q- Wl 
cv/c• • - 

(14) 

/•,= 0/• (15) 35' 

Equation (13) shows an important property of the dis- 
placement field inside the volume during the initiation 
process: the evolution of the displacement along y is 
simply described by exp(-acy). This is an almost obvi- 
ous consequence of the condition of slip-dependent fric- 
tion that can be obtained by any linearization around 
the equilibrium. In the very simple conditions consid- 
ered so far, it is an important property since it indicates 
that a parameter of the local boundary condition on the 
fault (the rate of slip weakening Ga•) can be retrieved 
directly from the knowledge of the displacement field in 

e (t,x,y) can the bulk. The shear stress in the bulk azy 
be approximated by GOyWj(t,x,y), and therefore, dur- 
ing the initiation, the derivative of strain with respect 

10a•y(t x,y) to displacement, that is, ' is equal to 
G Owe(t, x, y) 

I Oa•y(t,x,y) 
-ac. Alternatively, we note that S Ow}(t,x,y) gives 
the rate of slip weakening/• on the fault. There is no 

Let us now apply the ideas presented for the infinite 
problem to the case of a finite homogeneous fault. We 
concentrate on the initial weakening. Figure 3 presents 
the displacement field a short time after the initial per- 
turbation. At the time considered (0.23 s), the process 
is still in the initiation stage as it can be seen on Fig- 
ure 2. The processing of this displacement field leads 
to a map of the parameter 7(t,x, y), the derivative of 
shear strain with respect to displacement, that corre- 
sponded to ac in the theory of the infinite fault. This 
parameter was computed for every point where the dis- 
placement is larger than a threshold value of 10 -6 m. 
One must note the narrow range of values used in the 
representation in Figure 3. It is remarkable that the 
value of -/measured in the vicinity of the fault is pre- 
cisely the expected value for the weakening law consid- 
ered here (4.36 x 10 -a m-•). This computation shows 
that knowing the displacement field outside the fault, 
one could retrieve the weakening on the fault, even in 
the case of a finite fault when, as here, the fault length 
is much larger than the slipping patch. Indeed, for a 
homogeneous fault, it was just a formal exercise and a 
numerical validation. 

We can now study in the same way the case of a het- 
erogeneous fault such as that considered for the com- 
putation presented in Figure 2. We shall use the nu- 
merical experiments to check if the property of the ho- 
mogeneous problem can be applied to a problem with 
a heterogeneity of small scale. Our goal here is to de- 
fine a nonlocal effective friction law that can be used 

to renormalize the problem with a small-scale hetero- 
geneity into an homogeneous one. So far, there is no 
evidence that an effective friction law could be defined 

for an heterogeneous fault. 
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Figure 3. (top) Displacement at a time t - 0.23 s during the initiation as a function of x and 
y. The computation corresponds to the one presented in Figure 2. (bottom) Derivative of strain 
with respect to displacement, parameter 7, as a function of x and y at the same time. The value 
of ac associated with the friction law in the infinite fault theory is 4.36 x 10 -3 m -z. 

5. Definition of the Effective Friction 

Law and Test of Its Accuracy 

We rely directly on the analogy with the homoge- 
neous problem to define an effective or renormalized 
friction law. Using the numerical results of the het- 
erogeneous fault model corresponding to Figure 3, we 
measure in the bulk the relation between the stress and 

the slip for the initiation phase, that is, before the ar- 
rival of the waves associated with the propagation of 
crack fronts on the different sections of the fault. To 

choose the point of measure, let us examine the distri- 
bution of displacement and strain. We consider first a 
time near the beginning of the initiation phase. Figure 4 
presents the results obtained in a similar manner as was 
performed in Figure 3 for the homogeneous finite fault. 
At this point the barriers still resist, and the initiation 
occurs only on the weak patches. The heterogeneity 
of the displacement field is clearly visible on Figure 4 
(top). Indeed, this heterogeneity is also present on the 
distribution of the derivative of strain with respect to 
displacement. Nevertheless, in spite of the narrow range 
of values used in the plot it is remarkable to notice that 

at a distance from the fault larger than the width of the 
weak patches, an almost constant value of 7 is reached. 
This indicates the emergence of a simple collective be- 
havior that will be interpreted as an eigenmode in sec- 
tion 6. Note that close to the initial wave front (causal- 
ity limit), one can observe a criss-cross pattern which 
corresponds to the initial conditions that had been im- 
posed to start the instability. As it will be discussed 
in section 6, the problem remains formally unchanged 
as long as the barriers are resisting. It is interesting to 
visualize what happens when the barriers fail. When 
the first barrier begins to break, the initiation process 
accelerates, and very rapidly all of the barriers are bro- 
ken. The resistance of the fault is strongly affected, 
and we expect a large apparent weakening rate. This 
can be visualized by looking at the 7 parameter during 
this transition as it is illustrated in Figure 5. Note that 
in this case the plotting scale is much larger than in 
Figures 3 and 4. At a time of 2.4 s, the barriers are 
still resisting; 7 has a value of 1.63 x 10 -•m -1 in a 
broad region around the fault. The slip begins at the 
barriers at the center of the fault at 2.57 s. At 2.73 s, 
7 reaches a much larger value in the region around the 
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Figure 4. (top) Displacement at a time t=0.27s during the initiation, as a function of x and 
y for the heterogeneous fault. The computation corresponds to the one presented in Figure 2. 
(bottom) Derivative of strain with respect to displacement (?) as a function of x and y at the 
same time. Note the constant value of ? in a broad region around the fault. 

slipping strong patches, indicating a strong apparent 
weakening. Soon after, at 2.9 s, the entire central part 
of the fault has slipped more than Lc, and the stress on 
the fault is constant and equal to the dynamic friction. 
The corresponding apparent weakening is therefore null 

as shown in Figure 5. Again this can be observed in 
the elastic bulk. The three stages of the physical evo- 
lution of the fault are well marked in the values of •. 
This suggests that the effective friction can be found 
in the bulk at a distance from the fault of the order of 
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Figure 5. (top) The 7 parameter at the end of the initiation process and at the beginning of 
rupture propagation. Note the change of 7 with time at a given point. 

the distance between two strong patches. This can be 
expected since the elastic properties of the body have 
an averaging effect on the displacement field associated 
with the boundary friction conditions. We can check 
the accuracy of this rather naive approach by a numeri- 
cal test. In Figure 6 we present the stress-displacement 
relation that we propose to use as an effective friction 
law. It is directly derived from the numerical test at 
a point: x = 1000 m measured from the center of the 
fault and y = 400 m away from the fault. We use it 
directly as the local condition on the surface of an ho- 
mogeneous fault with the same length. Figure 6 shows 
a comparison between the slip velocity profiles on the 
fault at different times for the complete heterogeneous 
model and for the homogeneous one with the effective 
friction law. The global agreement is excellent. Indeed, 
the homogeneous model cannot account for the details 
of the profile in the heterogeneous case, but the timing 
of the growth of the instability and the average shape 
of the velocity profile at every times are perfectly repro- 
duced. The results presented in Figure 5 suggest that 
the agreement extents further the domain of initiation 
in the one of crack propagation. Part of the success of 
this comparison can be understood by considering the 
existence of a global mode of growth of the instability 
on the fault as it will be explained in the section 6. One 
can note on Figure 6 that the weakening rate of the ef- 
fective law at the origin is smaller than the one of the 
reference fault. As discussed by Ionescu and Campillo 
[1999], this weakening rate governs the duration of the 
initiation. The increase of duration of initiation due to 

the heterogeneity (as illustrated in Figure 2) is directly 
expressed in the effective law by the smaller initial weak- 
ening rate (Figure 6, middle). 

In order to investigate the domain of applicability of 
this approach, we performed a series of tests with in- 
creasing 5ps. In Figure 7 we present a comparison be- 
tween the heterogeneous model and the effective one for 
5p8 = 0.05. As already stated, an homogeneous model 
cannot account for the peculiarities of an heterogeneous 
one, as the high frequency wave radiation for example. 
Nevertheless we find again an excellent agreement con- 
cerning the timing of the instability evolution and the 
smoothed shape of the velocity profiles. This numer- 
ical expriment shows that the renormalization can be 
performed for a broad range of models and leads to 
useful results for the simulation. We performed a series 
of computations to test the sensitivity of our results to 
the numerical conditions. We verified carefully that our 
results are independent of the grid size. To do so, we 
considered a grid 2 times, then 8 times smaller, and we 
obtained almost indistinguishable effective friction laws. 
We tested also the dependence of the effective law on the 
position and shape of the initial perturbation. Again, 
the test showed the robustness of the evaluation of the 

effective law. In section 6, we enter into further details 
of the theoretical justification of our technique. 

6. Spectral Evaluation of the Effective 
Friction Law 

The spectral analysis relies on a linearization method, 
valid in the initiation phase when the stress evolves from 
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Figure 6. (top) Profile of static resistance along the fault. (middle) Effective friction law used 
in the computation. (bottom) Comparison between the complete solution (solid line) and the 
results obtained with the effective friction law (dashed lines) at the same times. 

the fault strength to the dynamic stress. Indeed, it is 
a peculiarity of the law with constant weakening rate 
used here. Campillo and Ionescu [1997] used a spectral 
method to solve the problem of the initiation of shear in- 
stability on a homogeneous infinite fault. In the case of 
an unstable finite fault with homogeneous friction prop- 
erties, the initiation develops according to a finite set of 
eigenfunctions associated with positive eigenvalues that 
govern the exponential evolution of the instability. The 
process evolution is dominated by the greatest positive 
eigenvalue A•. Indeed the displacement can be generi- 
cally written in its spectral expansion as 

w(t, x, y) -- E[ch(ctAi)Wg + sh(ctAi)l/V[](I)i(x, y), 
i----0 

(17) 

where A0 2 > A• > ... are the eigenvalues (which are 
real and satisfy limi-.oo A•--oo) and (I>i are the cor- 
responding eigenfunctions. After a period of time the 
term which involves exp(ctA0) completely dominates all 
other terms in the series, hence we can write 

w(t, x, y) • [ch(ctAo)Wo ø + sh(ctAo)W•ø](I>o(x, y). (18) 

To obtain an effective friction law for the heterogeneous 
fault, we rely on theoretical results obtained for the 
initiation of an homogeneous fault. Indeed, we shall 
define the effective or equivalent friction as the slip- 
dependent function which generates the same first posi- 
tive eigenvalue as the one associated with the heteroge- 
neous problem. As we have seen in section 5, the effec- 
tive laws can be reasonably approximated by piecewise 
linear functions (Figures 6 and 7). The two different 
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slopes shown on these figures correspond to only two 
different successive eigenvalues in the initiation on the 
heterogeneous fault. They define two periods which we 
shall refer to as early and final initiation. 

The spectral analysis is based on a linearization of 
the heterogeneous problem. The early initiation corre- 
sponds to a linear slip-weakening friction on the weak 
part of the heterogeneous fault while the barriers remain 
intact. This linearization is valid until the beginning of 
slip on one asperity that defines the end of the early 
initiation stage. 

Formally, at the beginning of the instability (i.e., in 
the early initiation) in the heterogeneous model consid- 
ered here, the problem can be linearized in the form 

of an eigenvalue problem: find the heterogeneous early 
initiation eigenfunction (I)• and eigenvalue (A•) 2 such 
that 

• is a parameter which has the dimension of a where c• w 
wave number (m- 1) given by 

- 
OZ w _• . (22) 
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Since we deal with a symmetric operator we have real- 
valued eigenvalues (A•)2, i.e., A• is real or purely imag- 
inary. This type of problem requires a numerical res- 
olution. It can be achieved quite easily using a finite 
element method (C. Volsin et al., Spectral analysis of 
the initiation process on a bounded fault region, sub- 
mited to Geophysical Journal International, 2000, here- 
after referred to a Volsin et al., submitted manuscript, 
2000). Let us denote by Ae•0, the greatest real eigenvalue 
(we suppose that it exits) and the associated eigenfunc- 
tion (I)•0 of (19)-(21). 

Let us consider now the spectral problem of the 
homogeneous case associated with the early initiation 
stage' Find the effective early initiation eigenfunction 
q)• and eigenvalue (A•) 2 such that 

vO;(x, y) = y), y > 0, 
o(x, 0) = 0, Ixl > a, (24) 

0 

Oy(x,o) - Ixl<a. (25) 
Let us denote by A[ - A(c•), the greatest real eigenvalue 
of (23)-(25). This spectral problem was already studied 
by Dascalu et al. [2000] with an integral method and 
Volsin et al. (submitted manuscript, 2000) using a finite 
element method. They computed the relation between 
the first eigenvalue A[ and the wave number c•. From 
the function A we can deduce the early initiation equiv- 
alent wave number c• and the corresponding weakening 

rate P•e - -Ga•/S for the effective model. Indeed, ae 
is deduced such that we have the same eigenvalue as in 
the heterogeneous case, i.e., A(ae e) - Ae•0 which gives 

G 
'-- - . (2d) 

For large values bwaw • •o - 1.1577..., i.e., l•rge 
,k• or "rapid" initiation, we know that the infinite fault 
solution can approximate the initiation phase on a finite 
fault [see Ionescu and Campillo, 1999]. Hence we can 
use the analytical (and not numerical) simple formula 
for A•0(a ) obtained by Campillo and Ionescu [1997] in 
the case of an infinite fault, i.e., 

A(a) • .. (2?) 

In this way we can deduce the approximative formula 
for effective weakening rate in the early initiation: 

C• •, (•8) 
As soon as the asperities begin to break, the lineariza- 
tion above loses its validity. There is then a complex 
phase with a completely nonlinear, heterogeneous prob- 
lem. Our numerical experiments indicate that once a 
barrier begins to slip, its neighbors slip very soon after. 
The change of behavior is very rapid in the cases we 
studied. When all the barriers are slipping, the problem 
again reduces to a linear problem. The linear slip de- 
pendence of the friction has two different slopes on the 
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heterogeneous fault corresponding to the weak or strong 
parts. We shall call this stage the final initiation. We 
have first considered the early stage of initiation. Let us 
find now the weakening rate of the effective friction law 
during the final initiation stage. For this we will con- 
sider the heterogeneous eigenvalue problem correspond- 
ing to the period when all the barriers are slipping, i.e., 
find the heterogeneous final initiation eigenfunction 
and eigenvalue (A}) 2 such that 

0) 
O •h (x 0) 

-- (A•)2(•(x, Y), 
- 0, Ix[ > a, 

h 

- 0), 

a ,0) - , 

y>0, (•9) 

(30) 

ß e r 7, (31) 

•. x•F! 

h is a wave number corresponding to strong where c% 
patch and given by 

C•c ' 
Let us denote by A•0 , the greatest real eigenvalue (we 
suppose that it exists) and the associated eigenfunction 
q)•0 of (29)-(32). We can deduce now the final initiation 
wave number a} and the corresponding weakening rate 
lu• - -Ga•/S for the effective model such that we have 
the same eigenvalue as in the heterogeneous case, i.e., 
A(a})- X}0 which gives 

, O • (,k.•o) (34) t9 - -•A- . 

As in the early initiation stage, for large values of 
aC•hw >>/•0 = 1.1577..., i.e., large A•, we have the ap- 
proximative formula (27) for effective weakening rate 
during the final initiation stage' 

ß 
We performed numerical computations of eigenvalues 
using the finite element approach of Voisin et al. (sub- 
mitted manuscript, 2000). Both homogeneous and het- 
erogeneous fault were considered, and we found a good 
agreement between the weakening rates presented in 
Figures 6 and 7 and the effective ones deduced from 
the eigenvalue analysis. For example, for the early ini- 
tiation, which leads to the same results for the two 
cases presented, we found an effective weakening rate 
•u• - 0.299 m- • from the results of the finite difference 
computation while we obtain a value •u[ - 0.287 m -• 
from the eigenvalue analysis. 

7. Influence of the Amplitude of the 
Friction Heterogeneity 

We present in Figure 8 the effective friction laws cor- 
responding to the reference homogeneous case, to the 
two heterogeneous cases previously considered, and to 
an heterogeneous model with 5•u, = 0.25. This last 
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value represents a very strong heterogeneity for which 
the resistance on the strong patches exceeds the normal 
stress. Figure 8 shows simple properties of the effective 
friction law. The most obvious observation is that the 

rate of weakening at the origin is the same for the three 
models, that is, independent of the amplitude of the 
perturbation. This weakening is governed by the geom- 
etry of the distribution of heterogeneities, which is the 
same for the three models. Physically, the instability ex- 
periences the same resistance until the static threshold 
on the strong patches is reached. The apparent weak- 
ening at the beginning is therefore in all cases the same 
as for a series of faults separated by unbreakable barri- 
ers. In other words, this weakening is directly linked to 

the first eigenvalue of the problem of the initiation on a 
series of finite faults. The weakening rate changes when 
the stress concentration on the strong patches reaches 
the static resistance. The weakening rate is then inter- 
mediate between those of the weak and strong patches. 
One can verify that the slip at the change in slope is 
roughly proportional to 5•u8, as expected from a sim- 
ple model of stress concentration at a crack tip. In the 
case of 5/• = 0.25 the stress-displacement relation in 
the bulk for the initiation phase is perturbed by the 
strong emission of waves produced by the rupture of 
the strong patches. We shall show in section 8 that it 
is nevertheless possible to extract an effective law from 
this curve. 
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8. Influence of the Geometry of the 
Heterogeneity 

velocity at a given time, are well reproduced by the 
effective model. 

Since the instability develops at first through the in- 
teraction between weak patches, we can expect that the 
strong patch width is an important parameter which 
controls the initial weakening rate of the effective fric- 
tion law. In order to visualize the effect of this param- 
eter, we performed a series of computations with the 
different values of b: 120,140 and 160 m and a constant 
value of 5it, - 0.05. The results are presented in Fig- 
ure 9. The plots showing the slip velocity as a function 
of position and time indicate that the initiation time 
increases with increasing barrier width. As a matter of 
fact the initial weakening rate of the effective laws, also 
plotted on Figure 9, is decreasing with increasing bar- 
rier width. When the size of the barrier or equivalently 
the distance between the cracks is increasing, the inter- 
action between the slipping patches diminishes and the 
collective instability behavior is delayed. On the other 
hand, the slip for which the change of weakening occurs 
is almost constant, as expected from the model of stress 
concentration on the strong patches. 

9. Case of a Very Strong Heterogeneity 

The case where 5tt• = 0.25 corresponds to a very 
strong heterogeneity of the fault. The weak patches can 
begin to slip at relatively low stress ( here 0.8S) while 
large stress concentration are required to overcome the 
resistance of the barriers ( here 1.05S). As shown in Fig- 
ure 8, it is difficult to identify directly an effective fric- 
tion law from the stress-displacement relation obtained 
with the numerical solution of the complete model be- 
cause of the perturbation by the very energetic waves 
produced by the rupture of the barriers. Following the 
simple two-phase interpretation presented in section 6, 
we define the friction law by a piecewise linear function. 
The initial slope defines the first segment between 0 and 
0.094 m. A second segment is given by the linear weak- 
ening observed between 0.094 and 0.125 m. The friction 
is constant for larger slip. One must note here that the 
slip for which the friction becomes constant (the critical 
slip) is larger for the effective law than for the local laws 
on both the weak and strong patches. This important 
point will be discussed in the section 10. The compar- 
ison of slip velocity profiles obtained for the complete 
model and the homogeneous fault with the renormal- 
ized law is presented in Figure 10. With the complete 
heterogeneous model the solution exhibits strong peaks 
associated with the break of the asperities, which lead 
to the bump seen in Figure 8. On the contrary, the 
homogeneous effective model produces smooth profiles. 
Nevertheless, on average, the agreement between the 
two models is excellent. The effective model is not ex- 

pected to reproduce the small-scale features of the het- 
erogeneous model. The global features, that is, timing, 
average shape of the profiles, and mean value of slip 

10. Discussion and Conclusions 

Faults are very far from idealized planes. They ex- 
hibit geometrical irregularities as well as variations in 
the elastic properties of the surrounding medium. These 
facts cannot be ignored when setting up simple friction 
models. In this cbntext the significance of the friction 
law must be questioned. Our simple numerical exper- 
iments show that the apparent friction does not corre- 
spond to a local physical property of the surface. If we 
define an effective friction law at a given length scale, 
we .find that it is widely determined by the heterogene- 
ity of resistance at the first smaller scale. Indeed this 
effect is expected from scale to scale. It is natural for 
seismologists to consider the scale of the laboratory ex- 
periments as the one at which an intrinsic property of 
the sliding surface is measured. This typical length is 
the centimeter. The length of a fault segment for a large 
earthquake is of the order of tens of kilometers, that is 
6 orders of magnitude larger than the laboatory scale. 
It is therefore not surprising that the properties of the 
faults at these different scales are completely different. 
The simple numerical experiments presented here show 
that the initial weakening rate decreases when moving 
from a small scale to a larger one in the presence of re- 
sistance heterogeneity. Since the initial weakening of a 
friction law determines the initiation duration, as dis- 
cussed by Ionescu and Campillo [1999], the results pre- 
sented here imply that the duration of the initiation is 
increasing with the scale of the event considered. More 
specifically, the initiation time associated with a large 
earthquake that develops on a large area of an heteroge- 
neous fault cannot be compared with the time deduced 
from the friction laws measured in the laboratory. In- 
deed, the initiation time can be much larger for the large 
earthquake, by orders of magnitude. 

The friction law for a seismogenic fault has been 
proposed from the analysis of records from the Lan- 

ders earthquake by Madariaga and Olsen [2000] and S. 
Peyrat et al. (Dynamic Modeling of the 1992 Landers 
Earthquake, submitted to Journal Geophysical Resetch, 
2000) in the form of a slip weakening law similar to the 
one used in our computations. They found the critical 
slip to be of the order of tens of centimenters while the 
value of the critical slip Lc is typically lttm in dynamic 
laboratory experiment [Ohnaka and Shen, 1999]. Our 
results also indicate that the critical slip of the effective 
law is larger than those of the local laws imposed on the 
heterogeneous fault. Considering an homogeneous fault 
surface of unit area, one can define the fracture energy 
density as the energy in excess to the work done against 
the constant dynamic friction. It is proportional to the 
area between the friction law and the line tt = /•! in 
Figure 1: that is, (•u, -yct)Lc/2. Physically, it corre- 
sponds to the energy spent in the irreversible processes 
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occurring during the weakening of the fault. In an het- 
erogeneous fault as the one considered in our model, 
the total fracture energy can be computed by integrat- 
ing over the whole fault. We have seen that the hetero- 
geneous problem can be renormalized at a larger scale 
through the effective friction law. An important as- 
pect of this modeling is to check the conservation of 
the fracture energy between the original heterogeneous 
model and its renormalized version. Numerically, we 
find an excellent agreement between fracture energies 
for models with weak perturbations of strength. To be 
more specific, when the critical slip of the effective law 
is equal to the one of the local law, we found an exact 
agreement. This corresponds to the cases of the mod- 
els with static friction perturbation of 2% and 10%. On 
the other hand, there is not a match when considering a 
very strong heterogeneity, such as the model with strong 
barriers where the friction increase is 25%. Under these 

conditions the effective friction law implies a fracture 
energy much larger than that of the actual model. This 
can be understood easily. One can notice in Figure 
10 that before the breaking of the strong barriers, the 
weak patches have already finished the initiation pro- 
cess and have entered locally into the phase of crack 
propagation. In other words, when the slip begins on 
the strong parts, the slip is already larger than the local 
critical slip on the weak parts. That is why the effective 
critical slip is larger than the local one. At the same 
time, the energy associated with the weakening in the 
effective model includes a part of the work done against 
the dynamic friction. In this particular case, the excess 
in fracture energy is •5%. This simple observation has 
important implications for practical analysis. The ap- 
parent critical slip Lc is much larger from earthquake 

studies (that are at a kilometric scale) than from lab- 
oratory experiments. We suggest that this difference 
is related to the strong heterogeneity of the properties 
of actual fault surfaces at every scale [see Main, 1996]. 
The larger Lc results from a process of successive renor- 
malizations. In this case the apparent fracture energy, 
deduced from seismological analysis, is a crude overes- 
timation of the actual fracture energy. 

We showed how the small-scale heterogeneity of fault 
strength can be represented by an effective friction law 
which significantly differs from the local microscopic 
laws. The presence of barriers that slow down the 
growth of the instability is accounted for in the effective 
law by an initial weakening rate that is much smaller 
than that for the local laws. This initial weakening rate 
governs the time of initiation. This apparent weaken- 
ing is dependent on the distribution of weak and strong 
parts of the fault. It can be computed directly from the 
largest positive eigenvalue of the spectral problem asso- 
ciated with the heterogeneous problem. Indeed, while 
slip is developping on the weak parts of the fault, stress 
concentrations build up on the barriers that eventually 
fail. At this point the system is changing drastically, 
even in its geometry. There is no possible lineariza- 

tion acceptable at this stage. Nevertheless, our dynamic 
computations shows that in the cases we considered, the 
system evolves very rapidly toward a new stable geom- 
etry where the entire fault is slipping. At that time, 
the effective friction exhibits a constant weakening rate 
that can be deduced from a spectral analysis. 

We have only considered here one step in the change 
of scale. The fault length being the reference scale, 
we studied the effect of heterogenity of strength with a 
characteristic length 10 times smaller. We showed the 
accuracy of an effective friction law to describe the in- 
stability at the larger scale. Indeed, since we accurately 
know the friction law only at the laboratory scale, to set 
up a macroscopic law for use in modeling large earth- 
quakes, one must perform a series of renormalizations 
taking into account the statistical properties of the fault 
heterogeneity. 
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