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Numerical divergent series resummation in fluid
flow simulation

Dina Razafindralandy, Aziz Hamdouni, Cyrille Allery

LEPTAB, Université de La Rochelle

Abstract

The perturbation theory has proved to be an efficient tool for the nu-
merical resolution of non-linear problems in mechanics. However, it is not
suitable for singular problems, for which the series solution is divergent.
We propose to use the Borel-Laplace series resummation method for the
resolution of such a problem. The resulting algorithm is applied to some
model problems in fluid mechanics.

Keywords: Perturbation techniques, Divergent series, Borel-Laplace re-
summation, Asymptotic Numerical Method.

Résumé

La théorie de perturbation est un outil efficace pour la résolution nu-
mérique de problèmes non-linéaires en mécanique. Toutefois, elle n’est pas
adaptée à des problèmes singuliers, pour lesquels la solution sous forme
de série formelle est divergente. Nous proposons d’utiliser numériquement
la méthode de resommation de séries de Borel-Laplace pour la résolution
d’un tel problème. L’algorithme résultant est appliqué à la résolution de
problèmes modèles en mécanique des fluides.

Mots-clés : Techniques de perturbation, Séries divergentes, Resommation
de Borel-Laplace, Méthode Asymptotique Numérique.

1 Introduction
Based on the perturbation theory [5] and a finite element discretization,

the Asymptotic Numerical Method (ANM) permits to solve many non-linear
problems in structure mechanics [11, 13, 12], and in low Reynolds number fluid
flow simulation [29, 8, 3]. The efficiency of ANM, compared to Runge-Kutta-like
methods, is due to its low computational cost. Indeed, the series decomposition
of the solution leads to a cascade of linear problems having the same operator.
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So, only one matrix has to be inverted. Moreover, a continuation procedure
can be used when the radius of convergence of the series is reached [9]. One
other advantage of ANM is its ability in path following and the detection of
bifurcations [3].

ANM cannot, however, be directly applied to problems having a singularity
at the origin. Indeed, in this case, the radius of convergence vanishes and
the continuation procedure cannot be performed. Usual extrapolation methods
such as Padé approximants are also inefficient. Though, a divergent series is not
uninteresting. They often appeared in astronomy problems and was used for
calculations. They may also occur in fluid mechanics. Consider, for instance,
the linear heat equation:

∂T

∂t
=
∂2T

∂x2
(1)

where T is the temperature, and t and x are the time and space variables. If
the initial condition is

T (0, x) =
1

1− x
(2)

then the formal series solution, according to t, is [21]

T (t, x) =
∑
k≥0

(2k)!

k!

1

(1− x)2k+1
tk, (3)

which is divergent at any point x of the domain.
Another example is the discretized unsteady Navier-Stokes equations, which

govern the motion of fluids. For these equations, a formal time series decom-
position leads to an interesting cascade of linear problem where the operator
does not change even if a continuation procedure is performed (see appendix).
Only one matrix inversion is then necessary during the whole simulation. One
the other hand, as shown in appendix, the radius of convergence decreases with
the square of the number of grid points. The series is “practically” divergent,
especially for turbulent flows where the number of grid points is generally very
high.

The most promising tool to treat divergent series is the Borel-Laplace resum-
mation method. This technique is a theoretical procedure developped initially
to find a sectorial analytic solution from a divergent series which is a formal
solution of an equation [14, 21, 7]. And if the formal series solution has a non-
zero convergence radius, it can be seen as an extrapolation procedure. The
method is based on the usual Laplace transformation and its inverse, the Borel
transformation. Its limit is that the series must be a Gevrey series, i.e. must
not “diverge faster than the factorial series”. Fortunately, the majority of formal
series arising from a physical problem are a Gevrey series, as proved by Maillet’s
theorem [22, 28].

In this article, we propose to adapt the Borel-Laplace resummation method
for a numerical use in real mechanics problems, particularly in fluid mechanics.
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An algorithm will be built. However, in this pioneer work, the method will
only be applied to some reduced model problems. Simplifying hypotheses are
also made. The aims of this exploration phase are to check if the Borel-Laplace
resummation technique is suitable for a numerical use, to identify the eventual
problems and to know what can be hoped when solving a non-reduced prob-
lem. The paper will be structured as follows. In Section 2, the Borel-Laplace
resummation will be very briefly exposed. In Section 3, the transposition of
the theory into a numerical algorithm will be presented. Some numerical tests
are carried out in Section 4. In appendix, an algorithm for the resolution of
the discretized Navier-Stokes equations, based on a time series decomposition
is developped and the radius of convergence is evaluated.

2 The Borel-Laplace resummation method
A complete presentation of the Borel-Laplace resummation theory would re-

quire the introduction of complex mathematical concepts. However, the mech-
anism is easy to understand and, at our stage, we do not use all these concepts.
So, they will be skipped and we will illustrate the method through two examples.
For complementary information, the reader can refer to the papers of Borel [6]
and Gevrey [16] and to more recent papers on divergent series [5, 24, ?, 15].

2.1 Two examples
To understand the mechanism of the Borel-Laplace resummation method, it

is sufficient to remark that, formally,

s̆ =
∑
k≥0

skz
k = s0 +

∫ +∞

0

∑
k≥0

sk+1

k!
ξk

 e−ξ/z dξ (4)

for any formal series s̆ =
∑
k≥0

skz
k, since

k! =

∫ +∞

0

ξke−ξ dξ. (5)

If the formal series
∑
k≥0

sk+1

k!
, called the “Borel transform” of the series s̆ − s0,

can be replaced by an analytic function at the origin and in a sector containing
the positive real axis such that the integral in [4] exists, we obtain an analytic
function in the right-hand side. This analytical function is asymptotic (in a sense
which will be more precisely defined later) to the initial series at the origin.

Consider the Euler equation:

z2
dw
dz

+ w = z. (6)
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The formal series solution of this equation is:

w̆ =
∑
k≥0

(−1)kk!zk+1. (7)

This series is divergent. A non-optimized perturbation-method-based algorithm
such as ANM would not give any analytical solution.

The Borel transform of the series [7] is∑
k≥0

wk+1

k!
ξk =

∑
k≥0

(−1)kξk.

This series can be extended to the analytic function P : ξ ∈ C−{−1} 7→
1

1 + ξ
.

Hence, the right-hand side of [4], applied to w̆, gives:

1 +

∫ +∞

0

1

1 + ξ
e−ξ/z dξ. (8)

This is an analytic function in the complex half-plane where the real part of z
is positive. This function is the “sum” of the divergent series [7]. It is a solution
of [6] and can be computed numerically.

In summary, from the divergent series [7], the resummation could provide
an analytic function which is a solution of the Euler equation.

In the following example, we consider a problem whose series solution is
convergent. We then show that, in this case, the resummation method can be
understood as a prolongation method.

Consider the initial value problem:
dw
dz

+ w2 = 0

w(0) = 1.

(9)

The formal series solution is:

w̆ =
∑
k≥0

(−1)kzk. (10)

which is convergent inside the unity disc. The Borel transform of [10] is∑
k≥0

(−1)k+1

k!
ξk. (11)

We recognize that it is the Taylor expansion of the function

ξ 7→ −e−ξ. (12)
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With this function, the right-hand side of equation [4] is

1 +

∫ +∞

0

e−ξe−ξ/z dξ =
1

1 + z
. (13)

This is the analytic solution of problem [9] in C−{−1}. This function prolongs
the series [10].

In the following subsection, the resummation procedure in the general case
is summarized.

2.2 Summary of the resummation procedure
Assume that the perturbation theory gives a formal series solution

s̆ =
∑
k≥1

skz
k ∈ C[[z]] (14)

of a problem, where C[[z]] is the space of the complex formal series in z. The
resummation procedure contains three steps:

1. the first operation is the formal Borel transformation:

s̆ =
∑
k≥1

skz
k ∈ C[[z]] 7−→ B(s̆) =

∑
k≥0

sk+1

k!
ξk ∈ C[[ξ]]; (15)

the Borel transform B(s̆) has a non-zero convergence radius if s̆ is a Gevrey
series 1, i.e. if there exists two constants C and A such that

∀k ≥ 1, |sk| < CAkk! ;

2. assume that s̆ is a Gevrey series, the second operation is an extension of
B(s̆), if possible, into an analytic function

P : ξ ∈ S(a) 7→ P (ξ) ∈ C (16)

in a (open) sector S(a) containing a half-line da linking the origin to the
infinity in the direction a;

3. the last operation is the Laplace transform in the direction da which per-
mits to go back to the original space:

P ∈ Ha 7→ LaP (z) =

∫
da

P (ξ)e−ξ/z dξ (17)

where Ha is the space of functions which are analytic in a vicinity of 0
and which can be extended into an analytic function having an exponential
growth in a sector Sa containing the direction da, i.e.

∃c ∈ R, |P (ξ)| ≤ O(ecξ) ∀ξ ∈ Sa. (18)
1. Only the order 1 is considered in this article.
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In the previouos examples, a = 0 and d0 is the positive real half-axis.
The key idea of the Borel-Laplace resummation method is that it is easier to

extend a convergent series (here, the Borel transform) outside his convergence
domain than to extend a divergent series (the original series) in a non-empty
domain.

To sum up, a formal series s̆ =
∑
k≥0

skz
k is Borel-summable in a direction a

if B(s̆− s0) ∈ Ha. Its Borel sum is the function

s0 + La
[
B(s̆− s0)

]
. (19)

The Borel sum [19] is analytic in the Borel disc whose one diameter is
[0, 1c e

ia] (see Figure 1). It is asymptotic to the original series in the follow-

ing sens: a formal series s̆ =
∑
i≥0

skz
k is the Gevrey asymptotic expansion of a

function s in a sector S (at the origin) if, for all compact sub-sector T of S,
there esists two real constants C and A such that∣∣∣∣∣∣s(z)−

k−1∑
j=0

sjz
j

∣∣∣∣∣∣ < CAk(k!)|z|k, (20)

for all k ∈ N and all z ∈ T .

Figure 1: Borel disc in the direction a

The Gevrey expansion is a generalization of the Taylor expansion for diver-
gent series. For complementary results on the existence and uniqueness of the
Gevrey expansion one can refer to Bender et al. [5], Malgrange et al. [23],
Loday-Richaud [19], Costin [10] and Fruchard et al. [15].

In the following section, an algorithm for the effective numerical computation
of the Borel sum is presented.
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3 Numerical algorithm
Consider the following problem:

E(s(z), z) = 0

which has a formal series solution s̆, E being a differential operator. A numerical
perturbation method such as ANM permits, by identification, to find the l first
terms of the series s̆ and leads to a truncated series:

s̆l(z) =

l∑
k=0

skz
k (21)

which is an approximation of the solution around z = 0. The order l of [21], on
which depends the accuracy of the method, is arbitrary.

The three operations of the resummation methods are translated into a nu-
merical algorithm as follows.

1. The first operation, the Borel transformation, is a purely algebraic oper-
ation and introduces no particular problem. It gives the following Borel
transform of (s̆l − s0):

B(s̆l − s0)(ξ) =

l−1∑
k=0

sk+1

k!
ξk. (22)

2. The second operation consists in extending [22] into a function which is
analytic in a direction to the infinity. It is assumed that this extension
is possible. This can be performed using the usual Padé approximant
procedure [5, 27]. It gives a rational approximation of [22]:

P (ξ) =
A0 +A1ξ + · · ·+An1ξ

n1

1 +B1ξ + · · ·+Bn2ξ
n2

(23)

where n1+n2 = l and Ai and Bi are the real numbers such that the Taylor
expansion of P at the order l is the truncated series [22]. In opposition
to the original series [21], the Padé approximant procedure is efficient on
[22] because this series is convergent.

3. The last operation is the application the Laplace transform LaP of [23] in
a direction where P has no pole. One property of the Padé approximants
[23] is that it has an exponential growth at the infinity, and consequently,
the Laplace transform exists. To calculate the value of the Borel sum

BLa(s̆l) = s0 + LaP

at any point z, a Gauss-Laguerre quadrature method [17, 18] is used.

Table 1 summarizes the main operations of the resummation procedure. This
algorithm was integrated into a perturbation-method-based Fortran code and
tested in the next section.
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Table 1: The numerical algorithm

s̆l =

l∑
k=0

skz
k BLa(s̆l)(z) = s0 +

∫
da

P (ξ)e−ξ/z dξ

Borel

y
x Laplace (La)

B(s̆l − s0) =

l−1∑
k=0

sk+1

k!
ξk

−−−−−−−−→
Padé P (ξ) =

A0 +A1ξ + · · ·+AN1
ξN1

1 +B1ξ + · · ·+BN2ξ
N2

4 Numerical tests
Our long-term aim is the resolution of the Navier-Stokes equations. However,

in this exploration phase, we only consider some model problems. The first
example is Equation [9]. The exact solution is

1

1 + z
.

Equation [9] is not an example on which the maximum profit of the resummation
can be made because it does not present an irregularity at the origin z = 0 but
it has a quadratic non-linearity like the Navier-Stokes equations.

4.1 Tests on Equation [9]
In a first test, the solution given by the perturbation method alone is com-

pared to the solution given by the association of the perturbation method and
the resummation method. The series solution is computed up to the 8-th order
(l = 8). The direction of the Laplace transformation is the real positive axis
and six Gauss points are used for the Gauss-Laguerre integration.

The result of this first test is presented on Figure 2. It can be observed on
it that the series solution provided by the perturbation method is no longer a
good approximation from about z = 0.7. When the perturbation method is
combined to the resummation, the computed solution remains very close to the
exact solution at least until z = 2.5.

The first conclusion is that the above presented algorithm is operational.
Note that no optimization operation such as convergence acceleration nor an
optimization of the quadrature was performed in the algorithm. The second
conclusion is that, as expected, the resummation method brings a very signifi-
cant improvement to the perturbation method. In this case, the range of validity
is multiplied by more than 3.5.
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Figure 2: Solutions with and without resummation

Theoretically, the resummation method should lead to the exact solution
until the infinity (Subsection 2.1) but since the initial series was truncated and
no optimization was done, numerical effects become non-negligible for large
values of z.

The next test is done on the same problem [9] but this time, a continuation
procedure is introduced in order to reach high values of z.

Let Res be the residue:

Res(z) =
dw
dz

(z) + w2(z).

For the comparison, two calculations are done. In the first one, the perturba-
tion method is combined to the continuation procedure (pert+cont) and in
the second, the resummation procedure is added (pert+resum+cont). More
precisely, the algorithm with resummation can be described as follows.

a. (pert) The truncated series

w̆l =

l∑
k=0

wkz
k

is computed using the perturbation method with w0 = w(0) = 1. This
provides an analytical approximation of the exact solution as long as the
following relation holds:

‖Res(z)‖
‖w̆l(z)‖

< ε (24)

where ε is a small parameter and ‖•‖ is the usual Euclidian norm. Let z̄
be the last computed values of z for which the above relation holds.
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b. (resum) Next, the Borel sum BL0(w̆l) is computed. This provides an
analytical approximation of the exact solution for z ∈ [z̄, z0] where z0 is
the last value of z for which the following relation holds:

‖Res(z)‖
‖BL0(w̆l)(z)‖

< ε. (25)

c. (cont) When z0 is reached, a continuation procedure is performed, that
is, we run the algorithm again with, in step a., w0 = w(z0).

In pert+cont algorithm, step b. is jumped and z0 = z̄. The computation is
carried out up to z = 10, with l = 8 and ε = 10−2.

(a) (b)

Figure 3: Approximated solutions with continuation; a) without resummation
(pert+cont), b) with resummation (pert+resum+cont)

Figure 3 shows the approximate solutions. Visually, the exact solution can-
not be distinguished from the computed solutions and is not presented. Left is
the approximate solution without the resummation procedure. The bold points
(•) represent the points where a continuation procedure is needed (the abscissa
of these points correspond to the z0’s). Right is the approximate solution with
the resummation procedure. The dashes correspond to the part of the solution
obtained in phase b. of the algorithm. It can be observed that the resummation
procedure prolongs well the solution provided by the perturbation method such
that much less continuation steps are needed. Indeed, only two continuation
points are required to reach z = 10 when the resummation method is applied,
against eight when it is not.

Such a result should still have much more interest in the resolution of high
order problems with ANM where the computation of the terms of the formal
series (which needs an inversion of a matrix) has an important cost compared
to the resummation procedure.

The above results corresponds to a truncation of the series at l = 8. Other
calculations was done with l = 15. Table 2 compares the number of continuation
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points with l = 8 and l = 15. A very significant diminution of the number of
continuation points can be observed when the resummation procedure is used.

Table 2: Number of continuation points for Equation [9]

l=8 l=15

pert+cont 6 points 5 points
pert+resum+cont 2 points 1 points

These tests on Equation [9] permitted to check that the proposed algorithm
is functional and brings a good improvement to the perturbation method. In
the following tests, we consider a reduced model of the Navier-Stokes equations
for the simulation of realistic fluid flows.

4.2 Reduced model of the Navier-Stokes equations
The Navier-Stokes equations (see appendix, Equation [29]) are reduced us-

ing the Proper Orthogonal Decomposition (POD) method which consists in
decomposing the velocity field u in a particular basis (Φi)i=1,...,∞, composed
of divergent free functions, and which maximizes the energy (see Lumley [20],
Sirovich [26], Aubry [4]):

u(t, x) =

+∞∑
i=1

%i(t) Φi(x). (26)

t and x are respectively the time and space variables. The components %i
of u will be called the modes. The basis functions are generally determined
numerically or experimentally and depend on the configuration of the flow.

In practice, the decomposition [26] is truncated at an order m. This leads
to the following reduced model of the Navier-Stokes equations:

d%i

dt
+

m∑
j,l=1

Qijl %
j%l +

m∑
j=1

Lij %
j = F i(t), i = 1, 2, . . .m. (27)

where Q, L and F are known tensors depending on the basis functions. A
property of POD is that very few modes are needed to capture almost the
whole energy of the flow.

In our case, the basis functions were computed numerically. They are not
presented here but can be found in [1].

Equations [27] are solved using the perturbation-resummation algorithm
(pert+resum+cont) described above. For comparison, another calculation
will be done using the usual adaptive 5-order Runge-Kutta method. The Runge-
Kutta step is chosen such that the estimated value E of the truncation error
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Figure 4: Geometry of the driven cavity

verifies the following relation:

E

‖%(t)‖
≤ ε (28)

where % = (%i)i and ε is the same error parameter used in [24] and [25]. Notice
that the Runge-Kutta method is of order 5 but the order of the perturbation-
resummation method, which is defined by l, can be chosen arbitrarily. Moreover,
while the Runge-Kutta method gives a point by point solution, the perturbation-
resummation method provides an analytic solution.

The first test is carried out on an air flow inside a two-dimensional driven
cavity, represented on Figure 4. The lid velocity Uref is horizontal, with Uref =
(0.15m/s, 0m/s).

l is set to 10. The Laplace direction is the positive real axis (it is then
assumed that the Padé approximants have no pole on this axis). Four or ten
modes (m = 4 or 10) are computed. The first two modes for t from 0 to 20
seconds are presented on Figure 5. A projection on the basis (Φi)i of a numerical
solution of the Navier-Stokes equations is used as a reference solution.

It can be observed on Figure 5 that the algorithm pert+cont+resum
gives approximately the same numerical results as the Runge-Kutta method
at the points where a Runge-Kutta solution is available. The difference with
the reference solution may be essentially due to the numerical computation of
the reference solution but the POD modelisation may also introduce some errors
(truncation of the series...). Stabilization procedures exist (but not used here) to
attenuate the POD modeling errors. The difference with the reference solution
is then independent of the performance of our two algorithms.

Table 3 compares the number of steps needed to reach 20, 50 and 100 seconds
for m = 4 modes (l = 10). It shows that the perturbation-resummation method

12



PSfrag replacements
(a)
(b)
t
%1

%2

Figure 5: Computed values of %1 (a) and %2 (b) versus t
——- Reference solution, • • • Runge-Kutta, - - - - - Perturbation-
resummation

requires much less steps than the Runge-Kutta method, about 35% less to reach
100 seconds.

Table 3: Number of continuation steps for the driven cavity, with m = 4

20 seconds 50 seconds 100 seconds

Runge-Kutta 18 steps 41 steps 80 steps
Perturbation-resummation 9 steps 24 steps 52 steps

The gain of the perturbation-resummation method increases with the num-
ber of modes. Indeed, as observed on Table 4 with m = 10 modes, the
perturbation-resummation method requires about 42% less continuation steps
than the Runge-Kutta method to reach 100 seconds.

Table 4: Number of continuation steps for the driven cavity, with m = 10

20 seconds 50 seconds 100 seconds

Runge-Kutta 29 steps 81 steps 175 steps
Perturbation-resummation 16 steps 44 steps 102 steps
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Figure 6: Geometry of the ventilated room

Since the reconstituted flows obtained from the perturbation-resummation
method and from the Runge-Kutta method are qualitatively the same, they are
not presented in this article but can be found in [1].

From the above results, it can be concluded that the perturbation-resum-
mation method provides an approximate solution as precise as the one given
by the Runge-Kutta method, but with less steps. In addition, the approximate
solution is analytic. These results also show that the perturbation-resummation
method can be used for the simulation of realistic problems. Finally, it can
be expected that the advantage of the method will be more important while
simulating a high order problem such as the discretized Navier-Stokes equations.

The last test is carried out on the flow inside the 2D ventilated room pre-
sented on Figure 6. This geometry is used in [2] for the study of pollution in
building field. For this geometry, the inlet and outlet heights are 0.31m. The
inlet is at 0.07m from the ceiling and the outlet at 0.07m above the floor. The
inlet velocity is 0.443m/s.

A first simulation is done until the flow is stable. Then, a particle cloud is
injected. The details of the simulation can be found in [2] and will not be re-
produced here. Our interest is the comparison of the perturbation-resummation
method with the Runge-Kutta method.

The flow is solved with POD, with m = 4 modes. Table 5 presents the
number of steps needed by the two methods 20, 30 and 100 seconds after the
injection of the particles. Also for this flow, the perturbation-resummation
method requires less steps than the Runge-Kutta method, about 44% less to
reach 100 seconds. The reconstituted flow can be found in [2, 25].

5 Conclusion
It was shown that the Borel-Laplace resummation method can be used in a

numerical algorithm. Applied to a theoretical problem, it has proved to bring a
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Table 5: Number of continuation steps for the ventilated room

20 seconds 30 seconds 100 seconds

Runge-Kutta 93 steps 137 steps 397 steps
Perturbation-resummation 55 steps 78 steps 224 steps

really interesting improvement as a prolongation technique to the perturbation
method. A prolongation may considerably reduce the computational cost when
simulating a high dimensional problem such as the discretized Navier-Stokes
equations where the computation of the terms of the series requires an important
computation time. It was also seen from tests on reduced but realistic problems
that the combination of the perturbation method to the resummation technique
presents interesting advantages compared to the usual Runge-Kutta method.
The perturbation-resummation technique requires less continuation steps. So,
it can be hoped that, once used on high dimensional problems, it will require
less matrix inversions.

In this article, no comparison on the CPU has been presented. The reason
is that the Runge-Kutta method is known for a long time and has been well
optimized. It is not the case of the resummation technique which was used
numerically for the first time. Optimizations could be brought for example in
the computation of the (vector) Padé approximants or the Laplace transform
(the direction of integration, the effective calculation of the integral, ...). In
addition, all the operations in the resummation technique are formal. It may
then be profitable to use a symbolic software such as Maple for the resummation
step instead of a purely numeric program. This should significantly reduce the
computation errors.
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A Time series expansion for the Navier-Stokes
equations

In this appendix, an ANM algorithm obtained from a time series expansion
for the discretized Navier-Stokes equations is presented. Next, a study on the
convergence radius of the series is carried out.

A.1 Presentation of the algorithm
Consider a Newtonial incompressible fluid with, for simplicity, a density

1. The motion of this fluid is governed by the Navier-Stokes equations (in a
dimensionless form):


∂u

∂t
+ div(u⊗ u) +∇p−

1

Re
∇2u = 0

divu = 0

(29)
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with the initial condition

u(t = 0, x) = u0(x)

where t is the time variable, x the space variable, u the velocity field, p the
pressure and Re the Reynolds number. After a suitable discretization, these
equations are transformed into a matrix equation:

M
∂U

∂t
+Q(U,U) + LU = 0, (30)

with

U(t = 0) = U0

where U (respectively U0) are the vectors containing the nodal values of u and
p (resp. u0), M the mass matrix, L = (Lij)i,j=1,...,N , Q a vectorial quadratic
operator such that

Qi(V,U) =

N∑
j=1

N∑
l=1

QijlV jU l, (31)

Q = (Qij,l)i,j,l=1,...,N being a three-order tensor and N is the number of grid
points.

The unknown vector U is decomposed into a formal time series as follows:

U(t) = U0 + U1t+ U2t
2 + · · ·+ Ukt

k + · · · (32)

Injecting the decomposition [32] in the matrix equation [30] and identifying ac-
cording to the powers of t, one obtains the following cascade of linear equations:

Order 0 : MU1 +Q(U0, U0) + LU0 = 0

Order 1 : 2MU2 +Q(U0, U1) +Q(U1, U0) + LU1 = 0
...

Order k : (k + 1)MUk+1 +

k∑
r=0

Q(Ur, Uk−r) + LUk = 0

...

(33)

This cascade of problems has the property that the equations have the same
matrix to be inverted, namely M . The resolution of these equations provides
an approximate solution in the domain of validity of the series [32]. But com-
pared to other algorithms of the ANM family, the time-series decomposition
presents one more very interesting advantage: the continuation procedure does
not require the inversion of any other matrix becauseM does not depend on the
continuation points. M is then inverted only once during the computation; that
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presents an important save of computational time. Only the second members
change.

The performance of an algorithm built from this time series decomposition
lies however on the convergence radius of the series [32]. In what follows, a
analysis of the convergence radius is done.

A.2 Estimation of the radius of convergence
For simplification, Equation [30] is rewritten in the following form:

dU
dt

+Q(U,U) + LU = 0. (34)

In a vectorial form, the unknown is

U = (U1, U2, . . . , UN )T .

The time series decomposition [32] gives, for each component U i, i = 1, . . . , N :

U i(t) = U i0 + U i1t+ U i2t
2 + · · ·+ U ikt

k + · · · . (35)

The initial condition is

U0 = (U1
0 , U

2
0 , . . . , U

N
0 )T .

We denote

Q = max
i,j,l=1,...,N

|Qijl|, L = max
i,j=1,...,N

|Lij |, (36)

U0 = max
i=1,...,N

|U i0| (37)

the respective norms of Q, L and U0.
The 0-th order of [33] gives:

−U i1 =

N∑
j=1

N∑
l=1

Qij l U
j
0 U

l
0 +

N∑
j=1

Lij a
j
0, (38)

|U i1| < Q

N∑
j=1

N∑
l=1

U0
2 + L

N∑
j=1

U0 (39)

|U i1| < QN2U0
2 + LNU0. (40)

If

E = (QN2α2 + LNα) (41)

where α = max(U0, 1) then

|U i1| < E, i = 1, . . . , N. (42)
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We will prove by recurrence that |U ik| < Ek for all i = 1, ..., N and k ∈ N.

The property holds when k = 1. It is assumed true for all i = 1, ..., N and
k ≤ k0, with k0 ∈ N. Hence, at the order k0 of [33], one has:

(k0 + 1)|U ik0+1| =

∣∣∣∣∣∣
N∑
j=1

N∑
l=1

Qij l

(
k0∑
r=0

U jr U
l
k0−r

)
+

N∑
j=1

Lij U
j
k0

∣∣∣∣∣∣
(k0 + 1)|U ik0+1| < Q

N∑
j=1

N∑
l=1

k0∑
r=0

ErEk0−r + L

N∑
j=1

Ek0

< QN2(k0 + 1)Ek0 + LNEk0 .

Hence,

|U ik0+1| <

(
QN2 + LN

1

l + 1

)
Ek0 (43)

and then, for all i = 1, . . . , N ,

|U ik0+1| < Ek0+1. (44)

Consequently, the property is also true for k = k0 + 1. This proves that

|U ik| < Ek, ∀i = 1, . . . , N, k ∈ N. (45)

In summary, the quantity tc = 1/E where E is defined by relation [41] is
an estimation of the convergence radius of the series [32]. It decreases with
1/N2 (or in 1/N). This convergence radius may then be very small for a high
dimensional problem. For an infinite-dimensional (i.e. continuous) problem,
the convergence radius may vanish (heat equation).
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