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Abstract

In this paper, we consider minimal hypersurfaces in the product space H
n

× R. We begin

by studying examples of rotation hypersurfaces and hypersurfaces invariant under hyperbolic

translations. We then consider minimal hypersurfaces with finite total curvature. This assump-

tion implies that the corresponding curvature goes to zero uniformly at infinity. We show that

surfaces with finite total intrinsic curvature have finite index. The converse statement is not

true as shown by our examples which also serve as useful barriers.
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1 Introduction

In this paper, we focus on complete oriented minimal hypersurfaces M immersed in Hn×R equiped
with the product metric.

In Section 3, we study the family {Ca, a > 0} of hypersurfaces invariant under rotations about the
vertical geodesic {0} × R ⊂ Hn × R (“catenoids”) and the family {Md, d > 0} of hypersurfaces
invariant under hyperbolic translations. These examples generalize to higher dimensions some of
the minimal surfaces constructed in [21, 19, 20].

In particular, we prove that the n-dimensional catenoids Ca have vertical heights bounded from
above by π/(n − 1) (Proposition 3.2). In Section 3.3, we describe the maximal stable rotationally
invariant domains on Ca and we prove that the catenoids have index 1 (Theorem 3.5). We also give
an interpretation in terms of the envelope of the family Ca (Corollary 3.7). Finally, we observe that
the half-catenoid Ca ∩

(
Hn × R+

)
is not maximally stable.

We describe the minimal hypersurfaces invariant under hyperbolic translations in Theorem 3.8. In
particular, we find a hypersurface M1 which is a complete non-entire vertical graph over a half-space
bounded by some hyperplane Π in Hn ×{0}. It takes infinite value data on Π and zero asymptotic
boundary value data. When d < 1, the hypersurface Md is an entire vertical graph. When d > 1,
it is a bi-graph over the exterior of an equidistant hypersurface of Hn × {0}.

In Section 4, we consider the relationships between finiteness of the total curvature and finiteness of
the index. In dimension 2, we consider the curvature integrals

∫
M

|AM |2 and
∫

M
|KM |, where AM

is the second fundamental form of the immersion and KM the Gauss curvature. Finiteness of these
integrals implies that the corresponding curvatures tend to zero uniformly at infinity; finiteness
of the latter implies finiteness of the index of the Jacobi (stability) operator (Theorem 4.1). The
converse statements do not hold. On the one hand, the catenoids Ca have finite index although
they have infinite total intrinsic curvature. This is in contrast with the case of minimal surfaces in
Euclidean 3-space ([12]) and with the case of surfaces with constant mean curvature 1 in hyperbolic
3-space ([11, 10]). Note that catenoids have finite total extrinsic curvature. On the other hand,
the surfaces invariant under hyperbolic translations are stable graphs, their curvature goes to zero
at infinity although they have infinite total curvature. The proof we give of Theorem 4.1 relies
mainly on Simons’ equation and the de Giorgi-Moser-Nash method which shows that finite total
curvature implies that the curvature tends to zero uniformly at infinity. We point out that the
finiteness of the intrinsic total curvature has deep consequences. Under this assumption on M ,
L. Hauswirth and H. Rosenberg ([14], Theorem 3.1) have indeed shown that the total intrinsic
curvature is quantified, that the ends of M are asymptotic to Scherk type surfaces and obtained a
C2-control on the curvature at infinity. In dimension n ≥ 3, we give an upper bound of the index
in terms of the total extrinsic curvature (Theorem 4.3).

In Section 5, using the catenoids Ca as barriers, we prove some symmetry and characterization
results for minimal hypersurfaces in Hn × R whose boundary consists of two congruent convex
hypersurfaces in parallel slices (Theorem 5.1). We point out that the hypersurfaces Md (d < 1 and
d = 1) have been used in [22, 23] as barriers for the Dirichlet problem and that they play a crucial
role for some existence theorem for the vertical minimal surface equation.

Finally, we point out that most of our results may be established if the ambient space is one of the
product spaces Hn × Rk or Hn × Hk.
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2 General framework

2.1 Notations

We consider hypersurfaces M immersed in the space M̂ := Hn×R equiped with the product metric
ĝ = gB + dt2, where gB is the hyperbolic metric,

(2.1) gB :=
( 2

1 − |x|2
)2(

dx2
1 + · · · + dx2

n

)
.

We have chosen the ball model B for the n-dimensional hyperbolic space Hn.

2.2 Jacobi operator, Index, Jacobi fields

Let Mn # M̂n+1 be an orientable minimal hypersurface in an oriented Riemannian manifold M̂
with metric ĝ. Let NM be a unit normal field along M and let AM be the second fundamental
form of the immersion with respect to NM . Let R̂ic be the normalized Ricci curvature of M̂ . The
second variation of the volume functional gives rise to the Jacobi operator (or stability operator)
JM of M (see [25, 17, 8]),

(2.2) JM := −∆M −
(
|AM |2 + R̂ic(NM )

)
,

where ∆M is the (non-positive) Laplacian on M (for the induced metric).

Given a relatively compact regular domain Ω on the hypersurface M , we let Ind(Ω) denote the
number of negative eigenvalues of JM for the Dirichlet problem on Ω (this is well defined because
Ω is compact). The index of M is defined to be the supremum (≤ +∞)

(2.3) Ind(M) := sup{Ind(Ω) | Ω ⋐ M},

taken over all relatively compact regular domains.

Let λ1(Ω) be the least eigenvalue of the operator JM with Dirichlet boundary conditions in Ω.
Recall that a relatively compact regular domain Ω is said to be stable, if λ1(Ω) > 0; unstable, if
λ1(Ω) < 0; stable-unstable, if λ1(Ω) = 0. More generally, we say that a domain Ω is stable if any
relatively compact subdomain is stable.

Properties 2.1 Recall the following properties.

1. Let Ω be a stable-unstable relatively compact domain. Then, any smaller domain is stable
while any larger domain is unstable (monotonicity of Dirichlet eigenvalues).

2. Of particular interest are the solutions of the equation JM (u) = 0. We call such functions

Jacobi fields on M . Let Xa : Mn # (M̂n+1, ĝ) be a one-parameter family of oriented minimal
immersions, with variation field Va = ∂Xa

∂a and unit normal Na. Then, the function ĝ(Va, Na)
is a Jacobi field on M ([1], Theorem 2.7).

3. Let Ω be a relatively compact domain on a minimal manifold M . If there exists a positive
function u on Ω such that JM (u) ≥ 0, then Ω is stable ([13], Theorem 1).
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3 Examples of minimal hypersurfaces in Hn × R

In this section we give examples of minimal hypersurfaces in Hn × R. We use these examples as
guidelines and counter-examples to study the relationships between index properties of the Jacobi
operator and the finiteness of some total curvature of M , see Theorems 4.1 and 4.3. We also use
them as barriers for a symmetry and characterization result in Section 5.

3.1 Rotation hypersurfaces in Hn × R

We first consider rotation hypersurfaces about a vertical geodesic axis in Hn × R. Up to isometry,
we can assume the rotation axis to be {0} × R. Recall that we take the ball model for Hn.

Take the vertical plane V := {(x1, . . . , xn, t) ∈ M̂ | x1 = · · · = xn−1 = 0} and consider a generating
curve

(
tanh(f(t)/2), t

)
for some positive function f which represents the hyperbolic distance to the

axis R, at height t.

We define a rotation hypersurface M # M̂ by the “parametrization”

(3.4) X :

{
R+ × Sn−1 → M̂,
(t, ξ) 7→

(
tanh(f(t)/2)ξ, t

)
,

where ξ = (ξ1, . . . , ξn) is a point in the unit sphere Sn−1 and tanh(ρ/2)ξ stands for the point
(tanh(ρ/2)ξ1, . . . , tanh(ρ/2)ξn) in the ball B.

The basic tangent vectors to the immersion X are

T (t, ξ) := Tt,ξX(∂t) =
( ft(t)

2 cosh2(f(t)/2)
ξ, 1

)
,

where ft is the derivative of f with respect to t, and

U(t, ξ, u) := Tt,ξX(u) =
(
tanh(f(t)/2)u, 0

)
,

where u ∈ TξS
n−1 is a unit vector.

We collect basic formulas in the next proposition whose proof is straightforward.

Proposition 3.1 Let (M, gM ) # (M̂, ĝ) be an isometric immersion. We have the following for-
mulas in the parametrization X on R × Sn−1.

1. The induced metric gM is given by

(3.5) gM =
(
1 + f2

t (t)
)
dt2 + sinh2(f(t))gS ,

where gS is the canonical metric on Sn−1.

2. The Riemannian measure dµM for the metric gM is given by

(3.6) dµM =
(
1 + f2

t (t)
)1/2

sinhn−1(f(t)) dt dµS ,

where dµS is the canonical measure on the sphere.
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3. The unit normal field to the immersion can be chosen to be

(3.7) NM (t, ξ) = (1 + f2
t (t))−1/2

( −1

2 cosh2(f(t)/2)
ξ, ft(t)

)
.

In particular, the vertical component of the unit normal field is given by

(3.8) vM (t) := ft(t)
(
1 + f2

t (t)
)−1/2

.

At the point X(t, ξ), the principal directions of curvature of M are

• the tangent to the meridian curve in the vertical 2-plane

Vξ = {
(
tanh(ρ/2)ξ, t

)
| (ρ, t) ∈ R

2},

• the vectors tangent to the distance sphere X(t, Sn−1) at ξ in the hyperbolic slice Hn × {t},
where the restriction of the second fundamental form AM is a scalar multiple of the identity.

The principal curvatures with respect to NM are

• kn(t), the principal curvature in the direction tangent to the meridian curve, given by

(3.9) kn(t) = −ftt(t)(1 + f2
t (t))−3/2,

• the principal curvatures in the directions tangent to X(t, Sn−1) at X(t, ξ),

(3.10) k1(t) = · · · = kn−1(t) = coth(f(t))(1 + f2
t (t))−1/2.

We conclude that the mean curvature H(t) of the rotation hypersurface M # M̂ with respect to
the unit normal NM is given by

(3.11) nH(t) = −ftt(t)(1 + f2
t (t))−3/2 + (n − 1) coth(f(t))(1 + f2

t (t))−1/2,

or

(3.12) nft(t) sinhn−1(f(t))H(t) = ∂t

(
sinhn−1(f(t))(1 + f2

t (t))−1/2
)
.

3.2 Catenoids in Hn × R

In this Section, we describe the minimal rotation hypersurfaces about {0}×R, in H
n×R. By analogy

with the Euclidean case, we call them catenoids. They are the higher dimensional counterparts of
the catenoids constructed in [21].
Given some a > 0, let

(
Ia, f(a, ·)

)
denote the maximal solution of the Cauchy problem

(3.13)





ftt = (n − 1) coth(f)(1 + f2
t ),

f(0) = a > 0,
ft(0) = 0,

where ft and ftt are the first and second derivatives of f with respect to t.

Proposition 3.2 For a > 0, the maximal solution
(
Ia, f(a, ·)

)
gives rise to the generating curve

Ca, t 7→
(
tanh(f(a, t)), t

)
( catenary), of a complete minimal rotation hypersurface Ca ( catenoid)

in Hn × R, with the following properties.
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1. The interval Ia is of the form Ia =] − T (a), T (a)[ for some finite positive number T (a) and
f(a, ·) is an even function of the second variable.

2. For all t ∈ Ia, f(a, t) ≥ a.

3. The derivative ft(a, ·) is positive on ]0, T (a)[, negative on ] − T (a), 0[.

4. The function f(a, ·) is a bijection from [0, T (a)[ onto [a,∞[, with inverse function λ(a, ·) given
by

(3.14) λ(a, ρ) = sinhn−1(a)

∫ ρ

a

(
sinh2n−2(u) − sinh2n−2(a)

)−1/2
du.

5. The catenoid Ca has finite vertical height hR(a),

(3.15) hR(a) = 2 sinhn−1(a)

∫ ∞

a

(
sinh2n−2(u) − sinh2n−2(a)

)−1/2
du.

6. The function a 7→ hR(a) increases from 0 to π
(n−1) when a increases from 0 to infinity. Fur-

thermore, given a 6= b, the generating catenaries Ca and Cb intersect at exactly two symmetric
points.

Proof. Assertion 1 follows from the Cauchy-Lipschitz theorem for some positive T (a) which is
finite as we will see below.

Assertion 2 follows from the fact that sinhn−1(f(a, t))
(
1 + f2

t (a, t)
)−1/2

= sinhn−1(a) for all t ∈
] − T (a), T (a)[ (see (3.12)).

Assertion 3 is clear.

Assertion 4. According to Assertion 3, t 7→ f(a, t) is increasing so that it has a limit when t tends
to T (a) and this limit must be infinite because we took a maximal solution. It follows that the
inverse function λ(a, ·) maps [a,∞[ onto [0, T (a)[ and that λρ(a, f(a, t))ft(a, t) ≡ 1. Finally, we find

that λρ(a, ρ) = sinhn−1(a)
(
sinh2n−2(ρ) − sinh2n−2(a)

)−1/2
on ]a,∞[ and the formula for λ(a, ρ)

follows because f(a, 0) = a. Note that the integral (3.14) converges at u = a.

Assertion 5. We have that hR(a) = 2T (a), where

T (a) = lim
ρ→∞

λ(a, ρ) = sinhn−1(a)

∫ ∞

a

(
sinh2n−2(u) − sinh2n−2(a)

)−1/2
du,

where the integral converges at both a and ∞.

Assertion 6. By a change of variables, we can write

T (a) = sinh(a)

∫ ∞

1

(
v2n−2 − 1

)−1/2(
sinh2(a)v2 + 1

)−1/2
dv

and compute the derivative

T ′(a) = cosh(a)

∫ ∞

1

(
v2n−2 − 1

)−1/2(
sinh2(a)v2 + 1

)−3/2
dv > 0.

Note that

sinh(a)
(
v2n−2 − 1

)−1/2(
sinh2(a)v2 + 1

)−1/2 ≤ v−1
(
v2n−2 − 1

)−1/2
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and that the right-hand side is in L1([1,∞[) for n ≥ 2, so that we can take the limits under the

integral and obtain that lima→0 T (a) = 0 and lima→∞ T (a) =
∫ ∞

1
v−1

(
v2n−2 − 1

)−1/2
dv. The

last integral can be calculated explicitly because
(
arctan

√
vN − 1

)′
= N

2
√

vN−1
. The last assertion

follows by considering the function λ(a, ρ) − λ(b, ρ) and by using the monotonicity of T (a). 2

Remark. The above proposition shows
that the catenoids in Hn ×R have uniformly
bounded finite vertical height. This is in con-
trast with the Euclidean catenoids (n ≥ 3)
which have finite, yet unbounded, vertical
heights.

n = 4

n = 2

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1

Figure 1: Catenaries n = 2, 4

Notations. Let Na denote the unit normal to the catenoid Ca, let Aa denote its second fundamental
form relative to the normal Na and let dµa denote its Riemannian measure. When n = 2, let Ka

denote the Gauss curvature of Ca. We state the following proposition for later purposes.

Proposition 3.3 For a > 0, the n-dimensional catenoid Ca in Hn × R has infinite volume and
finite total extrinsic curvature

∫
Ca

|Aa|n dµa. When n = 2, the catenoid Ca has infinite total

intrinsic curvature
∫
Ca

|Ka| dµa.

Proof. We can restrict to the upper half-catenoid, Ca,+ = Ca ∩ (Hn × R+), which admits the
parametrization

Y (a, ρ, ξ) :=
(
tanh(ρ/2)ξ, λ(a, ρ)

)
, ρ ≥ a.

The geometric data of Ca,+ are readily calculated. In particular,

|Aa|2(ρ) = n(n − 1)
( sinhn−1(a) cosh(ρ)

sinhn(ρ)

)2
,

and
dµa = sinh2n−2(ρ)

(
sinh2n−2(ρ) − sinh2n−2(a)

)−1/2
dρ dµS .

The first assertion follows (|Aa|ndµa tends to zero exponentially at infinity). For the second asser-
tion, we use Gauss equation and minimality to get that

Ka = K̂a − 1

2
|Aa|2 = −v2

a − 1

2
|Aa|2,

where K̂a is the sectional curvature of the 2-plane tangent to Ca in the ambient space H2 × R and
where va is the vertical component of the unit normal to Ca,

va(ρ) = ĝ(Na, ∂t) = sinh1−n(ρ)
(
sinh2n−2(ρ) − sinh2n−2(a)

)1/2
.

Assertion 2 follows because va tends to 1 at infinity on Ca,+. 2
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3.3 Catenoids in Hn × R, stability properties

Recall that the catenoid Ca is generated by the curve t 7→
(
tanh(f(a, t)/2), t

)
in the vertical plane V,

where f(a, ·) is the maximal solution of the Cauchy problem (3.13). This yields the parametrization

(3.16) X(a, t, ξ) =
(
tanh(f(a, t)/2)ξ, t

)

for Ca, with t ∈ R and ξ ∈ Sn−1. According to Property 2.1 (2), we have two Jacobi fields on the
catenoid Ca.
• The vertical Jacobi field v(a, t) comes from the vertical translations (x, t) 7→ (x, t + τ) in Hn ×R.
It is given by v(a, t) = ĝ(Na, ∂t), where Na is the unit normal to Ca. According to (3.7), it is given
by the formula

(3.17) v(a, t) = ft(a, t)
(
1 + f2

t (a, t)
)−1/2

,

where ft stands for the derivative with respect to the variable t. Because t 7→ f(a, t) is even, the
function t 7→ v(a, t) is odd.

• The variation Jacobi field e(a, t) comes from the variations with respect to the parameter a. It is
given by e(a, t) = ĝ(Na, ∂X

∂a ). According to (3.7) and (3.16), the function e(a, t) is given

(3.18) e(a, t) = −fa(a, t)
(
1 + f2

t (a, t)
)−1/2

,

where fa stands for the derivative with respect to the variable a. Because t 7→ f(a, t) is even, the
function t 7→ e(a, t) is even.

• The Jacobi fields v(a, t) and e(a, t) have nice expressions when restricted to the upper-half Ca,+ =
Ca ∩ (Hn × R+) of the catenoid Ca. Indeed, recall that the function f(a, ·) : [0, T (a)[→ [0,∞[ has
an inverse function λ(a, ρ) given by (3.14). Using the relationships

λ
(
a, f(a, t)

)
≡ t for t ≥ 0

and
λρ(a, f)ft ≡ 1 and λa(a, f) + λρ(a, f)fa ≡ 0,

we get the following expressions for v(a, t) and e(a, t) for t ≥ 0,

(3.19)





v(a, t) =
(
1 + λ2

ρ(a, f(a, t))
)−1/2

,

e(a, t) = v(a, t)λa(a, f(a, t)).

For ρ ≥ a, define the functions v1(a, ρ), A1(a, ρ) and B1(a, ρ), by the following formulas

(3.20)





v1(a, ρ) =
(
1 + λ2

ρ(a, ρ)
)− 1

2 =
( sinh2n−2(ρ) − sinh2n−2(a)

sinh2n−2(ρ)

) 1
2

A1(a, ρ) =
cosh(a)

cosh(ρ)

( sinh(a)

sinh(ρ)

)n−2

,

B1(a, ρ) = cosh(a)
∫ sinh(ρ)

sinh(a)

1 (v2n−2 − 1)−
1
2 (sinh2(a)v2 + 1)−

3
2 dv.

From (3.14), we can write

(3.21) λ(a, ρ) = sinh(a)

∫ sinh(ρ)
sinh(a)

1

(
v2n−2 − 1

)− 1
2
(
sinh2(a)v2 + 1

)− 1
2 dv
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and compute λa,

λa(a, ρ) = − cosh(a) sinhn−2(a) tanh(ρ)
(
sinh2n−2(ρ) − sinh2n−2(a)

)− 1
2 +

+ cosh(a)
∫ sinh(ρ)

sinh(a)

1 (v2n−2 − 1)−
1
2 (sinh2(a)v2 + 1)−

3
2 dv.

We obtain,

(3.22) λa(a, ρ)v1(a, ρ) = −A1(a, ρ) + B1(a, ρ)v1(a, ρ).

We summarize the relevant properties in the following lemma whose proof is straightforward.

Lemma 3.4 Define the functions A(a, t) and B(a, t) for t ≥ 0 by

(3.23) A(a, t) = A1(a, f(a, t)), B(a, t) = B1(a, f(a, t)),

see Formulas(3.20). Then,

(3.24) e(a, t) = −A(a, t) + B(a, t)v(a, t), for t ≥ 0.

Furthermore, for t ≥ 0,

1. A(a, t) > 0, A(a, 0) = 1 and limt→T (a) A(a, t) = 0,

2. B(a, t) > 0, B(a, 0) = 0 and limt→T (a) B(a, t) = C(a), where C(a) = cosh(a)
∫ ∞

1 (v2n−2 −
1)−

1
2 (sinh2(a)v2 + 1)−

3
2 dv.

3. v(a, t) = v1(a, f(a, t)) for t > 0, so that
v(a, t) > 0 for t > 0, v(a, 0) = 0 and limt→T (a) v(a, t) = 1.

Notation. For α < β ∈ [0, T (a)], let D(α, β) denote the rotationally symmetric domain

(3.25) Da(α, β) = X(a, ]α, β[, Sn−1).

In particular, Da(0, T (a)) is the half-vertical catenoid Ca,+ = Ca ∩ (Hn × R+).

Theorem 3.5 The stability properties of the rotationally symmetric domains Da(α, β) on the
catenoid Ca are as follows.

1. There exists some σ(a) ∈]0, T (a)[ such that the relatively compact domain Da(−σ(a), σ(a))
is stable-unstable. Hence, for any α ∈]0, σ(a)[, the domain Da(−α, α) is stable; for any
α ∈]σ(a), T (a)[, the domain Da(−α, α) is unstable.

2. There exists some τ(a) ∈]0, T (a)[ such that

(a) the (non relatively compact) domain Da(−τ(a), T (a)) is stable,

(b) for any α ∈]τ(a), T (a)[, there exists some β(α) ∈]τ(a), T (a)[ such that the domain
Da(−α, β(α)) is stable-unstable.

3. The catenoid Ca has index 1.
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Figure 2: Case 1 Figure 3: Case 2a Figure 4: Case 2b

The above domains are generated by the portions of curves illustrated in the following figures.
Proof. Assertion 1. Consider the function e(a, t). According to Lemma 3.4, e(a, 0) = −1 and
limt→T (a) e(a, t) = C(a) > 0, so that it must vanish at least once on ]0, T (a)[. It turns out (compare
with Lemma 3.6 below) that e(a, ·) has a unique positive zero σ(a). Because e(a, t) is even in t, it
does not vanish in the open set Da(−σ(a), σ(a)) and satisfies Ja(e) = 0 in Da(−σ(a), σ(a)), and
e|∂Da(−σ(a), σ(a)) = 0. This means that Da(−σ(a), σ(a)) is a stable-unstable domain. The second
assertion follows from Property 2.1 (1).

Assertion 2. Take any α ∈]0, T (a)[ and define the function w(a, α, t) by

(3.26) w(a, α, t) = e(a, α)v(a, t) + v(a, α)e(a, t), for t ∈] − T (a), T (a)[.

This is a Jacobi field on Ca and furthermore w(a, α,−α) = 0, because v is odd and e is even with
respect to t. Note also that w(a, α, 0) = −v(a, α) < 0.

Lemma 3.6 The function w(a, α, ·) vanishes only once on ] − T (a), 0[ and vanishes at most once
on ]0, T (a)[.

Let us prove the first assertion of the Lemma, the proof of the second assertion is similar. Assume
that w(a, α, ·) has at least two consecutive zeroes α1 < α2 in the interval ] − T (a), 0[. The domain
Da(α1, α2) would then be stable-unstable because Ja(w) = 0 on Da(α1, α2) and because w vanishes
on ∂Da(α1, α2). On the other-hand, the Jacobi field v satisfies Ja(v) = 0 and v < 0 in Da(α1, α2).
By Property 2.1 (3), we have that λ1(Da(α1, α2)) > 0 which contradicts the fact that this domain
is stable-unstable. This proves the lemma.

In order to determine whether the function w(a, α, ·) vanishes on ]0, T (a)[ or not, it is sufficient to
look at the behaviour of w(a, α, t) when t tends to T (a) from below. For this purpose, we use the
expression (3.24) for e(a, t) and we write

w(a, α, t) = −A(a, t)v(a, α) + v(a, t)
(
e(a, α) + B(a, t)v(a, α)

)
.

Using Lemma 3.4, we can write

W (a, α) := lim
t→T (a)

w(a, α, t) = e(a, α) + C(a)v(a, α).

If W (a, α) ≤ 0, then w(a, α, t) does not vanish on ]0, T (a)[ and in fact on ]−α, T (a)[; if W (a, α) > 0,
then w(a, α, t) has one and only one zero β(α)on ]0, T (a)[.

We now observe that W (a, t) := e(a, t) + C(a)v(a, t) is a Jacobi field on ]0, T (a)[ which take the
value −1 at 0 and the value C(a)v(a, σ(a)) > 0 at σ(a). It follows from Lemma 3.6 that W (a, ·)
has one and only one positive zero τ(a) ∈]0, σ(a)[. We have that W (a, t) ≤ 0 on ]0, τ(a)[, so that
for any α ∈]0, τ(a)], the function w(a, α, t) has only one zero −α on ] − T (a), T (a)[. This proves
the Assertion 2(a). On the other-hand, W (a, t) > 0 on ]τ(a), T (a)[, so that for any α ∈]τ(a), T (a)[,
the function w(a, α, t) has a unique positive zero β(α) ∈]0, T (a)[. This proves the Assertion 2(b).
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Assertion 3. Assertion 1 shows that Ca has index at least 1. In order to show that the index is
at most one, we use Fourier decomposition with respect to the variable ξ and an extra stability
argument.

Recall that we work in the ball model for Hn. Let γ be a geodesic through 0 in Hn. Up to a
rotation, we may assume that γ(s) =

(
tanh(s/2), 0, · · · , 0

)
. Let Hn

+ = {(x1, · · · , xn) ∈ B | x1 > 0}
and let Ca,γ+ = Ca ∩ (Hn

+ × R). We call this set a half-horizontal catenoid.

Claim 1. A half-horizontal catenoid Ca,γ+ is stable.

To prove the claim, we shall find a positive Jacobi field on Ca,γ+.
Let z = x + iy denote the complex coordinate in H2 (ball model). We consider the group of
hyperbolic isometries along the geodesic γ and we extend these isometries slice-wise as isometries
in H2 × R. We then have the one-parameter group of isometries

(z; t) 7→
(eτ (1 + z) − (1 − z)

eτ (1 + z) + (1 − z)
; t

)
in H

2 × R.

The associated Killing vector-field in H2 × R is given by Kγ(z; t) =
(

1
2 (1 − z2); 0

)
or, in the (x, y)

coordinates, Kγ(x, y; t) =
(

1
2 (1 − x2 + y2),−xy; 0

)
which can be written as

Kγ(x, y; t) =
1

2

(
1 + x2 + y2)

)
(1, 0; 0)− x(x, y; 0)

where (1, 0; 0) and (x, y; 0) are seen as vectors in R2 × R = T(x,y;t)H
2 × R.

This formula can easily be generalized to higher dimensions as

Kγ(x; t) =
1

2
(1 + |x|2(e1; 0) − x1(x; 0),

where x = (x1, · · · , xn), e1 = (1, 0, · · · , 0), |x|2 = x2
1 + · · · + x2

n, and where (e1; 0) and (x; 0) are
seen as vectors in Rn × R = T(x,t)H

n × R. Writing the point x in the parametrization X as
x = tanh(f(a, t)/2)ξ, we obtain that

Kγ(tanh(f(a, t)/2)ξ; t) =
1

2

(
1 + tanh2(f/2)

)
(e1; 0) − tanh2(f/2)ξ1(ξ; 0).

Using the fact that (1 + f2
t )−1/2 =

( sinh(a)
sinh(f)

)n−1
on Ca, we find that the Killing field Kγ gives rise

to the horizontal Jacobi field

hγ(a, t, ξ) =
( sinh(a)

sinh(f(a, t))

)n−1
ξ1

which is positive on Ca,γ+.

Claim 2. On Sn−1 equiped with the standard Riemannian metric, there exists an orthonormal basis
of spherical harmonics Yk, k ≥ 0 with the property that the nodal domains of the Yk, k ≥ 1 are
contained in hemispheres.

The property is clearly true on S1 and can be proved by induction on the dimension, using polar
coordinates centered at a given point on the sphere.

11



Claim 3. The Jacobi operator on Ca can be written as

Ja = La,t − q(a, t)∆S,ξ,

where La,t is a Sturm-Liouville operator on the t variable, with coefficients depending only on a
and t, where q(a, t) is a positive function and where ∆S,ξ is the Laplacian of the sphere Sn−1 acting
on the ξ-variable. This claim follows immediately from Formulas (3.5) and (3.6) for the metric and
the Riemannian measure on a rotation hypersurface and from the expression for the quadratic form
associated with Ja.

Assume that the index of Ca is at least 2. Then, there exists some S ∈]0, T (a)[ such that Ja

has at least two negative eigenvalues λ1(S) < λ2(S) < 0 in Ca(−S, S) (we only consider Dirichlet
boundary conditions). Because the least eigenvalue λ1(S) is simple, a corresponding eigenfunction
u must be invariant under rotations (i.e. only depends on the variable t) and say positive. Consider
an eigenfunction v associated with λ2(S). We claim that v cannot be invariant under rotations.
Indeed, v would otherwise depend only on the variable t, it would be orthogonal to u and hence
it would have to vanish on ] − S, S[. This would contradict the fact that the domains Ca(−S, 0)
and Ca(0, S) are stable. Since v is not rotationally invariant, there exists some p ≥ 1 and some
vp 6= 0 in the decomposition into spherical harmonics with respect to the second variable, v(t, ξ) =∑∞

k=0 vk(t)Yk(ξ). We would have Ja(vpYp) = λ2(S)vpYp. Using Claim 2 and the fact that λ2(S) < 0,
this would mean that any nodal domain of vpYp is unstable, in contradiction with Claim 1.

Assuming that the index is at least 2 therefore yields a contradiction and hence the index of Ca is
exactly one. 2

Remark. It follows from the positivity of the Jacobi field v(a, t) for t ∈]0, T (a)[ that the upper
half-catenoid Ca,+ is stable (in the sense that any relatively compact domain Ω contained in Ca,+

is stable, see Section 2.2). The second assertion in the preceding theorem says more. Indeed,
there exists some τ(a) ∈]0, T (a)[ such that the non-compact domain Da(−τ(a), T (a)) is stable and
stricly contains Ca,+. This is different from what happens for Euclidean catenoids. Indeed, the
half-catenoid Ca,+ in R3 is a maximal stable domain ([18]). We study this phenomenon with more
details in [5].
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Figure 5: Envelope, n = 2
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Figure 6: Catenaries, envelope

Geometric interpretation. According to Proposition 3.2, Assertion (6), two distinct catenaries
Ca and Cb meet at exactly two symmetric points, m±(a, b). Fixing a and letting b tend to a, the
points m±(a, b) tend to limit points m±(a) which correspond to the points where the catenary Ca
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touches the envelope of the family of catenaries {Ca}a>0. According to [26], §58, page 127 ff, the
condition defining the envelope a family Γa, given by the parametrization

(
x(a, t), y(a, t)

)
, is the

condition ∣∣∣∣
xa(a, t) xt(a, t)
ya(a, t) yt(a, t)

∣∣∣∣ = 0.

Specializing to catenaries, we find that the envelope condition is precisely the condition that e(a, t) =
0. Therefore, the value σ(a) is precisely the value of t at which the catenary Ca touches the envelope
of the family, see Figure 6.

Corollary 3.7 The stable-unstable domain Da(−σ(a), σ(a)) is precisely the symmetric, rotation
invariant compact domain bounded by the two spheres where the catenoid Ca touches the envelope
of the family.

3.4 Translation invariant hypersurfaces in Hn × R

Let γ be a complete geodesic through 0 in the ball model B of the hyperbolic space Hn, parametrized
by the signed distance ρ to 0. Let P be the hyperbolic hyperplane orthogonal to γ at 0. We consider
the hyperbolic translations along the geodesics passing through 0 in P. The image of a point of γ
under these translations is an equidistant hypersurface to P in Hn. We can extend these translations
“slice-wise” to give positive isometries of Hn × R which we call hyperbolic translations.

A generating curve (tanh(ρ/2), µ(ρ)) in the vertical Euclidean plane γ × R gives rise, under the
previous isometries, to a translation invariant hypersurface M →֒ Hn × R, whose intersection with
the slice Hn × {µ(ρ)} is the equidistant hypersurface to P × {µ(ρ)} in the slice, at distance ρ.

The principal directions of curvature of M are the tangent vector to the generating curve and
the directions tangent to the equidistant hypersurface. The corresponding principal curvatures are
given respectively by

(3.27) kG(ρ) = µ̈(ρ)
(
1 + µ̇2(ρ)

)−3/2
,

and

(3.28) kE(ρ) = µ̇(ρ)
(
1 + µ̇2(ρ)

)−1/2
tanh(ρ).

It follows that the mean curvature of M is given by

nH(ρ) = µ̈(ρ)
(
1 + µ̇2(ρ)

)−3/2
+ (n − 1)µ̇(ρ)

(
1 + µ̇2(ρ)

)−1/2
tanh(ρ)

or, equivalently, by

(3.29) nH(ρ) coshn−1(ρ) = ∂ρ

(
µ̇(ρ)

(
1 + µ̇2(ρ)

)−1/2
coshn−1(ρ)

)
.

This formula allows us to study constant mean curvature hypersurfaces invariant by hyperbolic
translations. In this paper we only consider the case H = 0 and we refer to [6] for the case H 6= 0.

3.5 Translation invariant minimal hypersurfaces in H
n × R

In this section, we establish the following theorem which generalizes the 2-dimensional result of [22].
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Theorem 3.8 There exists a 1-parameter family {Md, d > 0} of complete embedded minimal
hypersurfaces in Hn × R invariant under hyperbolic translations. The hypersurfaces are Md stable
(in the sense of the Jacobi operator), their principal curvatures go uniformly to zero at infinity, but
they have infinite total curvatures.
More precisely,

1. If d > 1, the hypersurface Md consists of the union of two symmetric vertical graphs over the
exterior of an equidistant hypersurface in the slice H

n × {0}. It is also a horizontal graph,
and hence stable.

The family Md has finite vertical height hT (d), a function which decreases from infinity to
π/(n−1). In particular, it is bounded from below by π/(n−1), the upper bound of the heights
of the family of catenoids. Furthermore, the asymptotic boundary of Md consists of the union
of two copies of an hemisphere Sn−1

+ × {0} of ∂∞Hn × {0} in parallel slices t = ±S(d), glued

with the finite cylinder ∂Sn−1
+ × [−S(d), S(d)].

2. If d = 1, the hypersurface M1 is a complete stable vertical graph over a half-space in Hn×{0},
bounded by a totally geodesic hyperplane P . It takes infinite boundary value data on P and
constant asymptotic boundary value data. Furthermore, the asymptotic boundary of M1 is
the union of a spherical cap S in ∂∞Hn × {c} with a half-vertical cylinder over ∂S.

3. If d < 1, the hypersurface Md is an entire stable vertical graph with finite vertical height.
Furthermore, its asymptotic boundary consists of a homologically non-trivial (n−1)-sphere in
∂∞Hn × R.

Proof. In the minimal case, Equation (3.29) can be written

(3.30) µ̇(ρ)
(
1 + µ̇2(ρ)

)−1/2
coshn−1(ρ) = d,

for some constant d which satisfies d ≤ coshn−1(ρ) for all ρ for which the solution exists. Changing
µ to −µ if necessary, we may assume that d is non-negative and hence, µ̇(ρ) ≥ 0 and µ̇(ρ) =

d
(
cosh2n−2(ρ) − d2

)−1/2
whenever the square root exists. We have to consider three cases, d > 1,

d = 1 and d < 1.

d > 1 Let d =: coshn−1(a), with a > 0. It follows from Equation (3.30) that

µ̇(ρ) = coshn−1(a)
(
cosh2n−2(ρ) − cosh2n−2(a)

)−1/2
.

Up to a vertical translation, the solution µ+(a, ρ) of Equation (3.30) is given by

(3.31) µ+(a, ρ) = coshn−1(a)

∫ ρ

a

(
cosh2n−2(r) − cosh2n−2(a)

)−1/2
dr

or, making cosh(r) = cosh(a) t,

(3.32) µ+(a, ρ) = cosh(a)

∫ cosh(ρ)
cosh(a)

1

(t2n−2 − 1)−
1
2 (cosh2(a)t2 − 1)−

1
2 dt.

These integrals converge at ρ = a (resp. at t = 1) and at infinity and

(3.33) hT (d) := 2 cosh(a)

∫ ∞

1

(t2n−2 − 1)−1/2 (cosh2(a)t2 − 1)−1/2 dt

14



is the height of the hypersurface Mcoshn−1(a). The function hT (d) is decreasing in d, tends to infinity
when d tends to 1+ and to π/(n − 1) when d tends to infinity. (Hints. When a tends to zero, use

the fact that (3.33) is bigger than some constant times the integral
∫ 2

1

(
(t− 1)(cosh(a)t− 1)

)−1/2
dt

which can be computed explicitly. When a tends to infinity, use the fact that
∫
(tN −1)−1/2t−1 dt =

2
N arctan

√
tN − 1.) The assertions on the asymptotic boundary are clear.

d < 1

d = 1

d > 1
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d = 1 It follows from Equation (3.30) that

µ̇(ρ) =
(
cosh2n−2(ρ) − 1

)−1/2
,

so that, when d = 1, the solution is given by

(3.34) µ0(ρ) =

∫ ρ

b

(
cosh2n−2(r) − 1

)−1/2
dr,

for some constant b > 0, and µ0(ρ) tends to −∞ when ρ tends to zero and to a finite value when
ρ tends to infinity. The corresponding hypersurface is complete. It is a vertical graph so that it is
stable. The assertion on the asymptotic boundary is clear.

0 < d < 1 In this case, Equation (3.30) gives the following solution (up to a vertical translation),

(3.35) µ−(d, ρ) = d

∫ ρ

0

(
cosh2n−2(r) − d2

)−1/2
dr.

The corresponding curve can be extended by symmetry and we get a complete hypersurface in a
vertical slab with finite height. This surface is an entire vertical graph (hence stable). The assertion
on the asymptotic boundary is clear. 2

The generating curves for translation invariant minimal hypersurfaces are given in Fig. 7 and 8.
Note that they cannot meet tangentially at finite distance.

Remark. Using the catenoids and the minimal translations hypersurfaces, the second author and
E. Toubiana have extended the 2-dimensional results of their paper [22] to higher dimensions, see
[23].
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4 Index and total curvature for minimal hypersurfaces in

H
n × R

4.1 Dimension two, M2 # H2 × R

For oriented minimal surfaces in H2×R we have the following general theorem in which we consider
two possible notions of total curvature.

Theorem 4.1 Let M # H2 ×R be a complete oriented minimal immersion with unit normal field
NM . Let vM := ĝ(NM , ∂t) be the vertical component of NM , let AM be the second fundamental
form of M and let KM be the intrinsic curvature of M .

1. If the integral
∫

M
|AM |2 dµM is finite, then AM tends to zero uniformly at infinity.

2. If the integral
∫

M
|KM | dµM is finite, then AM , vM and KM tend to zero uniformly at infinity.

3. If the integral
∫

M
|KM | dµM is finite, then the Jacobi operator of M has finite index.

Remarks.

1. For complete orientable minimal surfaces in R3, finiteness of the index is equivalent to finite-
ness of the intrinsic curvature (see [12, 11, 10]). No such statement can hold in H2×R. Indeed,
the surfaces Md ([22] and Section 3.5) are stable complete minimal surfaces, invariant under
a group of hyperbolic translations. Their total curvatures are infinite, so that the converse to
Assertion 3 is false.

2. The assumption
∫

M
|KM | dµM finite is natural in view of Huber’s theorem. In [14], L.

Hauswirth and H. Rosenberg show that this assumption actually implies that the total intrin-
sic curvature is an integer multiple of 2π. There are actually many examples of such surfaces
([9, 14]).

3. As pointed out in the introduction, Assertion 2 is contained in [14], Theorem 3.1 whose
proof actually gives a C2-control on the curvature at infinity. We provide a simple proof of
Assertion 2 for completeness.

One can slightly improve the above theorem with the following proposition.

Proposition 4.2 The notations are the same as in Theorem 4.1.

1. Assume that 5v2
M ≤ 1. Then there exists a universal constant C such that if the integral∫

M |AM |2 dµM is less than C then M is a vertical plane.

2. Assume that the integral
∫

M |AM |2 dµM is finite and that there exists a compact set Ω ⊂ M
and a positive constant c such that v2

M ≤ 1 − c < 1 on M \ Ω. Then the Jacobi operator of
the immersion has finite index.

Remarks.

1. Assertion 1 generalizes the following facts : (i) A minimal surface whose intrinsic curvature
KM is zero is part of a vertical plane γ × R (where γ is a geodesic in H

2). Indeed, we have
KM = − 1

2 |AM |2 − v2
M and hence M is totally geodesic with horizontal normal vector. (ii)

A complete minimal surface whose total intrinsic curvature is less than 2π is a vertical plane
(see [14]).
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2. We do not know whether the sole assumption
∫

M
|AM |2 dµM finite is sufficient to insure the

finiteness of the index of the Jacobi operator of M .

Proof of Theorem 4.1 and Proposition 4.2.

Fact 1. The function u := |AM | satisfies the non-linear elliptic inequality

(4.36) −u ∆Mu ≤ u4 + (5K̂M + 1)u2 ≤ u4 + 4u2,

where K̂M is the sectional curvature of the 2-plane TM in H2 × R.
This formula follows from J. Simons’ equation for minimal submanifolds ([25]), from our context
(H2 × R is locally symmetric and we work in codimension 1), and from explicit curvature compu-
tations in H2 × R.

Fact 2. The surface M satisfies the Sobolev inequality

(4.37) ‖f‖2 ≤ S(M)‖df‖1

for some positive constant S(M) and all C1 functions f with compact support. This follows from
[15, 16] and the fact that H2 × R is simply-connected and non-positively curved.

Fact 3. Curvature computations in H2 × R give

(4.38) K̂M = −v2
M and R̂ic(NM , NM ) = −(1 − v2

M ).

The fact that vM is a Jacobi field implies that

(4.39) −∆MvM = v3
M + (|AM |2 − 1)vM

and a similar inequality for |vM |.

Theorem, Assertion 1. Following the general ideas of [24], we use (4.36) and (4.37), to estimate
the Lp-norms of u and the classical de Giorgi-Moser-Nash method to estimate ‖u‖∞ outside big
balls. The details appear in the proof of Theorem 4.1, p. 282 of [4], where it is observed that the
proof only uses the facts that u satisfies Simons’ inequality and M a Sobolev inequality.
Theorem, Assertion 2. By Gauss equation, the Gauss curvature KM of M satisfies

(4.40) KM = −1

2
|AM |2 − v2

M .

The assumption implies that both integrals
∫

M
|AM |2 dµM and

∫
M

v2
M dµM are finite. By Assertion

1, we already know that |AM | tends to zero at infinity, and hence that it is bounded. Equation
(4.39) then tells us that |vM | satisfies an elliptic inequality similar to (4.36) and we can again apply
the de Giorgi-Moser-Nash method to conclude.

Theorem, Assertion 3 and Proposition, Assertion 2. According to Section 2.2 and to the
above curvature calculations, the Jacobi operator can be written as JM = −∆M + 1− |AM |2 − v2

M .
We now follow [3], Section 2. It follows from Assertion 2 in the Theorem that JM is bounded from
below, essentially self-adjoint and that its essential spectrum lies above 1. Because the eigenvalues
below the essential spectrum can only accumulate at −∞ or at the bottom of the essential spectrum,
it follows that JM has finite index.

Proposition, Assertion 1. It is a classical fact ([7] and [24]) that Simons’ inequality (4.36) can
be improved to

|du|2 − u ∆Mu ≤ u4 + (5K̂M + 1)u2.
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We then use the expression of K̂M and the assumption on vM to obtain

(a) |du|2 − u ∆Mu ≤ u4.

Multiply equation (a) by some function with compact support ξ (to be chosen later on) and integrate
by parts to obtain,

2

∫

M

ξ2|du|2 + 2

∫

M

ξu〈du, dξ〉 ≤
∫

M

ξ2u4.

Using Cauchy-Schwarz inequality, we obtain

(b)

∫

M

ξ2|du|2 ≤
∫

M

ξ2u4 +

∫

M

u2|dξ|2.

Plug the function f = ξu2 into Sobolev inequality (4.37) to obtain

∫

M

ξ2u4 ≤ S
( ∫

M

|d(ξu2)|
)
≤ 2S

( ∫

M

u2|dξ|
)2

+ 8S(

∫

M

u2)
( ∫

M

uξ|du|
)2

,

where we have noted S for S(M) and used the fact that
∫

M u2 is finite. Using Cauchy-Schwarz
again, we find

(c)

∫

M

ξ2u4 ≤ 2S
( ∫

M

u2|dξ|
)2

+ 8S(

∫

M

u2)

∫

M

ξ2|du|2.

Plug (c) into (a) to get

(
1 − 8S

∫

M

u2
) ∫

M

ξ2|du|2 ≤ 2S
( ∫

M

u2|dξ|
)2

+

∫

M

u2|dξ|2.

We now assume that 8S
∫

M u2 < 1 and we choose a family of functions ξR such that ξR is equal to
1 in B(x0, R) (the ball with radius R centered at some x0 ∈ M), ξR is equal to 0 outside B(x0, 2R)
and |dξR| ≤ 2/R. Letting R tend to infinity and using the fact that

∫
M

u2 is finite, we obtain that
du = 0. Since M has infinite volume, it follows that u = 0. 2

4.2 Higher dimension, Mn # Hn × R, n ≥ 3

Recall the formula for the Jacobi operator,

JM := −∆M −
(
|AM |2 + R̂ic(NM )

)

where NM is a unit normal field along M and AM the second fundamental form of M with respect
to NM (Section 2.2).

Let vM := ĝ(NM , ∂t) be the vertical component of the unit normal vector NM . A simple computa-

tion gives that R̂ic(NM ) = −(n − 1)(1 − v2
M ). It follows that the Jacobi operator of M is given by

(4.41) JM := −∆M + (n − 1)(1 − v2
M ) − |AM |2.

We have the following theorem.

Theorem 4.3 Let Mn # Hn × R a complete oriented minimal immersion. Assume that M has
finite total curvature, i.e.

∫
M |AM |n dµM < ∞.

1. For n ≥ 2, the second fundamental form AM tends to zero uniformly at infinity.
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2. For n ≥ 3, the Jacobi operator of the immersion has finite index and, more precisely, there
exists a universal constant C(n) such that

(4.42) Ind(JM ) ≤ C(n)

∫

M

|AM |n dµM .

Remarks.

(i) The examples Md prove that the converse statements in the previous theorems are not true in
general, see Section 3.5.
(ii) Note that we state the second assertion of Theorem 4.3 only for dim(M) ≥ 3 (our proof does
not apply in dimension 2, see [2]).

Proof. As in the proof of Theorem 4.1, the manifold M satisfies a Sobolev inequality of the form
(4.37), namely

‖f‖n/(n−1) ≤ S(M)‖df‖1 for all f ∈ C1
0 (M)

for some constant S(M). Furthermore, the second fundamental form AM satisfies the following
Simons’ equation (compare with (4.36)),

−∆|AM | ≤ |AM |3 + C(n)|AM |,

for some constant C(n) which only depends on the dimension (this follows from the expression of

the term R̂(A) as given in [25].

The de Giorgi-Moser-Nash technique applies (see [4], Theorem 4.1) and it follows that |AM | tends
to zero uniformly at infinity.

Since |vM | ≤ 1, the operator JM is bounded from below and essentially self-adjoint. Furthermore,
its index is less than or equal to the index of the operator −∆− |AM |2 which is also bounded from
below and essentially self-adjoint. The estimate (4.42) then follows by applying Theorem 39 in [2].
2

Remark. The preceding results can be generalized to minimal hypersurfaces in Hn×Rk or Hn×Hk.

5 Applications

In this section, we use the examples constructed in Section 3 as barriers to prove some general
results on minimal hypersurfaces in Hn × R. These results generalize results obtained in [19] for
dimension 2. Similar results hold for H-hypersurfaces as well, see [19, 6].

Theorem 5.1 Let Γ ⊂ Hn be a compact embedded hypersurface and consider two copies of Γ in
different slices, Γ− = Γ × {−a} and Γ+ = Γ × {a} ⊂ Hn × R, for some a > 0. Assume that Γ is
convex.

Let M ⊂ Hn × R be a compact immersed minimal hypersurface such that ∂M = Γ− ∪ Γ+. Then,

2a <
π

n − 1
(the height of the family of catenoids).

Furthermore, if M is embedded,
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1. M is symmetric with respect to the slice Hn × {0}.

2. The parts of M above and below the slice of symmetry are vertical graphs.

3. If Γ is a horizontal graph and symmetric with respect to a hyperbolic hyperplane P , then M is
a horizontal graph and symmetric with respect to the vertical hyperplane P ×R. In particular,
if Γ is an (n − 1)-sphere, then M is part of a catenoid.

Proof. We reason ab absurdo. Suppose that the height of M is greater than or equal to
π

n − 1
, that

is 2a ≥ π

n − 1
. We recall that the height of the family of n-dimensional catenoids {Cρ, ρ ∈ (0,∞)}

is bounded from above by
π

n − 1
, but each catenoid Cρ has height strictly less than

π

n − 1
. Now as

M is compact, there is a (hyperbolic) radius ρ0 big enough such that M is strictly contained inside
the vertical cylinder Mρ0 of radius ρ0 (where Mρ0 is a cylinder over a n−1 sphere Sρ0 ⊂ H2×{0} of
radius ρ0) containing M in its mean convex side. Recall that, by the geometry of the catenoids, the
catenoid Cρ0 whose distance to the t-axis is ρ0 is contained in the closure of the non mean convex
side of Mρ0 touching Mρ0 just along the n − 1 sphere Sρ0 . Hence, M is strictly contained in the
connected component of H2 × R \ Cρ0 that contains the t axis of Cρ0 . Notice that the whole family
of catenoids Cρ is strictly contained in the slab of H2 × R with boundary Γ− ∪ Γ+. Starting from
ρ = ρ0, making ρ → 0, that is moving the family of catenoids {Cρ, ρ ≤ ρ0} towards M , we will find
a first interior point of contact with some Cρ and M , since the family of catenoid cannot touch the
boundary of M . We arrive at a contradiction, by the the maximum principle. The proof of the first
part of the statement is completed.

Now using the family of slices H × {t} ∪ H × {−t} coming from the infinity towards M we get, by
maximum principle, that M is entirely contained in the closed slab whose boundary is the slices
H × {a} ∪ H × {−a} and (H × {a} ∪ H × {−a}) ∩ M = ∂M.

In the same way, considering the family of vertical hyperplanes, we get that M is contained in the
mean convex side of the vertical cylinder MΓ over Γ and MΓ ∩ M = ∂M. Now using Alexandrov
Reflection Principle on the slices, moving the slices from t = a towards t = 0, by vertical reflections,
we get that the reflection of M+ = M ∩ {t > 0}, the part of M above t = 0, on the horizontal
slice t = 0, is above M− = M ∩ {t 6 0}. Moreover, we find that M+ is a vertical graph. In the
same way, moving the slices from t = −a towards t = 0, doing vertical reflections, we get that the
reflection of M− = M ∩ {t 6 0}, the part of M above t = 0, on the horizontal slice t = 0, is below
M+ = M ∩ {t ≥ 0}. We conclude that M− = M+, hence both M+ and M− are vertical graphs
and M is symmetric with respect to the slice Hn × {0}. Therefore, the proof of the second part of
the Statement is completed.

Let us assume now that P ⊂ H × {0} is a hyperplane of symmetry of Γ. Consider the vertical
hyperplane P = P × R and the family of hyperplanes Pt at signed distance t from P obtained from
P by horizontal translations along an oriented geodesic γ orthogonal to P at the origin. Choosing
|t| big enough, we move the family Pt towards P (in the two sides of H2 ×R \P), doing Alexandrov
Reflection Principle on Pt, taking into account that Γ is a horizontal graph and that the symmetric
of ∂M on Pt stays on the slices t = ±a, so that it does not touch the interior of M . We can argue as
before to conclude that P is a hyperplane of symmetry of M . Of course, is Γ is rotationally symmetry
then M is a minimal hypersurface of revolution. Henceforth, by the classification theorem, M is
part of a catenoid. This completes the proof of the theorem. 2
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