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Abstract

The combination of the harmonic balance method (HBM) with a continuation tech-
nique is a widely used approach to follow the periodic solutions of dynamical sys-
tems with respect to a bifurcation parameter. However, since the derivation of the
algebraic system containing the Fourier coefficients can be very cumbersome, the
classical HBM is often limited to simple nonlinearities (quadratic, cubic) and/or to
a small number of harmonics. Several variations of the classical HBM have been
introduced in the literature to overcome this shortcoming, for instance, the incre-
mental HBM or the alternating frequency/time domain HBM. In this paper, we
present an alternative approach that can be applied to a very large class of dy-
namical systems (autonomous or forced) with regular equation. The main idea is to
systematically recast the dynamical system under a quadratic form before applying
the HBM. Once the equations are quadratic, the derivation of the algebraic system
and its resolution by the so-called ANM continuation technique become obvious.
Several classical examples are presented to illustrate this numerical technique.

1 Introduction

Computing the periodic solutions of a system of nonlinear differential equa-
tions is a traditional requirement in engineering applications, and particularly
in the field of nonlinear vibrations ([1,2]). When the interest is in accurate
capture of the periodic solutions and their bifurcations, numerical continu-
ation methods are generally prefered to approximate analytical techniques.
These numerical methods are usually classified into two main categories : the
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time-domain approach and the frequency-domain approach. The first cate-
gory refers to methods where a time integration algorithm, generally limited
to a single period, is used to transform the original differential system into
a system of algebraic equations, which are then solved by continuation. In
these methods, the unknown of the algebraic system are the values of the
unknown original variables at grid points along the periodic orbit. The classi-
cal shooting technique ([3,4]) and the orthogonal collocation methods used in
AUTO ([5,6]) fall into this category . The second category corresponds to the
so-called harmonic balance method where the unknown variables are decom-
posed into truncated Fourier series. In that case, the unknowns of the final
algebraic system, which is obtained by balancing the harmonics in the dif-
ferential equations, are simply the Fourier coefficients of the unknowns. Both
categories of methods are widely used for many applications and there is still
an important research effort to improve both types. Practically, the choice
between the time-domain or the frequency-domain approach highly depends
on whether the periodic solution may be represented by a few Fourier compo-
nents. Hence, for a given problem, one or the other of the two methods may
be prefered, depending on the operating point.

In this paper, we focus on the harmonic balance method (HBM) and some
variations that are briefly recalled here. Though the name ”harmonic bal-
ance” seems to first appear in 1936 ([7]), the method is widely used since
the sixties only, especially for electrical and mechanical engineering purposes.
Forced vibrations have first been studied ([8]), then self-sustained oscillations
a decade later ([9]). The work from Nakhla & Vlach ([10]) is often reported as
being a milestone in the modern formulation of HBM. The classical HBM is
simple in its principle, but it can be cumbersome or even impractible as stated
by Peng et al. ([11]) when the system has complex nonlinearities and when
the required number of harmonics is high, says, more than 5 or 10. The first
difficulty is to write down the algebraic system for the Fourier coefficients and
the second, to solve efficiently this strongly nonlinear system. To overcome
these shortcomings, many variations of the basic HBM have been proposed
in the literature. Here, we limit ourselves to give the main idea of the incre-
mental harmonic balance (IHB) and the alternating frequency/time domain
harmonic balance (AFT). In the IHB ([12]), the incremental-iterative method
used for the continuation is closely combined with the harmonic principle, so
as to apply the HB principle to the incremental linear problem instead of the
nonlinear original system. Any kind of nonlinearity can be treated by this
technique [13,14]. In the AFT variant, the harmonic balance of the Fourier
coefficients is not done explicitely. At each increment (or iteration) of the con-
tinuation procedure, the unknowns are transfered to the time domain (inverse
FFT), so as to use the original system of equations. The nonlinear responses
are then transfered back to the frequency domain using FFT. The use of
FFT/FFT−1 procedures seems to first appear in [15]. This technique has been
used, for instance, to analyse the nonlinear vibrations of mechanical systems
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with contact and dry friction [16]. Since the pioneer work on IHB and AFT,
many variations have been proposed to extend the applications, and also to
improve the computational cost (see [17] or [18] for recent examples).

In this paper, we propose an alternative strategy for applying the classical
HBM with a large number of harmonics and without avoiding the explicit
balancing. The idea is to apply a transformation to the original system of
differential equations before the application of the HBM. The goal of the pro-
cedure is to transform the non-linearities of the original system into non-linear
quadratic terms only. Then, the application of the classical HBM becomes ob-
vious. This transformation could appear as a limitation of the method since
not every system can be recasted under a quadratic form. However, it will be
shown in this paper that a very large class of systems with regular equations
do can be recasted quadratic with simple algebraic manipulations and a few
addition of equations and auxilary variables. The idea of using a quadratic for-
mulation to make easy the (Fourier) series expansion is taken from another nu-
merical method, the so-called Asymptotic Numerical Method (ANM) ([20,21])
that has been proposed first in 1990 ([19]). ANM is a continuation technique
([22]) that relies on high order powers series expansion of the branches of so-
lutions. For reasons that will be given latter on, this ANM continuation is the
ideal companion to solve the algebraic system coming from the proposed HB
method.

The paper is organised as follows : the details of the transformation into a
quadratic form, the HBM application and the principle of continuation are
given in section 2 for autonomous systems. Three simple examples are used
for illustration. Section 3 is devoted to periodically forced systems, and two
more examples are presented. Section 4 shows the results of all the examples
and we finish by concluding remarks and perspectives.

2 Presentation of the method for periodic solutions of autonomous

systems

We consider an autonomous system of differential equations

Ẏ = f(Y, λ) (1)

where Y is a vector of unknowns, f a nonlinear vector valued function and λ

a real paramater. The dot stands for the derivative with respect to time t. We
assume that this system has branches of periodic solutions when λ varies, and
we want to find and follow them by applying the harmonic balance method
and a continuation procedure (path following technique). The important case
of forced system (non-autonomous) will be treated separately in section 3.

3



2.1 The harmonic balance principle

As recalled in the introduction, the basic principle of the HBM consists in
decomposing Y (t) under the form of a truncated Fourier series :

Y (t) = Y0 +
H∑

k=1

Yc,k cos(kωt) +
H∑

k=1

Ys,k sin(kωt) (2)

This ansatz is put into (1) and f(Y, λ) is expanded into Fourier series. By
balancing the first 2H + 1 harmonic terms, one obtains an algebraic system
with 2H +1 vector equations for the 2H +1 vector unknowns Yi, the unknown
pulsation ω, and the parameter λ. Adding a phase condition ([3]) leads to a
system with N equations for N +1 variables. The branches of solutions of this
algebraic system are then followed by a continuation technique. This procedure
provides only approximate periodic solutions, since in the expansion of (1),
all the harmonic terms greater than H remain unbalanced. However, if the
number of harmonic H is large enough, accurate solutions can be expected.

The very crucial point is the expansion of the vector f(Y, λ) in Fourier series.
It can be rather straighforward if f(Y, λ) is quadratic or cubic with respect
to Y , and if the number of harmonics H is small. In that case, the expansion
can be made by hand. But for the general situation, where f(Y, λ) presents
any kind of nonlinearities, this computation can be very cumbersome, even
with the help of a symbolic software. The only alternative is then the use
of numerical procedures to estimate the Fourier serie of f(Y, λ), for example
through iterative FFT/FFT−1 steps. This drawback has been the starting
point for the developpement of many variants of the HBM as it has been
noticed in the introduction.

2.2 A key point : the quadratic recast

The main goal of this paper is to promote a simple but powerful procedure
that permits to remove the drawback mentioned above. The idea is to recast
the original system (1) into a new system where the nonlinearities are at
most quadratic. Afterward, the application of the harmonic balance method
becomes straighforward. This quadratic new system will be written as

m(Ż) = c + l(Z) + q(Z, Z) (3)

and it may contains both differential and algebraic equations. The number
of equations is denoted by Ne. The unknown vector Z (size Ne) contains the
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original components of the vector Y , and some new variables that are added
to transform (1) into a quadratic form. The right hand side of (3) is organized
as follows : c is a constant vector with respect to the unknown Z, l(.) is a
linear vector valued operator with respect to the vector entry, and q(., .) is
a quadratic vector valued operator, it is linear with respect to both entries.
At this stage, the three vectors c, l(Z) and q(Z, Z) may depend on the real
parameter λ. However, it will be convenient that the quadratic operator q(., .)
does not depend on λ, which may require the introduction of a new variable in
Z (see example 1 below). In the left hand side, m(.) is a linear vector valued
operator with respect to the vector entry. Algebraic equations correspond to
zero values of m(.).

Since the nonlinearities are quadratic, it is clear that the HBM can be applied
on (3) in a systematic and easy way, even with a large number of harmonics.
The question is now: does any system can be easily put under the form (3) ?
We will see that the answer is yes for a very large class of nonlinear systems.

The idea to recast a nonlinear system into one with a quadratic polynomial
nonlinearity is not new. It has been systematically used by the authors of the
so-called ANM continuation method to compute power series expansion of
solution branches, see ([20,21,22,23]) for the basic algorithms and ([24,25,26])
for some applications in mechanics. Indeed, the quadratic recast allows to have
a very simple and systematic algebra for the series determination, even for high
order of troncature. The same benefits hold for Fourier series expansions.

It is now worth illustrating this main idea on elementary examples where the
recast from (1) to (3) will be made explicitely. We consider the classical Van
der Pol oscillator, the Rössler system and a model of clarinet-like musical
instruments hereafter. More examples, with other kinds of nonlinearities such
as rational fraction, will be given later on.

Example 1 : Van der Pol oscillator. We consider the following second order
autonomous system, known as the Van der Pol oscillator. Here, the parameter
λ governs the amplitude of the nonlinear damping term.

ü − λ(1 − u2) u̇ + u = 0 (4)

This equation can be classically recasted into a first order system as (1) by
introducing the velocity v(t) = u̇(t) as a new unknown. We get

u̇ = v

v̇ = λ(1 − u2) v − u
(5)
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If we now introduce the auxilliary variables w(t) = 1 − u2(t) and r(t) =
v(t)w(t), the system can be put under the form (3) with Z = [u, v, w, r]t

u̇ = 0 +v

v̇ = 0 −u + λr

0 = 1 −w −u2

0
︸︷︷︸

m(Ż)

= 0
︸ ︷︷ ︸

c

+r
︸ ︷︷ ︸

l(Z,λ)

−vw
︸ ︷︷ ︸

q(Z,Z)

(6)

We finally get two first order differential equations and two algebraic equa-
tions, each of them being quadratic. Here, only the operator l depends on
λ.

Example 2 : The Rössler system. We consider the following first order au-
tonomous system of three equations known as the Rössler system.

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − λ)

(7)

where x, y, z are functions of time and a, b, c are float parameters. This system
can already be written in the form of (3) without any auxiliary variable (i.e.
Z = [x, y, z]t):

ẋ = 0 −y − z

ẏ = 0 +x + ay

ż
︸︷︷︸

m(Ż)

= b
︸ ︷︷ ︸

c

−λz
︸ ︷︷ ︸

l(Z,λ)

+zx
︸ ︷︷ ︸

q(Z,Z)

(8)

Here again, only the operator l depends on λ. This example is considered
hereafter to demonstrate the ability of the approach presented in this paper
to find period-doubling and period-4ing bifurcations.

Example 3: A model of clarinet-like musical instruments. In the case of
small amplitudes of oscillation, a simple model of reed instruments (clarinet,

6



saxophone ...) can be written according to a modal formulation (see [27]):

ẍ + qrωrẋ + ω2
rx = ω2

rp

p̈n + 2αnc ṗn + ω2
npn = 2c

l
u̇ ∀n ∈ [1 . . . N ]

u = ζ(1 − λ + x)
√

λ − p

p =
∑N

n=1 pn

(9)

where the unknowns x, pn=1..N , p, u are functions of time, and qr, ωr, αn, ωn,
c, l, ζ are given parameters describing either the physics or the player action.
N is the number of acoustic modes. Here λ stands for the blowing pressure.

It is interesting to note that even if this system contains a square root, it can
be recasted in the form of (3). Indeed, if we introduce the auxiliary variables
y = ẋ, zn = ṗn and v =

√
λ − p, system (9) can be rewritten, with Z =

[x, y, p1, . . . , pN , z1 . . . zN , u, v]t:

ẋ = 0 +y

ẏ = 0 +ω2
rp − qrωry − ω2

rx

ṗn = 0 +zn ∀n ∈ [1 . . . N ]

żn − 2c
l
u̇ = 0 −2αnc zn − ω2

npn ∀n ∈ [1 . . . N ]

0 = 0 −u + ζ(1 − λ)v +ζxv

0 = 0 −p + p1 + . . . + pN

0
︸ ︷︷ ︸

m(Ż)

= λ
︸ ︷︷ ︸

c(λ)

−p
︸ ︷︷ ︸

l(Z,λ)

−v2

︸ ︷︷ ︸

q(Z,Z)

(10)

Here, not only the linear term l is a function of λ, but also the constant term
c.

2.3 The harmonic balance method applied to a quadratic system

In this section the harmonic balance method is applied to the system (3).
The unknown (column) vector Z is decomposed into Fourier series with H

harmonics:

Z(t) = Z0 +
H∑

k=1

Zc,k cos(kωt) +
H∑

k=1

Zs,k sin(kωt) (11)
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The components of the Fourier series are collected into a large (column) vector
U of size (2H + 1) × Ne, where Ne is the number of equations of (3).

U = [Zt
0, Z

t
c,1, Z

t
s,1, Z

t
c,2, Z

t
s,2, . . . , Z

t
c,H, Zt

s,H]t (12)

By introducing the expansion (11) into the set of equation (3), collecting the
terms of the same harmonic index, and neglecting the higher order harmonics,
one obtains a large system of (2H +1)×Ne equations for the unknown vector
U ,

ωM(U) = C + L(U) + Q(U, U) (13)

The new operators M(.), C, L(.), and Q(., .) that apply to U only depend on
the operators m(.), c, l(.) and q(., .) of (3) and on the number of harmonics
H. The explicit formulas have been reported in annexe 1 for a sake of brevity.
It should be noticed that these expressions of M(.), L(.) and Q(., .) are the
same for all the examples. The change from one particular system to another
is only concerned with the operators m(.), l(.) and q(., .).

The final system (13) contains (2H +1)×Ne equations for the (2H + 1)×Ne

unknowns U plus the angular frequency ω and the continuation parameter λ.
Since the original system is autonomous, a phase condition has to be added
to (13) to define a unique orbit. Indeed, the time t does not appear in (3) and
if U(t) is a solution of (13) then U(t+ τ) is also a solution, for any τ . We refer
here to textbooks dealing with periodic solution continuation ([3,6,4]) for the
choice of such a phase condition. Typically Zs,1 = 0 is an often encountered
additional phase condition.

2.4 The continuation procedure

2.4.1 Framework

As a result of the harmonic balance operation, we are now faced to solve an
algebraic system

R(U) = 0 (14)

with R ∈ R
N and U ∈ R

N+1 (N = (2H + 1) × Ne + 1). Any numerical
continuation method ([28,29,3]) and software (see ([30] for an overview) could
be used to achieve this goal. However, in this paper we shall use the so-
called Asymptotic-Numerical-Method (ANM), from which, the spirit of the
quadratic recast has been taken. It should be noticed that the final system
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(13) is already quadratic with respect to the Fourier coefficients U and ω, and
so, the application of the ANM is straighforward.

In the continuation procedure, we shall use a pseudo-arc length parametriza-
tion in order to be able to pass the limit points with respect to λ. Hence,
the parameter λ will now become an unknown as it is for U and ω. In that
perspective, we have to give details on how the operators m, c, l and q of (3)
depend on λ. In the three examples, we have organised the terms of equations
so that the parmeter λ only appears in the operator c and l. The idea is to
avoid to put λ in the operator q, for which the algebra of the HBM is more
complex than for c and l. Moreover, we manage to have this dependence at
most linear with respect to λ.

Once again, this writting can be obtained for a very large class of systems
provided that suitable additional variables are introduced. For instance, a
term λu2 should be rewritten as λv with v = u2, and put into l instead of q.

So, for the following, we assume that c and l can be written as:

c = c0 + λc1

l(.) = l0(.) + λl1(.)
(15)

where c0, c1, l0 and l1 are independent of λ. Under this hypothesis, the oper-
ators C and L simply become

C = C0 + λC1

L(.) = L0(.) + λL1(.)
(16)

and the final algebraic system (14)

R(U) = L0 + L(U) + Q(U,U) (17)

with U = [U t, λ, ω]t and

L0 = C0

L(U) = L0(U) + λC1

Q(U,U) = Q(U, U) + λL1(U) − ωM(U)

(18)

In (17), L0 is a constant vector, L(.) a linear vector valued operator and Q(., .)
a bilinear vector valued operator. In the following, we make a brief review of
the ANM continuation technique for solving such quadratic system.
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2.4.2 The ANM continuation

The particularity of the ANM is to give access to branches of solution as power
series. Suppose we know a regular solution point U0, the branch of solution
passing through this point is computed as a power serie expansion (truncated
at order n) of the pseudo-arclength path parameter a = (U − U0)

tU1, where
U1 is the tangent vector at U0:

U(a) = U0 + aU1 + a2U2 + a3U3 + . . . + anUn. (19)

The serie is replaced in equation (17) and each power of a is equated to zero,
leading to a serie of linear systems :

• order 0 : L0 + L(U0) + Q(U0,U0) = 0, which is obvious since U0 is a
solution of (17).

• order 1 : L(U1) + Q(U0,U1) + Q(U1,U0) = 0, which can also be written
JU0

U1 = 0 with JU0
∈ R

N×N+1 the jacobian matrix of R evaluated at U0.
• order 2 ≤ p ≤ n : JU0

Up + Σp−1
i=1 Q(Ui,Up−i) = 0

The original nonlinear problem has therefore been reduced to a serie of n

linear systems of Ne equations. However, for each order, the linear systems are
under-dimensioned since they have Ne+1 unknowns. The additional equations
required are given by inserting (19) into the definition of the path parameter
a given above. This leads to:

• order 1 : Ut
1U1 = 1

• order 2 ≤ p ≤ n : Ut
1Up = 0

2.4.3 Remarks:

• The original nonlinear system of Ne equations has been transformed in n

linear systems of Ne equations which can be solved successively (like in
classical perturbation methods) i.e. Up is deduced from terms found at
lower orders.

• Once each Up has been found, the area of validity of the series expansion is
evaluated by calculating the value amax such that

∀a ∈ [0 amax], ||R(U(a))|| ≤ ǫr, where ǫr is a user-defined parameter(20)

Using the approximation (see ([31]) R(Σn
i=0a

iUi) ≃ an+1Fn+1 where Fn+1 is
the rhs vector of the linear system at order n + 1, amax is simply given by

amax =

(

ǫr

||Fn+1||

)1/(n+1)

(21)

10



It should be noticed that the range of validity amax is generally closed to
the radius of convergence of the series ([32]).

• The serie expansion and the associated range of validity amax define a piece
of the branch of solution, named section. The next section of the branch can
be found by initializing the algorithm with the upper bound of this section of
branch. The ANM is therefore able to find the entire branch as a succession
of different sections of branch, the length of each being automatically given
by the range of validity amax.

• The ANM approach has some interesting properties that are recalled here-
after:
· the solution branch is known analytically, section by section.
· because all the linear systems to solve have the same jacobian matrix, the

computational cost of the series (19) is low.
· since the size of the section is given by the convergence properties of the

current step, ie, the values of amax, the ANM continuation algorithm does
not require any strategy for the step-length control.

· the ANM continuation algorithm is very robust, even when the branch has
sharp turns. As a consequence, branch switching can be easily performed
by using small pertubation in the system.

2.5 Implementation in the MANLAB software

2.5.1 A brief presentation of MANLAB

MANLAB is an interactive software for the continuation and the bifurcation
analysis of algebraic system with the ANM continuation. The last version is
programmed in Matlab using an objet-oriented approach ([33]). MANLAB has
a Graphical User Interface (GUI) with buttons, on-line inputs and graphical
windows for generating, visualising and analysing the bifurcation diagram and
the solution of the system. To input the system of equation, the user has to
provide three vector valued Matlab functions corresponding to the constant,
linear and quadratic operators L0, L and Q. As an illustrative example, we
consider the bio-chimical reaction system used by Doedel et Al in ([5])

r1(u1, u2, λ) = 2u1 − u2 + 100 u1

1+u1+u2

1

− λ = 0

r2(u1, u2, λ) = 2u2 − u1 + 100 u2

1+u2+u2

2

− (λ + µ) = 0.
(22)
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Introducing the following additional variables v1 = u1 + u2
1, v2 = u2 + u2

2,
v3 = 1

1+v1

and v4 = 1
1+v2

, the system is rewritten as,

0 +2u1 − u2 − λ +100u1v3 = 0

−µ +2u2 − u1 − λ +100u2v4 = 0

0 +v1 − u1 −u2
1 = 0

0 +v2 − u2 −u2
2 = 0

−1 +v3 +v1v3 = 0

−1
︸︷︷︸

L0

+v4
︸ ︷︷ ︸

L(U)

+ v2v4
︸ ︷︷ ︸

Q(U,U)

= 0

(23)

with U = [u1, u2, v1, v2, v3, v4, λ]. The three Matlab functions read when µ =
0.05:

function [L0] = L0 function [L] = L(U) function [Q] = Q(U,V)

L0=zeros(6,1); L=zeros(6,1); Q=zeros(6,1);

L0(1)= 0; L(1)=2*U(1)- U(2) -U(7); Q(1)=100*U(1)*V(5);

L0(2)= -0.05; L(2)=2*U(2)- U(1) -U(7); Q(2)=100*U(2)*V(6);

L0(3)= 0; L(3)=U(3)-U(1); Q(3)= -U(1)*V(1);

L0(4)= 0; L(4)=U(4)-U(2); Q(4)= -U(2)*V(2);

L0(5)= -1; L(5)=U(5); Q(5)= U(3)*V(5);

L0(6)= -1; L(6)=U(6); Q(6)= U(4)*V(6);

2.5.2 Implementation of the periodic solution continuation in MANLAB

To compute the branches of periodic solutions of a system, the user has to
first recast his system under the form (3) with account of the additional de-
composition (15). This is probably the most unusual and difficult task, for
a new user. Afterward, following the same philosophy as above, the user has
only to provide the operator m(.), c0, c1, l(.) l1(.) and q(., .) to the MANLAB
software. The functions L0, L and Q which are the actual entry of MANLAB
have been programmed once for all, using the expression (18) and the for-
mulas of annexe 1. The examples demonstrated in this paper are available at
http://www.lma.cnrs-mrs.fr/~manlab.

3 The case of a periodically forced system

We now focus on periodically forced (non-autonomous) systems:

Ẏ = f(t, Y, λ) (24)
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where f is periodic in t, with period T (forcing period). We look for periodic
solutions (response) with a period pT or T

p
where p is an integer. A classical

strategy is to transform (24) into an augmented autonomous system ([3]), for
instance, by adding an oscillator with the desired forcing period in the system
of equations ([6]).

In the following, we use a direct approach which consists in expanding the
forcing term into harmonics, and to take them into account in the balance of
individual harmonics. It is illustrated below on two more examples.

Example 4 : Forced Duffing oscillator.

The normalized forced Duffing oscillator is the non-autonomous equation:

ü + 2µu̇ + u + u3 = f cos(λt) (25)

We take the damping coefficient µ and the force amplitude f constant, and
we use the forcing angular frequency as the varying parameter λ. By using
v(t) = u̇(t) and w(t) = u2(t), this equation can be recasted as

u̇ = v

v̇ = f cos(λt) −2µv − u −uw

0
︸︷︷︸

m(Ż)

= 0
︸ ︷︷ ︸

c(t,λ)

w
︸ ︷︷ ︸

l(Z)

−uu
︸ ︷︷ ︸

q(Z,Z)

(26)

with Z = [u, v, w]t, and the forcing term deliberately put into c. We now
link the forcing frequency with the response frequency by putting λ = ω or
possibly, λ = pω (p integer). Then, the term c(t) is expanded into harmonics
with respect to ω.

This results in a slight modification of the procedure:

• because of the synchronization of the response and the forcing, the phase
condition has to be removed. Notice that the parameter λ is no more an
unknown since it is linked to ω. In short, we have one less equation and one
less unknown than for the case of autonomous systems.

• for the final system (17)(18), the operators C1 and L1 disapear and the
forcing amplitude f should be accounted for in L0

As a final illustration, we consider the Raylegh-Plesset equation that models
the large amplitude vibrations of a gaz bubble in a fluid. The treatement of
the forcing is a little different and it permits also to show how to deal with a
power −3.
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Example 5 : Forced Rayleigh-Plesset equation ([34]).

Let R be the radius of the vibrating bubble, and R0 the radius at rest, the
equation is

RR̈ +
3

2
Ṙ2 = A{(R0

R
)3 − 1} + B cos(λt) (27)

with A and B fixed. By using u = R
R0

, v = Ṙ
R0

, x = 1
u
, y = x2, and z = v2 this

equation can be recasted as

v̇ = − A

R2
0

x +
A

R2
0

y2 − 3

2
xz +

B

R2
0

x cos(λt) (28)

After this transformation the forcing term is now multiplied by the variable
x(t) and cannot be put directely into the operator c (the same situation occurs
for parametrically forced system such as the Mathieu model equation). In that
case, we introduce another variable r(t) = cos(λt), and finally, we get

u̇ = v

v̇ = − A
R2

0

x + A
R2

0

y2 − 3
2
xz + R

R2

0

xr

0 = 1 −ux

0 = y −xx

0 = z −vv

0
︸︷︷︸

m(Ż)

= − cos(λt)
︸ ︷︷ ︸

c(t)

r
︸ ︷︷ ︸

l(Z)

︸ ︷︷ ︸

q(Z,Z)

(29)

with Z = [u, v, x, y, z, r]t.

4 Numerical results for selected examples

For the selected examples, numerical results obtained following the approach
detailed in this paper are compared with time-domain simulations to validate
our approach, or used to highlight particular features: influence of the number
of harmonics for the Van der Pol oscillator, ability to follow period-doubling
bifurcations for the Rössler system, ability to follow a direct or inverse Hopf
bifurcation for the clarinet model and finally an illustration of a forced system
with the Duffing oscillator.
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Figure 1. Van der Pol oscillator (Eq. (4)): validation of the harmonic balance results
by comparison with a time domain simulation. Influence of the number of harmonics
H taken into account (top H=10, bottom H=50).

Example 1: Van der Pol oscillator. Numerical results related to the Van
der Pol oscillator (Eq. (4)) are displayed in figure 1. Confrontation with a
time domain simulation, using Matlab ODE solvers, shows a good agreement.
As expected, the number of harmonics H of the solution seeked by harmonic
balance must be adapted to span the bandwith of the solution found by direct
integration. In the case of figure 1, λ = 3, which requires a relatively high H

to match the reference solution.
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Example 2: Rössler system. The ability to follow period-doubling bifur-
cations is illustrated in figure 2. Following such bifurcations is more difficult
in the case of autonomous systems than in forced systems, since the period of
oscillation is also an unknown. Moreover, since a T -periodic solution is also a
2T -periodic solution, one cannot expect the period as found by the harmonic
balance process to double when crossing a period-doubling bifurcation. There-
fore, the trick used here is to introduce subharmonics complex amplitudes as
additionnal unknowns. Then, to allow the detection of K period-doubling bi-
furcations, the seeked solution is written:

Z(t) = Z0 +
H∑

k=1

Zc,k cos(
k

2K
ωt) +

H∑

k=1

Zs,k sin(
k

2K
ωt) (30)

When the solution belongs to the branch of the T -periodic solution, Zc,k|k=1..K−1 =
0 and Zs,k|k=1..K−1 = 0. When the solution belongs to the branch of the 2T -
periodic solution, Zc,k|k=1..K−1,k 6=2K−1 = 0 and Zs,k|k=1..K−1,k 6=2K−1 = 0. A
practical consequence in term of computational cost is that in order to span
the same bandwidth, the number of harmonics must be mulitplied by 2K .
This is illustrated in figure 2 where H = 10 from the T -periodic solution to
22 × 10 = 40 for the solution after two period-doubling bifurcations.

Example 3: The clarinet model.

Two typical examples of bifurcation diagrams obtained with the clarinet model
are shown on figure 3. These pictures focus around the oscillation threshold
in order to stress the robustness of the method even at singular points. As
seen on both pictures, the radius of convergence of power series expansion
decreases when approaching a bifurcation point (and hence the length of each
section of a branch lying between two consecutive points on figure 3). This is
a typical behavior of ANM ([32]).

Example 4: The forced Duffing oscillator

For this example, we show the frequency-amplitude diagram of the response
obtained with the proposed method. We can see a classical bent resonance
curve with some additional peaks corresponding to superharmonic resonances.

It should be noted that we have plotted the individual amplitude Ai =
√

(u2
c i + u2

s i)
of each odd harmonics, the even harmonics (A0, A2, A4, . . .) being zero. The
computation of this branch of periodic orbits has required 25 steps of MAN-
continuation when 5 harmonics are included, and 35 steps when 9 harmonics
are included. We can see that the curves for harmonics 1 and 3 are slightly
modified when passing from H = 5 to H = 9 harmonics in (11). The curve
for A5 is more modified, and this confirms the logical result that more than
5 harmonics has to be used to obtain an accurate result for the harmonic 5.
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Figure 2. Rössler system (Eq. (7) with a = b = 0.2): validation of the harmonic
balance results by comparison with a time domain simulation. These three figures
demonstrate the ability of the method to follow the sub-harmonic cascade, from
λ = 2.5 (perdiod T ), to λ = 3.5 (period 2T after a first period-doubling bifurcation)
and λ = 4 (period 4T after a second period-doubling bifurcation)
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Figure 4. Duffing oscillator (25) with µ = 0.1 and f = 1.25 as in ([18]). The figure
shows the amplitude of the harmonics 1, 3 and 5 versus the frequency forcing ω.
Solid line : results when 5 harmonics are included (H=5 in (11)). Dash line : results
when 9 harmonics are included. The figure on the right is a zoom of the region
ω < 0.6.

We have also verified that the curve for A5 is only very slightly modified when
passing from H = 9 to H = 11 harmonics in (11).

5 Discussion and Conclusion

A key idea in this work is the quadratic recast. In fact, it is worth pointing
out that there are two quadratic recasts. The first one, in the time domain,
transforms the original system (1) in (3), and is presented in section 2.2.
The second one is more transparent for the user, and allows to formulate the
continuation problem as the quadratic system (17) and (18). This point is at
the origin of many characteristics of the method presented:

• All the procedure is in the frequency domain with an analytical expression

18



of the system to solve (like with classical harmonic balance) but allows to
seek solutions with an arbitrarily high number of harmonics (like with AFT
procedures).

• There is no iterative process to solve the system, hence no problems of
convergence, and a computational cost always predictible (and rather low).
On the contrary, convergence of the iterative process may be difficult with
AFT procedures ([38, sect. 4.6, p117]).

• There is no need for FFT/FFT−1 procedures, which increase the computa-
tional load of AFT approaches.

• There is no temporal discretization (since all the procedure lie in the fre-
quency domain), and therefore no need to cope with aliasing.

• There is no need to use numerical schemes to compute derivatives. Indeed
since the problem is quadratic, the jacobian is calculated analytically and
very easily. This is a consequent advantage of the approach presented. In-
deed, as stated by [38, p17], usually ”analytical calculation of the jacobian
involves considerable calculation and transformation” while on the other
hand, when considering numerical calculation of the jacobian (for iterative
approaches), ”for very nonlinear circuits, the error introduced in the jaco-
bian estimation results in inaccurate updates of the unknowns and a large
number of iterations and possibly no convergence”.

According to [11], to apply HB, ”it is always necessary to write specific com-
putation programs for different nonlinear models”. On the contrary, another
interesting feature of the method presented is the natural splitting between
the automated part, which is independent of the problem (i.e. the transforma-
tion from operators c, l, q to operators L0,L,Q and the ensuing solving by the
ANM), and the part which depends on the particular problem to solve (the
writting of operators c, l, q) which is let to the user. From the point of view
of the user, this means that the implication is relatively low and the software
easy to use. Moreover, very few parameters have to be defined by the user :
indeed, only two parameters have to be set, the number of harmonics of the
solution and the parameter ǫr in equation (20), which controls the precision
of the ANM computation.

In this paper, we have presented only small size systems for simplicity of
the presentation. The extension to large system of equations is obvious on the
theoretical point of view, though, it may require additional technical work, and
introduce limitation due to computer ressources. In [35] the proposed strategy
has already been applied to compute the forced responses of geometrically
nonlinear elastic structures discretized by the finite element method. Choosing
the velocity v, the displacement u and the second Piola-Kirchhoff S as the
unknown variables, the governing equation (equilibrium and constitutive law)
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of a periodically forced elastic structural model reads (discrete form)

u̇ = v

Mv̇ = − ∫V (BL + BNL(u))tSdv + Fcos(λt)

S = D(BL + 1
2
BNL(u))u

(31)

where M is the mass matrix, D the Hooke operator and BL, BNL the linear
and nonlinear strain-displacement operator [36]. The algebra given in annexe
1 has been directely introduced into the FEM code that supports the ANM
continuation.

To finish, we discuss the limitations of the method and give some directions for
future research. First of all, it is worth noting that when the original system
is not directly under the quadratic form (3), the introduction of auxiliary
variables as shown in the examples may add additional (possibly unphysical
solutions) due to sign ambiguity. For example, in the case of the clarinet model
(example 3), a variable v =

√
γ − p is introduced, and then further defined

by v2 = γ − p. Such a definition corresponds to v = ±√
γ − p. Practically,

this means that the user has to check that the branch of solution computed
corresponds to a positive v.

Today, the main limitation of the proposed method is that not all the original
systems can be put under the quadratic form (3). For that reason, problems
where one or several relations are given in the frequency domain (typically,
when some variables are linked through an impedance) cannot be treated.
Similar difficulties arrise when the original system contains functions (trigono-
metric, exponential, non-integer powers,...) that are applied to the unknowns.
The classical pendulum model θ̈ + sin(θ) = 0 is a good example of such a
system. In that cases, we can generally introduce new variables and new dif-
ferential equations, so that the function is generated by the system itself. For
the pendulum exemple, we introduce the velocity v = θ̇ and the two new vari-
ables s(t) = sin(θ(t)) and c(t) = cos(θ(t)). Taking the derivative with respect
to time for the last two equations, we arrive at

θ̇ = v

v̇ = −s

ṡ = cv

ċ = −sv

(32)
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This quadratic system corresponds to the pendulum model provided that the
two additional initial conditions are added

s(0) = sin(θ(0))

c(0) = cos(θ(0))
(33)

The application of the HBM to (32) is now straighforward, but, because of
(33), the final algebraic system is not quadratic. In that cases, the applica-
tion of the ANM continuation is still feasible but it requires a more elaborate
algebra for the computation of the powers series, as it has been explained in
([37,31]). The efficiency will be tested in a near future. Another interesting
direction will be to test the capacity of the proposed method to solve regu-
larized non-smooth dynamic problems, and for instance, the case of vibrating
systems with contact conditions and frictions laws.
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6 Annexe 1

We give here the expression of the operators M , C, L and Q of (13) with
respect to m, c, l, q and H . We recall that (13) is obtained by inserting (11)
into (3) and by collecting the term with the same harmonic index (cosine
and sine). The entry of M , L and Q is the vector U , containing the Fourier
coefficients of Z(t)

U = [Zt
0, Z

t
c,1, Z

t
s,1, Z

t
c,2, Z

t
s,2, . . . , Z

t
c,H, Zt

s,H]t (34)

6.0.3 Constant term

The constant vector c is grouped with the harmonic zero. The operator C is
simply

C = [ct, 0t, 0t, . . .]t (35)

6.0.4 Linear term

For the linear operator l, we have

l(Z(t)) = l(Z0 +
∑H

k=1 Zc,k cos(kωt) + Zs,k sin(kωt))

= l(Z0) + l(Zc,1) cos(ωt) + l(Zs,1) sin(ωt) + l(Zc,2) cos(2ωt) + . . .
(36)

The operator L is

L(U) = [l(Z0)
t, l(Zc,1)

t, l(Zs,1)
t, l(Zc,2)

t, l(Zs,2)
t, . . . , l(Zc,H)t, l(Zs,H)t]t(37)
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For the linear operator m, we have

m(Ż(t)) = m(
∑H

k=1 Zs,kkω cos(kωt) − Zc,kkω sin(kωt))

= 0 + m(Zs,1)ω cos(ωt) − m(Zc,1)ω sin(ωt) + 2m(Zs,2)ω cos(2ωt) + . . .
(38)

The operator M is

M(U) = [0t, m(Zs,1)
t,−m(Zc,1)

t, 2m(Zs,2)
t,−2m(Zc,2)

t, . . . , Hm(Zs,H)t,−Hm(Zc,H)t]t(39)

6.0.5 Quadratic term

With the notation, Z(0) = Z0 and Z(i) = Zc,i cos(ωt)+Zs,i sin(ωt), the decom-
position of Z(t) is conveniently rewritten as

Z(t) =
H∑

i=0

Z(i) (40)

For the operator q, we have

q(X(t), Y (t)) =
∑H

i=0

∑H
j=0 q(X(i), Y (j))

= q(X(0), Y (0)) +
∑H

i=1 q(X(i), Y (0)) +
∑H

j=1 q(X(0), Y (j)) +
∑H

i=1

∑H
j=1 q(X(i), Y (j))

When i ≥ 1 and j ≥ 1, q(X(i), Y (j)) give harmonics i + j and i− j as follows,

q(X(i), Y (j)) = 1
2
{q(Xc,i, Yc,j) − q(Xs,i, Ys,j)} cos((i + j)ωt)

+1
2
{q(Xc,i, Ys,j) + q(Xs,i, Yc,j)} sin((i + j)ωt)

+1
2
{q(Xc,i, Yc,j) + q(Xs,i, Ys,j)} cos((i − j)ωt)

+1
2
{q(Xs,i, Yc,j) − q(Xc,i, Ys,j)} sin((i − j)ωt)

(42)

By grouping the term with the same harmonics index, and canceling the har-
monics higher than index H , we have

q(X(t), Y (t)) = q0 +
H∑

k=1

qc,k cos(kωt) + qs,k sin(kωt) (43)

with

q0 = q(X0, Y0) +
H∑

j=1

1

2
{q(Xc,j, Yc,j) + q(Xs,j, Ys,j)} (44)
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and for i ≥ 1

qc,i = {q(Xc,i, Y0) + q(X0, Yc,i)} +
∑i−1

j=1
1
2
{q(Xc,j, Yc,i−j) − q(Xs,j, Ys,i−j)}

+
∑H

j=i+1
1
2
{q(Xc,j, Yc,j−i) + q(Xs,j, Ys,j−i)} + 1

2
{q(Xc,j−i, Yc,j) + q(Xs,j−i, Ys,j)}

(45)

qs,i = {q(Xs,i, Y0) + q(X0, Ys,i)} +
∑i−1

j=1
1
2
{q(Xc,j, Ys,i−j) + q(Xs,j, Yc,i−j)}

+
∑H

j=i+1
1
2
{−q(Xc,j, Ys,j−i) + q(Xs,j, Yc,j−i)} + 1

2
{q(Xc,j−i, Ys,j) − q(Xs,j−i, Yc,j)}

(46)

Acknowledgements

The authors want to warmly thank Marie-Christine Pauzin and Olivier Thomas
for their suggestions and for testing the programs avaible at http://www.lma.cmrs-mrs.fr/~manlab
The authors are grateful to Benjamin Ricaud for useful discussion on the
present paper.

The study presented in this paper was lead with the support of the French
National Research Agency anr within the Consonnes project.

26


