[Human chondrocyte responsiveness to bone morphogenetic protein-2 after their in vitro dedifferentiation: Potential use of bone morphogenetic protein-2 for cartilage cell therapy.] - Archive ouverte HAL
Article Dans Une Revue Pathologie Biologie Année : 2008

[Human chondrocyte responsiveness to bone morphogenetic protein-2 after their in vitro dedifferentiation: Potential use of bone morphogenetic protein-2 for cartilage cell therapy.]

Résumé

AIM OF THE STUDY: Cartilage has a limited capacity for healing after trauma. Autologous chondrocyte implantation is widely used for the treatment of patients with focal damage to articular cartilage. Chondrocytes are isolated from biopsy specimen, cultured in monolayers on plastic then transplanted over the cartilage defect. However, chondrocyte amplification on plastic triggers their dedifferentiation. This phenomenon is characterized by loss of expression of type II collagen, the most abundant cartilage protein. The challenge for autologous chondrocyte implantation is to provide patients with well-differentiated cells. The aim of the present study was to test the capability of bone morphogenetic protein (BMP)-2 to promote redifferentiation of human chondrocytes after their expansion on plastic. MATERIALS AND METHODS: Chondrocytes extracted from nasal cartilage obtained after septoplasty were serially cultured in monolayers. After one, two or three passages, BMP-2 was added to the culture medium. The cellular phenotype was characterized at the gene level by using RT-PCR. The expression of genes coding for type II procollagen with the ratio of IIB/IIA forms, aggrecan, Sox9, osteocalcin and type I procollagen was monitored. RESULTS: Our results show that BMP-2 can stimulate chondrogenic expression of the chondrocytes amplified on plastic, without inducing osteogenic expression. However, this stimulatory effect decreases with the number of passages. CONCLUSION: The efficiency of autologous chondrocyte implantation could be improved by using chondrocytes treated with BMP-2 during their in vitro preparation.AIM OF THE STUDY: Cartilage has a limited capacity for healing after trauma. Autologous chondrocyte implantation is widely used for the treatment of patients with focal damage to articular cartilage. Chondrocytes are isolated from biopsy specimen, cultured in monolayers on plastic then transplanted over the cartilage defect. However, chondrocyte amplification on plastic triggers their dedifferentiation. This phenomenon is characterized by loss of expression of type II collagen, the most abundant cartilage protein. The challenge for autologous chondrocyte implantation is to provide patients with well-differentiated cells. The aim of the present study was to test the capability of bone morphogenetic protein (BMP)-2 to promote redifferentiation of human chondrocytes after their expansion on plastic. MATERIALS AND METHODS: Chondrocytes extracted from nasal cartilage obtained after septoplasty were serially cultured in monolayers. After one, two or three passages, BMP-2 was added to the culture medium. The cellular phenotype was characterized at the gene level by using RT-PCR. The expression of genes coding for type II procollagen with the ratio of IIB/IIA forms, aggrecan, Sox9, osteocalcin and type I procollagen was monitored. RESULTS: Our results show that BMP-2 can stimulate chondrogenic expression of the chondrocytes amplified on plastic, without inducing osteogenic expression. However, this stimulatory effect decreases with the number of passages. CONCLUSION: The efficiency of autologous chondrocyte implantation could be improved by using chondrocytes treated with BMP-2 during their in vitro preparation.
Fichier non déposé

Dates et versions

hal-00315257 , version 1 (27-08-2008)

Identifiants

  • HAL Id : hal-00315257 , version 1
  • PUBMED : 18538953

Citer

V. Salentey, S. Claus, C. Bougault, A. Paumier, E. Aubert-Foucher, et al.. [Human chondrocyte responsiveness to bone morphogenetic protein-2 after their in vitro dedifferentiation: Potential use of bone morphogenetic protein-2 for cartilage cell therapy.]. Pathologie Biologie, 2008, xxx. ⟨hal-00315257⟩
37 Consultations
0 Téléchargements

Altmetric

Partager

More