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Summary. We provide a tableau of 189 entries and some annotations presenting the 
omputational 
om-plexity of integer multi�ow feasibility problems; 21 entries remain open. The tableau is followed by an in-trodu
tion to the �eld, providing more problems, reproving some results with new insights, simple proofs,or slight sharpenings motivated by the tableau, paying parti
ular attention to planar (di)graphs withterminals on the boundary. Last, the key-theorems and key-problems of the tableau are listed.Keywords: disjoint paths, multi�ows, planar graphs, a
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2 Guyslain Naves, András Seb®1.1 Introdu
tionFinding a set of (vertex- or edge-) disjoint paths in (dire
ted or undire
ted) graphs between givenpairs of terminals is one of the most an
estral and most studied themes of graph theory, withimportant appli
ations su
h as routing problems of VLSI design [10℄. The s
ope of the methodsand obje
tives is large and spread in time: Menger's theorems or more generally network �owsare among the �rst 
onsistent results of 
ombinatorial optimization [32℄, whereas �nding edge- orvertex-disjoint paths between a given (�xed) number of terminal pairs in polynomial time is a deeppure graph theory result [26℄. A multi�ow is the pa
king of one of the simplest obje
ts in graphs:paths. At the same time it is an integer point in a naturally de�ned polyhedral 
one. The �eldhas been developed in parallel with the tools of optimization, polyhedral 
ombinatori
s and graphtheory. Some bran
hes were and are still the subje
t of extensive studies both by the inner stimulusof the theory and the request of the appli
ations.Nevertheless, while the variety of the possibilities is endless, some interesting questions maynot even have been realized. It is even more frustrating that at the borderlines of existing theoriesthere are forgotten problems that have no reason to be missing. The idea of making this tableauarose when the authors got 
onfused in varying the de�ning parameters of problems: whi
h are the
ombinations of the parameters that lead to polynomial solvable, NP-hard or unsolved problems. A
areful fo
us on these showed that some of the interesting 
ombinations have not yet been studiedat all.For some kind of disjoint paths problems there exist 
lassi�
ations, for instan
e in S
hrijver'sbook [32℄ or that of Korte and Vygen [11℄, or in survey papers of the 
olle
tion [10℄, like [7℄.A (integer) multi�ow � �rst informally - is just a multiset of paths satisfying request and
apa
ity 
onstraints. The di�eren
e is not essential 
omparing to disjoint paths problems as far asassertions about them are 
on
erned, however, there may be a di�eren
e in the algorithmi
 pointof view: in multi�ow problems there are numbers asso
iated to edges or verti
es, and in a solution� 
alled a multi�ow � a multipli
ity is given with every path, and we want the algorithms to dealwith the multipli
ities in a 
lever way. From this viewpoint multi�ows are points of a 
one.In this note we wish to fo
us merely on the existen
e of multi�ows with parti
ular attention todi�erent natural spe
ial 
ases involving planarity, the number of demands, the way the 
apa
itiesare given, and Euleri
ity. We restri
t ourselves to feasibility, that is the existen
e of disjoint pathsbetween all pairs of given terminal pairs. Another important dire
tion is multi�ow maximization(or maximum number of disjoint paths) that we do not treat here, sin
e we would then have to
over yet other vast theories handled by quite di�erent methods, and where approximation algo-rithms and APX-
ompleteness should also be a

ounted. Exa
t methods 
on
erning this subje
t,
1 Even, Itai and Shamir [3℄, 1976
2 Fortune, Hop
roft et Wyllie, [4℄, 1980. Moreover G a
y
li
 and |E(H)| �xed implies polynomiality.
3 Polynomial for 3 demand edges (Ibaraki, Poljak [8℄, 1991).
4 Karp [9℄, 1975
5 Kramer and van Leeuwen, [12℄, 1984, see Subse
tion 1.4.1.
6 Lu

hesi-Younger, [15℄, 1978
7 Lyn
h [16℄, 1975
8 Middendorf and Pfei�er[19℄, 1993, even if maximum degree is 3.
9 Müller [20℄, 2005

10 Frank [5℄, 1989, see also Nash-Williams' proof of Hu's theorem [21℄, 1969.
11 Naves, [22℄, 2008
12 Robertson, Seymour, [26℄, 1990
13 Roths
hild-Whinston [27℄, 1966. Polynomiality and the su�
ien
y of the 
ut 
ondition extends to Hbeing two stars, K4 or C5 (Lomonosov [13℄, 1985).
14 S
hrijver, [33℄, 1992
15 S
hrijver [30℄, 1990, the 
ondition is: the number of fa
es of demand is �xed.
16 S
hwärzler, [34℄, 2007, see Theorem 6 in Subse
tion 1.4.1.
17 Seb® [35℄, 1993
18 Seymour [36℄, 1981. Also polynomial in graphs with no K5 minor.
19 Vygen [37℄, 1995
19 See Theorem 9 in Subse
tion 1.4.2.
20 Marx [18℄, 2004
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h as Mader's theorem are treated in the above mentioned books, and some other aspe
ts likeapproximability are surveyed in the work of C. Bentz, M.-C. Costa, L. Léto
art and F. Roupin [2℄and in the thesis work of C. Bentz [1℄.There are also many derivates of the problem. We had to be sele
tive for keeping enoughattention for the problems that o

ur in the most basi
 
ir
le in the fo
us of our magnifying lens.The main �produ
t� of our work is the tableau on the �rst page. In the tableau we tried to
on
entrate on a small number of natural row (
olumn) heads that 
an be nontrivially mat
hedby most 
olumns (rows) so as to 
over most of the relevant problems. More problems (like theOkamura-Seymour 
ir
le of questions) will be dis
ussed in the text without 
harging the tableau.In Se
tion 1.2, we provide the �rst explanations 
on
erning the tableau, and the most importantnotations. Se
tion 1.3 is a short introdu
tion to the basi
 methods 
on
erning multi�ows.The tra
es of the unsolved problems of the tableau lead to the parti
ular graphs treated indetails in Se
tion 1.4: planar (di)graphs. The undire
ted planar 
ase (Subse
tion 1.4.1) seems tobe almost the same as the a
y
li
 planar 
ase (Subse
tion 1.4.2), the arguments for one 
an berepeated for the other, but we do not see any formal redu
tion between the two sets of instan
es.When we started our work, more than one third of these problems were open. While we wereworking, two fundamental problems have been solved, one of them stimulated by this tableau.S
hwärzler's result [34℄ started the row, solving Problem 56 in [32℄: disjoint paths in planar graphswhen all terminal pairs are on the boundary of the in�nite fa
e. This proof opened new hopes ofrea
hing longstanding open problems and simpli�ying 
ompli
ated proofs:In S
hwärzler's proof there are three natural 
lasses of pairs of terminals, so it is not di�
ultto prove NP-hardness if the number of terminals is restri
ted to 3, and we will show the redu
tionbelow. With essential new ideas the �rst author has then shown [22℄ that 3 
an be de
reased to
2, thus �lling in new squares of the tableau, and solving a problem of Müller [20℄ about planargraphs in general, and repla
ing Müller's quite involved proof for the dire
ted version. We hopethe tableau will provide similar stimulation for the 21 still un�lled squares.To make this guided tour more pleasant, we o

asionnally provide some new viewpoints orvariants of results, simple proofs or remarks on the way.1.2 Basi
 Notation and AnnotationWe hope the tableau is making 
lear the limits of di�erent 
omplexity behaviors (polynomiality andNP-
ompleteness) and of the open 
ases. This also requires the realization of some 
onne
tions. Weintrodu
e now the most important de�nitions, notations and 
onventions for a 
orre
t interpretationof the tableau.Let G = (V, E) be a graph, for the moment we allow G to be undire
ted or dire
ted, and
n := |V |. Let us 
all a fun
tion c : E → N be a 
apa
ity fun
tion, and H = (T, D), T ⊆ V ademand graph with a request fun
tion r : D → N. Then the multi�ow problem is to �nd a multiset
C of 
y
les in G + H verifying the following 
ondition:� for ea
h 
y
le C ∈ C, |C ∩ D| = 1,� for ea
h d ∈ D, there are exa
tly r(d) 
y
les in C that 
ontain d,� for ea
h e ∈ E, there are at most c(d) 
y
les in C that 
ontain e.The integrality of the multipli
ities of 
y
les is supposed. In the rare 
ases when it is not, wewill speak about fra
tional multi�ows.If r and c are both 1 everywhere we speak about edge-disjoint (or in digraphs ar
-disjoint )paths problems.By analogy, we 
ould de�ne, both in dire
ted and undire
ted graphs, vertex-
apa
itated multi-�ow problems , vertex-disjoint paths problems by putting 
apa
ities and demands on verti
es, andby repeating the three 
onditions above by repla
ing 
ir
uits C by their verti
es, H simply by avertex-set D ⊆ V , and E by V \ D.If we still want to keep a demand graph H , we 
an, by putting a new vertex de in the middleof ea
h edge (ar
) e = tu of H , and letting r(de) := c(t) = c(u).



4 Guyslain Naves, András Seb®The 
hoi
es for the rows and 
olumns of the tableau are of 
ourse partly a matter of taste. How-ever we tried to distinguish the di�erent problems along some basi
 parameters that the 
ommunity
ares about:The �rst three 
olumns of the tableau 
on
ern� restri
tions of G and H : general, G planar or G + H planar� restri
tions on the 
ardinality of E(H): arbitrary, �x or 2� restri
tions on the size of r and the way it is given: �bin� means binary en
oding, �un� unaryen
oding, that is, the size of the input is measured by the sum of the given numbers instead ofthe sum of their logarithms; ��x� means that ∑
e∈E(H) r(e) is bounded.Even though the restri
tions never 
on
ern c dire
tly, it is naturally a�e
ted: if r is unary, we
an suppose without loss of generality that c is also. (The sum of c on all edges 
an be supposedto be at most n times the sum of r.)The distin
tion between �bin� and �un� is the same as the usual distin
tion between pseu-dopolynomiality and strong NP-
omplete: for instan
e when H has two edges, unary en
oding isequivalent to putting as many parallel 
opies of the edges in H as the demand, and similarly forthe 
apa
ities; so the unary problem with |E(H)| = 2 is the same as the edge-disjoint paths prob-lem with two parallel 
lasses of demand edges, and is NP-
omplete. However, the ��x� version ispolynomially solvable by Robertson and Seymour [26℄.The same holds for all edge-disjoint paths problems: multi�ows with �unary� en
oding arenothing more than edge-disjoint paths problems with maybe restri
ted H (like in the example)and several parallel demand edges.The �bin� 
ase 
ould be essentially more di�
ult than the unary. Indeed, in a binary en
odingwe are not allowed to repla
e the 
apa
ities by parallel edges, sin
e a polynomial algorithm mustthen work in time whi
h is polynomial in the input size. In this 
ase the input size is the sum ofthe logarithms of the 
apa
ities. Surprisingly, this does not drasti
ally 
hange the 
omplexity ofthe problems: in our tableau the �bin� 
ases have exa
tly the same 
omplexity as the �un� ones. Anexplanation of this lies probably in the 
lassi
al Ford Fulkerson theory of network �ows: the pathsthrough ea
h demand edge obey the same rules as ordinary network �ows, the di�
ult problem isto split the problem between the di�erent terminal pairs.Another kind of relation o

urs between ��x� and �un� or �bin� if G + H is planar and H hasa bounded number of edges, that is, |E(H)| is ��x�: then r ��x� may again be settled by [26℄,but this does not solve the �un� or �bin� 
ase, and turns out not to be the best solution for ��x�either. Indeed, �bin� 
an also be solved in polynomial time, by applying Lenstra's �
heaper� integerprogramming algorithm [35℄.Thus in the edge-disjoint 
ase �bin� and �un� 
an be thought of as being the same, and allowingan arbitrary number of parallel 
lasses of demand edges; ��x� |E(H)| restri
ts the number of parallel
lasses of demand edges, and ��x� in the r 
olumn the total number of demand edges. The latterof 
ourse implies the former.The situation is somewhat more 
ompli
ated in the vertex-disjoint 
ase. For vertex-
apa
itatedmulti�ows the unary 
ase has to be distinguished from vertex-disjoint paths if G is restri
ted forinstan
e to planar graphs. The repli
ation of verti
es (repla
ing the parallel edges of the redu
tionof multi�ows to edge-disjoint paths), does not keep for instan
e the planarity of G.Besides edge- or ar
- and vertex-disjoint paths problems we also distinguish the same problemsunder the Eulerian 
ondition:We distinguish between G + H (r+
) Eulerian or not (gen): if G, H are undire
ted, (G, H, r, c)is 
alled Eulerian if for ea
h v ∈ V ,

∑

e∈δG(v)

c(e) +
∑

d∈δH(v)

r(d) is even (1.1)and if G, H are digraphs, then the Eulerian property means for ea
h v ∈ V ,
∑

e∈δ+

G
(v)

c(e) +
∑

d∈δ+

H
(v)

r(d) =
∑

e∈δ−

G
(v)

c(e) +
∑

d∈δ−

H
(v)

r(d). (1.2)



1 Multi�ow Feasibility: an Annotated Tableau 5The four-tuple (G, H, r, c) will not ne
essarily be always expli
itly mentioned � most of theseparameters are �xed by the 
ontext.In this paper the main fo
us is the edge-disjoint paths problem and multi�ows. The 
olumns
on
erning vertex-disjoint paths are present for 
omparison and all suppose that the request and
apa
ity fun
tions are both 1 everywhere, that is, we are looking only at vertex-disjoint pathsproblems, and none of the new problems that are raised:Problem 1 Fill in additional 
olumns of the tableau for vertex-
apa
itated problems, where thevertex requests and 
apa
ities are not supposed to be 1, but are en
oded with a unary or binaryen
oding.Note that the unary 
ase 
annot always be redu
ed to the vertex-disjoint paths problem in thesame 
lass of graphs.Paths and 
y
les will always be simple, and the terms are used both in dire
ted and undire
tedgraphs. Our notations will be usual; δ(X) (X ⊆ V ) denotes the set of edges with exa
tly oneendpoint if X , and X , V \ X are the shores of this 
ut.In several 
ases we will also have parti
ular notes for the 
ase when H has three edges. Anotherparti
ular 
ase of H is when it is a star: then the problem 
an be redu
ed to a �ow problem, andthus the problems are polynomially solvable for any G.1.3 Basi
 fa
ts1.3.1 Well-known redu
tionsWe re
all some well-known redu
tions between the di�erent 
ases that are fully exploited in thetableau.
<Fig. 1.1. The undire
ted 
ase is redu
ible to the dire
ted 
ase, using this gadget. Only one path
an use these �ve ar
s, either from left to right or from right to left.The undire
ted 
ase 
an be redu
ed to the dire
ted one by repla
ing ea
h edge by the gadgetdepi
ted in �gure 1.1. Note that this redu
tion preserves the planarity of G and G + H , but doesnot preserve the Euler property, and the resulting graph is not a
y
li
.The edge-disjoint 
ase is redu
ible to the vertex-disjoint one by taking the line-graph. Thisoperation does not keep the planarity of G. It works in the dire
ted 
ase as well with the appropriatede�nition of the line graph (stars of verti
es be
ome 
omplete bipartite graphs by joining all theverti
es 
orresponding to in
oming edges to all those 
orresponding to outgoing edges).In theedge-disjoint 
ase, it is possible to redu
e every graph with max-degree greater than 4to a graph with degrees at most 4, by using the gadget of pi
ture 1.2, whi
h also keeps planarity.(The 
apa
ities must be 1.) In the parti
ular 
ase when G + H is planar, it was remarked in [19℄that in the un
apa
itated 
ase the maximum degree 
an be restri
ted to 3, thus the edge-disjointpaths problem is redu
ible to the vertex-disjoint paths problem. This allows to 
on�rm the negative
omplexity of some vertex-disjoint paths problems but one has to pro
eed 
arefully, sin
e |E(H)|in
reases.
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<Fig. 1.2. In the edge-disjoint 
ase, this gadget redu
es the degrees of verti
es to 4.The following lemma was proposed by Vygen [37℄. It proves the equivalen
e between the a
y
li
ar
-disjoint paths problem in Eulerian digraphs and the edge-disjoint paths problem (in Euleriangraphs).Vygen's lemma: Let (G, H) be an instan
e of the ar
-disjoint paths problem, assume G + His Eulerian and that G is a
y
li
. Let (G′, H ′) be the instan
e of the edge-disjoint paths problemobtained by negle
ting the orientation of G and H. Then there exists a solution for the ar
-disjointpaths problem in (G, H) if and only if there exists a solution for the edge-disjoint paths problem

(G′, H ′).More exa
tly, it is proved that the solutions of these two problems 
an be transformed toone another by negle
ting the orientation or 
onversely by orienting the edges depending on theorientation of G.1.3.2 ConditionsA solution of the (fra
tional or integer) multi�ow problem 
an be seen as the problem of de
idingthe existen
e of an (integer) point in a given parti
ular polytope. Using an idea of Lomonosov [13℄we provide a 
ompa
t formulation of a `lifting' of this polytope, that is, we provide a polytope witha polynomial number of 
onstraints in the input size whose proje
tion is the multi�ow polytope.The 
onditions for multi�ow feasibility 
an be seen as valid inequalities for this polytope.Let G = (V, E), c, H = (T, D), r be an instan
e of the multi�ow problem. Paths and 
y
les,dire
ted or undire
ted will always supposed to be simple, that is, 
ontain ea
h edge at most on
e.Let C be the set of the 
y
les of G + H that 
ontain exa
tly one edge from H . Then the solutionsof the disjoint paths problem are in bije
tion with the integer solutions of the following linearprogram:
∑

d∈C,C∈C

xC = r(d) (d ∈ D) (1.3)
∑

e∈C,C∈C

xC ≤ c(e) (e ∈ E) (1.4)
xC ≥ 0 (C ∈ C) (1.5)Equations 1.3 and 1.4 de�ne the (fra
tional) multi�ow polytope. A multi�ow is an integer pointof this polytope.The nonemptyness of this polytope 
an be 
hara
terized by Farkas's lemma:Theorem 1 (Japanese theorem) [24℄,[32℄ The existen
e of a multi�ow is equivalent to the dis-tan
e 
riterion For all w : E −→ R+,

∑

(u,v)∈D

r(u, v) × dG,w(u, v) ≤
∑

e∈E

w(e) (1.6)We 
an obtain an easy 
onsequen
e by taking, for ea
h 
ut C, the weight fun
tion w : E → {0, 1}de�ned by w(e) = 1 i� e ∈ δH(C). This gives the following 
ondition 
alled the 
ut 
ondition:for all C ⊂ V, |δG(C)| ≥ |δH(C)| (1.7)
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ut is 
alled tight if equality holds in (1.7) for this 
ut. Another interesting ne
essary 
onditionfor the existen
e of integer multi�ows when G+H is not Eulerian is that the union of any numberof tight 
uts (as edge-sets) must not 
ontain an odd 
ut. (The reason is that ea
h edge of su
han odd 
ut is used by a multi�ow, that is, the disjoint 
ir
uits of a multi�ow partition the 
ut.However, ea
h 
lass of this partition is even. Interse
ting the shore of (any number of) 
uts, if Xis the interse
tion, δ(X) will be 
ontained in the union of the 
uts.)Therefore if the interse
ted shores de�ne all tight 
uts, the interse
tion must de�ne an even 
ut(if an integer multi�ow exists). We do not know many papers where this is exploited; the ni
estexample is probably Frank [6℄, whi
h uses this 
ondition for two tight 
uts.We show now that the 
ondition 1.7 of the Japanese theorem 
an be handled as a linear programof polynomial size, and at the same time we show the polarity between metri
s and multi�ows.A fun
tion µ : V × V −→ Z+ is 
alled a metri
 on V , if it satis�es the triangle inequality
µ(x, y) + µ(y, z) − µ(x, z) ≥ 0, for all x, y, z ∈ V .The integrality requirement is super�uous, we only suppose it for 
onfort. Let us denote

t(x, y, z) ∈ {0, 1,−1}V×V whi
h takes the value 1 on (x, y) and (y, z), −1 on (x, z), and 0 on allthe other ordered pairs. Denote T the matrix whose 
olumns are the ve
tors of the form t(x, y, z)for all ordered triples (x, y, z), (x, y, z ∈ V ). The metri
s are then the solutions of the systems ofinequalities yT ≥ 0. The following ni
e observation is due to Lomonosov [13℄:Let P := (v1, . . . , vk) be a path, and vP ∈ {0, 1,−1}V×V , vP (x, y) = 1 if x = vi, y = vi+1 forall i = 1, . . . , k − 1, and vP (vkv1) = −1. Then
vP =

k−1∑

i=2

t(v1, vi, vi+1),and therefore for c ∈ RV ×V , the solutions of the system of linear inequalities Tx ≤ c, x ≥ 0 arein one-to-one 
orrespondan
e with the (fra
tional) multi�ows in the graph G = (V, {e ∈ V × V :
c(e) > 0}, with 
apa
ity c, and demand graph H , uv ∈ E(H) if and only if c(uv) < 0, andthen r(uv) := −c(uv). (For undire
ted multi�ow problems we use only one of uv and vu). Integersolutions of this system 
orrespond to (integer) multi�ows. Note that T has a polynomial numberof entries, immediately implying polynomial solvability of fra
tional multi�ow problems and theinterested reader may �nd it useful to rewrite the Farkas' Lemma for this somewhat di�erent systemof inequalities.1.4 Planar GraphsIn this se
tion we state and sometimes improve or reprove results about the 
omplexity of multi�owsin planar graphs. The results 
on
erning undire
ted graphs 
an often be translated to a
y
li
digraphs.1.4.1 Undire
ted GraphsThis subse
tion updates the 
omplexity of the planar edge-disjoint paths problem.Two of the �rst important results of the subje
t are that of Lyn
h [16℄ stating that the vertex-disjoint paths problem is NP-
omplete in planar graphs, and the sharpening of Kramer and vanLeeuwen [12℄ to grid graphs. The latter result has the advantage of being easy to manipulate toprove NP-
ompleteness of variants of the problem su
h as edge-disjoint paths problems: the authorsthemselves note that the problem remains NP-
omplete if 
ommon edges are still not allowed, but
ommon verti
es may o

ur provided the two paths �
ross� in those. Raghavan [25℄[Lemma 2.1℄notes that the edge-disjoint problem is also NP-
omplete with �their redu
tion�. This is right notingthat the last part of Kramer and van Leeuwen's proof has to be � slightly and in a straightforwardway � modi�ed in order to get NP-
ompleteness of the general planar edge-disjoint paths problem.In planar routing problems the terminals are often on the boundary of the in�nite fa
e. Wewant to explore the 
omplexity of problems satisfying this 
ondition.We start with a new proof of the 
lassi
al Okamura-Seymour theorem providing a polynomialalgorithm for planar Eulerian graphs with all terminals on the outer fa
e. We 
ontinue by sket
hing
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hwärzler's proof of the NP-
ompleteness of the non-Eulerian 
ase, and show a slight extensionwhere in addition the number of demand edges 
an be restri
ted to three. Finally, we sket
h themore involved new ideas that allowed the �rst author to a
hieve the last possible step and provethat the same holds for two demand edges.Theorem 2 (Okamura, Seymour [23℄) Let G = (V, E) be a planar graph and H = (T, D), T ⊆
V where the verti
es of T are on the outer boundary of the embedding of G. Let r : D → N and
c : E → N be weight fun
tions, and suppose that r + c is Eulerian. Then the 
ut 
ondition issu�
ient for the existen
e of a multi�ow for (G, H).We �rst reformulate this theorem as a statement on metri
 pa
kings, and provide a proof
ombining a te
hnique of S
hrijver for proving distan
e pa
king theorems [32℄ with ideas in [14℄ forde
omposing distan
e fun
tions, and new ideas 
apturing the essen
e of Lins' theorem: in a 
riti
alsituation saturated by a te
hnique of [32℄, guided by the role of the �oppositeness relation� in [14℄ �but without using the related polyhedral statements � we de
ompose our graph into 
uts. S
hrijverapplies the dual of this oppositeness relation to prove Lins' theorem in the 
ontext of an indu
tiveproof. Despite these similarities, the use of the previous results remains impli
it in the proof below,and our present proof is self-
ontained, fully 
ombinatorial, and hopefully generalizable. Sin
e itseems to provide some insight, we want to 
ommuni
ate it for possible future use.The theorem is equivalent to a theorem on metri
 pa
kings, see Corollary 74.2a in [32℄, provedthere using the Okamura-Seymour theorem. Here we will prove this form dire
tly. The advantageof this method may be to provide some insight of how the metri
s guide the dire
tion the (dual)paths take.Let us 
all a 
ir
uit C ⊆ E(G) rigid , if for any two, a and b of its verti
es, one of the (a, b)-pathson the 
ir
uit is a geodesi
 in G. (The fa
ial stru
ture of the 
one of metri
s implies that the onlyway to write the distan
e fun
tion of a graph as the sum of metri
s is using 
uts interse
ting rigid
y
les with 0 or two opposite edges [14℄. This statement did guide our proof without using it.)We prove the following reformulation of the Okamura-Seymour theorem:Theorem 3 Let G = (V, E) be a planar graph with only rigid fa
es, with all fa
es being 4-
y
lesex
ept the in�nite fa
e, and where in addition any set of two su

essive edges of a fa
e are together
ontained in a geodesi
 with both endpoints in the boundary C of the in�nite fa
e. Then the graph
(E, Ω) on the edges of G, where Ω := {ef : e, f ∈ E, e is opposite to f on some fa
e} is a graphthat has |C|/2 
omponents, where ea
h 
omponent is a path joining two opposite edges of C.The 
onditions imply, of 
ourse, that G is bipartite. Before the proof let us sket
h the redu
tionof the Okamura-Seymour theorem (Theorem 2) to this, whi
h 
onsists of simple and standard steps.

s′t′

s′′

t s

t′′

p

Fig. 1.3. In Okamura-Seymour's theorem, we 
an assume that terminals of ea
h demand pairare diametrally opposed: add verti
es p, s′′ and t′′ and the edges joining them asindi
ated on the �gure, whenever s, t, t′, s′ o

ur in this �wrong� order along theboundary of the outer fa
e. Repla
e the demand edges ss′, tt′ by s′s′′ and t′t′′.



1 Multi�ow Feasibility: an Annotated Tableau 91. Redu
e the Okamura-Seymour theorem to the 
ase when the terminal pairsD := {s1t1, . . . , sktk}follow one another in the order s1, . . . , sk, t1, . . . , tk on C, see Figure 1.3. Redu
e then to the
2-vertex-
onne
ted 
ase without 
hanging the order of the terminals.2. Add a new vertex x0, pla
e it to the in�nite fa
e and join it with all the terminal verti
es.Delete ea
h vertex of degree 2, by merging its two edges.3. Take the planar dual of the obtained graph.4. Add the gadget of Figure 1.4 to all fa
es that are not 4-
y
les, until all fa
es are 4-
y
les.5. Identify the opposite verti
es of 4-
y
les if they are not 
ontained on a geodesi
 with bothendpoints in C.

 Fig. 1.4. Redu
ing the boundaries of fa
es to 4, without 
hanging the distan
es, in poly-time.It is easy to see that the 
ut 
ondition implies that after applying these pro
edures the 
onditionsof Theorem 3 are satis�ed. The theorem then implies by dualization a set of edge-disjoint pathsfor the original problem, and the proof is algorithmi
, straightforwardly providing a polynomialalgorithm.If P is a path and x, y are two of its verti
es, P (x, y) denotes the subpath of P from x to y.Proof.Claim 1: The graph (E, Ω) is the disjoint union of 
y
les and of |C|/2 paths with both endpointson C.Indeed, in the graph (E, Ω) every edge of C is of degree 1, and any other e ∈ E has degree 2.Claim 2: For any 
y
le D ⊆ E in G and a, b ∈ V (D) su
h that both paths A and B between aand b on D are shortest paths in G, ea
h 
omponent of (E, Ω) is a path that has one end in A,and another in B.
e

f

e

f

e

f

D2

D1

b

q

a = p

Q

P

S

D1

D2

b

q

p

aa

p

D1

D2

q

b

S

Fig. 1.5. Depending on the position of q, on the same (a, b)-path as p or not, we apply theindu
tion hypothesis to D1, p, q and D2, a, b on the two �rst drawings (
ase 1), or
D1, p, b and D2, a, q on the third one (
ase 2), for whi
h the 
ondition on the distan
esstill holds.Indeed, if every edge of D in
ident to a is followed by a boundary edge of D, then D is a fa
eof G, and the statement is evident. Otherwise there exist two edges e, f (Figure 1.5) su
h that(i) e and f are in
ident edges of a fa
e �let their 
ommon point be p.



10 Guyslain Naves, András Seb®(ii) e is in
ident to a.(iii) The interior of f is 
ontained inside D, that is, in the open disk bounded by D.By the 
ondition there exists a geodesi
 path S 
ontaining e and f and with extremities on C.Then starting on S from a on e and then f and 
ontinuing, let q be the next vertex of D (by (iii)and Jordan's theorem q exists) on S. The subpath S(p, q) divides D into two 
y
les D1 and D2that interse
t in S(p, q) (see the Figure). Sin
e the subpath of a geodesi
 is also a geodesi
, both
S(a, q) and S(p, q) are a geodesi
s.Denote H ,H1,H2 the subgraph of (E, Ω) indu
ed byD, D1,D2 and the edges inside. Informally,these are the subgraphs des
ribing oppositeness within D, D1 or D2. (In H the edges of S(p, q) forma vertex-
ut-set whi
h, together with the two 
omponents of H − S(p, q) indu
es the subgraphs
H1 and H2.) Clearly, like in Claim 1, the 
omponents of H , H1 and H2 are paths, and there arerespe
tively |D|/2, |D1|/2, |D2|/2 su
h paths.Case 1: One of the two (a, b)-paths of D is disjoint from S(p, q).Then applying the indu
tion hypothesis to D1 and D2 (see left drawings of Figure 1.5) andmerging the 
omponents of H1 and H2, we get the statement for D. (Ea
h edge of S(p, q) is theendpoint of a 
omponent in both of the graphs H1 and H2, and these pairs of 
omponents 
an bemerged.)Case 2: Both (a, b)-paths of D meet S(p, q).Then ap is the �rst edge of one of the two (a, b)-paths P of D, and q is on the other (a, b)-path
Q. (Figure 1.5 right.)Both S(a, q) and Q(a, q) are geodesi
s, and the indu
tion hypothesis 
an be applied to D2 withthese geodesi
s. By indu
tion we get paths of (E, Ω) one of whi
h, S2,e 
onne
ts the edge e = apto an edge of Q(a, q), and the others, S2,h (h ∈ S(p, q) ea
h 
onne
t edges of S(p, q) to edges of
Q(a, q) (ex
ept the end of S2,e di�erent from e). These are the 
omponents of H2.As a side-produ
t |S(a, q)| = |Q(a, q)|, and therefore

|S(p, q) ∪ Q(q, b)| = |Q(a, q)| − 1 + Q(q, b)| = |P (p, b)|,when
e S(p, q) ∪ Q(q, b) is also a geodesi
 and the indu
tion hypothesis 
an be applied to D1 aswell, and with the geodesi
s S(p, q) ∪ Q(q, b) and P (p, b). So by indu
tion, the 
omponents of H1are the paths S1,h (h ∈ S(p, q) 
onne
ting S(p, q) to a subset of P (p, b), and S1,h (h ∈ Q(q, b)) toanother subset. Let S := {S1,h ∪ S2,h : h ∈ S(p, q)}. Now 
learly, the set
{S2,e} ∪ S ∪ {S1,h : h ∈ Q(q, b)}is the set of 
omponents of H , and 
onne
ts ea
h edge of P (a, b) to an edge of Q(a, b), �nishingthe proof of Claim 2.Now applying Claim 2 to D := C and all the |C|/2 pairs of geodesi
s ea
h of whi
h (bi)partitions

C, we get that ea
h 
omponent of H 
onne
ts two edges that do not lie in the same 
lass of any ofthese bipartitions. It follows that the 
omponents of H join opposite edges of C.Frank proved that the problem is still polynomially solvable when only the inner verti
es of Gverify the Eulerian 
ondition:Theorem 4 (Frank) Let G = (V, E) be a planar graph and H = (T, D), (T ⊂ V ), where theverti
es of T are on the outer boundary of the embedding of G; let r : D → N and c : E → Nbe weight fun
tions, and suppose that for ea
h vertex v not 
ontained in the outer boundary of G,∑
e∈δ(v) c(e) is even. Then the edge-disjoint paths problem 
an be solved in polynomial time.However, the Euler property 
annot be 
ompletely removed:Theorem 5 (S
hwärzler) The edge-disjoint paths problem when G is planar and the terminalslie on the outer boundary of G is NP-
omplete.S
hwärzler's gadget 
an be 
ompleted to redu
e the number of demand edges to 3:



1 Multi�ow Feasibility: an Annotated Tableau 11Theorem 6 The multi�ow problem when G is planar, |E(H)| = 3 and the terminals lie on theouter boundary of G is NP-
omplete.
X

X

Y

Y

Z

Z

R

S

T

R′

S′

T ′

u1 u2 v1 v2 w1 w2

u′

2 u′

1 v′

2 v′

1 w′

2 w′

1Fig. 1.6. An example of the redu
tion, from the formula (X ∨Y ∨¬Z)∧ (X ∨¬Y )∧ (¬X ∨Z).The drawn graph is the supply graph, the demand edges join verti
es with their primes.Proof. (Sket
h) We sket
h S
hwärzler's proof, rearranged and 
ompleted by a redu
tion to threeparallel 
lasses of demand edges with a linear number of demands altogether. The redu
tion isfrom Satisfiability. From a formula given in 
onjun
tive normal form, a grid is built with asmany 
olumns and rows as there are 
lauses and variables respe
tively. There are two lines in ea
h
olumn and in ea
h row, paths in the graph, but be
ause of the pla
ement of the terminals, thesewill not be paths in a solution, see Figure 1.6. The extremities of the demand edges are labeledverti
es and their primes.In a solution two paths will join the two demand edges of ea
h 
olumn, and one the demand edgeof ea
h row. The latter (horizontal) path of ea
h row will be obliged to be one of the two horizontallines of the row, and this 
hoi
e 
orresponds to 
hoosing a truth value for the 
orresponding variable:
hoosing the upper path means that TRUE is assigned to it, and the lower path means that FALSEis the assigned value.The two paths of ea
h 
olumn are for
ed by the order of their terminal verti
es to ex
hangetheir lines. This ex
hange en
odes the fa
t that ea
h 
lause must be satis�ed. Su
h an ex
hange ispossible through two parallel horizontal �
olumn-swit
h� edges. In ea
h square of the grid the twoparallel 
olumn-swit
h edges are pla
ed in the upper or lower line or neither depending on whethera variable, its negation or neither are present in the 
orresponding 
lause.By 
onsidering tight 
uts, S
hwärzler proves that the horizontal paths do not use any verti
aledges. This is the way of for
ing a horizontal path to stay in the same row and not to 
hangelines, 
orresponding to a 
hoi
e of truth value. Then, verti
al paths 
an 
ross only through free
olumn-swit
h parallel edges, making the 
hoi
e of a true variable whi
h is positive in the 
lauseor a false one whi
h is negated.The number of parallel 
lasses of demand edges 
an be redu
ed to 3 by introdu
ing one parallel
lass for ea
h �type� of demand edge: �rst introdu
e two new terminals and one demand edge for



12 Guyslain Naves, András Seb®all the horizontal paths, this does not 
ause any di�
ulty; then 
onstru
t the two parallel 
lassesof demand edges for the verti
al paths, one for paths swit
hing from left to right, and one for thoseswit
hing from right to left, with one demand edge per path, and a gadget making possible forthese paths to 
ross in a planar way (Figure 1.7). The demand graph is redu
ed then to only threesets of parallel edges � one horizontal, and two verti
al ones. To 
he
k that this operation does not
hange the problem, note:The tight 
uts represented by the dashed lines for
e all starting points of both lines of all
olumns to be 
ontained in di�erent verti
al paths. It 
an be shown by indu
tion from left to rightthat these paths are rooted like in the previous part of the proof.

T ′U ′

UT

S′S

Fig. 1.7. Redu
tion of the demand graph to only three sets of parallel edges. The 
entral part
orresponds to the grid built before, thi
k edges are the new edges. The demands areequal to the number of variables for the demand edge (X, X ′), and to the number of
lauses for (U, U ′) and (V, V ′). Dashed lines de�ne tight 
uts.This result 
an be further strengthened to two demand edges [22℄. Keeping S
hwärzler's globalidea of the redu
tion from 3-SAT, the details be
ome mu
h more 
ompli
ated sin
e the two 
lassesof �verti
al demand edges� are de
reased to one with a tri
ky idea whose te
hni
al realization isalso more 
ompli
ated.In S
hwärzler's proof verti
al paths usually do not swit
h 
olumns (allowing then two horizontalpaths per row to 
ross the 
olumn), 
olumns are swit
hed only in one row, where the 
orrespondingvariable is set to TRUE in the 
lause of the 
olumn. In this 
ase the 
orresponding horizontal lineis prevented from be
oming a path in the multi�ow.The idea now is to do just the opposite in terms of swit
hing 
olumns: verti
al paths willusually swit
h 
olumns, ex
ept in the row asso
iated with the parti
ular TRUE valued variable ofthe 
olumn, when they don't swit
h. The number of rows 
an be supposed to be even, so in 
ase ofa feasible truth assignment there are an odd number of 
olumn-swit
hes in every 
olumn!This is realized this time by paths that run in pairs parallelly and never 
ross. The 
orrespondingdemand edges form one parallel 
lass. Let us explain the main ideas of realizing this and the relatedte
hni
al problems of [22℄:First, for 
onvenien
e, the problem is generalized by forbidding 
rossing paths in a subset
W ⊆ V of verti
es of degree 4. This is not really a generalization, sin
e ea
h w ∈ W 
an be split



1 Multi�ow Feasibility: an Annotated Tableau 13into four verti
es of degree 1, with one new vertex for ea
h in
ident edge; then add a C4 betweenthe four new verti
es in the 
y
li
 order of the four edges in the planar embedding. Clearly, there isa bije
tion between the solutions of the edge-disjoint paths problem after the appli
ation of thesegadgets and the solutions where paths are not 
rossing in the verti
es of W in the original graph.A 
ombination of the two gadgets of Figure 1.8 will be pla
ed in the 
rossing of 
olumns (asso
iated
a

d

cb b c

d

a

Fig. 1.8. The two gadgets used for the redu
tion to the 
ase where there are only two demandedges. Two paths 
an 
ross in the bold verti
es and nowhere else.with 
lauses) and rows (asso
iated with variables).These gadgets have the following properties:The two parallel verti
al paths we mentioned in our general des
ription arrive either from thetwo left verti
es in the upper left 
orner, or from the two verti
es in the upper right 
orner. Eitherboth stay in the same (left or right) side, or both 
hange sides (
olumn-swit
h) when they gothrough the gadget.If one horizontal path goes through the left gadget, then the two parallel verti
al paths are obligedto swit
h sides, while in the right gadget they are allowed to stay on the same side. If two horizontalpaths go through the gadgets both paths are obliged to swit
h sides.A 
ombination of these gadgets pla
ed in the same �grid� as before en
odes a truth assignmentsatisfying the goal we have des
ribed. Again, the most di�
ult part of the proof is to ensure thatthe paths 
annot deviate from their intended itineraries. There are indeed only two kinds of demandedges: verti
al and horizontal, as required.1.4.2 A
y
li
 DigraphsS
hwärzler gave also a dire
ted a
y
li
 version of his redu
tion [34℄:Theorem 7 (S
hwärzler) The ar
-disjoint paths problem is NP-
omplete, even if G is planarand a
y
li
, and all terminals lie on the outer boundary of G.The tri
k presented in Subse
tion 1.4.1 serves now again to redu
e the number of terminals:Theorem 8 The ar
-disjoint paths problem is NP-
omplete, even if G is planar and a
y
li
,
|E(H)| = 3, and all terminals lie on the outer boundary of G.Both the ar
-disjoint and the vertex-disjoint paths problems are polynomial-time solvable whenthe total number of demand is �xed. We show that the 
omplexity of the vertex-disjoint versionis again the same as the edge-disjoint versions when |E(H)| is not bounded, both problems areNP-
omplete:Theorem 9 The vertex-disjoint paths problem is NP-
omplete in a
y
li
 digraphs, even if G + His planar.
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vxc

vxa

vxb

vzc

vxc vyc

Fig. 1.9. The gadget for the 
lauses is on the left, for the variables it is on the right. Dottededges are demand edges, bold verti
es are those that subdivide the edges in the originalgraph.Proof. The proof is the dire
ted a
y
li
 version of Middendorf and Pfei�er's proof [19℄ of theirTheorem 1 establishing the NP-hardness of the edge-disjoint paths problem if G + H is planar.(However, again, we 
annot redu
e the theorem to their result.)We redu
e Planar 3-Sat to the stated problem: let ϕ be a formula whose asso
iated graphis planar, and suppose (without loss of generality) that ea
h variable appears at most three times,exa
tly on
e negatively, and there is no 
lause with twi
e the same variable. De�ne the undire
tedbipartite graph (C, V, F ) with the set of 
lauses C and the set V of variables as 
lasses, and
F := {xc : variable x appears in 
lause c} and subdivide ea
h edge (x, c) into two edges by addinga new node vxc.Take now an arbitrary ordering of the set of variables, and de�ne for ea
h 
lause a gadget in thefollowing way: 
hoose z to be an arbitrary of the three variables of the 
lause, and then 
hoose thenotation x and y so that x < y. With this notation 
onstru
t the gadget on the left of Figure 1.9upon the verti
es vxc, vyc, vzc, adding the other verti
es of the �gure anew for ea
h 
lause. Finallydelete the vertex representing c.Now for ea
h variable vertex x o

urring in three 
lauses, let a and b be the 
lauses in whi
h
x o

urs positively (in arbitrary order), and c the one in whi
h it is negated, and put the gadgetdepi
ted in the right side of Figure 1.9 upon the verti
es vxa, vxb, vxc. (If x o

urs only twi
e,positively in a and negatively in c, we add the vertex vxb arti�
ially.) Let Gϕ, Hϕ denote the
onstru
ted graph and the 
onstru
ted demand graph.Then we have to prove that there exist ar
-disjoint paths in (Gϕ, Hϕ) if and only if φ issatis�able. The proof is similar to that of [19℄, let us sket
h it:It is easy to see that the demand ar
 in a variable gadget is satis�ed either by a path that 
ontains
vxc 
orresponding to x = TRUE , or a path that 
ontains the ar
 vxavxb, whi
h 
orresponds to
x = FALSE.The demands of a 
lause gadget 
an be satis�ed if and only if at least one of the three boldverti
es of the �gure is not used by variable demands, en
oding that the 
lause is satis�ed by thevariable assignment.Finally we prove that the digraph is a
y
li
. Ea
h gadget is a
y
li
, thus if there is a 
y
le, ituses at least two gadgets. Suppose for a 
ontradi
tion that Q is a 
y
le. Then it interse
ts 
lausegadgets in (vxa, vya)-paths and variable gadgets in (vxa, vxb)-paths. The 
y
le Q would then followa sequen
e where the variable gadgets belong to variables forming an in
reasing sequen
e.1.5 Key AssertionsIn this se
tion we state the assertions (theorems or problems) that provide (or would provide) mostof the results of the tableau: the �minimal� NP-
omplete problems, and the �maximal� polynomialones. Those that allowed �lling in most of the tableau, also using the basi
 redu
tions of se
tion 1.3;and also those problems that were output by the tableau as missing. Some histori
al results 
ited



1 Multi�ow Feasibility: an Annotated Tableau 15in the footnotes of the tableau do not reappear here, be
ause they are subsumed by more re
enttheorems that do reappear. By giving the main theorems in a �full-text� version, we try to providethe most pre
ise formulation and thus a high 
redibility for the tableau.We give the list without 
omment. We hope it will then be easy to swit
h between the tableauand this list hen
e and forth to see the fa
ts and their reasons.1.5.1 NP-
ompletenessTheorem 10 (Fortune, Hop
roft and Wyllie, 1980) The vertex-disjoint paths problem is NP-
omplete, even if E(H) = 2.Theorem 11 (Middendorf and Pfei�er 1993) The edge-disjoint paths problem is NP-
omplete,even if G + H is planarTheorem 12 (Vygen 1995) The multi�ow problem is NP-
omplete, even if G is an a
y
li
 di-graph, r + c is Eulerian and |E(H)| = 3.Note that under the same 
ondition, supposing r(h) = 1, for all h ∈ H , the problem is solvablein polynomial-time but still non-trivial, see the ni
e algorithm of Ibaraki and Poljak [8℄.Theorem 9 The vertex-disjoint paths problem is NP-
omplete in a
y
li
 digraphs, even if G + His planar.Theorem 13 (Marx 2003) The multi�ow problem is NP-
omplete if G is planar (also if it is agrid) and G + H is Eulerian, both in the undire
ted and dire
ted a
y
li
 
ase.Theorem 14 (Naves 2008) The multi�ow problem is NP-
omplete, even with one of the follow-ing restri
tions:(i) G is a planar undire
ted graph, H has only two edges, both on the in�nite fa
e of G,(ii) G is a dire
ted graph, G + H is planar, H has only two terminals.(iii) G is a dire
ted a
y
li
 digraph, H has only two edges, both on the in�nite fa
e of G.1.5.2 PolynomialityTheorem 15 (Frank, 1989) The multi�ow problem in Eulerian digraphs with |E(H)| = 2 issolvable in polynomial-time. The 
ut 
ondition is su�
ient for the existen
e of a solution.Theorem 16 (Lu

hesi and Younger, 1978) The multi�ow problem in dire
ted a
y
li
 graphswith G + H planar is solvable in polynomial-time.Theorem 17 (Fortune, Hop
roft and Wyllie, 1980) The vertex-disjoint paths problem in di-re
ted a
y
li
 graphs with |E(H)| bounded is solvable in polynomial-time.Theorem 18 (Seymour, 1981) The multi�ow problem is solvable in polynomial time in undi-re
ted graphs, if G + H is planar (or more generally if it does not have a K5 minor) and r + c isEulerian. The 
ut 
ondition is then ne
essary and su�
ient for the existen
e of a solution.Theorem 19 (Lomonosov, 1985) The multi�ow problem in Eulerian undire
ted graphs with
E(H) being the union of two stars, or K4 or C5, is solvable in polynomial-time. The 
ut 
on-dition is su�
ient for the existen
e of a solution.Theorem 20 (Robertson and Seymour, 1990) The vertex-disjoint and edge-disjoint paths prob-lems in undire
ted graphs with r(E(H)) bounded are solvable in polynomial-time.Theorem 21 (S
hrijver, 1992) The vertex-disjoint paths problem in planar digraphs with |E(H)|bounded is solvable in polynomial-time.Theorem 22 (Seb®, 1993) The integer multi�ow problem in undire
ted graphs with |E(H)|bounded is solvable in polynomial-time.



16 Guyslain Naves, András Seb®1.5.3 Relevant open problemsLast, we state 5 (in fa
t 7) of the 21 open problems that we �nd parti
ularly ni
e or frustrating.Problem 2 (Round-trip problem, [32℄ Problem 50) Is the problem of �nding a 
onne
tedEulerian subgraph of a digraph, 
ontaining two pre-given verti
es, polynomial-time solvable ?Problem 3 Let k be an integer. What is the 
omplexity of routing k pairs of terminals in a Euleriandigraph if k is �xed ? Is this problem easier if G is planar ?Ibaraki and Poljak [8℄ found a polynomial-time algorithm for arbitrary graphs and k = 3. Asfar as we know, this is the only partial result about this question.Problem 4 Is the integer multi�ow problem solvable in polynomial-time when G is a Euleriandire
ted a
y
li
 graph ? And when the demand graph is �xed ?Problem 5 What is the 
omplexity of the undire
ted multi�ow problem if G is planar and G + H(or more generally r + c) is Eulerian and |E(H)| is �xed ?The 
omplexity of this last problem is open already if |E(H)| = 3. One of the latest results [18℄establishes NP-
ompleteness in both the undire
ted and dire
ted 
ase, if the number of edges ofthe demand graph is not �xed. For the dire
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