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Abstract
We prove the NP-completeness of the integer multiflow problem in planar graphs, with the following

restrictions: there are only two demand edges, both lying onthe infinite face of the routing graph. This was
one of the open challenges concerning disjoint paths, explicitly asked by Müller [5]. It also strengthens
Schwärzler’s recent proof of one of the open problems of Schrijver’s book [9], about the complexity of
the edge-disjoint paths problem with terminals on the outerboundary of a planar graph. We also give
a directed acyclic reduction. This proves that the arc-disjoint paths problem is NP-complete in directed
acyclic graphs, even with only two demand arcs.

1 Introduction

The multiflow problem has been studied in combinatorial optimization for many years, both because of its
theoretical interests and applications. Basically, we want to find integer flows between pairs of terminals,
respecting capacity constraints.
The general problem is NP-complete, with different types ofconstraints, see e.g. the survey of Frank [2].
The most general way to define constraints is to put capacities on the edges of the graph, in the same way
as for the classical flow problem. When these capacities are 1everywhere, this defines the edge-disjoint (or
arc-disjoint) paths problem. Robertson and Seymour [8] proved that the multiflow problem is polynomial
for undirected graphs, assuming that the total demand is fixed.
Special interest has been shown for solving the problem in planar graphs (directed or not). Kramer and
Van Leeuwen [3] have shown that the undirected planar multiflow problem is NP-complete in the general
case. Nevertheless, a good characterization theorem has been proved by Okamura and Seymour [6] for the
edge-disjoint paths problem in planar Eulerian graphs, under the assumption that all terminals are on the
boundary of a unique face of the graph. Despite sharpenings (see [1], [7]), the non-Eulerian case remained
open until 2007, when Schwärzler [10] proved the NP-completeness of the edge-disjoint paths problem in
planar graphs with all terminals on the boundary of the same face of the graph.
Between Robertson and Seymour’s result, and Schwärzler’sresult, one could ask if there is a polynomial-
time algorithm for the edge-disjoint paths problem in planar graphs, when the number of different pairs of
terminals is fixed, but each may be repeated many times. Especially when there are only two parallel classes
of demands, with terminals lying on a single face of the graph. Actually, Schwärzler’s proof can easily be
modified to prove that the problem is still NP-complete with three pairs of terminals. In this paper we give
a new reduction, proving that the problem is NP-complete with only two pairs of terminals. This solves a
question of Müller [5].
We will also give a directed version of our proof, showing that the arc-disjoint paths problem is NP-
complete, even ifG is planar with two opposite parallel classes of demand edgesst andts where vertices
s andt belong to the boundary of the same face ofG. Both results strengthen [5]. Finally, we prove the
NP-completeness whenG is a planar acyclic digraph andH consists of two pairs of terminals lying on the
outer face ofG.

2 Definitions

Let G = (V,E) be an undirected graph, and letc : E → N be acapacity functionon the edges ofG. Let
H = (T,D) be an undirected graph withT ⊆V, andr : D→N ademand function(or request). Themultiflow
problemis to find a multisetC of cycles ofG+H satisfying the following conditions :
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Figure 1:The two paths on the left do not cross, those on the right crosseach other.

(i) Each cycle ofC contains exactly one edge ofH.

(ii) For each edge ofG, the number of cycles inC using it is less than its capacity.

(iii ) For each edge ofH, the number of cycles inC using it is exactly its request.

H is usually called thedemand graph, T is the set ofterminals. By cycle, we mean a closed sequence of
distinct edges that are consecutive in the graph, or equivalently a connected Eulerian subgraph. The prob-
lem can easily be defined in digraphs, by replacing every occurrence of “cycle” by “directed cycle”. Thus,
an instance of the multiflow problem consists of a quadruple(G,H, r,c). In the following,c will always be
supposed to be equal to 1. We will noteP the set of paths obtained fromC by ignoring the demand edges,
and we will mainly speak about these paths instead of the cycles.
A path is formally a sequence of distinct edges that are consecutive. Thus, cycles are closed paths. Two
paths areedge-disjointif their edge-sets are disjoint. We definedirected pathsandarc-disjoint pathsanalo-
gously. Whenc is constantly equal to 1, the multiflow problem is known as theedge-disjoint paths problem
(respectively thearc-disjoint paths problem).
The graphs considered in this paper are always without loops, but parallel edges are allowed. Actually,
whenever an edgee∈ E(G) has a capacity greater than 1, we replace it byc(e) parallel edges. LetU ∈V
be a subset of a vertex set of the graph. We noteδ (U) the set of edges having exactly one extremity inU .
Every set of edges that can be written asδ (U) for someU is called acut of the graph. In directed graphs,
δ−(U) is the set of arcs enteringU , δ+(U) is the set of arcs leavingU . Whenδ (U) = δ+(U), we say that
U is adirected cut. We defined(U) := |δ (U)| and similarlyd+(U) andd−(U).
Let C be a cut ofG+ H. C is a tight cut if c(C∩E)− r(C∩D) = 0. If this difference is negative, the
multiflow problem is not feasible. WhenH is reduced to a single edge, the famousmax-flow-min-cutresult
states that a multiflow exists if and only if this difference is never negative (see Menger’s theorem [4]).
WhenC is a tight cut, each edge ofC is entirely used in any solution of the multiflow problem : there are
as many paths through each edge as its capacity. In directed graphs, tight cuts are the cutsδ (U) of G+H
with c(δ+

G (U))− r(δ−
H (U)) = 0.

A planar graphis a graph that has an embedding in the plane without intersection of the edges (or arcs).
Let P1 andP2 be two edge-disjoint paths inG. P1 andP2 crossat vertexv ∈ V(G) if there are four edges
e1, . . . ,e4 incident tov, appearing in this order aroundv, such thate1 ande3 are consecutive inP1 ande2,
e4 are consecutive inP2. However, two paths may have a common vertex without crossing, see Figure1. A
crossingis a triple(P,Q,u) such thatP andQ crosses at vertexu.

3 Outline of the proof

We will prove the NP-completeness of the edge-disjoint paths problem with only two pairs of terminals, by
reduction from 3-SAT. Before giving the full proof, which is quite technical, we explain the main ideas of
the reduction.
Consider an instance of 3-SAT, consisting of clauses over a set of variables. We build a graph in the form
of a grid, with as many columns as there are clauses, and as many rows as twice the number of variables. In
this grid, the intersection of each row with each column is one of two basic graphs. These two graphs, called
XCH and LIC should have the following properties. They have two vertices of degree one in their left and
right sides, and four — actually two pairs — at their top and their bottom. We suppose that there will always
be two paths either from the two left top vertices or from the two right ones, going through them from top
to bottom (vertical paths). We will also always route one or two paths from left to right(horizontal paths).
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If there are two horizontal paths, then the two vertical paths can only be routed diagonally. The behaviours
of XCH and LIC are different if there is only one horizontal paths. In that case, in XCH, the vertical paths
are still forced to go diagonally through the graph, but in LIC, they can be routed vertically. Figures2 and3
illustrate the possible routing through the two graphs (andwhat we mean bydiagonallyandvertically).

Figure 2:Possible routings through XCH and LIC.

Figure 3:Additional routings for LIC. When there is only one horizontal path, the vertical paths are not
forced to be diagonal.

The typical behaviour for these gadgets is to change the vertical paths from one side to the other (Lem-
mas4 and6). We say that theyshift the paths. The only special case when the two vertical paths can stay on
the same side is the following : there is a LIC and a single horizontal path. In that special case, the gadget
keepsthe paths (Lemma7). The reduction is basically the following : there are two consecutive rows for
each variable, and we route three paths along these two rows.Thus, one path will follow one row, and the
two other paths will follow the other row,deciding a variable assignment. We also route two paths in each
column, and we ask thatthese two paths are kept an odd number of times. Because of the properties of LIC
and XCH, the two vertical paths can be kept in a particular gadget if and only if this gadget is a LIC and
there is only one horizontal path in the corresponding row. We place LIC on those particular intersections
for which the literal associated with the row appears in the clause encoded by the column. Thus, we ensure
that whenever vertical paths are kept, the corresponding clause is made valid by the chosen assignment.
Then we must guarantee that the two paths associated with each column are kept at least once (actually
an odd number of times). This is done by asking these two pathsto be routed from the two left pair of
uppermost vertices of the column, to the two rightmost lowervertices. Because the number of rows is even
(twice the number of variables), paths must indeed be kept anodd number of times.
Finally, we can add two common terminals for the vertical paths, and two others for the horizontal paths,
achieving the desired restriction to two edges of demand. Unfortunately, there are several difficulties in im-
plementing this reduction. Mainly, XCH and LIC does not exist, with the prescribed properties. Actually,
the main difficulty is to enforce that the horizontal paths stay on their respective rows. We will prove that
with our gadgets,the horizontal paths cannot go through more than three rows in each column(Lemma8).
Our solution is then to create abuffer consisting of a large number of rows, between the rows encoding the
variables. Similarly, we must prove thatthe vertical paths stay in their columns(Lemmas10and12). This
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will be done, by using the property that our graph isnearly Eulerian(almost each vertex has even degree).
This fact will help us to prove that the edges not in a solutioninduce cycles and a small set of paths, called
no-paths. One of the main lemmas states that the extremities of each no-path are determined (Lemma11).
More exactly, there will be exactly one no-path per variable. Considering horizontal paths and no-paths
together, many cuts are tight for them. Consequently, vertical paths cannot use the edges contained in these
cuts : each vertical path intersects only one column. Then, local properties of XCH and LIC allow us to
conclude the proof.

4 Preliminaries

4.1 Uncrossing the paths

We can suppose without loss of generality that each pair of paths induces at most one crossing :

Lemma 1. Let (G,H) be an instance of the edge-disjoint paths problem with G planar. There is a solution
for (G,H) if and only if there is a solution such that each pair of paths crosses at most once, and two paths
with the same extremities do not cross.

Proof. Let P be a solution minimizing the number of crossings. We can assume that every path is simple.
Suppose that two pathsP1 and P2 induce more than one crossing. Letu and v be the first and second
crossings betweenP1 andP2, starting from one extremity ofP1.
We decomposePi in three pathsQi ∪Ri ∪Si whereRi has extremitiesu andv. Then replacingP1 andP2 by
P′

1 = Q1∪R2∪S1 andP′
2 = Q2∪R1∪S2, we show that the number of crossings is reduced, contradicting

the minimality ofP.
In every vertex exceptu and v, the paths are not locally modified, thus the number of crossings is not
changed. The number of crossings betweenP′

1 andP′
2 is reduced by at least 2. Then, the neighbourhood

of vertexu (and symmetricallyv) is divided into four parts. A path going through two consecutive parts
crosses one ofP1 andP2, and one ofP′

1 andP′
2. A path going through two opposite parts crosses bothP1 and

P2. This proves the number of crossing is decreased.
Finally, if P1 andP2 have a common extremityu, and crosses atv, the same transformation applies again,
decreasing the number of crossing by at least one.

Solutions will always be supposeduncrossed(each pair of paths with different extremities induces at
most one crossing) and simple. The following is an easy consequence of uncrossing :

Lemma 2. Let G be a planar graph, a, b, c and d four vertices on the boundary of the infinite face of G,
occuring in this order. LetP be an uncrossed set of(a,c)-paths and(b,d)-paths mutually edge-disjoint.
Then, all(a,c)-paths cross the(b,d)-paths in the same order.

Proof. There is a crossing neither between the(b,d)-paths, nor between the(a,c)-paths, so we can choose
P among the(b,d)-paths such that all the other(b,d)-paths are on the same side. We prove the lemma by
induction on the number of(b,d)-paths.P can be closed to a cycle by adding a curve on the infinite face
of G. Then by Jordan’s theorem,P separates the(b,d)-paths froma (say). All (a,c)-paths, starting from
a must crossP before the other(b,d)-paths. Using induction on the(b,d)-paths minusP concludes the
proof.

4.2 Forbidding crossing

It happens to be useful to have in the proof an Eulerian graph.This is not possible since the edge-disjoint
paths problem with terminals on the boundary of the infinite face is polynomially solvable as soon as all
the inner vertices have even degrees [6], [1]. We introduce the following restriction : every vertex will be
of degree four, but in some of them, paths will not be allowed to cross each other. This effect can easily be
achieved by replacing those special vertices by a cycle of length 4, as described in Figure4

Formally, we define the following problem, and show that it isequivalent to the original one :

Problem 1 (Extended Planar Edge-Disjoint Paths).
INPUT : a planar graph G, a demand graph H with V(H) ⊆V(G), and U⊆V(G).
OUTPUT : Is there a solution to the edge-disjoint paths problem(G,H) such that for every u∈U, there is
no crossing at u ?
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GvG
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Figure 4:How to forbid the crossing of paths at vertex v.

Let Gv be the graph obtained fromG by replacing a vertexv of degree 4 by a cycle of length 4, according
to Figure4. The equivalence with the planar edge-disjoint paths problem is a consequence of the following
obvious lemma :

Lemma 3. Let(G,H,U) be an instance of the extended planar edge-disjoint path problem. Let v be a vertex
of G of degree4. Then there is a solution to(Gv,H,U) if and only if there is a solution to(G,H,U ∪{v}).

In the following, we will always study instances of the extended problem. Vertices ofU are called
non-crossing vertices. In the figures, we will represent vertices not inU (crossing vertices) by bold points.
Note that there is no restriction over no-paths, they can cross other no-paths or paths at every vertex.

5 Implementing XCH and LIC

5.1 Basic graphs

We give the graphs encoding the gadgets XCH and LIC, and detail their respective properties. Let XCH
be the graph depicted in Figure5. The crossing vertices area, b, c andd. We noteS= {s1,s2,s3,s4},
S′ = {s′1,s

′
2,s

′
3,s

′
4}, T = {t1, t2} andT ′ = {t ′1,t

′
2}.

d

cb

a

u12u11u10u9

u8u7

u6u5

u4u3u2u1

t ′2

t ′1

t2

t1

s′4s′3s′2s′1

s4s3s2s1

Figure 5:The graph XCH. There are only four crossing vertices a, b, c and d. All theinnervertices have
degree4.

Lemma 4. LetP = {S1,S2,T1,T2} be an uncrossed set of edge-disjoint paths in XCH, satisfying :

(i) S1 and S2 are (S,S′)-paths,

(ii) T1 and T2 are (T,T ′)-paths.
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Then S1 and S2 are either an(s1,s′3)-path and an(s2,s′4)-path, or an(s3,s′1)-path and an(s4,s′2)-path.

Proof. Let P be as described in the lemma. As the(S,S′)-paths must cross the(T,T ′)-paths, there are at
least 4 crossings inP. We know that these crossings occur in verticesa, b, c andd, and the(T,T ′)-paths
(resp. the(S,S′)-path) do not cross each other.
Supposeab is in an(S,S′)-path, thenacandbd must belong to distinct(T,T ′)-paths, andcd is in the second
(S,S′)-path. Thenau2, bu5, cu8, du11 are in(T,T ′) paths, andau3, bu7, cu6 anddu10 are in(S,S′)-paths.
As there is no other crossing except in the four central vertices, the(S,S′)-paths are connected tos′1, s′2, s3

ands4. The case whenabbelongs to a(T,T ′)-path is similar and gives the other solution.

These paths exist, as shown by Figure6.

Figure 6:Existence of the paths for Lemma4.

Lemma 5. LetP be a set of three edge-disjoint paths in XCH that satisfies :

(i) P contains exactly two({s1,s2},S′′)-paths, and S′′ is either{s′1,s
′
2} or {s′3,s

′
4},

(ii) P contains exactly one(T,T ′)-path.

Then, S′′ = {s′3,s
′
4}.

Here we find the first differences between the graph XCH and itsideal model given in Section3. We
need to suppose that the two vertical paths come from the sameside (throughs1 ands2 or s3 ands4), and
leave also at the same side . We need to prove that this is actually the case, but we can already remark that
it is true in the particular case when the gadgets above and below are XCH with two horizontal paths, by
Lemma4.

Proof. If not, then there is a setP of three edge-disjoint paths, a(t,t ′)-pathQ, an (s1,s′1)-pathP1 and
an (s2,s′2)-pathP2. As Q must cross the two other paths, all paths contain at least oneof a,b,c andd.
Then,Q uses one edge ofu2a, u5b, u7b, u10d, and bothP1 andP2 use two of these edges, contradicting the
edge-disjointness of the paths.

Let LIC be the graph depicted in Figure7. We note againS= {s1,s2,s3,s4}, S′ = {s′1,s
′
2,s

′
3,s

′
4}, T =

{t1,t2} andT ′ = {t ′1, t
′
2}.

Lemma 6. LetP be a set of edge-disjoint paths in LIC that satisfy :

(i) P contains exactly2 ({s1,s2},S′′)-paths, where S′′ is either{s′1,s
′
2} or {s′3,s

′
4},

(ii) P contains exactly2 (T,T ′)-paths.

Then, S′′ = {s′3,s
′
4}. Moreover, there cannot be another(S∪T,S′∪T ′)-path.

Proof. SupposeS′′ = {s′1,s
′
2}. LetC be the cut{u7,u9,u10}. Let Q be the(t2,T ′)-path,P1 the(s1,s′1)-path

andP2 the(s2,s′2)-path. All three different paths meetC, andd(C) = 6. Moreover, there is no crossing in
C, thus consideringδ (C), u5u7 is used byQ andbu7, du10 by P1 andP2. Now, there are four distinct paths
enteringC′ = {u1,u2,u5}, butd(C′) = 6, contradiction.
As the edges ofδ ({a,b,c,d}) are all used byP, there is no other(S∪T,S′∪T ′)-path.
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d

cb

a

u12u11u10u9

u8u7

u6u5

u4u3u2u1

t ′2

t ′1

t2

t1

s′4s′3s′2s′1

s4s3s2s1

Figure 7:Graph LIC. Except two additional crossing vertices, it is similar to XCH.

Figure 8:Existence of the paths for Lemma7.

Lemma 7. There exist a(T,T ′)-path P, an(s1,s′1)-path P1 and an(s2,s′2)-path P2, pairwise edge-disjoint,
in LIC.
There exist a(T,T ′)-path P, an(s3,s′3)-path P1 and an(s4,s′4)-path P2, pairwise edge-disjoint, in LIC.

Proof. See Figure8.

With these four lemmas, the ideal behaviour of XCH and LIC is not reached by the two gadgets: paths
can still go fromS∪S′ to T ∪ T ′, and we did not prove that the vertical paths must use either the two
rightmost edges or the two leftmost edges between two consecutives gadgets.

5.2 Aggregating gadgets

In order to build the graph for the reduction, we need to aggregate gadgets in the form of a grid, using XCH
and LIC in the crossing of rows and columns. This is done by linking the edges incident to corresponding
vertices of degree 1. Figure9 shows how we build the grid, and gives the notation that we will use. More-
over, we defineX := {xi : i ∈ J1,4nK} andX′ := {x′i : i ∈ J1,4nK} wheren is the number of columns,
and similarlyY := {yi : i ∈ J1,2pK} andY′ := {y′i : i ∈ J1,2pK} wherep is the number of rows. We call

ith vertical cutthe set of edgesVi := { f i, j
k : j ∈ J1, pK,k ∈ J1,2K}, and j th horizontal cutthe set of edges

H j := {ei, j
k : i ∈ J1,nK,k∈ J1,4K}. Vertexv in M(i, j) will be denotedvi, j .
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1
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1
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M(2,1)M(1,1)

x′8x′7x′6x′5x′4x′3x′2x′1

y′6

y′5

y′4

y′3

y′2

y′1

y6

y5

y4

y3

y2

y1

x8x7x6x5x4x3x2x1

Figure 9:A grid of dimension2×3.
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The following lemma will help us to explain why the horizontal paths cannot go through more than two
different gadgets in each column, justifying the buffers. More exactly, the no-paths can be vertically moved
by at most 2 rows in each column, so the buffers must contain atleast 4 times the number of columns plus
2.

Lemma 8. Let G be a grid of dimension1×3, built exclusively with LIC. LetP be a set of edge-disjoint
paths, consisting of two(X,X′)-paths A and B, a({y1,y2},y′1)-path C, a(y3,y′2)-path D, a(y4,y′3)-path
E, a (y5,y′4)-path F, a(y6,y′5)-path H and an(X′,y′6)-path I. Then y1 and y2 are disconnected from X′ in
G\E(P) (or equivalently, there is no no-path from{y1,y2} to X′).

Note that this lemma is still true if some of the LIC graphs arereplaced by XCH. Figure10 shows the
extremities of each path.

A,B, I ,Q

H

F

E

D

C,Q

I

H

F

E

D

C

A,B

Figure 10:There is no solution to this edge-disjoint paths problem, even if Q can cross other paths at every
vertex. Edges contained in some tight cut are drawn thick.

Proof. Suppose that there is a({y1,y2},X′)-no-pathQ. Note thatQ can cross other paths at non-crossing
vertices. We can takeP uncrossed (uncrossing the paths does not change the set of edges used by the
solution), and without loss of generality,A is routed on the left ofB.
Because of tight cuts,M(1,1) containsC, M(1,2) containsE, andM(1,3) containsH. In M(1,2), E goes
throughu6, (u3 andu4 are non-crossing vertices, and at least one of the pathsA, B or D goes through these
vertices) and usesu6c or u6u8. For the same reason,E goes throughu7 and usesu7u5 or u7b. Consider
in M(1,2) the cutsC1 := {u5u7,u5b,ab,ac,u6c,u6u8} andC2 := {u5u7,u7b,bd,cd,cu8,u6u8}. There are
exactly four paths routed through these two cuts, andE must use three edges from at least one of them,
because it can use neitheru10d norau3. ThenF cannot go throughC1, proving that it can crossA or B only
at vertexd in M(1,2).
Similarly, in M(1,3), using pathH and the same two cuts (we call themC′

1 andC′
2), F can only crossA

or B at vertexa. Because of Lemma2 and the tight cut betweenM(1,2) andM(1,3), F crossesA in a of
M(1,3) and then crossesB in d of M(1,2). As F cannot use edges in bothC1 andC′

2, F must traversed of
M(1,2) anda of M(1,3) from left to right or from right to left, an odd number of times. This is indeed a
contradiction.
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RL

s′s

x′2x′1

x2x1

Figure 11:There is no solution to this edge-disjoint paths problem, with 5 paths between s and s′, see
Lemma9.

We need a last “local” lemma, proving that without the presence of a LIC, the vertical paths of a column
are shifted. This fills the holes of Lemma5. As the no-paths only use three rows of each column (this is not
fully proved yet), we will only need to study the case with a grid of 3 rows.

Lemma 9. Let G be a grid of XCH of dimension1×3. Then there is no set of edge-disjoint paths consisting
of five(Y,Y′)-paths, one(x1,x′1)-path and one(x2,x′2)-path.

Proof. Suppose that these paths exist. We distinguish two special cutsδ (L) andδ (R). There are exactly 12
vertices for crossings, and 10 are needed. The(Y,Y′)-paths use 5 edges ofδ (L) and 5 ofδ (R). The(x1,x′1)-
pathA and the(x2,x′2)-pathB both use an even number of edges in these two cuts. Moreover, they can
do at most 2 crossings in each of the three groups of four crossing vertices (corresponding to the crossing
vertices of an XCH graph), thus they go through each of these groups. Then each uses at least 6 edges in
the two cuts, and because of parity,A uses 4 edges ofδ (L) and 2 ofδ (R), andB uses 2 edges ofδ (L) and
4 edges ofδ (R). Becaused(L) = d(R) = 12, there cannot be more. Thus, each(Y,Y′)-path uses exactly
one edge ofδ (R), and one ofδ (L). Then, in the central XCH graph, there are exactly one edge ofδ (L) and
one edge ofδ (R) used byA, and two edges ofδ (R) used byB. At least two edges ofδ (L) must be used by
the(Y,Y′)-paths, and at most one ofδ (R). But this leads to a contradiction, as each(Y,Y′)-path cannot use
more than one edge in any of the two cuts.

6 Reduction

Let ϕ be a Boolean formula in conjunctive normal form, every clause is composed of 3 literals, withn≥ 3
clauses over a set ofp′ ≥ 3 variables. We encode the formula in a graphGϕ , a grid of XCH and LIC withn
columns. We need two rows for each variable, plus between every two of these rows, and after the last one,
a buffer consisting ofq = 4(p′ +3)n+2 rows. Then, the grid has exactlyp = 2p′(q+1) rows.

The ith variableXi corresponds to rows 1+ 2(i − 1)(1+ q) andq+ 2+ 2(i − 1)(1+ q). Intuitively, one
no-path will be routed through one of these two rows (but actually, we can only enforce that it will stay near
one of them). All the other rows are parts of buffers, and thencontain only XCH. Row 1+2(i −1)(1+q)
corresponds to the assignment oftrue to Xi , so there is a LIC in each column corresponding to the clause
whereXi appears positively. Similarly, rowq+ 2+ 2(i −1)(1+ q) corresponds to the assignment offalse
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to Xi , so there is a LIC in each column corresponding to the clause whereXi appears negatively. All other
subgraphs are XCH. In summary,M(i, j) is a LIC if and only if :

• either j = 1+2(i −1)(1+q) andXi appears positively in thej th clause,

• or j = q+2+2(i −1)(1+q) andXi appears negatively in thej th clause.

We add two terminals for the vertical paths,x andx′. As the number of rows is even, and we want the
vertical paths to be shifted an odd number of times, we add thefollowing edges :xx4k+1, xx4k+2, x′4k+3x′

andx′4k+4x′ for eachk∈ J0,n−1K. Thus we enforce the parity of the number of shifts. Moreover, to reduce
the number of odd vertices, we add the edgesx4k+3x4k+4 andx′4k+1x′4k+2 for eachk∈ J0,n−1K.
For each variableXi , i ∈ J1, p′K, we add two new verticeswi andw′

i , and the edgeswiy j andw′
iy
′
j for all

j ∈ J4(i − 1)(q+ 1) + 1,4(i − 1)(q+ 1) + 2q+ 4K (that is wi is connected to the vertices ofY between
the two rows encodingXi). These new vertices will be the extremities of the no-paths. Then we add two
terminals for the horizontal pathsy andy′. y is connected towi by 2q+3 parallel edges, and to every vertex
of Y that still have a degree one by a single edge. Symmetrically,y′ is connected tow′

i by 2q+ 3 parallel
edges, and to every vertex ofY′ not adjacent to somew′

i . Thusy andy′ have degrees 2p− p′.
Finally we demand to find 2n (x,x′)-paths and 2p− p′ (y,y′)-paths, defining the demand graphHϕ . The
vertices of odd degree inGϕ +Hϕ are the vertices ofW := {wi : i ∈ J1, p′K} andW′ := {w′

i : i ∈ J1, p′K}.
The following cuts are tight :δ (x), δ (x′), δ (y) andδ (y′). Figure12gives an overview of the reduction.
We define precisely thevertical pathsto be the(x,x′)-path of a solution, and thehorizontal pathsare the
(y,y′)-paths. We say that two paths areparallel if they are both horizontal, or both vertical, otherwise they
areorthogonal.

6.1 No-paths

Let P be a solution to the edge-disjoint paths problem(Gϕ ,Hϕ). By consideringP as a set of cycles of
Gϕ +Hϕ containing exactly one edge fromE(Hϕ), the vertices ofGϕ have the same degrees inGϕ +Hϕ and
Gϕ +Hϕ \E(P). So the edges of the complementary graph of the solutionP is aW∪W′-join Q⊂E(Gϕ).
The following lemma proves that the no-paths cannot traverse the buffers, implying that the vertical paths
stay in their respective columns. This last fact will allow us to apply the previous lemmas.

Lemma 10. Let G be a grid of dimension n× p. LetP be an uncrossed set of(X,X′)-paths and(Y,Y′)-
paths pairwise edge-disjoint. Suppose there exists i∈ J2, p− 2K such that for all j∈ J1,nK, M(i, j) and
M(i +1, j) are XCH and there are exactly four crossings of paths ofP in M(i, j) and in M(i +1, j). Then,
there is no no-path between a vertex of row i−1 and a vertex of row i+2.

Proof. Let i ∈ J2, p−2K such that each crossing vertex of rowsi andi +1 is used for a crossing, and suppose
there is a no-pathQ between rowsi −1 andi +2. ThenQ must pass throughu5u7 or u6u8 in someM( j, i),
sayu6u8 by symmetry, and then passes throughej ,i

3 , ej ,i
4 , ej+1,i

1 or ej+1,i
2 (because all thea, b, c andd vertices

are used by paths).
Let P1, P2, P3, P4 be the paths going through edgesc j ,iu j ,i

8 , d j ,iu j ,i
11, a j ,i+1u j ,i+1

3 , c j ,i+1u j ,i+1
6 respectively. We

consider the cutC = δ (U), with U = {u j ,i
8 ,u j ,i

11,u
j ,i
12,u

j ,i+1
3 ,u j ,i+1

4 ,u j ,i+1
6 }, intersected by these four paths and

Q. Because|C| = 8, at most four different paths and no-paths intersectC. As the solution is uncrossed,P1

andP2 are different and parallel, andP3 andP4 also. There is no crossing vertex amongU , thusP2 = P3. By
Lemma1, P1, P2 andP4 are crossed by their orthogonal paths in the same order, thenP1 = P4. We remark
that j 6= n, otherwise the routing is not possible.
At least one ofP1, P2 andQ must go throughU ′ = {u j+1,i

7 ,u j+1,i
9 ,u j+1,i

10 ,u j+1,i+1
1 ,u j+1,i+1

2 ,u j+1,i+1
5 }. By a

similar argument, there are pathsP′
1 usingb j+1,iu j+1,i

7 andu j+1,i+1
5 b j+1,i+1 andP′

2 usingd j+1,iu j+1,i
10 and

u j+1,i+1
2 a j+1,i+1. Exactly one of the four considered paths must use two of the edgesu j ,i

6 u j ,i
8 , u j+1,i

5 u j+1,i
7 ,

u j ,i+1
6 u j ,i+1

8 andu j+1,i+1
5 u j+1,i+1

7 , sayP1 (the other cases are isomorphic). Then, we can consider the cycle
consisting of the subpath ofP1 betweenc j ,i andc j ,i+1, the edgesc j ,i+1a j ,i+1 andc j ,id j ,i and the subpath of
P2 betweend j ,i anda j ,i+1. Because of Lemma1, no path can enter inside this cycle, but it contains at least
one crossing vertex in rowsi andi +1, leading to a contradiction.

Lemma 11. The complementary Q ofP can be decomposed into cycles and one(wi ,w′
i)-path for each

i ∈ J1, p′K.
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Proof. There are exactlynpgadgets in the graph, among which exactly 3n are LIC. The number of crossing
vertices is exactly 4np+6n. Moreover, there are 2n vertical paths, crossing each of the 2p− p′ horizontal
paths. At most 2n(p′+3) crossing vertices are not used to cross paths. As the number of rows in a buffer is
q = 4(p′ +3)n+2, there are at least two consecutive rows where all the crossing vertices are used to cross
paths. Then we can apply Lemma10 : there is no no-path going from the top to the bottom of a buffer.
Because of the parity of vertices,G\P is aW∪W′-join, and can be decomposed in cycles and some paths
with extremities inW∪W′, but there can only be(wi ,w′

i)-paths, as all other possible paths would have to
go through a buffer.

This leads to a key consequence :

Lemma 12. Every vertical path is contained in one column.

Proof. 2p− p′ horizontal paths andp′ no-paths are routed through each vertical cut, which contains exactly
2p edges. Then vertical paths cannot use edges of vertical cuts.

6.2 Proof of the reduction

Theorem 1. The planar edge-disjoint paths problem is strongly NP-complete, even if the demand graph
has only two edges, with terminals lying on the boundary of the infinite face of the input graph.

Proof. We use the graph of polynomial size built in Section6.
Suppose that the formula is satisfiable, and consider an assignment satisfyingϕ . We route two horizontal
paths through each row with the following exceptions, wherewe route only one horizontal path :

• in row 1+2(k−1)(1+q) if the value of variablek is true,

• in row q+2+2(k−1)(1+q) if the value of variablek is false

Then, for each column, we switch the two vertical paths, using Figure6, except in the row corresponding
to the first variable satisfying the clause associated with the column, where we keep the vertical paths. This
is possible by Lemma7, as there is a LIC at this intersection. The vertical paths ofeach column are kept
exactly once. Then these paths are valid, whence the edge-disjoint paths problem has a solution.
Suppose now that there is a solution to the edge-disjoint paths problem. By Lemma12, the vertical paths do
not intersect vertical cuts, and each no-path or horizontalpath intersects each vertical path only once. We
show that each no-path can use at most 3 distinct rows in each column (and thus are separated by at least
q−2n−1 rows), iteratively on the columns of the grid. This is done by applying Lemma8 (because there is
no other no-path in the two nearest rows). Then, for eachk∈ J1, p′K, the(wk,w′

k)-path cannot intersect both
the rows between 2(q+1)(k−1)−2 and 2(q+1)(k−1)+4, and the rows between 2(q+1)(k−1)+q−1
and 2(q+ 1)(k− 1)+ q+ 5, asq > 2n+ 5. If it intersects the first group, we set the variableVk to true,
otherwise we set it tofalse.
We consider an arbitrary column. In each row except forp′ distinct groups of three consecutive rows,
there are two horizontal paths traversing the gadget from left to right, as in the hypothesis of Lemmas4
and6. Moreover, by construction, there are XCH above and below every LIC, so we can effectively apply
Lemmas4 and6 to all the gadgets, except a block of five consecutive gadgetsfor each variable, which
contains the intersection of the corresponding no-path with the given column.
Now, for each of these blocks, if there are only XCH, the first and fifth gadgets follow Lemma4, and by
Lemma9, the vertical paths cannot be shifted here. Otherwise, there is a LIC and a no-path in one of
the three nearest rows, thus the variable assignment validates the corresponding clause (the fact that the
no-path is not forced to pass through the LIC has no consequence, as long as it must be close enough).
Then whenever the vertical paths are not shifted, the clauseassociated with the column is satisfied. As each
column sees its vertical paths kept at least once, each clause is satisfied, thus the assignment is feasible for
ϕ .

7 Directed case

Using a folkloric reduction, the following result is an obvious consequence of Theorem1.
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Figure 13:In NO, there is no path from c to b′, whereas it is possible in YES, as long as no other path goes
through the graph.

Corollary 1. The arc-disjoint paths problem is strongly NP-complete, even if G is planar, the demand graph
has only two arcs and the terminals lie on the boundary of the infinite face of G.

We use again the grids of subgraphs, but with different subgraphs, to prove the following theorem :

Theorem 2. The planar arc-disjoint paths problem is NP-complete, evenif G is acyclic and H consists of
two sets of parallel edges.

We will reduce from SATISFIABILITY . Let C1 ∧ . . .∧Cn be a formula withn clauses, over the set
of variables{X1, . . . ,Xp}. Let G1 be a grid withn columns and 2p rows, where each pointG1(i, j), i ∈
J1,2pK, j ∈ J1,nK of the grid is a special subgraph, defined as follows (see figure13):

• G1(2i −1, j) is the graph YES ifXi appears positively inCj ,

• G1(2i, j) is the graph YES ifXi appears negatively inCj ,

• G1(i, j) is NO in all other cases.

Claim 1. The formula is satisfiable if and only if there is a setP of arc-disjoint paths in G1 such that :

(i) for each j∈ J1,nK, there is a path Pj in P from c∈ G1(1, j) to b′ ∈ G1(2p, j),

(ii) for each i∈ J1, pK, there is a path Qi in P either from a∈ G1(2i −1,1) to a′ ∈ G1(2i −1,n) or from
a∈ G1(2i,1) to a′ ∈ G1(2i,n).

Proof. Suppose thatP exists. For alli ∈ J1, pK, if Qi has extremitiesa∈G1(2i−1,1) anda′ ∈G1(2i−1,n),
then assign valuefalseto Xi , otherwise assign valuetrue. Horizontal cuts and vertical cuts are directed, thus
every pathQi , (i ∈ J1, pK) is contained in a single row and every pathPj , j ∈ J1,nK, is contained in a single
column. For each pathPj , j ∈ J1,nK, let i be the index of the first row wherePj goes through the left edge
betweenG1(i, j) andG1(i + 1, j). ThenPj is the only path that goes throughG1(i, j), andG1(i, j) is a
YES graph. Ifi is even, it means thatX i

2
appears negatively inCj and this variable has valuefalse, thusCj

is satisfied. OtherwiseX i+1
2

appears positively inCj and the value of this variable istrue, thusCj is also

satisfied. Then the formula is satisfied. The converse is obvious.

We just have to enforce paths to be as required in the previousclaim. Condition(i) is easy to satisfy. To
check condition(ii) we need some gadgets, depicted in Figure14.

Claim 2. Let P1 be a path between a and one of ai, i ∈ {1,2}, and P2 be a path between b and bj , j ∈ {1,2},
in IF, LL or TT. If P1 and P2 are arc-disjoint, then i= j.

Claim 3. There are not two arc-disjoint paths in VV, one from b2 to b and the other from a1 to a.

Claim 2 and Claim3 can be readily checked. We will also need the graph ON introduced in Figure15.
We now describe the full graph for the reduction.G is build fromG1 in the model of Figure16. G is built
from a grid with 2p+n columns and 2p rows. The subgrid defined by columnsp+1 to p+n and rows 1
to p is G1. Note that two rows inG1 correspond to one row inG. SquaresG(i, i), G(p+ 1− i,n+ p+ i),
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Figure 16:The graph for the reduction with a formula containing three clauses over three variables.

G(2p+1− i, i) andG(p+ i,n+ p+ i), for all i ∈ J1, pK, are special graph IF, TT, LL and VV respectively.
Others are either NO or ON, according to the figure. Rows, columns, vertical cuts and horizontal cuts are
defined in the same way as in Section6. We add four terminals, one for each side of the grid (see the figure).

We add a demand of 2p from s1 to s2, and 2p+n from t1 to t2.

Claim 4. G is acyclic.

Proof. Observe that in the grid, all arcs are from left to right or from top to bottom, and the special graphs
are all acyclic.

Claim 5. There is exactly one path going from top to bottom in each column of G, this path never leaves
the column. There is exactly one path going from left to rightin each row of G, this path never leaves the
row.

Proof. Because vertical and horizontal cuts are directed, and{s1}, {s2}, {t1}, {t2} are tight cuts.

Claim 6. If a horizontal path leaves G1 by the lower edge of its row in the(n+ p)th vertical cut, then the

same path enters G1 by the lower edge of its row in the pth vertical cut.

Proof. In each square ON or NO, there is exactly one path fromb to b′ or from c to c′, and one path from
a to a′, because of properties of these gadgets. Consequently, a vertical path leaves an IF gadget by the
left if and only if it enters the LL gadget of the same column bythe left. Similarly for paths between LL
and VV, for paths between TT and VV, for paths between IF andG1 and for paths betweenG1 and TT.
If a path leavesG1 by the lower edges of its row, say rowi ∈ J1, pK, then it entersG(i,2p+ n+ 1− i) by
vertexb2. The vertical path of column 2p+ n+ 1− i leavesG(i,2p+ n+ 1− i) by vertexa2 by Claim2,
and then entersG(2p+1− i,2p+n+1− i) by vertexa1. Thus the horizontal path in row 2p+1− i goes
in G(2p+1− i,2p+n+1− i) using vertexb1 by Claim3, and leavesG(2p+1− i, i) by vertexa1. Using
Claim 2, the vertical path in columni goes inG(2p+ 1− i, i) by vertexb1, thus goes outG(i, i) by vertex
a1. By Claim2 again, the horizontal path of rowi leavesG(i, i) by b1, and then entersG1 by the lower edge,
proving the claim.

Proof. (of Theorem2) Claim6 proves that the path inG1 satisfies the condition(ii) of Claim1: if there is a
solution to the arc disjoint path problem, the formula is satisfiable. The converse is also true, it is sufficient
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to extend the solution forG1 naturally.
As the construction is obviously polynomial, we found a Karpreduction between the two problems. The
arc-disjoint paths problem being in NP, Theorem2 is proved. Note that we can identifyt1 with s2, andt2
with s1, thus proving that it is still true withG+H planar and only two terminals.

Corollary 2. The arc-disjoint paths problem in planar graphs is NP-complete, even if the demand graph
has only two arcs, with one of request1 (one flow plus one path).

Proof. We modify the preceding reduction. We removet1 andt2, and add arcs from the bottom of a column,
to the top of the next column to the left. This preserves planarity. Then we add a demand arc from the bottom
of the leftmost column to the top of the rightmost column, with demand 1. We keep the arcs2s1. The new
demand must be routed through the new arcs because of the vertical tight cuts. Thus, this transformation
preserves the property of the original reduction.

The problem where the total amount of demands is fixed remainsopen in digraphs, and in particular,
the special case where we want to find a cycle in a planar digraph, that goes through two specified vertices.
This last problem is mentioned in [9].
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