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Abstract

We prove the NP-completeness of the integer multiflow prokite planar graphs, with the following
restrictions: there are only two demand edges, both lyinfpeimfinite face of the routing graph. This was
one of the open challenges concerning disjoint paths, @iplasked by Muller f]. It also strengthens
Schwarzler’s recent proof of one of the open problems ofifseh’'s book [9], about the complexity of
the edge-disjoint paths problem with terminals on the obteamdary of a planar graph. We also give
a directed acyclic reduction. This proves that the armdisjpaths problem is NP-complete in directed
acyclic graphs, even with only two demand arcs.

1 Introduction

The multiflow problem has been studied in combinatorialrafation for many years, both because of its
theoretical interests and applications. Basically, wettarfind integer flows between pairs of terminals,
respecting capacity constraints.

The general problem is NP-complete, with different typesaistraints, see e.g. the survey of Frafk [
The most general way to define constraints is to put capaatiehe edges of the graph, in the same way
as for the classical flow problem. When these capacities averywhere, this defines the edge-disjoint (or
arc-disjoint) paths problem. Robertson and Seymé&lpfoved that the multiflow problem is polynomial
for undirected graphs, assuming that the total demand id.fixe

Special interest has been shown for solving the problemanasl graphs (directed or not). Kramer and
Van Leeuwen §] have shown that the undirected planar multiflow problem isddmplete in the general
case. Nevertheless, a good characterization theorem bagbaved by Okamura and Seymoftif for the
edge-disjoint paths problem in planar Eulerian graphsgeuttte assumption that all terminals are on the
boundary of a unique face of the graph. Despite sharpensags](], [ 7]), the non-Eulerian case remained
open until 2007, when Schwarzler(] proved the NP-completeness of the edge-disjoint pathisl@noin
planar graphs with all terminals on the boundary of the saane 6f the graph.

Between Robertson and Seymour’s result, and Schwarzestdt, one could ask if there is a polynomial-
time algorithm for the edge-disjoint paths problem in plagi@aphs, when the number of different pairs of
terminals is fixed, but each may be repeated many times. Edigaehen there are only two parallel classes
of demands, with terminals lying on a single face of the grajttually, Schwarzler’'s proof can easily be
modified to prove that the problem is still NP-complete wiihete pairs of terminals. In this paper we give
a new reduction, proving that the problem is NP-completé witly two pairs of terminals. This solves a
question of Muller f].

We will also give a directed version of our proof, showingttti@e arc-disjoint paths problem is NP-
complete, even i is planar with two opposite parallel classes of demand edgasdts where vertices

s andt belong to the boundary of the same face®fBoth results strengtheis][ Finally, we prove the
NP-completeness whehis a planar acyclic digraph and consists of two pairs of terminals lying on the
outer face ofG.

2 Definitions

Let G = (V,E) be an undirected graph, and ket E — N be acapacity functioron the edges oB. Let
H = (T,D) be an undirected graph withC V, andr : D — N ademand functiofor reques}. Themultiflow
problemis to find a multise®%” of cycles ofG + H satisfying the following conditions :



Figure 1:The two paths on the left do not cross, those on the right @ash other.

(i) Each cycle of¢ contains exactly one edge Hf.
(i) For each edge dB, the number of cycles i’ using it is less than its capacity.
(iii) For each edge dfl, the number of cycles i using it is exactly its request.

H is usually called thelemand graphT is the set oterminals By cycle, we mean a closed sequence of
distinct edges that are consecutive in the graph, or eaaritlgla connected Eulerian subgraph. The prob-
lem can easily be defined in digraphs, by replacing everyrmenuae of “cycle” by “directed cycle”. Thus,
an instance of the multiflow problem consists of a quadr(léd.r,c). In the following,c will always be
supposed to be equal to 1. We will noté the set of paths obtained fro#fi by ignoring the demand edges,
and we will mainly speak about these paths instead of theesycl

A pathis formally a sequence of distinct edges that are consexulitius, cycles are closed paths. Two
paths areedge-disjointf their edge-sets are disjoint. We defidieected pathsndarc-disjoint pathsanalo-
gously. Whert is constantly equal to 1, the multiflow problem is known asdtige-disjoint paths problem
(respectively tharc-disjoint paths problei

The graphs considered in this paper are always without |dmyasparallel edges are allowed. Actually,
whenever an edge< E(G) has a capacity greater than 1, we replace itfgy parallel edges. Ldd €V

be a subset of a vertex set of the graph. We @qgt&) the set of edges having exactly one extremityin
Every set of edges that can be writtendgb) ) for someU is called acut of the graph. In directed graphs,
&~ (V) is the set of arcs enteringd;, 37 (U) is the set of arcs leavind. Whend(U) = 8+ (U), we say that

U is adirected cut We defined(U) := |8(U)| and similarlyd*(U) andd~ (U).

LetC be a cut ofG+H. C s atight cutif c(CNE)—r(CnD) = 0. If this difference is negative, the
multiflow problem is not feasible. Whet is reduced to a single edge, the famaouesx-flow-min-cutesult
states that a multiflow exists if and only if this differenceriever negative (see Menger’s theoref).[
WhenC is a tight cut, each edge @fis entirely used in any solution of the multiflow problem : thare
as many paths through each edge as its capacity. In direptg tight cuts are the cudgU) of G+H
with c(8¢ (U)) —r (85 (U)) =0.

A planar graphis a graph that has an embedding in the plane without intéoseaf the edges (or arcs).
Let P, andP, be two edge-disjoint paths iB. P; andP, crossat vertexv € V(G) if there are four edges
e1,...,€4 incident tov, appearing in this order aroung such thae; ande; are consecutive i, andey,

e, are consecutive iR,. However, two paths may have a common vertex without crgssiee Figuré. A
crossingis a triple(P, Q,u) such thaP andQ crosses at vertex

3 Outline of the proof

We will prove the NP-completeness of the edge-disjoint patiloblem with only two pairs of terminals, by
reduction from 3-&T. Before giving the full proof, which is quite technical, wepdain the main ideas of
the reduction.

Consider an instance of 3%, consisting of clauses over a set of variables. We build plginiathe form

of a grid, with as many columns as there are clauses, and asnmag as twice the number of variables. In
this grid, the intersection of each row with each column ie oftwo basic graphs. These two graphs, called
XCH and LIC should have the following properties. They have vertices of degree one in their left and
right sides, and four — actually two pairs — at their top araitbottom. We suppose that there will always
be two paths either from the two left top vertices or from the tight ones, going through them from top
to bottom gertical path3. We will also always route one or two paths from left to rigirizontal paths



If there are two horizontal paths, then the two vertical patiin only be routed diagonally. The behaviours
of XCH and LIC are different if there is only one horizontalips In that case, in XCH, the vertical paths
are still forced to go diagonally through the graph, but i€l they can be routed vertically. Figurgand3
illustrate the possible routing through the two graphs (ahdt we mean bgiagonallyandvertically).

slslalals | | mill

e e

E e
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Figure 2:Possible routings through XCH and LIC.

Figure 3:Additional routings for LIC. When there is only one horizairgath, the vertical paths are not
forced to be diagonal.

The typical behaviour for these gadgets is to change th&eaépaths from one side to the other (Lem-
mas4 and6). We say that theghiftthe paths. The only special case when the two vertical pathstay on
the same side is the following : there is a LIC and a singlezumtal path. In that special case, the gadget
keepghe paths (Lemmd). The reduction is basically the following : there are twmsecutive rows for
each variable, and we route three paths along these two fidwss, one path will follow one row, and the
two other paths will follow the other rowdeciding a variable assignmentVe also route two paths in each
column, and we ask th#ttese two paths are kept an odd number of tinBescause of the properties of LIC
and XCH, the two vertical paths can be kept in a particulaggad and only if this gadget is a LIC and
there is only one horizontal path in the corresponding row. pléce LIC on those particular intersections
for which the literal associated with the row appears in these encoded by the column. Thus, we ensure
that whenever vertical paths are kept, the correspondingsel is made valid by the chosen assignment.
Then we must guarantee that the two paths associated withaeiemn are kept at least once (actually
an odd number of times). This is done by asking these two patbhs routed from the two left pair of
uppermost vertices of the column, to the two rightmost lowatices. Because the number of rows is even
(twice the number of variables), paths must indeed be keptldmumber of times.

Finally, we can add two common terminals for the verticahgatind two others for the horizontal paths,
achieving the desired restriction to two edges of demandottimately, there are several difficulties in im-
plementing this reduction. Mainly, XCH and LIC does not &xigith the prescribed properties. Actually,
the main difficulty is to enforce that the horizontal pathesysbn their respective rows. We will prove that
with our gadgetsthe horizontal paths cannot go through more than three rowesaich columiiLemmas).

Our solution is then to createtaffer consisting of a large number of rovsetween the rows encoding the
variables. Similarly, we must prove thidte vertical paths stay in their columfisemmasl0and12). This



will be done, by using the property that our grapimésarly Eulerian(almost each vertex has even degree).
This fact will help us to prove that the edges not in a solutiwhuce cycles and a small set of paths, called
no-paths One of the main lemmas states that the extremities of eaglativare determined (Lemnid).
More exactly, there will be exactly one no-path per varialBonsidering horizontal paths and no-paths
together, many cuts are tight for them. Consequently,cedrtiaths cannot use the edges contained in these
cuts : each vertical path intersects only one column. Therallproperties of XCH and LIC allow us to
conclude the proof.

4 Preliminaries

4.1 Uncrossing the paths

We can suppose without loss of generality that each pairtbfsgaduces at most one crossing :

Lemma 1. Let (G, H) be an instance of the edge-disjoint paths problem with Ganlafhere is a solution
for (G,H) if and only if there is a solution such that each pair of pathssses at most once, and two paths
with the same extremities do not cross.

Proof. Let &2 be a solution minimizing the number of crossings. We canrasdsihat every path is simple.
Suppose that two path® and P, induce more than one crossing. Letwndv be the first and second
crossings betweelR, andP,, starting from one extremity d,.

We decomposE in three path®); UR U S whereR; has extremitiesi andv. Then replacing?, andP, by
Pl=QiURUS andP; = QUR1US,, we show that the number of crossings is reduced, contagict
the minimality of 2.

In every vertex exceptt andv, the paths are not locally modified, thus the number of cngssis not
changed. The number of crossings betwBgandP} is reduced by at least 2. Then, the neighbourhood
of vertexu (and symmetrically) is divided into four parts. A path going through two conge@uparts
crosses one d¥ andP,, and one oP; andP;. A path going through two opposite parts crosses Bptnd

P,. This proves the number of crossing is decreased.

Finally, if P, andP, have a common extremity, and crosses at the same transformation applies again,
decreasing the number of crossing by at least one. O

Solutions will always be supposemhcrossedeach pair of paths with different extremities induces at
most one crossing) and simple. The following is an easy apresece of uncrossing :

Lemma 2. Let G be a planar graph, a, b, ¢ and d four vertices on the boundéthe infinite face of G,
occuring in this order. Let?? be an uncrossed set (&, c)-paths andb, d)-paths mutually edge-disjoint.
Then, all(a, c)-paths cross théb, d)-paths in the same order.

Proof. There is a crossing neither between thed)-paths, nor between tHa, ¢)-paths, so we can choose

P among thgb,d)-paths such that all the othéds, d)-paths are on the same side. We prove the lemma by
induction on the number db, d)-paths.P can be closed to a cycle by adding a curve on the infinite face
of G. Then by Jordan’s theorerR, separates théb, d)-paths froma (say). All (a,c)-paths, starting from

a must cros before the othefb,d)-paths. Using induction on th@,d)-paths minus? concludes the
proof. O

4.2 Forbidding crossing

It happens to be useful to have in the proof an Eulerian grapis is not possible since the edge-disjoint
paths problem with terminals on the boundary of the infiréteefis polynomially solvable as soon as all
the inner vertices have even degreds [1]. We introduce the following restriction : every vertex bl
of degree four, but in some of them, paths will not be allowedrbss each other. This effect can easily be
achieved by replacing those special vertices by a cyclengftte4, as described in Figude

Formally, we define the following problem, and show that gdgiivalent to the original one :

Problem 1 (Extended Planar Edge-Disjoint Paths)

INPUT : a planar graph G, a demand graph H with(M) CV(G), andUC V(G).

OuTPUT: Is there a solution to the edge-disjoint paths problg&H) such that for every & U, there is
no crossing atu ?



Figure 4:How to forbid the crossing of paths at vertex v.

Let Gy be the graph obtained fro@by replacing a vertex of degree 4 by a cycle of length 4, according
to Figure4. The equivalence with the planar edge-disjoint paths ml$ a consequence of the following
obvious lemma:

Lemma 3. Let(G,H,U) be an instance of the extended planar edge-disjoint pathlpm. Let v be a vertex
of G of degreet. Then there is a solution tGy,H,U) if and only if there is a solution t6G,H,U U {v}).

In the following, we will always study instances of the exded problem. Vertices df are called
non-crossing verticedn the figures, we will represent vertices notin(crossing verticesby bold points.
Note that there is no restriction over no-paths, they casscother no-paths or paths at every vertex.

5 Implementing XCH and LIC

5.1 Basic graphs

We give the graphs encoding the gadgets XCH and LIC, and|dle&hi respective properties. Let XCH
be the graph depicted in Figuke The crossing vertices ae b, c andd. We noteS= {s1,%,%3,%4},

S= {5{1,5/27%7521}- T= {tlth} andT’ = {ti’té}-

S1 S S3 4
[ ] [ ] [ ] [ ]

t Uy Uz us Ug ,
1e . '[1
a
Us Us
b C
uz Us
e ot/

Ug U10 Ugg Ur2 2
L ] L] L ] [ ]
S S S5 S

Figure 5:The graph XCH. There are only four crossing vertices a, b,at@nAll theinnervertices have
degreed.
Lemma 4. LetZ = {S,$,T1, T2} be an uncrossed set of edge-disjoint paths in XCH, satgfyin
(i) Sy and S are (S S)-paths,
(i) Tpand B are (T, T')-paths.



Then g and $ are either an(s, s;)-path and an(s, s;)-path, or an(sz, s} )-path and an(ss, s, )-path.

Proof. Let £ be as described in the lemma. As {{&S)-paths must cross th@, T')-paths, there are at
least 4 crossings i?. We know that these crossings occur in vertiagls, ¢ andd, and the(T, T’)-paths
(resp. thg(S, S)-path) do not cross each other.

Supposabis in an(S, S)-path, theracandbd must belong to distindfT, T’)-paths, anad s in the second
(S,S)-path. Themaw, bus, cug, dw are in(T,T’) paths, andius, buy, cug andduyg are in(S, S)-paths.
As there is no other crossing except in the four central eestithg(S, S)-paths are connected §, s,, s
ands;. The case wheabbelongs to 4T, T’)-path is similar and gives the other solution. O

These paths exist, as shown by Figére

. [ . .
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N ‘. 4
N 7
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Figure 6:Existence of the paths for Lemma

Lemma 5. Let & be a set of three edge-disjoint paths in XCH that satisfies :
(i) & contains exactly tw¢{s,s,},S’)-paths, and Sis either{s|,s,} or {s;,s,},
(i) & contains exactly on€T, T')-path.

Then, 8 ={s;,s,}.

Here we find the first differences between the graph XCH anidétal model given in Sectio. We
need to suppose that the two vertical paths come from the satagthroughs; ands; or s3 andsy), and
leave also at the same side . We need to prove that this isllgdhmcase, but we can already remark that
it is true in the particular case when the gadgets above alowtsge XCH with two horizontal paths, by
Lemma4.

Proof. If not, then there is a se#” of three edge-disjoint paths, (&t')-pathQ, an (s;,s;)-pathP, and
an (s2,s,)-pathP,. As Q must cross the two other paths, all paths contain at leasbbaeb,c andd.
Then,Q uses one edge oba, usb, uzb, uiod, and bothP; andP, use two of these edges, contradicting the
edge-disjointness of the paths. O

Let LIC be the graph depicted in Figufe We note agailS= {s1,%,S3,%4}, S = {5],5,%5,5,}, T =
{tl,tz} andT’ = {ti,té}.

Lemma 6. Let & be a set of edge-disjoint paths in LIC that satisfy :
(i) & contains exactl® ({s1,,},S’)-paths, where Sis either{s],s,} or {s;,s,},
(i) £ contains exactlp (T,T')-paths.

Then, 8 = {s;,s,}. Moreover, there cannot be anoth@UT,S UT')-path.

Proof. SupposeS’ = {s),s,}. LetC be the cuf{uz,ug, uio}. LetQ be the(tz, T')-path,P; the (s1,s;)-path
andP; the (s, s,)-path. All three different paths me€t andd(C) = 6. Moreover, there is no crossing in
C, thus considerin@(C), usuy is used byQ andbu;, duig by P, andP,. Now, there are four distinct paths
enteringC’ = {uy, up, Us}, butd(C’') = 6, contradiction.

As the edges 0d({a,b,c,d}) are all used by, there is no othefSUT,S UT’)-path. O
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Figure 8:Existence of the paths for Lemmia

Lemma 7. There exist T, T’)-path P, an(s;, s} )-path R and an(s,, s,)-path B, pairwise edge-disjoint,
in LIC.
There exist 4T, T’)-path P, an(ss, s;)-path R and an(s4,s,)-path B, pairwise edge-disjoint, in LIC.

Proof. See Figures. O

With these four lemmas, the ideal behaviour of XCH and LICdsneached by the two gadgets: paths
can still go fromSUS to TUT’, and we did not prove that the vertical paths must use eitietwo
rightmost edges or the two leftmost edges between two catiges gadgets.

5.2 Aggregating gadgets

In order to build the graph for the reduction, we need to agmpeegadgets in the form of a grid, using XCH
and LIC in the crossing of rows and columns. This is done bitig the edges incident to corresponding
vertices of degree 1. FiguBeshows how we build the grid, and gives the notation that weuwsié. More-

over, we defineX := {x : i€ [1,4n]} andX':={X : i € [1,4n]} wheren is the number of columns,
and similarlyY := {y; : i € [1,2p]} andY’:={y; : i € [1,2p]} wherep s the number of rows. We call
it vertical cutthe set of edge¥ .= {f.} : je[1,p].ke [1,2]}, andjth horizontal cutthe set of edges

Hj:={e}} : ie[Ln],ke[1,4]}. Vertexvin M(i, j) will be denoted/"I.
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Figure 9:A grid of dimensior x 3.
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The following lemma will help us to explain why the horizohpaths cannot go through more than two
different gadgets in each column, justifying the buffer@r®exactly, the no-paths can be vertically moved
by at most 2 rows in each column, so the buffers must contdeaat 4 times the number of columns plus
2.

Lemma 8. Let G be a grid of dimensioh x 3, built exclusively with LIC. Lef” be a set of edge-disjoint
paths, consisting of twoX, X’)-paths A and B, d{y1,y>},y;)-path C, a(ys,Y,)-path D, a(ys,ys)-path
E. a(ys,y,)-path F, a(ye,y5)-path H and an(X’,yg)-path I. Then y and y; are disconnected from’Xn
G\ E(2) (or equivalently, there is no no-path frofgy,y2} to X').

Note that this lemma is still true if some of the LIC graphsmglaced by XCH. Figuré0 shows the
extremities of each path.

AB
— C
C,Q
D
D E
F
F
He |
AB,1,Q

Figure 10:There is no solution to this edge-disjoint paths problenena’Q can cross other paths at every
vertex. Edges contained in some tight cut are drawn thick.

Proof. Suppose that there is(dyi, Y2}, X’)-no-pathQ. Note thatQ can cross other paths at non-crossing
vertices. We can take” uncrossed (uncrossing the paths does not change the segjes aded by the
solution), and without loss of generali#y,is routed on the left oB.

Because of tight cutdvi(1,1) containsC, M(1,2) containsk, andM(1, 3) containsH. In M(1,2), E goes
throughug, (uz anduy are non-crossing vertices, and at least one of the pgtBsor D goes through these
vertices) and usesgC or ugug. For the same reasoh, goes throughu; and usesiyus or uzb. Consider

in M(1,2) the cutsC; := {usuy, usb,ab,ac, usc,ugug} andC, := {usuyz, uzb,bd, cd, cug,usug}. There are
exactly four paths routed through these two cuts, Brdust use three edges from at least one of them,
because it can use neithapd noraus. ThenF cannot go througles, proving that it can crosa or B only

at vertexd in M(1,2).

Similarly, in M(1,3), using pathH and the same two cuts (we call th&h andC,), F can only cros#

or B at vertexa. Because of Lemma and the tight cut betweeM (1,2) andM(1,3), F crossesA in a of
M(1,3) and then crosseBin d of M(1,2). AsF cannot use edges in bafh andC), F must traversel of
M(1,2) anda of M(1,3) from left to right or from right to left, an odd number of timeEhis is indeed a
contradiction. O



X1 X

/ /
Xy X

Figure 11:There is no solution to this edge-disjoint paths problenth\i paths between s and, see
Lemmad.

We need a last “local” lemma, proving that without the presesf a LIC, the vertical paths of a column
are shifted. This fills the holes of LemrBaAs the no-paths only use three rows of each column (thistis no
fully proved yet), we will only need to study the case with a&gf 3 rows.

Lemma 9. Let G be a grid of XCH of dimensidnx 3. Then there is no set of edge-disjoint paths consisting
of five(Y,Y’)-paths, ondxy, X; )-path and onéx,, x;)-path.

Proof. Suppose that these paths exist. We distinguish two speg®d(.) andd(R). There are exactly 12
vertices for crossings, and 10 are needed. ("¥')-paths use 5 edges &fL) and 5 ofd(R). The(xy,x])-
pathA and the(xy,x;)-path B both use an even number of edges in these two cuts. Morebesrcan
do at most 2 crossings in each of the three groups of four ici@sertices (corresponding to the crossing
vertices of an XCH graph), thus they go through each of theseps. Then each uses at least 6 edges in
the two cuts, and because of pariyuses 4 edges a@f(L) and 2 of6(R), andB uses 2 edges a¥(L) and

4 edges oB(R). Becausal(L) = d(R) = 12, there cannot be more. Thus, ed&hY’)-path uses exactly
one edge 0d(R), and one oB(L). Then, in the central XCH graph, there are exactly one ed@élofand
one edge 0d(R) used byA, and two edges ad(R) used byB. At least two edges a¥(L) must be used by
the(Y,Y’)-paths, and at most one 6{R). But this leads to a contradiction, as ed¥hY’)-path cannot use
more than one edge in any of the two cuts. O

6 Reduction

Let ¢ be a Boolean formula in conjunctive normal form, every ctaisscomposed of 3 literals, witih> 3
clauses over a set @f > 3 variables. We encode the formula in a gr&h a grid of XCH and LIC withn
columns. We need two rows for each variable, plus betweety éwe of these rows, and after the last one,
a buffer consisting off = 4(p’ + 3)n+ 2 rows. Then, the grid has exacy= 2p’(q+ 1) rows.

Theith variableX; corresponds to rows % 2(i —1)(1+q) andq+2+2(i —1)(1+q). Intuitively, one
no-path will be routed through one of these two rows (butabttuwe can only enforce that it will stay near
one of them). All the other rows are parts of buffers, and tmtain only XCH. Row K 2(i —1)(1+q)
corresponds to the assignmentafe to X;, so there is a LIC in each column corresponding to the clause
whereX; appears positively. Similarly, rog+ 2+ 2(i — 1)(1+ q) corresponds to the assignmentfalse

10



to X;, so there is a LIC in each column corresponding to the clalseX; appears negatively. All other
subgraphs are XCH. In summab(i, j) is a LIC if and only if :

e eitherj =1+ 2(i — 1)(1+ q) andX; appears positively in th;ath clause,

e orj=qg+2+2(i—1)(1+4q) andX; appears negatively in thjéh clause.

We add two terminals for the vertical pathsandx’. As the number of rows is even, and we want the
vertical paths to be shifted an odd number of times, we addaif®ving edges XXk 1, XXak+2, xgk+3x’
andxy,, ,x for eachk € [0,n— 1]. Thus we enforce the parity of the number of shifts. Morepwereduce
the number of odd vertices, we add the edggsaXak+4 andxy,, 1Xy.., » for eachk € [0,n—1].

For each variable(| i € [1,p], we add two new vertices; andw{, and the edgesiy; andw{y; for all
je4i—-1)(g+1)+1,4(i —1)(q+ 1)+ 29+ 4] (that isw; is connected to the vertices ¥f between
the two rows encoding). These new vertices will be the extremities of the no-paffteen we add two
terminals for the horizontal patlysandy’. y is connected tov; by 2q+ 3 parallel edges, and to every vertex
of Y that still have a degree one by a single edge. Symmetrigaliy,connected tov| by 29+ 3 parallel
edges, and to every vertexf not adjacent to some/. Thusy andy have degreesg2— p/

Finally we demand to findr2(x,x')-paths and @ — p’ (y,y’)-paths, defining the demand grablp. The
vertices of odd degree iBy + Hy are the vertices OV := {w; : i€ [1,p]} andW' :={w : i€ [1,p]}.
The following cuts are tight 5(x), 8(xX'), d(y) andd(y). Figurel2gives an overview of the reduction.

We define precisely theertical pathsto be the(x,x')-path of a solution, and thieorizontal pathsare the
(v,y')-paths. We say that two paths grarallel if they are both horizontal, or both vertical, otherwiseythe
areorthogonal

6.1 No-paths

Let & be a solution to the edge-disjoint paths problgg ,Hy ). By considering?” as a set of cycles of
Gy +Hy containing exactly one edge frof{Hy ), the vertices 064 have the same degreesdg +Hy and
Gy +Hp \ E(2). So the edges of the complementary graph of the solu#faa aW UW'-join Q C E(Gy).
The following lemma proves that the no-paths cannot travtérs buffers, implying that the vertical paths
stay in their respective columns. This last fact will allos/to apply the previous lemmas.

Lemma 10. Let G be a grid of dimensionx p. Let%? be an uncrossed set (X, X’)-paths and(Y Y')-
paths pairwise edge-disjoint. Suppose there exist§2, p— 2] such that for all je [1,n], M(i, j) and
M(i+ 1, j) are XCH and there are exactly four crossings of pathsin M(i, j) and in M(i +1, j). Then,
there is no no-path between a vertex of rowl and a vertex of row+ 2.

Proof. Leti € [2, p— 2] such that each crossing vertex of rovesidi + 1 is used for a crossing, and suppose
there is a no-patlp between rows— 1 andi + 2. ThenQ must pass througisuz or ugug in someM(j, i),
sayUsUg by symmetry, and then passes throeyh e}, el ™' ore)™ (because all the, b, c andd vertices
are used by paths).

Let Py, P, Ps, P4 be the paths going through edgssu)’, diiul, ali+1ul ™t clitlyli ! respectively. We
consider the cUu€ = 3(U), with U = {u}',uli uld uk™ uj"” "*1} intersected by these four paths and
Q. Becausé€C| = 8, at most four different paths and no-paths inter€2cAs the solution is uncrosseB,
andP; are different and parallel, ar®4 andP, also. There is no crossing vertex amanhgthusP, = P;. By
Lemmal, P, P, andP, are crossed by their orthogonal paths in the same orderRherP;. We remark
thatj # n, otherwise the routing is not possible. o o

At least one ofP;, P, andQ must go throughy’ = {ul ™yl Wl FH I Qe I el gy g

similar argument, there are patRsusingbi*Liu)™" and u”l'“bl“”rl and P} usingdj“iu”l' and

ub ittt Exactly one of the four considered paths must use two of dges)'u)', ultHul ™,

ué'“ué'+1 andul ™M1l saypy (the other cases are isomorphic). Then, we can consideytie ¢
consisting of the subpath & betweerc)! andclit1, the edges!+1ali*! andci'di and the subpath of

P, betweerd! andal' 1. Because of Lemma, no path can enter inside this cycle, but it contains at least
one crossing vertex in rowsandi + 1, leading to a contradiction.

O

Lemma 11. The complementary Q o¥ can be decomposed into cycles and ¢wegw,)-path for each
i € [1,p].



Figure 12:The first2(q+ 1) rows of the graph obtained by reduction. These are the rowesponding to
the encoding of the first variable.
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Proof. There are exactlypgadgets in the graph, among which exactiyaBe LIC. The number of crossing
vertices is exactly #p-+ 6n. Moreover, there arerPvertical paths, crossing each of thp 2 p’ horizontal
paths. At most 8(p’ + 3) crossing vertices are not used to cross paths. As the nurhbmwein a buffer is
g=4(p’ +3)n+ 2, there are at least two consecutive rows where all the iogssrtices are used to cross
paths. Then we can apply Lemm@: there is no no-path going from the top to the bottom of a uffe
Because of the parity of verticeB,\ &2 is aW UW’-join, and can be decomposed in cycles and some paths
with extremities inW UW’, but there can only béw, w!)-paths, as all other possible paths would have to
go through a buffer. O

This leads to a key consequence :
Lemma 12. Every vertical path is contained in one column.

Proof. 2p— p’ horizontal paths angd’ no-paths are routed through each vertical cut, which costxactly
2p edges. Then vertical paths cannot use edges of vertical cuts O

6.2 Proof of the reduction

Theorem 1. The planar edge-disjoint paths problem is strongly NP-cletep even if the demand graph
has only two edges, with terminals lying on the boundary efitfinite face of the input graph.

Proof. We use the graph of polynomial size built in Secttbn
Suppose that the formula is satisfiable, and consider agrameint satisfyingd. We route two horizontal
paths through each row with the following exceptions, wiveeeoute only one horizontal path :

e inrow 1+ 2(k—1)(1+ q) if the value of variablé s true,
e inrowqg+ 2+ 2(k— 1)(1+ q) if the value of variable is false

Then, for each column, we switch the two vertical paths, gisilgure6, except in the row corresponding
to the first variable satisfying the clause associated wighcolumn, where we keep the vertical paths. This
is possible by Lemmd, as there is a LIC at this intersection. The vertical pathsawh column are kept
exactly once. Then these paths are valid, whence the edgendipaths problem has a solution.

Suppose now that there is a solution to the edge-disjoihtsgabblem. By Lemma?2, the vertical paths do
not intersect vertical cuts, and each no-path or horizqrathi intersects each vertical path only once. We
show that each no-path can use at most 3 distinct rows in edamao (and thus are separated by at least
g—2n—1rows), iteratively on the columns of the grid. This is dogeapplying Lemma3 (because there is
no other no-path in the two nearest rows). Then, for éeelf1, p'], the (wi, w, )-path cannot intersect both
the rows between(g+ 1)(k—1) — 2 and Zg+1)(k— 1) + 4, and the rows betweerf@+ 1)(k—1)+q—1

and Zg+1)(k—1)+qg+5, asq > 2n+ 5. If it intersects the first group, we set the variatleto true,
otherwise we set it tfalse

We consider an arbitrary column. In each row exceptgdodistinct groups of three consecutive rows,
there are two horizontal paths traversing the gadget frdhideright, as in the hypothesis of Lemmaés
and6. Moreover, by construction, there are XCH above and bel@melC, so we can effectively apply
Lemmas4 and6 to all the gadgets, except a block of five consecutive gadgetsach variable, which
contains the intersection of the corresponding no-path thi¢ given column.

Now, for each of these blocks, if there are only XCH, the firsd &ifth gadgets follow Lemmd, and by
Lemma9, the vertical paths cannot be shifted here. Otherwisegtiten LIC and a no-path in one of
the three nearest rows, thus the variable assignment tedidlae corresponding clause (the fact that the
no-path is not forced to pass through the LIC has no consegu@s long as it must be close enough).
Then whenever the vertical paths are not shifted, the classeciated with the column is satisfied. As each
column sees its vertical paths kept at least once, eacheciagatisfied, thus the assignment is feasible for
d. O

7 Directed case

Using a folkloric reduction, the following result is an obuis consequence of Theorédm
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Figure 13:In NO, there is no path from ¢ td bwhereas it is possible in YES, as long as no other path goes
through the graph.

Corollary 1. The arc-disjoint paths problem is strongly NP-completepg¥G is planar, the demand graph
has only two arcs and the terminals lie on the boundary oftifieite face of G.

We use again the grids of subgraphs, but with different satgs, to prove the following theorem :

Theorem 2. The planar arc-disjoint paths problem is NP-complete, e¥&his acyclic and H consists of
two sets of parallel edges.

We will reduce from BTISFIABILITY. LetCyA...ACy be a formula withn clauses, over the set
of variables{Xy,...,Xp}. Let G; be a grid withn columns and @ rows, where each poir®(i, j),i €
[1,2p], ] € [1,n] of the grid is a special subgraph, defined as follows (seedit®)r

e G1(2i—1,j) is the graph YES i; appears positively i€;,
e G1(2i,]) is the graph YES i appears negatively i@;,
e Gi(i, ) is NO in all other cases.
Claim 1. The formula is satisfiable if and only if there is a s@tof arc-disjoint paths in G such that :
(i) foreach je [1,n], there is a path Pin & from ce G1(1, ) to b’ € G1(2p, j),

(i) foreachie [1,p], there is a path Qin & either from ac G1(2i — 1,1) to & € G1(2i — 1,n) or from
ac Gy1(2i,1) to & € G1(2i,n).

Proof. Suppose tha#” exists. For all € [1, p], if Q; has extremitieac G;(2i —1,1) anda’ € G1(2i —1,n),
then assign valualseto X;, otherwise assign valueue. Horizontal cuts and vertical cuts are directed, thus
every pathQ;, (i € [1, p]) is contained in a single row and every p&hj < [1,n], is contained in a single
column. For each path;, j € [1,n], leti be the index of the first row whei§ goes through the left edge
betweenG(i, j) andGy(i +1,j). ThenP; is the only path that goes throu@h(i, j), andG4(i, ) is a
YES graph. Ifi is even, it means thaQ2 appears negatively i@; and this variable has valdalse thusC;

is satisfied. Otherwisé.(i%l appears positively i€j and the value of this variable tsue, thusC; is also

satisfied. Then the formula is satisfied. The converse isonisvi O

We just have to enforce paths to be as required in the preciaim. Condition(i) is easy to satisfy. To
check conditior(ii) we need some gadgets, depicted in Figite

Claim 2. Let R be a path between a and one ¢fiee {1,2}, and B be a path between b ang,bj € {1,2},
inIF, LL or TT. If P, and B are arc-disjoint, then i= j. O

Claim 3. There are not two arc-disjoint paths in VV, one frogitd b and the other fromsato a. O

Claim 2 and Claim3 can be readily checked. We will also need the graph ON inttedun Figurels.
We now describe the full graph for the reducti@is build fromG; in the model of Figuré 6. G is built
from a grid with 20+ n columns and @ rows. The subgrid defined by columps+1 to p+ nand rows 1
to p is G;. Note that two rows irG; correspond to one row 6. Squaress(i,i), G(p+1—i,n+p+i),
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Figure 16:The graph for the reduction with a formula containing thré&uses over three variables.

G(2p+1—i,i)andG(p+i,n+ p+i),foralli € [1, p], are special graph IF, TT, LL and VV respectively.

Others are either NO or ON, according to the figure. Rows,maohky vertical cuts and horizontal cuts are

defined in the same way as in Sect®n\Ve add four terminals, one for each side of the grid (see gjued).
We add a demand off2from s; to sp, and 20+ nfromt; tots.

Claim 4. G is acyclic.

Proof. Observe that in the grid, all arcs are from left to right omfrtop to bottom, and the special graphs
are all acyclic. O

Claim 5. There is exactly one path going from top to bottom in eachroalof G, this path never leaves
the column. There is exactly one path going from left to rightach row of G, this path never leaves the
TOW.

Proof. Because vertical and horizontal cuts are directed {@nf {s»}, {t1}, {t2} are tight cuts. O

Claim 6. If a horizontal path leaves Gby the lower edge of its row in the+ p)th vertical cut, then the
same path enters by the lower edge of its row in thérbvertical cut.

Proof. In each square ON or NO, there is exactly one path fbaimb’ or fromcto ¢/, and one path from
ato @, because of properties of these gadgets. Consequentlytieav@ath leaves an IF gadget by the
left if and only if it enters the LL gadget of the same columntbyg left. Similarly for paths between LL
and VV, for paths between TT and VV, for paths between IF @&adnd for paths betweeB@; and TT.
If a path leavess; by the lower edges of its row, say rave [1, p], then it enter$S(i,2p+n+1—i) by
vertexby. The vertical path of column@+n+1—i leavesG(i,2p+n+ 1—i) by vertexa, by Claim2,
and then enter&(2p+1—i,2p+n+1—i) by vertexa;. Thus the horizontal path in ronp2+ 1 —i goes
in G(2p+1—i,2p+n+1—i)using vertexb; by Claim3, and leave&(2p+1—1i,i) by vertexa;. Using
Claim 2, the vertical path in columhgoes inG(2p+ 1 —1i,i) by vertexb, thus goes ouB(i,i) by vertex
a;. By Claim?2 again, the horizontal path of roMeaves5(i, i) by b, and then enterS; by the lower edge,
proving the claim. O

Proof. (of Thearen®) Claim 6 proves that the path iB; satisfies the conditiofii) of Claim 1: if there is a
solution to the arc disjoint path problem, the formula issfatble. The converse is also true, it is sufficient
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to extend the solution faB; naturally.

As the construction is obviously polynomial, we found a Kaeguction between the two problems. The
arc-disjoint paths problem being in NP, Theor&ns proved. Note that we can identify with s, andt,
with s, thus proving that it is still true witls + H planar and only two terminals. O

Corollary 2. The arc-disjoint paths problem in planar graphs is NP-coetg|] even if the demand graph
has only two arcs, with one of requésfone flow plus one path).

Proof. We modify the preceding reduction. We remdvandt,, and add arcs from the bottom of a column,
to the top of the next column to the left. This preserves pignd hen we add a demand arc from the bottom
of the leftmost column to the top of the rightmost columnhademand 1. We keep the aggs;. The new
demand must be routed through the new arcs because of thealéght cuts. Thus, this transformation
preserves the property of the original reduction. O

The problem where the total amount of demands is fixed rentgies in digraphs, and in particular,
the special case where we want to find a cycle in a planar digthpt goes through two specified vertices.
This last problem is mentioned if]f
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