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The hardness of routing two pairs on one faeGuyslain NavesLaboratoire G-SCOPAugust 27, 2008AbstratWe prove the NP-ompleteness of the integer multi�ow problem in planar graphs, with thefollowing restritions: there are only two edges of demand, both lying on the in�nite fae ofthe routing graph. It solves a question from Müller [5℄. We also give a direted version withonly two terminals, and a direted ayli version, both we only two ars of demand.1 IntrodutionThe multi�ow problem have been studied in ombinatorial optimization from many years, beauseof both the interesting theoretial results in onnetivity and �ow theory, and pratial appliationsin industrial problems suh as VLSI-layout. Basially, we want to �nd integer �ows between pairsof terminals, respeting apaity onstraints.The general problem is NP-omplete, with di�erent types of onstraints, see e.g. the survey ofFrank [2℄. The most general way to de�ne onstraints is to put apaities on the edges of thegraph, in the same way as the lassial �ow problem. When theses apaities are 1 everywhere,it de�nes the edge-disjoint (or ar-disjoint) paths problem. Robertson and Seymour [8℄ provedthat the multi�ow problem is polynomial for undireted graphs, assuming that the total amountof demand is �xed.A speial interest has been shown for solving the problem in planar graphs (direted or not), asmany appliations use this property. Unfortunately, Kramer and Van Leeuwen [3℄ show that theundireted planar multi�ow problem is NP-omplete in the general ase. Nevertheless, a goodharaterization has been found by Okamura and Seymour [6℄ for the edge-disjoint paths problemin planar Eulerian graphs, under the assumption that all terminals of routing pairs are on theboundary of an unique fae of the graph. Some improvements have been made (see [1℄, [7℄), butit was still open in 2006 to know if there exists a good haraterization for non-Eulerian graphs.In 2007, Shwärzler [10℄ proved the NP-ompleteness of the edge-disjoint paths problem in planargraph with all terminals in the boundary of an unique fae of the graph.Between Robertson and Seymour's result, and Shwärzler's result, one ould ask if there is apolynomial-time algorithm for the edge-disjoint paths problem in planar graphs, when the numberof pairs of terminals is �xed, espeially when there are only two pairs of terminals lying on a singlefae of the graph. Atually, Shwärzler's proof an easily be modi�ed to prove that the problemis still NP-omplete with three pairs of terminal. In this paper we give an original redution,proving that the problem is polynomial with only two pairs of terminals. It solves a question fromMüller [5℄.We will also give a direted version of our proof, proving that the ar-disjoint paths problem isNP-omplete, even when G is planar with two opposite routing pairs st and ts where verties sand t belong to the boundary of a single fae of G. Both results strenghtens [5℄. Finally, we provethe NP-ompleteness when G is a planar ayli digraph and H onsists of two pairs of terminalslying on the outer fae of G.The paper is organized as follows: Setion 2 realls useful de�nitions and presents the problem.Setion 3.1 ontains a topologial lemma, about assumptions that an be made upon a solution toa planar multi�ow problem. The aim of Setion 3.2 is to give an intuition about the ompliatedredution that proves the main theorem. This redution will use some graphs introdued in Se-tion 3.3. Setion 3.4 presents a way to build big graphs, replaing verties of a grid by other graphs.1



The main theorem, about the undireted multi�ow problem is proved in Setion 4. Setion 5 andSetion 6 argue about the ases when G+ H is a planar digraph and when G is an ayli digraphrespetively.2 De�nitionsLet G = (V, E) be an undireted graph, and let c : E → N be a apaity funtion on the edges of
G. Let H = (T, D) be an undireted graph with T ⊆ V , and r : D → N a request funtion. Themulti�ow problem is to �nd a multiset C of yles of G + H satisfying the following onditions :
(i) Eah yle of C ontains exatly one edge of H .
(ii) For eah edge of G, the number of yles in C using it is less than its apaity.
(iii) For eah edge of H , the number of yles in C using it is exatly its request.
H is usually alled the demand graph, T is the set of terminals. By yle, we mean a losed se-quene of disjoint edges that are onseutive in the graph, that is a onneted Eulerian subgraph.The problem an easily be de�ned in digraphs, by replaing every ourene of �yle� by �diretedyle�. Thus, an instane of the multi�ow problem onsists of a quadruple (G, H, r, c), but we willusually omit the mention of r and c. In the following, when r or c are not expliitely de�ned onsome edge, they are supposed to be equal to 1. Note that the enoding of r and c will be supposedto be in unary. Equivalently, our NP-ompleteness results are all strong. We will note by P theset of paths obtained from C by ignoring the demand edges.The graphs onsidered in this paper are always without loops, but parallel edges are allowed.Atually, whenever a edge e ∈ E(G) has a apaity greater than 1, we replae it by c(e) paralleledges. Let U ∈ V be a subset of a vertex set of the graph. We note δ(U) the set of edges havingexatly one extremity in U . Every set of edges that an be writen as δ(U) for some U is alleda ut of the graph. In direted graphs, δ−(U) is the set of edges entering U , δ+(U) is the set ofedges leaving U . When δ(U) = δ+(U), we say that U is a direted ut. We de�ne d(U) := |δ(U)|and similarly d+(U) and d−(U).An important onept in the multi�ow theory is the one of tight ut. Let C be a ut of G+ H .
C is a tight ut if c(C ∩ E) − r(C ∩ D) = 0. If this di�erene is negative, the multi�ow problemis not feasible. When H is redued to a single edge, the famous max-�ow-min-ut result statesthat the multi�ow exists if and only if this di�erene is never negative (see Menger's theorem [4℄).When C is a tight ut, in any solution to the multi�ow problem, eah edges of C is totally used: there is as many yles through eah edge as the apaity or request of the edge. In diretedgraph, tight uts are those uts of G +

←−
H with c(C ∩E)− r(C ∩

←−
D) = 0, where ←−H = (T,

←−
D) is thegraph obtained from H by hanging the orientation of eah ar.A planar graph is a graph that admits an embedding in the plane without intersetion of theedges. Let G be a planar graph, we an suppose that an embedding is given, as it an be builtin polynomial time, thus the embedding will now be impliit throughout this paper. Two paths

P1 and P2 are said to ross at node v in the embedding if P1 ontains edges (u1, v), (v, u2), P2ontains (u3, v), (v, u4), and (v, u1), (v, u3), (v, u2) and (v, u4) appears in that order around thenode v in the urrent embedding of G (see Figure 1). This notion is also de�ned in direted graph.A path is a sequene of disjoint edges that are onseutive. Thus, yles are losed paths.Two paths are edge-disjoint if their edge-sets are disjoints. Equivalently, we de�ne direted pathsand ar-disjoint paths. When c is onstantly equal to 1, the multi�ow problem is known as theedge-disjoint paths problem (resp. the ar-disjoint paths problem), as the yles of a solutionbeomes edge-disjoint paths linking the pairs of terminals orresponding to their demand edges,when removing these last edges in every yle. 2
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Figure 1: The dotted path (from v3 to v4) ross the plain path (from v1 to v2) at node u. A pathfrom v1 to v3 would not ross a path from v2 to v4, even if they interset.3 Preliminaries3.1 Paths-unrossingThe following lemma will be useful to study the behaviour of paths in the next setions.Lemma 1 (Paths-unrossing)Let (G, H) be an instane of the planar multi�ow problem, suppose c is 1 everywhere. Then thereexists a solution to the problem (G, H) if and only if there exists a solution suh that no two pathsof that solution ross eah other stritly more than one.ProofLet P be a solution of (G, H) with a minimal number of rossings. We an suppose that the pathsin P are simple. Suppose there exist two paths P1 and P2 in P that ross eah other more thanone. Let x and y be respetively the �rst and the last verties of V (P1)∩V (P2) met when walkingalong P1. x and y are distint beause paths are simple. P1 and P2 an both be divide in threepaths: P x
i , P y

i and P xy
i , where paths have their exponents among their extremities. In P , wereplae P1 and P2 by P ′

1 = P x
1 ∪ P xy

2 ∪ P y
1 and P ′

2 = P x
2 ∪ P xy

1 ∪ P y
2 . We prove that this solutionhas less rossings than P , this would lead to a ontradition.In every other vertex than x and y, the number of rossing has not hanged (beause loally, pathshave not hanged either). In both x and y, the rossings between P1 and P2 have been deleted. P1and P2 divide the neighbourhood of x (and symmetrially y) in four parts, Q1 to Q4 in lokwiseorder. A path from two onseutive parts ross one of P1 and P2, and one of P ′

1, P ′2. A pathbetween two opposite quarter ross both P1 and P2. Then the number of rossing an only bedereased.A set of paths that do not ross more than one eah other is said to be unrossed.3.2 IntuitionsBefore formally proving the NP-ompleteness of the edge-disjoint paths problem in planar graphs,we give intuitions about the redution. We will redue from 3-SAT. The main part of the redutionis to build a large grid, with two rows for eah variable of the formula, and one olumn per lause.Three �horizontal� paths will go through the two rows of eah variable, either one on the upper andtwo in the lower row, or the opposite, enoding the assignment of the variable. There are four edgesbetween two suessive squares of the same olumn. Two �vertial� paths will �ow through eaholumn, taking two among these four edges between eah square, alternatively the two left-mostedges or the two right-most edges. These paths will enode whether the lause is satis�ed by thevariable assignment: the lause has not yet been satis�ed if the two paths have respeted the stritalternation between right-hand side and left-hand side. The alternane will be ensured by gadgetshosen for eah square of the grid. When a assignment of a variable satis�es a lause, that is whenone horizontal path ross two vertial paths in one speial square of the grid, and only under thisondition, the two vertial paths have in the orresponding square the possibility to stay in thesame side of the olumn. Using the parity of the number of rows, we will enfore that this oursan odd number of times in eah olumn in any solution, in partiular at least one. This will provethat the disjoint paths problem is solvable if and only if the formula is satis�able.However these relatively simple ideas are not su�ient to provide a sound redution. Indeed, theonstrution will not ensure that the horizontal paths go through only one row of the grid, and we3



did not �nd any possibility to fore this property. Consequently, we will allow horizontal paths togo from one row to another. Suh a movement onsumes nevertheless some �potential�, and an bedone only a limited number of time. By adding a large number of new rows, we will ompensatethe freedom of paths. There will be rows between two onseutive variables, and rows between thetwo original rows of eah variable. Thus, no variable will have both a true and a false assignment.To prove this, we will largely use the fat that about all the verties of the graph have an evendegree.3.3 Speial graphsIn this setion, we introdue two speial graphs that will be useful in the proof of theorem 9. Weintrodue a loal gadget replaing some nodes of degree-four of G in the following way, that havethe property to forbid the rossing of two paths in these nodes. As we want to ontrol where thehorizontal and vertial paths an ross eah others, most of the verties will indeed be replaed.
v

G

=⇒

Gv

Figure 2: This gadget replae a degre-four vertex by a small gadget, forbidding the rossing oftwo paths at this vertex.Problem (Extended planar multi�ow problem)Input: a planar graph G, U ⊆ V (G), a graph H with V (H) ⊆ V (G), r and c = 1.Output: Is there a solution to the planar multi�ow problem (G, H) suh that in eah node
u ∈ U , the paths that meet in u do not ross ?Note that when U = ∅, it is exatly the planar edge-disjoint paths problem. for a given graph
G with a vertex v of degree four, Gv is de�ned in Figure 2.Proposition 2Let (G, H, U) be an instane of the extended planar edge-disjoint paths problem, and v ∈ V (G) with
d(v) = 4. There exists a solution of the extended planar edge-disjoint paths problem (Gv, H, U) ifand only if there exists a solution of the extended planar edge-disjoint paths problem (G, H, U∪{v}).Thus the extension is in fat equivalent to the original problem. We will all non-ross nodesthe verties of U . In the sequel, we will only speak about the extended planar edge-disjoint pathsproblem. In the pitures, normal nodes will be drawn with a big point, whereas speial non-rossnodes will be drawn with a small point. Thus big nodes are those where paths an ross. Notethat by using this trik, the redution will use a very small number of verties of odd degree.The following two graphs are the main briks of the redution. We prove some basi resultsabout these graphs, mainly how paths an be rossed in them. Let XCH be the graph presentedin �gure 3. In the following, we note S = {s1; s2; s3; s4}, S′ = {s′1; s

′

2; s
′

3; s
′

4}, T = {t1; t2} and
T ′ = {t′1, t

′

2}. Note that there are only four verties, a, b, c, and d, where rossings of paths areallowed.The goal of this graph XCH is to enode the fat that whatever is the number of horizontalpaths going through it, one or two, the vertial paths must go from one side to the other. Thisgraph will enode that a literal is not in a given lause. More usually, it also ensures that the twovertial paths enter it by the same side, both on the left or both on the right. Next propositionsshows these properties.Proposition 3Let P = {S1, S2, T1, T2} be a set of feasible edge-disjoint paths in XCH that veri�es :4
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Figure 3: The graph XCH, with four rossing nodes. It will enode the fat that a literal is notin a given lause.
Figure 4: Existene of 2 (T, T ′)-paths and 2 (S,S′)-paths, pairwise edge-disjoint. The (S, S′)-paths an not stay on the same side of the graph.

(i) S1, S2 are (S, S′)-paths,
(ii) T1, T2 are (T, T ′)-paths.Then, either {S1, S2} onsists of a (s1, s

′

3)-path and a (s2, s
′

4)-path, or of a (s3, s
′

1)-path and a
(s4, s

′

2)-path.ProofLet P be as desribed in the proposition. As the (S, S′)-paths must ross the (T, T ′)-paths, thereare at least 4 rossings in P and we know that these our in verties a, b, c and d, and the
(T, T ′)-paths (resp. the (S, S′)-path) do not ross eah other.Suppose (a, b) is in a (S, S′)-path, then (a, c) and (b, d) must belong to distint (T, T ′)-paths, and
(c, d) is in the seond (S, S′)-path. Then (a, u2), (b, u5), (c, u8), (d, u11) are in (T, T ′) paths, and
(a, u3), (b, u7), (c, u6) and (d, u10) are in (S, S′)-paths. As there is no other rossing exept in thefour entral verties, the (S, S′)-path are onneted to s′1, s′2, s3 and s4. The ase when (a, b)belongs to a (T, T ′)-path is exatly the same by symmetry and give the other solution.These paths exist, as shown by Figure 4.Proposition 4Let P be a set of edge-disjoint paths in XCH that veri�es :

(i) P ontains exatly 2 ({s1, s2}, S′′)-paths, where S′′ is either {s′1, s′2} or {s′3, s′4},5



(ii) P ontains exatly 1 (T, T ′)-paths,Then, S′′ = {s′3, s′4}.ProofIf not, then there is a set P of three edge-disjoint paths, a (t, t′)-path Q, a (s1, s
′

1)-path P1 and a
(s2, s

′

2)-path P2. As Q must ross the two other paths, all paths go through at least one of a, b, cand d. Then, Q uses one edge of u2a, u5b, u7b, u10d, and both P1 and P2 uses two of these edges,ontraditing the edge-disjointness of the paths.
u1 u2 u3 u4

u5 u6

u7 u8

u9 u10 u11 u12

s1 s2 s3 s4

s′1 s′2 s′3 s′4

t1

t2

t′1

t′2

b c

d
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Figure 5: The graph LIC, with 6 rossing nodes. It will enode the ourene of a literal in alauseLet LIC be the graph of Figure 5. Again, we note S = {s1; s2; s3; s4}, S′ = {s′1; s
′

2; s
′

3; s
′

4},
T = {t1; t2} and T ′ = {t′1, t

′

2}. Note that it is almost the same graph as XCH, exept that both u5and u6 allows possible rossings of paths.This is the graph that will enode that a litteral is in the present lause. That is, when there is onlyone horizontal path using it, the two vertial paths using it an enter and leave on the same sideof the gadget, left or right. But when two horizontal paths use it, then the lause is not satis�edby this literal: the two vertial paths an not stay on the same side. Formally:Proposition 5Let P be a set of edge-disjoint paths in LIC that veri�es :
(i) P ontains exatly 2 ({s1, s2}, S

′′)-paths, where S′′ is either {s′1, s′2} or {s′3, s′4},
(ii) P ontains exatly 2 (T, T ′)-paths,Then, S′′ = {s′3, s

′

4}. Moreover, there an not be another (S ∪ T, S′ ∪ T ′)-path.ProofSuppose S′′ = {s′1, s
′

2}. Let C be the ut {u7, u9, u10}. Let Q be the (t2, T
′)-path, P1 the (s1, s

′

1)-path and P2 the (s2, s
′

2)-path. These three di�erent paths go through C, and d(C) = 6. Moreover,there is no rossing in C, thus onsidering δ(C), u5u7 is used by Q and bu7, du10 by P1 and P2.Now, there are four distint paths entering C′ = {u1, u2, u5}, but d(C′) = 6, ontradition.As the edges of δ({a, b, c, d}) are all used by P , there are no other (S ∪ T, S′ ∪ T ′)-path.Proposition 6There exist a (T, T ′)-path P , a (s1, s
′

1)-path P1 and a (s2, s
′

2)-path P2, pairwise edge-disjoint, inLIC.There exist a (T, T ′)-path P , a (s3, s
′

3)-path P1 and a (s4, s
′

4)-path P2, pairwise edge-disjoint, in6



LIC.ProofSee Figure 6.

Figure 6: Existene of a (T, T ′)-path plus 2 (S, S′)-paths in LIC, pairwise edge-disjoint, suhthat the two (S,S′)-paths stay on the same side of the graph.3.4 Grids of gadgetsIn this setion, we de�ne some graphs built by onneting between them instanes of graphs LICand XCH. A grid of dimension p×n is a graph de�ned by taking p×n instanes of graphs LIC andXCH, all it M(i, j), i ∈ J1, pK, j ∈ J1, nK and onneting them by adding one edge between eah ver-tex of S, S′, T and T ′ of M(i, j) and its ounterpart in M(i+α, j+β), α, β ∈ J−1, 1K, |α+β| = 1. Anexample with notations is given in �gure 7. If M(i, j) is XCH (resp. LIC), and u ∈ V (XCH) (resp.
u ∈ V (LIC)), we will note ui,j the orresponding node in M(i, j). We de�ne X := {xi : i ∈ J1, 4nK},
X ′ := {x′

i : i ∈ J1, 4nK}, Y := {yi : i ∈ J1, 2pK}, and Y ′ := {y′

i : i ∈ J1, 2pK}.In the following, row i (i ∈ J1, pK) will refer to the subgraph of the grid indued by the (M(i, j))j∈J1,nK,and olumn j to the subgraph indued by the (M(i, j))i∈J1,pK. (X, X ′)-paths (resp. (Y, Y ′)-paths)will be alled vertial paths (resp. horizontal paths). If P is a set of edge-disjoint paths of thegraph G, G− P is the graph obtained from G by removing all the edges used in P .Two paths are said to be parallel if they are both horizontal or both vertial. Two paths are saidperpendiular if one is horizontal and the other vertial.Lemma 7Let P1 and P2 two parallel paths of an unrossed edge-disjoint set P of (X, X ′)-paths and (Y, Y ′)-paths. Then, P1 and P2 ross all their perpendiular paths in the same order.ProofThis is an obvious onsequene of unrossing.Lemma 8Let G be a grid of dimension p× n. Let P be an unrossed set of (X, X ′)-paths and (Y, Y ′)-pathspairwise edge-disjoint. Suppose there exists i ∈ J1, p− 1K suh that for all j ∈ J1, nK, M(i, j) and
M(i+1, j) are XCH and there are exatly four rossings of paths of P in M(i, j) and in M(i+1, j).Then, there is no path in G− P between a vertex of row i− 1 and a vertex of row i + 2.
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Figure 7: A grid of dimension 3× 2, using two subgraphs LIC. Observe the notation for edgesbetween the squares of the grid.

8



ProofSuppose this path exists. Then, the path Q between row i−1 and i+2 uses one of the edges ui,j
5 ui,j

7or ui,j
6 ui,j

8 for some j ∈ J1, nK and one of the edges u
(i,j)
11 u

(i+1,j)
3 , u

(i,j)
12 u

(i+1,j)
4 , u

(i,j+1)
9 u

(i+1,j+1)
1and u

(i,j+1)
10 u

(i+1,j+1)
2 (if they exist), beause all the edges using a, b, c or d of a gadget of rows

i and i + 1 are used in P . By symmetry, ui,j
6 ui,j

8 ∈ Q. Let P1, P2, P3, P4 the paths using
ci,jui,j

8 , di,jui,j
11 , ai+1,jui+1,j

3 , ci+1,jui+1,j
6 respetively. Q and these four paths go through the ut

C = {ui,j
8 , ui,j

11 , ui+1,j
3 , ui+1,j

6 , ui,j
12 , ui+1,j

4 }, but d(C) = 8 and there is no extremity of a path in C.Thus there are at most 4 distints paths. BeauseP is unrossed, P1 6= P2 and P3 6= P4, and as thereis no possible rossing in C, P2 = P3. Then, P1, P2 and P4 are parallel, they are rossed by theirperpendiular paths in the same order by lemma 7, proving that P1 = P4. Now, we an possibly un-rossQ with P2 and then with P1 loally in C. By shifting P1 and P2 to the left, we an suppose that
u

(i,j)
11 u

(i+1,j)
3 ∈ P2 and u

(i,j)
8 u

(i,j)
11 , u(i,j)

11 u
(i,j)
12 , u(i,j)

12 u
(i+1,j)
4 , u(i+1,j)

4 u
(i+1,j)
3 and u

(i+1,j)
3 u

(i+1,j)
6 all be-long to P1. This proves that i 6= n and Q must go through either u

(i,j)
12 u

(i,j+1)
9 or u

(i+1,j)
4 u

(i+1,j+1)
1 .By onsidering the ut D de�ned by {u(i,j+1)

7 , u
(i,j+1)
9 , u

(i,j+1)
10 , u

(i+1,j+1)
1 , u

(i+1,j+1)
2 , u

(i+1,j+1)
5 },and applying the same arguments as before, we an prove that both edges u

(i,j+1)
9 u

(i+1,j+1)
1 and

u
(i,j+1)
10 u

(i+1,j+1)
2 are used by P . This ontradits the hoie of j.4 Hardness of the undireted problemTheorem 9The planar edge-disjoint paths problem is strongly NP-omplete, even if the demand graph hasonly two edges, with terminals lying on the boundary of the in�nite fae of the graph of o�er.ProofWe redue from 3-SAT : Let C = {C1, C2, . . . , Cn} a set of n > 0 lauses over the set X =

{X1, X2, . . . , Xp′} of variable. Let q = 6n + 2np′, q will be the number of super�uous rossingnodes. Let l = 2q + 3, l − 1 will be the number of rows inserted between eah relevant row (seeSetion 3.2). For eah variable, we will have 2l rows in the grid. The �rst one will enode a truevalue, the (l +1)th will enode a false value. The other rows do not own relevant information. Let
G′ be a grid of dimension p× n, where p = 2lp′. Note that p is even. M(i, j) is a LIC if and onlyif : - either there is a k ∈ J0, p′−1K suh that i = 2kl+1 and xk+1 appears positively in the lause

Cj- or there is a k ∈ J0, p′ − 1K suh that i = (2k + 1)l + 1 and xk+1 appears negatively in thelause CjOtherwise, it is a XCH. In this way, there is a LIC exatly where the literal enoded by the rowappears in the given olumn.We add edges x4k−1x4k and x′

4k−3x
′

4k−2, k ∈ J1, nK, a new node x (resp. x′) with edges to allthe verties of X (resp. X ′) that still have degree one. Then we add new verties s, t, wj , w′

j ,
j ∈ J1, p′K. Add edges of apaity 4q+7 between s and the wi's, and between t and the w′

i's. Thereis an edge between wi and yj (resp. w′i and y′

j) for all j ∈ J4(i−1)l+1, 4(i−1)l+2(l+1)K, and anedge between s (resp. t) and eah vertex of Y (resp. Y ′) that still has degree one. Figure 8 givesan idea of the building of the graph G obtained by this onstrution, showing the 2l �rst rows,orresponding to the enoding of variable X1. We de�ne the demand graph H by E(H) = {xx′, st},and the request is r(xx′) = 2n, r(st) = 2p−p′. Note that the uts {x}, {x′}, {s} and {t} are tight.Thus, a solution to the edge-disjoint paths problem orrespond to a set of horizontal and vertialpath in the grid.The graph G is obviously planar, the terminals are on the outer boundary. Moreover, the graphhave only even-degree verties exept verties wi and w′

i, i ∈ J1, p′K, where exatly one edge is notused in a solution as uts {s} and {t} are tight. 9
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Figure 8: The upper part of the graph built for the redution. The �rst 2l rows are drawn, itorresponds to the enoding of variable X1. All squares are XCH exept in rows 1 and
l + 1, where there an be LIC subgraphs.
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Claim 1There are exatly 4np + 6n verties where paths an ross, and 2n(2p− p′) are needed. At most
q = 6n + 2np′ of these verties are not used for rossing.This laim is obvious, as it is su�ient to ount the verties.Claim 2For all i ∈ J0, 2p′ − 1K, there are two onseutive rows of indies between li + 1 and l(i + 1), suhthat all the rossing verties are used.Beause of the preeding laim, for a given i, among these 2q + 2 lines, at least q + 2 have all theirrossing verties used, thus two onseutives rows are used.Claim 3For eah solution P to the edge-disjoint paths problem, there is a path Qi between wi and w′

i in
G− P .Beause all degrees exept those of W = {wi, w

′

i : i ∈ J1, p′K} are even in G+H , the omplementaryof the paths of the solution has even degree, exept in these verties. Thus, there is a W -join, i.e.a set of paths with disjoints extremities overing W in G − P . But as the wi's are separated bytwo full onseutive rows by laim 1 and Lemma 8, and the same is true for the w′

i's, these pathsare all (wi, w
′

i)-paths, for all i ∈ J1, p′K.Claim 4No vertial path uses an edge of type f i,j
k . All these edges are used either by a horizontal path, orby some Qh, h ∈ J1, p′KLet Vj = {f i,j

1 , f i,j
2 : i ∈ J0, pK for all j ∈ J0, nK. When deleting verties x and x′ (remember that

{x} and {x′} are tight uts), Vj de�nes a ut, with 2p− p′ demand edges going through this ut.Counting the p′ paths in G−P going through Vj , there is no remaining edge for a vertial path touse it.Claim 5Let i ∈ J1, pK, j ∈ J1, nK, k ∈ {1, 2}, suppose f i,j
k is not used by a path of P . Then, one of theedges of {f i+ǫ,j+1

a : ǫ ∈ J−2, 2K, a ∈ {a, b}} is not used by P .Beause of the previous laim, the uts Vj and Vj+1 are �tight�. Moreover, the horizontalpaths go through this ut in the same order from top to bottom, beause the paths are unrossed.Suppose the laim is false, and take a minimal j and then a minimal i, suh that f
(i,j)
k belongs tosome Qh, h ∈ J1, q′K and ontraditing the laim. There is one edge f

(i′,j+1)
k′ in Vj+1 that belongs to

Q. W.l.o.g. we suppose i′ > i (the other ase is symmetri). Moreover, we know by the minimalityof j that i < (2h − 1)l + 1 + 2j (the path Qj an not move over more than two rows in eaholumn) and that the edge in Qh+1 ∩ Vj is in a row of index at least 2hl + 1− 2j > i + 2 (beause
4j + 2 < 4n + 2 < q). Thus we only have to show that the edge-disjoint path problem desribed in�gure 9 has no solution (two idential letters de�nes the terminals of a demand edge), where Q isa speial path that an ross other paths in every node.Thik edges are the edges that belong to a tight ut. We use three LIC graphs, as they are moregeneral than XCH graphs. They are alled L1, L2, L3 from top to bottom. Suppose that thereexists a solution, we name the paths with the letters of their demand edges. We an suppose thatall the paths exept Q are unrossed, and A is to the left of B. Beause of tight uts, E is ontainedin L2 and G in L3, and F do not use any of the thik edges in the bottom-left orner of L3 orin the top-right orner of L2. Beause the solution is unrossed, E, F and G do not ross eahother. E must use u6 in L2, beause either it goes through u4u6, or through u4u3 but then annot ross the other path going through u3 (whih is not Q as it goes through u4), and then E uses
u3u6. Moreover, E uses one of the three following edges : u5u7, bu7, du10 in L2. It proves that theverties a, c, and u5 are �above� (see �gure 9) or in the path E, that is F an use neither u5 nor
a, and an not ross anything at b or c. Thus d is the only possible node for a rossing between Fand either A or B in L2. We use the same argument in L3 with F and G, proving that the only11
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Figure 9: Claim 5 is redued to the proof of non-existene of a solution to the multi�ow problempresented in this �gure. Demands link verties with same label. Thik edges belong totight uts.possible nodes for rossing between F and A or B are u5 and a. But if there was suh a rossing at
u5, then the other path, A or B, would goes through u5u7, and then beause of tight uts, wouldnever ross G in L3, whih is impossible. Eventually, F rosses A and B at verties a in L3 and din L2 respetively. If F goes through one of the left-most edges between L2 and L3, then it goesthrough both u2a and u5b in L3, otherwise it goes through du11 and cu8 in L2. In the �rst ase,it goes through bd of L3, and in the seond ase through bc and ad of L2. This ontradits theexistene of G or E respetively.Claim 6There is no solution to the edge-disjoint path problem depited in �gure 10, with a demand of 5for the S terminalsSuppose that these paths exist. We distinguish two speial uts L and R. There are exatly
12 verties for rossings, and 10 are needed. The S-paths uses 5 edges of δ(L) and 5 of δ(R). The
A-path and the B-path both uses an even number of edges in these two oboundaries (beause theyhave their extremities in the same parts of the uts). Moreover, they an do at most 2 rossings ineah of the three groups of four rossing nodes (orresponding to the rossing verties of a XCHgraph), thus they go through eah of these groups. Then eah uses at least 6 edges in the twooboundaries, and beause of parity, the A-path uses 4 edges of δ(L) and 2 of δ(R), and the B-pathuses 2 edges of δ(L) and 4 edges of δ(R). Beause d(L) = d(R) = 12, there an not be more. Thus,eah S-path uses exatly one edge of δ(R), and one of δ(L). Then, in the entral XCH graph, thereare exatly one edge of the δ(L) and one edge of δ(R) used by the A-path, and two edges of δ(R)used by the B-path. At least two edges of δ(L) must be used by the S-paths, and at most one of
δ(R). But this leads to a ontradition, as eah S-path an not use more than one edge in eah12
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Figure 10: Claim 6 proves the non-existene of a solution to the multi�ow problem presented inthis �gure. The demand between the S terminals is 5.oboundary of the two uts.Claim 7If there exists a solution P to the edge-disjoint paths problem, then the formula is satis�able.For eah i ∈ J1, p′K, assign the value true to Xi if Qi goes through rows 2(i − 1)l + 3 or less,false otherwise, in partiular when Qi goes through rows (2i− 1)l − 1 or more. Note that Qi annot go through these two rows, as there are l − 5 > 2n rows between them, and laim 5 ensuresthat Qi an not move of more than two rows by olumn. We prove that this assignment satis�esthe original formula, by proving that eah lause is satis�ed.Let j ∈ J1, nK be the index of a olumn. We know that there are p − p′ paths going from left toright in this olumn, and p′ paths Q1, . . . , Q
′

p in the omplement of the solution. Beause of thepropositions of setion 3.3, for eah i ∈ J1, pK, the two vertial paths goes through ei−1,j
1 , ei,j

3 and
ei−1,j
2 , ei,j

4 respetively, or through ei−1,j
3 , ei,j

1 and ei−1,j
4 , ei,j

2 (∗), exept when :(i) either M(i, j) is a LIC,(ii) or there is some k ∈ J1, q′K suh that Qk goes through M(i′, j) with |i′ − i| < 2.If only (i) is realized, then M(i − 1, j) and M(i + 1, j) (if exists) are XCH and no paths in theomplementary graph goes through them. In that ase, we an apply proposition 6 to prove (∗). If
(ii) is satis�ed, suppose that Qk goes exatly through M(i1, j) to M(i2, j), and that M(i1 + h, j)is a XCH for eah h ∈ J−1, 3K. Then, we apply proposition 3 to M(i1 − 1, j) and M(i1 + 3, j)and then laim 6 to the three onseutive squares M(i1, j) to M(i1 + 2, j). It proves that the twovertial paths of olumn j uses either edges ei1−2,j

1 , ei1+3,j
3 and ei1−2,j

2 , ei1+3,j
4 . In all this distintases, the two vertial paths are globally fored to alternate between left-hand side and right-handside of the olumn. But there is an even number of row, and the paths enter the olumn in thetop-left and bottom-right orner. Thus the alternation must be broken somewhere. Consequentlythere is a row in the olumn where both (i) and (ii) are true. Then, there is a LIC in the olumnnear a path of the omplement, that is the litteral enoded by this LIC is satis�ed by the hosen13



assignment, proving the lause is also satis�ed. Beause this is true for eah possible j, the formulais satis�ed, thus satis�able.Claim 8If the formula is satis�able, then there is a solution to the edge-disjoint paths problem.Beause of the property of the graphs XCH and LIC. We an suppose that we hoose to take the
(wi, w

′

i)-paths of the omplementary in a single row, either the row 2(i− 1)l + 1 if Xi is positive,or (2i− 1)l + 1 if Xi is negative. Then, the two vertial paths for eah lause an stay in the sameside of their olumn when they ross the (wi, w
′

i)-path where Xi is the variable satis�ng this lause.Properties of gagdets ensure this onstrution is orret.5 Direted aseUsing the lassial gadget (see �gure 11) that allows to use undireted edges in digraph whenonsidering ar-disjoint paths problems, we have the following result as an obvious onsequene oftheorem 9.
vv uu

 Figure 11: We an replae every undireted edge in this way. Thus the omplexity of the multi�owproblem in digraphs do not hange if we allow undireted edges.Corollary 10The ar-disjoint paths problem is strongly NP-omplete, even if the o�er graph is planar, thedemand graph has only two ars and the terminals lie on the boundary of the in�nite fae of G.We an do a little better.Corollary 11The planar ar-disjoint path problem is NP-omplete, even if the o�er graph is planar, the demandgraph G has only two terminals s and t lying on the in�nite fae of G, and with only two demandsfor st (but possibly many demands for ts).ProofWe slightly modify the redution of the proof of theorem 9. First, we delete x and x′. We orientthe edges of eah vertial ut from right to left. We suppose without loss of generality that n isodd. For all i ∈ J1, (n − 1)/2K, we add the following ars : (x8i−3, x8i+2), (x8i−2, x8i+1), and forall i ∈ J1, (n− 1)/2K, (x′

8i−5, x
′

8i) and (x′

8i−4, x
′

8i−1). Then we had two new nodes s′ and t′. Thereare an ar from t′ to t with multipliity 2p′ − p, and ars (x′

4n, t′), (x′

4n−1, t
′), plus an ar from sto s′ with multipliity 2p− p′, and ars (s′, x1) and (s′, x2). The demand are 2 from s′ to t′, and

2p− p′ from t′ to s′.The redution is orret, as the two (s′, t′)-paths must take the role of the vertial paths, beausethey must use the new edges between verties of X and of X ′ (they belong to tight uts).6 Direted Ayli aseIn this setion, we do not use anymore the notion of non-ross nodes. We use again the grids ofsubgraphs, but with di�erent subgraphs, to prove the following theorem:14
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a′aGraph NO Graph YESFigure 12: In NO, there is no path from c to b′, whereas it is possible in YES, as long as no otherpath goes through the graph.Theorem 12The planar ar-disjoint paths problem is NP-omplete, even if G is ayli and H onsists of twosets of parallel edges.ProofWe redue from Satisfiability. Let C1 ∧ . . . ∧ Cn be a formula with n lauses, over the setof variables {X1, . . . , Xp}. Let G1 be a grid with n olumns and 2p rows, where eah point
G1(i, j), i ∈ J1, 2pK, j ∈ J1, nK of the grid is a speial subgraph, de�ned as follows (see �gure 12):
• G1(2i− 1, j) is the graph YES if Xi appears positively in Cj ,
• G1(2i, j) is the graph YES if Xi appears negatively in Cj ,
• G1(i, j) is NO in all other ases.We identify vertex a′ of G1(i, j) with a of G1(i, j + 1), and verties b′ and c′ of G1(i, j) with b and

c respetively of G1(i + 1, j) for all possible values of i and j. We all row i the subgraph row(i)indued by verties of G1(i, j), j ∈ J1, nK, and olumn j the subgraph ol(j) indued by verties of
G1(i, j), i ∈ J1, 2pK. The kth vertial ut is de�ned by δ(

⋃
i∈J1,kK row(i)), and the kth horizontalut is de�ned by δ(

⋃
j∈J1,kK ol(j)).Claim 1The formula is satis�able if and only if there is a set P of ar-disjoint paths in G1 suh that :(i) for eah j ∈ J1, nK, there is a path Pj in P from c ∈ G1(1, j) to b′ ∈ G1(2p, j),(ii) for eah i ∈ J1, pK, there is a path Qi in P either from a ∈ G1(2i− 1, 1) to a′ ∈ G1(2i− 1, n)or from a ∈ G1(2i, 1) to a′ ∈ G1(2i, n).Suppose that P exists. For all i ∈ J1, pK, if Qi has extremities a ∈ G1(2i − 1, 1) and a′ ∈

G1(2i − 1, n), then assign value false to Xi, otherwise assign value true. For all j ∈ J1, nK, the
jth horizontal ut is a direted ut, thus every path Qi, (i ∈ J1, pK) is ontained in a single row.Similarly, every path Pj , j ∈ J1, nK is ontained in a single olumn. For eah path Pj , j ∈ J1, nK,let i be the index of the �rst row where Pj goes through c′ ∈ G1(i, j). Then Pj is the only paththat goes through G1(i, j), and G1(i, j) is a YES graph. If i is even, it means that X i

2
appearsnegatively in Cj and this variable has value false, thus Cj is satis�ed. Otherwise X i+1

2

appearspositively in Cj and this variable has value true, thus Cj is also satis�ed. Then the formula issatis�ed. The onverse is obvious.We just have to enfore paths to be as required in previous laim. Condition (i) is easy tosatisfy. To verify ondition (ii) we need some gadgets, depited in �gure 13.Claim 2Let P1 be a path between a and one of ai, i ∈ {1, 2}, and P2 be a path between b and bj , j ∈ {1, 2},in IF, LL or TT. If P1 and P2 are ar-disjoint, then i = j.15
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Figure 13: Four speial subgraphs, from top to bottom and left to right : IF, LL, TT, VV. Firstthree have the property that if there are two ar-disjoint paths, one between a and aiand the other between b and bj, then i = j.
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Figure 14: Graph ON, it has the same property as graph NO.Claim 3There are not two ar-disjoint paths in VV, one from b2 to b and the other from a1 to a.Claim 2 and Claim 3 an de readily heked. We will also need the graph ON introdued in�gure 14. We now desribe the full graph for the redution. G is build from G1 in the model of�gure 15. G is built from a grid with 2p+n olumns and 2p rows. The subgrid de�ned by olumns
p+1 to p+n and rows 1 to p is G1. Note that two rows in G1 orrespond to one row in G. Squares
G(i, i), G(p + 1− i, n + p + i), G(2p + 1− i, i) and G(p + i, n + p + i), for all i ∈ J1, pK, are speialgraph IF, TT, LL and VV respetively. Others are either NO or ON, aording to the �gure. Weidentify verties of degree one of adjaent gadgets, as in the onstrution of G1. Rows, olumns,vertial uts and horizontal uts are de�ned in the same way as for G1. We add four terminals,one for eah side of the grid (see the �gure).We had a demand of 2p from s1 to s2, and 2p + n from t1 to t2.Claim 4
G is ayli.Observe that in the grid, all ars are from left to right or downward, and the speial graphs areall ayli.Claim 5There is exatly one path going from top to bottom in eah olumn of G, this path never leaves16
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Figure 15: The graph for the redution with a formula ontaining three lauses over three vari-ables.the olumn. There is exatly one path going from left to right in eah row of G, this path neverleaves the row.Beause vertial and horizontal uts are direted, and {s1}, {s2}, {t1}, {t2} are tight uts.Claim 6If a horizontal path leaves G1 by the lower edge of its row in the n + pth vertial ut, then thesame path enters G1 by the lower edge ot its row in the pth vertial ut.In eah square ON or NO, there is exatly one path from b to b′ or from c to c′, and one pathfrom a to a′, beause of properties of these gadgets. Consequently, a vertial path leaves an IFgadget by the left if and only if it enters the LL gadget of the same olumn by the left. Similarlyfor paths between LL and VV, for paths between TT and VV, for paths between IF and G1 andfor paths between G1 and TT. If a path leaves G1 by the lower edges of its row, say row i ∈ J1, pK,then it enters G(i, 2p + n + 1− i) by vertex b2. The vertial path of olumn 2p + n + 1− i leaves
G(i, 2p + n + 1− i) by vertex a2 by laim 2, and then enters G(p + i, 2n + p + 1− i) by vertex a1.Thus the horizontal path in row p + i goes in G(p + i, 2n + p + 1 − i) using vertex b1 by laim 3,and leaves G(p + i, 2p + 1 − i) by vertex a1. Using laim 2, the vertial path in olumn i go in
G(p + i, 2p + 1− i) by vertex b1, thus go out G(i, i) by vertex a1. By laim 2 again, the horizontalpath of row i leaves G(i, i) by b1, and then enters G1 by the lower edge, proving the laim.Claim 7There is a solution to the ar-disjoint path problem in G if and only if the formula is sati�able.Claim 6 proves that the path in G1 satis�es the ondition (ii) of laim 1: if there is a solutionto the ar disjoint path problem, the formula is satis�able. The onverse is also true, it is su�ientto extend the solution for G1 naturally. 17



As the onstrution is obviously polynomial, we found a Karp redution between the twoproblems. The ar-disjoint paths problem being in NP, the theorem is proved.We now strenghten Corollary 11Corollary 13The ar-disjoint paths problem in planar graphs is NP-omplete, even if the demand graph hasonly two ars, with one of request 1 (one �ow plus one path).ProofWe modify the preeding redution, in the same way as in the proof of Corollary 11. We remove
t1 and t2, and add ars from the bottom of a olumn, to the top of the next olumn to the left.This preserves planarity. Then we add a demand ar from the bottom of the leftmost olumn tothe top of the rightmost olumn, with demand 1. We keep the ar s2t2. The new demand must berouted through the new ars beause of the vertial tight uts. Thus, this transformation preservesthe property of the original redution.There are still some open problems in this �eld, in partiular, what happens in digraphs whenthe total amount of demand is �xed, and as a speial ase, an we �nd a yle in a planar digraph,that goes through two spei�ed verties ? This last problem is mentioned in [9℄.Referenes[1℄ A. FRANK, Edge-disjoint paths in planar graphs, Journal of Combinatorial Theory B 39(1985), 164-178.[2℄ A. FRANK, Paking paths, iruits and uts - a survey, in : Paths, Flows, and VLSI-Layout(B.Korte, L.Lovász, H.J. Prömel, A. Shrijver, eds.), Springer, Berlin (1990), 47-100[3℄ M.R. KRAMER, J. VAN LEEUWEN, The Complexity of Wire-Routing and Finding the Min-imum Area Layouts for Arbitrary VLSI Ciruits, in: F.P. Preparata : Advanes in ComputingResearh 2 : VLSI Theory, JAI press, London (1984), 129-146.[4℄ K. MENGER, Zur allgemeinen Kurventheorie, Fundamenta Mathematiae 10 (1927), 96-115.[5℄ D. MÜLLER, On the omplexity of the planar direted edge-disjoint paths problem, Mathe-matial Programming, vol. 105, No.2-3 (2006), 275-288.[6℄ H. OKAMURA, P.D. SEYMOUR., Multiommodity �ows in planar graphs, Journal of Com-binatorial Theory B 31 (1981), 75-81.[7℄ H. OKAMURA, Multiommodity �ows in graphs, Disrete Applied Mathematis 6 (1983),55-62.[8℄ N. ROBERTSON, P.D. SEYMOUR, Graph Minors XIII. The Disjoint Paths Problem, Journalof Combinatorial Theory B 63 (1995), 65-110.[9℄ A. SCHRIJVER, Combinatorial Optimization : Polyhedra and E�ieny, Springer (2003).[10℄ W. SCHWARZLER, On the omplexity of the planar edge-disjoint paths problem with terminalson the outer boundary, aepted in Combinatoria.
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