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Robust Filtering for TDR Traces
Philippe Neveux and Eric Blanco

Abstract—Time-domain reflectometry (TDR) is a valuable tech-
nique for the measurement of dielectric properties of soils. The
filtering of noisy TDR traces is treated in this paper. The problem
of biased estimation occurs when the permittivity of the soil varies
with the depth. In practical issues, only the apparent permittivity
of the soil along the TDR line is available. Hence, robust optimal
filtering has to be developed to provide a robust and reliable
estimation. This filtering step is essential for the estimation of the
permittivity with the depth.

Index Terms—Discrete time filters, Kalman filtering, robust-
ness, time-domain reflectometry (TDR), uncertain systems.

I. INTRODUCTION

SOIL MOISTURE estimation is based on time-domain
reflectometry (TDR) measurements. The TDR technique

consists of at least two rods that are “plugged” in the soil. At
the inlet of the rods, we impose a step voltage and measure the
variation of the current at the inlet of the line. This variation
is related to the water content of the soil under consideration.
Original works have shown that a relation exists between the
permittivity of the soil and its water content [9], [11], [14].
The estimation of the apparent permittivity of the soil can
be obtained from TDR traces, whereas the estimation of the
variation of the permittivity along the rods is an open problem
[5], [10], [12], [15]. In both cases, the estimation is based on
the analysis of the recorded measurements. Consequently, as
the data are corrupted by noise, they should be filtered be-
fore use.

In this context, a major problem is the lack of information
on the permittivity profile in the soil. In fact, to filter the
data, we should refer to the model of the TDR line. Since
this model is uncertain because of the impreciseness of the
estimation of the permittivity, we should develop an estimator
that will ensure good estimation performance in the presence of
modeling errors.

In this paper, the TDR line is described by means of a
state-space representation after a centered finite-difference dis-
cretization. The development of this representation is given
in detail in Section II. The effect of model mismatch on the
signal estimation by a standard Kalman filter is also shown
as a benchmark problem in Section II. The robust estimation
technique is presented in Section III. It is based on the so-called
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Fig. 1. Schematic view of the TDR line.

compensated Kalman filter [3], [6]. This approach permits one
to keep the computational burden at the same level as the stan-
dard Kalman filter. This point is essential as the discretization
of the TDR line entails a large-scale model.

II. POSITION OF THE PROBLEM

The TDR line (see Fig. 1) is described in 1-D by the
telegraphist’s equations [7]. The dimensionless form (Σ∂) of
the model is given by the following set of equations [2]:

(Σ∂)
{

µr∂ti = −∂zv − ai
εr∂tv = −∂zi − bv

with the boundary conditions

v(z = 0, t) = u(t) (1)

i(z = 1, t) =
v(z = 1, t)

RT
(2)

where
i(z, t) and v(z, t) intensity and voltage at time t and posi-

tion z ∈ [0, 1];
εr relative permittivity of the soil evolving

with depth z;
µr relative magnetic permeability of the

soil;
a and b related to the resistivity of the rods and

the permittivity of the soil, respectively;

0018-9456/$25.00 © 2008 IEEE
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u(t) deterministic input signal that can be
assimilated to the Heaviside function;

RT resistivity of the soil at the end of the
line;

∂x partial derivative with respect to x.
The objective of this paper is to develop a formalism that

permits one to estimate the inlet current i(z = 0, t) from its
noisy measurement when the permittivity εr evolves with the
depth and the designer holds the apparent permittivity.

A. State-Space Modeling of the TDR Line

The discretization of the equations of (Σ∂) will be done
due to the centered finite-difference method, except for the
boundary conditions [10]. The discretization in direction z with
a step ∆z permits one to define N + 1 interpolation nodes. The
objective of this section is to write the model (Σ∂) (considering
that εr is constant) in the form (Σs)

(Σs)
{

Xk+1 = FXk + GUk

Y k = HXk

where
k discrete time k∆t with ∆t as the time

discretization step;
Xk, Uk, and Y k state vector of the line, input, and mea-

sured output at time k, respectively;
F , G, and H constant real-valued matrices with appro-

priate dimensions.
The development of this representation will be made in three

steps, namely

1) for the interior nodes;
2) for the boundary nodes;
3) for the overall transmission line.

In steps 1) and 2), we will present the results of the discretiza-
tion by the appropriate finite-difference method, and then, we
will give the structure of the matrices F , G, and H in step 3).
1) Interior Nodes: For each interpolation node with a node

number n such that 0 < n < N , we discretize the model (Σ∂)
with the centered finite difference. Thus, we obtain

ik+1
n = ik−1

n − αikn − β
(
vk

n+1 − vk
n−1

)
(3)

vk+1
n = vk−1

n − γvk
n − δ

(
ikn+1 − ikn−1

)
(4)

with the parameters defined by

α =
2a∆t

µr
β =

∆t

µr∆z

γ =
2b∆t

εr
δ =

∆t

εr∆z
.

2) Boundary Nodes: The derivation of the expression of the
current and voltage at the boundary nodes will be done using

the classical finite-difference method. From the conditions (1)
and (2), we obtain the following.

• At the beginning of the line (n = 0)

ik+1
0 =

(
1 − α

2

)
ik1 − β

2
[
vk
1 − uk

]
vk
0 = uk. (5)

• At the end of the line (n = N)

ikN =
vk

N

RT

vk+1
N =

(
1 − α

2
− RT β

)
vk

N + RT βvk
N−1. (6)

3) State-Space Model of the Line: To build the matrices F
and G, we define the matrices

F̃− =




0
0
0
δ


 , F̃0 = 1 − α

2

F̃+ =
[
0 0 − β

2
0
]

F− =




0 0 0 0
0 0 β 0
0 0 0 0
δ 0 0 0


 , F0 =




0 1 0 0
1 −α 0 0
0 0 0 1
0 0 1 −γ




F+ = −F−

F− = [0 0 RT β 0] F 0 = 1 − α

2
− RT β

F+ =




0
−β
0

− δ
RT




G0 =
β

2
, G1 =




0
β
0
0


 .

The state-space model of the line is given by the result.
Proposition 1: The 1-D state-space model of the TDR line is

given by (Σs), where

• the dynamic matrix F is obtained by means of concatena-
tion, i.e.,

F =




F̃0 F̃+ 0 · · · · · · 0

F̃− F0 F+
. . .

...

0 F− F0 F+
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . F− F0 F+

0 · · · · · · 0 F− F 0



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• the input matrix G is given by

G =




G0

G1

0
...
0




• the output matrix H is given by

H = [ 1 0 · · · 0 ].

The proof of this result is given in the Appendix.
Remark 1: In this paper, we present the model for εr and b

constant with z. The model for εr(z) and b(z) can be easily
derived. In fact, in the space dicretization, we should consider
εr,n and bn. Consequently, we will have γn and δn. To construct
F and G, the concatenation would be the same, with the block
matrices indexed with the number of nodes.

B. TDR Trace Filtering With the Kalman Filter

1) Standard Kalman Filter: The model (Σs) is a typical
difference state-space model that is used in linear discrete-
time systems in the control and estimation theory [1], [4]. In
the context of filtering, the model is modified to take into
account both input and output noises. Clearly, (Σs) is written as
(Σ′

s), i.e.,

(Σ′
s)

{
Xk+1 = FXk + GUk + GW k

Y k = HXk + V k

Υk = HXk

where W k and V k are zero-mean white processes, which are
mutually uncorrelated with covariances Q and R, respectively.

The celebrated Kalman filter for the system (Σ′
s) is given by

the following algorithm [4].
1) State estimate extrapolation:

X̂k+1
− = FX̂k

+ + GUk.

2) Error covariance extrapolation:

P k+1
− = FP k

+F ′ + GQG′.

3) Kalman gain matrix:

Kk+1 = P k+1
− H ′ (HP k+1

− H ′ + R
)−1

.

4) State estimate update:

X̂k+1
+ = X̂k+1

− + Kk+1
(
Y k+1 − HX̂k+1

−

)
.

5) Output estimate:

Υ̂k+1 = HX̂k+1.

6) Error covariance update:

P k+1
+ = (I − Kk+1H)P k+1

− .

H ′ stands for the transpose of matrix H .

Fig. 2. Benchmark problem. Variation of εr with the depth.

Fig. 3. Benchmark problem. Measured signal Y k .

2) Benchmark Problem: This modeling procedure has been
developed for soil with permittivity varying with depth (see
Fig. 2), according to the trends given in Remark 1. The state-
space model has been implemented with the apparent permit-
tivity (εr = 17.25). The simulated measured output signal Y k

is given in Fig. 3. The result of the estimation is given in Fig. 4,
together with the TDR trace. It clearly appears that the Kalman
filter based on the apparent permittivity model fails to estimate
the TDR trace. To overcome this problem, we should use a filter
that permits one to estimate the TDR trace, even if the model is
erroneous.

III. ROBUST FILTERING TECHNIQUE

A. Filtering Procedure

Different approaches have been developed to estimate the
signal Υk in the presence of a model error. In this paper, as
the discretized system (Σ′

s) is a large-scale system, we have
decided to develop a so-called robust filter with memory cost
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Fig. 4. Benchmark problem. Signal Υk (solid line) and Kalman filter estimate
(dotted line).

Fig. 5. Feedback representation of the uncertainties.

and computational burden equivalent to those of the standard
Kalman filter presented in Section II-B1.

In fact, the celebrated techniques of robust filtering are
intimately related to the notion of exogenous perturbation (see
[8] and references therein) that enters the nominal model in
a feedback manner (see Fig. 5). This exogenous perturbation
is, by construction, correlated with the state of the system.
Hence, in addition to the error covariance matrix, we should
also compute a correlation matrix with the same dimensions.
These matrices are obtained by means of two distinct Riccati
equations. In the context of this paper, this solution is not
convenient.

The elegant solution developed in this paper is based on the
compensated Kalman filter theory [3], [6]. When using a com-
pensated Kalman filter, we have the following representation:

1) state estimation extrapolation, i.e.,

X̂k+1
− = FX̂k

+ + GUk

ξ̂k+1
− = ξ̂k

+

2) state estimate update, i.e.,

X̂k+1
+ = X̂k+1

− + κ1ξ̂
k+1
− + Kk+1

(
Y k − HX̂k+1

−

)
ξ̂k+1
+ = ξ̂k+1

− + κ̃2

(
Y k − HX̂k+1

−

)
Υ̂k+1 =HX̂k+1

+

where the state variable ξ̂k
+ is, by construction, the inte-

gral of the error signal (Y k − HX̂k+1
− ). This integration

term plays the same role as the integration term used in
the proportional–integral controller in the control theory.
It permits one to ensure that the tracking error will
vanish to zero. κ1 and κ̃2 are real-valued matrices with
appropriate dimensions. They should be chosen such that
the estimator is stable.

This estimator can be thought of as being designed for the
following system:

X
k+1

= FX
k

+ GUk + GW k + κ1ξ
k

ξk+1 = ξk + κ2V
k

Y k = HX
k

+ V k

Υk = HX
k

where V
k

is a zero-mean white process with unit covariance,
which is uncorrelated with W k and V k.

Considering the augmented system with the state vector, we
have a new representation (Σc) of the model, i.e.,

(Σc)




χk+1 = Aχk + BUk + Mωk

Y k = Cχk + V k

Υk = Cχk

with

A =
[

I 0
κ1 F

]
B =

[
0
G

]
M =

[
0 κ2

G 0

]

χk =
[

ξk

X
k

]
ωk =

[
W k

V
k

]
C = [0 H]

E{ωk′
ωk} =

[
Q 0
0 1

]
= Q.

Remark 2: The solution that we have presented can be
viewed as a compensation of the model by adding a fictitious
signal ζk, as follows:

X
k+1

= FX
k

+ GUk + GW k + ζk.

The compensation signal is considered as a Wiener process
[13] by

ζk =κ1ξ
k

ξk+1 = ξk + κ2V
k
.

Hence, the robust filtering technique can also be considered
as a deconvolution technique for the signal ζk.

In the original formulation of the compensated Kalman filter,
the choice of the matrices κ1 and κ̃2 was critical with regard to
the stability of the estimator. The proposed technique permits
one to limit the stability condition to the matrix κ1. In fact, κ1

should be chosen such that the eigenvalues of A lie in the unit
circle. It should be noticed that if the tuning parameter κ1 is
set to zero, the state vector of the line and the compensation
signal will be decoupled; hence, the filter will be the standard
Kalman filter. The parameter κ2 appears in the structure of
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Fig. 6. Benchmark problem. Estimation error for the (solid line) standard
Kalman filter and the (dashed line) proposed filter.

the noise effect on the system. Hence, the parameter κ2 will
permit one to tune the amount of noise in the estimation. If
κ2 is set to zero, the compensation signal will be considered
as a constant and will stay at its initial value. If the initial
value is null, then the estimator will be the standard Kalman
filter.

The estimation algorithm is the same as the standard Kalman
filter presented in the previous section, in which the corre-
sponding matrices are replaced. In the context of TDR trace
estimation, the output signal Y k is a scalar signal. Thus, we
only add a single state in the augmented model with respect
to the original model (Σ′

s). This constant allows us to state that
due to the large-scale model, the proposed method has fairly the
same memory and computational costs as the standard Kalman
filter.

B. Our Benchmark Problem

In this section, the proposed method has been applied to the
case treated in Section II-B. The matrices κ1 and κ2 are chosen
as follows:

κ1 = 0.1U , κ2 = 10−6

where U is a unit vector of appropriate dimension.
To evaluate the performance of the proposed technique, we

define the relative root-mean-square error (RRMSE) as follows:

RRMSE =

√√√√E
{

(Υk − Υ̂k)2
}

E {(Υk)2}

where E{·} is the mathematical expectation. The estimation
error of the proposed technique is compared with the estima-
tion error of the standard Kalman filter in Fig. 6. It clearly
appears that the estimation error of the proposed technique has a
magnitude that varies in a restricted area around zero, whereas
the estimation error of the standard Kalman filter presents an

TABLE I
BENCHMARK PROBLEM: COMPARISON OF THE MEAN AND RRMSE OF

THE ESTIMATION ERROR

TABLE II
EXPERIMENTAL DATA: GRAVIMETRIC ESTIMATION OF εr

important bias. This fact is strengthened by the value of the
mean of the estimation error and the RRMSE given in Table I.

It should be noticed that the optimal choice of the pair
(κ1, κ2) is not unique. In fact, as κ2 permits one to adjust
the width of the bandpass of the estimator, the critical point
lies in the choice of κ1 such that the augmented system is
stable. Another important point as to the choice of the tuning
parameters is that we can concentrate the integral compensation
on the states that are subject to an uncertain parameter. For
example, in the benchmark problem, it appears that only the
equations corresponding to the voltage are directly concerned
with the parametric uncertainty. Hence, we could set to zero
the components of κ1 that do not correspond to states directly
subject to uncertainties and set to 0.1 all the other components.
In this case, the result is similar to the previous setting.

C. Experimental Data

The proposed filtering technique has been used on exper-
imental data obtained from the Campbell TDR100 data ac-
quisition device. The soil is a homogeneous sand medium.
The data acquisition system has given an apparent permittivity
εr = 6.08. To verify whether the soil moisture profile is con-
stant or not, a gravimetric study has been completed. The results
of this study are given in Table II, where z is the dimensionless
depth, and the permittivity is obtained by applying the Topp
polynomial function [14]. In Table II, it appears that the permit-
tivity evolves with the depth. Consequently, to filter the data,
we have to apply the proposed method. As in the benchmark
problem, we have compared our approach with the standard
Kalman filter both developed with εr. The result is given in
Fig. 7. It appears that while the Kalman filter is biased, the
proposed filter gives a good filtered estimate.

IV. CONCLUDING REMARKS

The estimation problem of TDR traces has been treated in
this paper. The problem encountered is the lack of information
that the designer holds on the permittivity profile along the TDR
rods. Empirical techniques permit one to estimate an apparent
value of this permittivity. We have shown on a benchmark
problem that this value entails a biased estimation of the TDR
traces. We have proposed an estimator based on the compen-
sated Kalman filter theory that permits efficient estimation of
the signal with the same computational burden as the standard
Kalman filter.
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Fig. 7. Experimental data. (Solid gray line) Measured signal versus (solid
dark line) standard Kalman filter estimate and (dashed line), proposed filter
estimate.

APPENDIX

PROOF OF PROPOSITION 1

To obtain (Σs), we should define the state variables as
follows:

xk
n,1 = ikn

xk+1
n,1 =xk

n,2

xk
n,3 = vk

n

xk+1
n,3 =xk

n,4.

Then, (3) and (4) become

xk+1
n,2 =xk

n,1 − αxk
n,2 − β

[
xk

n+1,3 − xk
n−1,3

]
xk+1

n,4 =xk
n,3 − γxk

n,4 − δ
[
xk

n+1,1 − xk
n−1,1

]
.

At the inlet (n = 0), as the voltage is imposed by the user and
considering (5), we set xk

0,1 = ik0 . Thus

xk+1
0,1 =

(
1 − α

2

)
xk

0,1 −
β

2
[
xk

1,3 − uk
]
.

From (3), it is clear that the equation ik+1
1 = xk+1

1,2 depends on
vk
0 . Consequently, it should be modified as follows:

xk+1
1,2 = xk

1,1 − αxk
1,2 − β

[
xk

2,3 − uk
]
.

At the end of the line (n = N), considering (6), we set
xk

N,3 = vk
N . Thus

xk
N,1 =

xk
N,3

RT

xk+1
N,3 =

(
1 − α

2
− RT β

)
xk

N,3 + RT βxk
N−1,3.

From (4), it is clear that the equation vk+1
N−1 = xk+1

N−1,4 de-
pends on ikN . Consequently, it should be modified as follows:

xk+1
N−1,4 = xk

N−1,3 − γxk
N−1,4 − δ

[
xk

N,3

RT
− xk

N−2,1

]
.

To obtain the matrices F , G, and H , we introduce the node
state vector ψk

n = [xk
n,1 xk

n,2 xk
n,3 xk

n,4]
′. For the bound-

ary nodes, it reduces to ψk
0 = xk

0,1 and ψk
N = xk

N,3.
In the following, we will present a technique that permits one

to obtain the matrices F and G. We will operate in ascending
order of n.

Considering the previously given state equations together
with the special cases due to the boundary conditions, we have

• for n = 0:

ψk+1
0 = F̃0ψ

k
0 + F̃+ψk

1 + G0u
k (7)

• for n = 1:

ψk+1
1 = F̃−ψk

0 + F0ψ
k
1 + F+ψk

2 + G1u
k (8)

• for 1 < n < N − 1:

ψk+1
n = F−ψk

n−1 + F0ψ
k
n + F+ψk

n+1 (9)

• for n = N − 1:

ψk+1
N−1 = F−ψk

N−2 + F0ψ
k
N−1 + F+ψk

N (10)

• for n = N :

ψk+1
N = F−ψk

N−1 + F 0ψ
k
N . (11)

Now, introduce the state vector Xk, the input Uk, and the
output Yk as follows:

Xk =




ψk
0

ψk
1
...

ψk
N−1

ψk
N


 Uk = uk Y k = ik0 = ψk

0

with Xk ∈ �(4N−2)×1.
Then, the result given in Theorem 1 can be easily derived.

This completes the proof. �
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