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Abstract. We address the problem of control of the magnetic moment in a
ferromagnetic nanowire by means of a magnetic field. Based on theoretical

results for the 1D Landau-Lifschitz equation, we show a robust controllability

result.

1. Model and control result. The magnetic moment u of a ferromagnetic ma-
terial is usually modeled as a unitary vector field, solution of the Landau-Lifschitz
equation

∂u

∂t
= −u ∧ He − u ∧ (u ∧ He), (1)

where the effective field He is given by He = ∆u + hd(u) + Ha. The demagnetizing
field hd(u) is solution of the magnetostatic equations

div B = div (H + u) = 0 and curl H = 0,

where B is the magnetic induction. The applied field is denoted by Ha (see [3,
12, 17, 22] for more details on the modelization). Existence results have been
established for the Landau-Lifschitz equation in [4, 5, 13, 21], numerical aspects
have been investigated in [11, 15, 16], and asymptotic properties have been proved
in [1, 6, 10, 18, 20]; control issues were addressed in [9].

Here we restrict ourselves to a one dimensional model, i.e., we consider a ferro-
magnetic nanowire, submitted to an external magnetic field applied along the axis
of the wire and which is our control. The model is then written as (see [20])

∂u

∂t
= −u ∧ hδ(u) − u ∧ (u ∧ hδ(u)), (2)

2000 Mathematics Subject Classification. Primary: 35B37, 93D15; Secondary: 93C20.

Key words and phrases. Landau-Lifschitz equation, control, stabilization.
The authors were partially supported by the ANR project SICOMAF (”SImulation et COntrôle

des MAtériaux Ferromagnétiques”).

1
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where hδ(u) = ∂2u
∂x2 −u2e2−u3e3 +δe1. Here, (e1, e2, e3) is the canonical basis of IR3

and the nanowire is the real axis IRe1. The magnetic field is written δ(t)e1, where
the function δ(·) is our control. Setting h(u) = uxx − u2e2 − u3e3, this yields

ut = −u ∧ h(u) − u ∧ (u ∧ h(u)) − δ(u ∧ e1 + u ∧ (u ∧ e1)). (3)

When δ ≡ 0, stationary solutions do exist, of the form

M0(x) =





thx
0
1

ch x



 (4)

and are called Bloch walls. Their stability properties were studied in [7].
When δ(·) ≡ δ is constant, the solution writes

uδ(t, x) = RδtM0(x + δt), (5)

where

Rθ =













1 0 0

0 cos θ − sin θ

0 sin θ cos θ













is the rotation of angle θ around the axis IRe1. It corresponds to a rotation plus
translation of the above wall along the nanowire.

Notice the invariance of (3) through translations x 7→ x − σ and rotations Rθ

around the axis e1. This generates a three-parameters family of particular solutions
defined by

uδ,θ,σ(t, x) = MΛuδ(t, x) = Rδt+θM0(x + δt − σ) (6)

called travelling wall profiles.
Controlling these walls (position plus speed) might be relevant for coding and

transporting some information. This is our aim here to derive a controllability re-
sult, with an eye on possible applications such as rapid recording. In [9], control
properties were proven with piecewise constant controls. However, practical appli-
cations require the control to be smooth. Recall that the control here is an external
magnetic field applied along the nanowire. The main result of [9] strongly uses the
fact that the control is a piecewise constant function and our aim is here to extend
this result to the case of smooth controls, hence closer to practical issues.

Theorem 1.1. There exist ε0 > 0 and δ0 > 0 such that, for all δ1, δ2 ∈ IR satisfying
|δi| ≤ δ0, i = 1, 2, for all σ1, σ2 ∈ IR, for every ε ∈ (0, ε0), there exist T > 0 and a
control function δ(·) ∈ C∞(IR, IR) such that, for every solution u of (3) associated
with the control δ(·) and satisfying

∃θ1 ∈ IR | ‖u(0, ·) − uδ1,θ1,σ1(0, ·)‖H2 ≤ ε, (7)

there exists a real number θ2 such that

‖u(T, ·) − uδ2,θ2,σ2(T, ·)‖H2 ≤ ε. (8)

Moreover, there exists real numbers θ′2 and σ′
2, with |θ′2 − θ2| + |σ′

2 − σ2| ≤ ε, such
that

‖u(t, ·) − uδ2,θ′

2
,σ′

2(t, ·)‖H2 −→
t→+∞

0. (9)
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In the proof of the main result, we shall choose control laws δ(·) so that

δ(t) =

{

δ1 if t ≤ 0,
δ2 + σ1−σ2

t if t ≥ T,
(10)

where T > 0 is large, δ|[0,T ] is a smooth function such that tδ̇ remains small, and
the function δ is smooth overall IR.

Notice that this control shares robustness properties in H2 norm. The time T is
required to be large enough. It follows from this result that the family of travelling
wall profiles (6) is approximately controllable in H2 norm, locally in δ and globally
in σ, in time sufficiently large.

2. Proof of Theorem 1.1. Similarly as in [7, 8, 9], it is relevant to first reexpress
the Landau-Lifschitz equation in adapted coordinates.

2.1. Preliminaries. The following formulas, easy to establish, will be useful next:

• d
dθRθ =





0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ



 = Rθ+ π

2
− e1e

T
1 = Rπ

2
Rθ − e1e

T
1 ;

• v ∧ e1 = −Rπ

2
v + v1e1;

• Rθu ∧ Rθv = Rθ(u ∧ v);
• a ∧ (b ∧ c) = b(a.c) − c(a.b);
• Rθ(IRe1) = IRe1.

It is clear from Equation (2) that the solution u has a constant norm. Up to
normalizing, assume this norm is equal to 1. Set v(t, x) = R−δ(t)t(u(t, x − δ(t)t));
then, v has a constant norm too, equal to 1. Using the above formulas, computations
lead to

vt = −v ∧ h(v) − v ∧ (v ∧ h(v)) − δ(vx + v1v − e1) − tδ̇(vx − v3e2 + v2e3), (11)

where we recall that h(v) = vxx − v2e2 − v3e3. Define

M1(x) =







1

ch x
0

−thx






and M2 =





0
1
0



 .

In the frame (M0(x), M1(x), M2), the solution v : IR+ × IR −→ S2 ⊂ IR3 writes in
the form

v(t, x) =
√

1 − r1(t, x)2 − r2(t, x)2M0(x) + r1(t, x)M1(x) + r2(t, x)M2.

Note that:

• M ′
0(x) =

1

ch x
M1(x), M ′

1(x) = −
1

ch x
M0, M ′′

0 (x) = −
sh x

ch 2x
M1(x)−

1

ch 2x
M0;

• e1 = thx M0 +
1

ch x
M1(x), e2 = M2, e3 =

1

ch x
M0 − thx M1(x);

• h(M0) = −
2

ch 2x
M0;

• M0 ∧ M1 = M2, M0 ∧ M2 = −M1, M1 ∧ M2 = M0;

Then, easy but lengthy computations, not reported here, show that v is solution of

(11) if and only if r =

(

r1

r2

)

satisfies

rt = Ar + R(t, δ, δ̇, x, r, rx, rxx), (12)
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where

R(t, δ, δ̇, x, r, rx, rxx) = − δ

(

ℓ 0
0 ℓ

)

r + G(r)rxx + H1(x, r)rx + H2(r)(rx, rx)

+ P (x, r) − δB(x, r) − tδ̇C(x, r),

(13)

and

• A =

(

L L
−L L

)

with L = ∂xx + (1 − 2th 2x)Id;

• ℓ = ∂x + thx Id;
• G(r) is the matrix defined by

G(r) =









r1r2
√

1 − ‖r‖2

r2
2

√

1 − ‖r‖2
+

√

1 − ‖r‖2 − 1

−
r2
1

√

1 − ‖r‖2
−

√

1 − ‖r‖2 + 1 −
r1r2

√

1 − ‖r‖2









;

• H1(x, r) is the matrix defined by

H1(x, r) =
2

√

1 − ‖r‖2 ch x





r2

√

1 − ‖r‖2 − r1r
2
2 −r2 + r2r

2
1

r2 − r3
2

√

1 − ‖r‖2r2 + r1r
2
2



 ;

• H2(r) is the quadratic form on IR2 defined by

H2(r)(X, X) =
(1 − ‖r‖2)XT X + (rT X)2

(1 − ‖r‖2)3/2





√

1 − ‖r‖2r1 + r2

√

1 − ‖r‖2r2 − r1



 ;

• P (x, r) =





P 1(x, r)

P 2(x, r)



 , with

P (x, r) =2r2(
√

1 − ‖r‖2 − 1)
1

ch 2x
− 2r1r2

sh x

ch 2x
− 2r1‖r‖

2 1

ch 2x

− 2r2
1

√

1 − ‖r‖2
sh x

ch 2x
+ r3

1 + r2(1 −
√

1 − ‖r‖2) + r1r
2
2,

and

P 2(x, r) = − 2r1(
√

1 − ‖r‖2 − 1)
1

ch 2x
+ 2r2

1

sh x

ch 2x
− 2r2‖r‖

2 1

ch 2x

− 2r1r2

√

1 − ‖r‖2
sh x

ch 2x
+ r2‖r‖

2,

• B(x, r) = (∂x + thx)r +
1

ch x

(√

1 − ‖r‖2 − 1 + r2
1

r1r2

)

+ thx (
√

1 − ‖r‖2 − 1)r,

• C(x, r) =

(

∂x + thx

(

0 −1
1 0

))

r +

√

1 − ‖r‖2

ch x

(

1
−1

)

.
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It is clear that there holds

G(r) = O(‖r‖2),

H1(x, r) = O(‖r‖),

H2(r) = O(‖r‖),

P (x, r) = O(‖r‖2),

B(x, r) = O(‖r‖ + ‖rx‖),

C(x, r) = O(‖r‖ + ‖rx‖),

uniformly with respect to the variable x ∈ IR. Then, we infer that there exists a
constant C > 0 such that, if ‖r‖2

IR2 = ‖r‖2 ≤ 1
2 and |δ| ≤ 1, then, for all p, q ∈ IR2,

for all x, t, ε ∈ IR,

‖R(t, δ, ε, x, r,p, q)‖IR2 ≤ C
(

|δ|‖r‖IR2 + |δ|‖p‖IR2 + t|ε| + t|ε|‖p‖IR2

+ ‖r‖2
IR2‖q‖IR2 + ‖r‖IR2‖p‖IR2 + ‖r‖IR2‖p‖2

IR2 + ‖r‖2
IR2

)

.
(14)

From this a priori estimate, one might consider R(t, δ, δ̇, x, r, rx, rxx) as a remainder
term in Equation (12). The proof uses stability properties established for the linear
operator A, so as to establish. We next follow the same lines as in [9].

2.2. Change of coordinates. The operator L is a self-adjoint operator on L2(IR),
of domain H2(IR), and L = −ℓ∗ℓ with ℓ = ∂x +thx Id (one has ℓ∗ = −∂x +thx Id).
It follows that L is nonpositive, and that kerL = ker ℓ is the one dimensional
subspace of L2(IR) generated by 1

ch x . In particular, the operator L, restricted to

the subspace E = (kerL)⊥, is negative.

Remark 1. On the subspace E:

• the norms ‖(−L)1/2f‖L2(IR) and ‖f‖H1(IR) are equivalent;
• the norms ‖Lf‖L2(IR) and ‖f‖H2(IR) are equivalent;

• the norms ‖(−L)3/2f‖L2(IR) and ‖f‖H3(IR) are equivalent.

Writing A = JL, with

J =

(

1 1
−1 1

)

,

it is clear that the kernel of A is ker A = kerL × ker L; it is the two dimensional
space of L2(IR2) generated by

a1(x) =

(

0
1

ch x

)

and a2(x) =

(

1
ch x
0

)

.

Moreover, combining the facts that L|(ker L)⊥ is negative and that Spec J = {1 +

i, 1 − i}, it follows that the operator A, restricted to the subspace E = (kerA)⊥, is
negative.

In what follows, solutions r of (12) are written as the sum of an element of
ker A and of an element of E . Since Equation (11) is invariant with respect to
translations in x and rotations around the axis e1, for every Λ = (θ, σ) ∈ IR2,
MΛ(x) = RθM0(x − σ) is solution of (11). Define

RΛ(x) =

(

〈MΛ(x), M1(x)〉
〈MΛ(x), M2〉

)

,

the coordinates of MΛ(x) in the mobile frame (M1(x), M2(x)).
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The mapping

Ψ : IR2 × E −→ H2(IR)
(Λ, W ) 7−→ r(x) = RΛ(x) + W (x)

is a diffeomorphism from a neighborhood U of zero in IR2 × E into a neighborhood
V of zero in H2(IR). Indeed, if r = RΛ + W with W ∈ E , then, by definition,

〈r, a1〉L2 = 〈RΛ, a1〉L2 and 〈r, a2〉L2 = 〈RΛ, a2〉L2 . (15)

Conversely, if Λ ∈ IR2 satisfies ((15)), then W = r − RΛ ∈ E . The mapping
h : IR2 −→ IR2, defined by h(Λ) = (〈RΛ, a1〉L2 , 〈RΛ, a2〉L2) is smooth and satisfies
dh(0) = −2 Id, thus is a local diffeomorphism at (0, 0). It follows easily that Ψ is a
local diffeomorphism at zero.

Therefore, every solution r of (12), as long as it stays1 in the neighborhood V,
can be written as

r(t, ·) = RΛ(t)(·) + W (t, ·), (16)

where W (t, ·) ∈ E and Λ(t) ∈ IR2, for every t ≥ 0, and (Λ(t), W (t, ·)) ∈ U . In these
new coordinates2, Equation (12) leads to (see [7] for the details of computations)

Wt(t, x) = AW (t, x) + R(t, δ, ε,Λ(t), x,W (t, x), Wx(t, x), Wxx(t, x)),

Λ′(t) = M(Λ(t), W (t, ·), Wx(t, ·)),
(17)

where R : IR × IR × IR × IR2 × IR ×
(

H2(IR)
)2

×
(

H1(IR)
)2

×
(

L2(IR)
)2

−→ E and

M : IR2 ×
(

H1(IR)
)2

×
(

L2(IR)
)2

−→ IR2 are nonlinear mappings, for which there
exist constants K > 0 and η > 0 such that

‖R(t, δ, ε, Λ, ·, W, Wx, Wxx)‖(H1(IR))2

≤ K
(

‖Λ‖IR2 + |δ| + t|ε| + ‖W‖(H2(IR))2

)

‖W‖(H3(IR))2 + Kt|ε|,
(18)

|M(Λ, W, Wx)| ≤ K
(

‖Λ‖IR2 + ‖W‖(H1(IR))2

)

‖W‖(H1(IR))2 , (19)

for every W ∈ E , every δ ∈ IR, every t ≥ 0, and every Λ ∈ IR2 satisfying ‖Λ‖IR2 ≤ η.
Note that, since L is selfadjoint, it follows that AW ∈ E , for every W ∈ E , and thus
(17) makes sense.

2.3. Asymptotic estimates. Denoting W =

(

W1

W2

)

, define on
(

H2(IR)
)2

× IR2

the function

V(W ) =
1

2

∥

∥

∥

∥

(

L 0
0 L

)

W

∥

∥

∥

∥

2

(L2(IR))2
=

1

2
‖LW1‖

2
L2(IR) +

1

2
‖LW2‖

2
L2(IR). (20)

Remark 2. It follows from Remark 1 that, on the subspace E = (kerA)⊥,
√

V(W )
is a norm, which is equivalent to the norm ‖W‖2

(H2(IR2))
.

1This a priori estimate will be a consequence of the stability property derived next.
2This decomposition is actually quite standard and has been used e.g. in [14] to establish

stability properties of static solutions of semilinear parabolic equations, and in [2, 19] to prove
stability of travelling waves.
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Consider a solution (W, Λ) of (17), such that W (0, ·) = W0(·) and Λ(0) = Λ0.
Since L is selfadjoint, one has

d

dt
V(W (t, ·)) =

〈

AW,

(

L2W1

L2W2

)〉

(L2(IR))2

+

〈(

(−L)1/2 0
0 (−L)1/2

)

R(t, δ, ε,Λ, ·, W, Wx, Wxx),

(

(−L)3/2W1

(−L)3/2W2

)〉

(L2(IR))2
.

(21)

Concerning the first term of the right-hand side of (21), one computes
〈

AW,

(

L2W1

L2W2

)〉

(L2(IR2))2
= −‖(−L)3/2W1‖(L2(IR))2 − ‖(−L)3/2W2‖(L2(IR))2 ,

and, using Remark 1, there exists a constant C1 > 0 such that
〈

AW,

(

L2W1

L2W2

)〉

(L2(IR))2
≤ −C1‖W‖2

(H3(IR))2 . (22)

Concerning the second term of the right-hand side of (21), one deduces from the
Cauchy-Schwarz inequality, from Remark 1, and from the estimate (18), that

∣

∣

∣

∣

∣

〈(

(−L)1/2 0
0 (−L)1/2

)

R(t, δ, ε,Λ, ·, W, Wx, Wxx),

(

(−L)3/2W1

(−L)3/2W2

)〉

(L2(IR))2

∣

∣

∣

∣

∣

≤ ‖R(t, δ, ε,Λ, ·, W, Wx, Wxx)‖(H1(IR))2‖W‖(H3(IR))2

≤ K
(

‖Λ‖IR2 + |δ| + t|ε| + ‖W‖(H2(IR))2

)

‖W‖2
(H3(IR))2 + t|ε|‖W‖(H3(IR))2

≤ K

(

‖Λ‖IR2 + |δ| + t|ε| + ‖W‖(H2(IR))2 +
1

2ξ2

)

‖W‖2
(H3(IR))2 +

ξ2

2
t2ε2,

(23)

where, to get the last line, we used the inequality

t|ε|‖W‖(H3(IR))2 ≤
ξ2

2
t2ε2 +

1

2ξ2
‖W‖2

(H3(IR))2 ;

here, ξ denotes some real number to be chosen later.
One infers from (21), (22) and (23) that

d

dt
V(W ) ≤

(

−C1+K

(

‖Λ‖IR2 + |δ| + t|δ̇| + ‖W‖(H2(IR))2 +
1

2ξ2

))

‖W‖2
(H3(IR))2

+
ξ2

2
t2δ̇2.

Fix ǫ > 0; then, under the a priori estimates

‖Λ(t)‖IR2 + |δ| + t|δ̇| + ‖W (t, ·)‖(H2(IR))2 +
1

2ξ2
≤

C1

2K

and

ξ2

2
t2δ̇2 ≤ ǫ,
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there holds

d

dt
V(W (t, ·)) ≤ −

C1

2
‖W (t, ·)‖2

(H3(IR))2 + ǫ

≤ −
C1

2
‖W (t, ·)‖2

(H2(IR))2 + ǫ

≤ −C2V(W (t, ·)) + ǫ.

The existence of a constant C2 > 0 follows from Remark 2. Therefore, choos-
ing ξ > 0 large enough, there exist constants C3 > 0 and C4 > 0 such that, if
‖W (0, ·)‖(H2(IR))2 ≤ C1

6K , if the a priori estimate

max
0≤s≤t

‖Λ(s)‖IR2 ≤
C1

6K
(24)

holds, and if the control function δ(·) is chosen so that

|δ(t)| + t|δ̇(t)| ≤
C1

6K
(25)

and

t2δ̇(t)2 ≤ 2ǫ/ξ2 (26)

for every t ≥ 0, then

‖W (s, ·)‖(H2(IR))2 ≤ C3e
−C4s‖W (0, ·)‖(H2(IR))2 + C3ǫ, (27)

for every s ∈ [0, T ], and moreover, one deduces from (17), (19), and (27) that, if
the a priori estimate (24) holds, then

‖Λ(t)‖IR2 ≤ ‖Λ(0)‖IR2 +
C1C3

4
‖W (0, ·)‖(H2(IR))2

∫ t

0

e−C4sds

+ KC2
3‖W (0, ·)‖2

(H2(IR))2

∫ t

0

e−2C4sds

≤ ‖Λ(0)‖IR2 +
C1C3

4C4
‖W (0, ·)‖(H2(IR))2 + K

C2
3

2C4
‖W (0, ·)‖2

(H2(IR))2 .

(28)

From the above a priori estimates, we infer that, if the quantity ‖Λ(0)‖IR2 +
‖W (0, ·)‖(H2(IR))2 is small enough, and if the control function δ fits the conditions

(25) and (26), then ‖Λ(t)‖IR2 remains small, for every t ≥ 0, and ‖W (t, ·)‖(H2(IR))2

is exponentially decreasing to 0.

Finally we must choose a smooth control function such that u(t, x) is close to
uδ1,θ1,σ1(t, x) at initial time, and close to uδ2,θ2,σ2(t, x) for large times. Hence, we
can choose the function δ such that δ(t) = δ1 for t ≤ 0. Then, with the reasoning
above, we enforce v(t, x) to remain close to M0(x), that is, the solution u(t, x)
follows the profile uδ(t),θ1,σ1(t, x). At times t ≥ T , we require u(t, x) to be close to
uδ2,θ2,σ2(t, x) for some θ2; one must have, for t ≥ T ,

−σ1 + δ(t)t = −σ2 + δ2t,

and hence,

δ(t) = δ2 +
σ1 − σ2

t
.

To conclude, observe that it is possible to choose a function δ and a time T > 0
large enough, such that δ is smooth on IR and satisfies the above requirements and
the estimates (25) and (26).
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The first part of the theorem, on the interval [0, T ], then follows from the above
considerations.

For the second part, we use a stronger version of the estimate (27), namely,

‖W (s, ·)‖(H2(IR))2 ≤ C3e
−C4s‖W (0, ·)‖(H2(IR))2 + ξ2t2δ̇(t)2.

Since t2δ̇(t)2 is integrable, it follows from the above estimate, and from (17) and
(19), that ‖Λ′(t)‖IR2 is integrable on [0,+∞). Hence, Λ(t) has a limit in IR2, denoted
Λ∞ = (θ∞, σ∞), as t tends to +∞. The theorem follows with θ′2 = θ2 + θ∞ and
σ′

2 = σ2 + σ∞.
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[22] H. Wynled, ”Ferromagnetism”, Encyclopedia of Physics, Vol. XVIII / 2, Springer Verlag,
Berlin (1966).

E-mail address: carbou@math.u-bordeaux1.fr

E-mail address: stephane.labbe@imag.fr

E-mail address: emmanuel.trelat@univ-orleans.fr


	1. Model and control result
	2. Proof of Theorem 1.1
	2.1. Preliminaries
	2.2. Change of coordinates
	2.3. Asymptotic estimates

	REFERENCES

