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Abstract

This report completes a previous study on the growth and metabolism of fetal bovine epiphyseal chondrocytes cultured, within

native or cross-linked collagen sponges carried out without the addition of fresh ascorbate. At low initial cell density (2.3� 106 cells/

cm3) cell proliferation and a low matrix deposition were observed, whereas at high initial cell density (2.3� 107 cells/cm3) there was

an absence of cell proliferation, but the deposition of a cartilage-like matrix was measured. In both cases, only traces of type I

collagen (marker of chondrocyte dedifferentiation) were detected. In this report, we observed, after 1 month in culture with

ascorbate, in both type of scaffolds and initial cell densities, an increase in cell proliferation (2-fold) and in expression of genes

encoding for collagen types I, II, X and MMP-2 and -13, but no change in the level of matrix deposition (collagen and GAG). With

regard to the proteins present, the main differences with or without ascorbate concerned the increase of neosynthesised type I

collagen (up to 35% of the total collagen deposited in the sponge) and of the MMP-2 active form. In conclusion, these results show

that ascorbate is an important factor to consider when preparing cartilage constructs for its action on chondrocyte phenotype

modulation and proliferation.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The inability of cartilage to self-repair to any
significant degree has been extensively studied and
reported by numerous investigators [1–7]. Clinical
procedures used to treat the articular cartilage defects
include lavage and debridement, drilling, microfracture,
and abrasion arthroplasty, all of which cause formation
of a fibrocartilage lacking the mechanical properties of
hyaline cartilage. Since the pioneering work of Brittberg
et al. [8] autologous chondrocyte transplantation (ACT)
is now a widely used technique for the treatment of deep
cartilage defects of articular cartilage [9–12]. In order to
improve retention of cells in the defect and/or to

transplant differentiated or in vitro redifferentiated
chondrocytes, different scaffolds and matrices have
been proposed for in vitro chondrocyte culture before
transplantation. Several cell types (chondrocytes derived
from auricular, nasal or articular cartilage or progenitor
cells) have been cultured under different conditions after
seeding in natural (fibrin [13–19], alginate [19–26],
agarose [27–28], hyaluronan [29–33] or collagen [34–50])
or synthetic (PGA/PLA, polyethylene or polyethylene
oxide or glycol) biomaterials [51–67]. In a previous study
[49] we evaluated the ability of collagen-based matrices,
in the form of native or cross-linked (DPPA) sponges, to
support the growth of fetal bovine epiphyseal chondro-
cytes, without changes in their initial phenotype, leading
to the formation of a cartilage construct with a
composition as close as possible to that of natural
cartilage. Under these culture conditions, characterised
by the lack of addition of fresh ascorbic acid to the
culture medium (RPMI/NCTC (v/v) containing 10%
fetal calf serum) and the use of static flasks, we observed
after 4 weeks (i) a 4-fold increase in cell number and a low
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level of matrix deposition in sponges seeded with 106

cells, (ii) an absence of cell proliferation and the
neoformation of a cartilage-like matrix in sponges seeded
with 107 cells. In both cases only traces of type I collagen
(marker of chondrocyte dedifferentiation) were detected.
These findings demonstrated the suitability of collagen-
based scaffolds for cartilage tissue engineering as well as
the necessity to improve the culture conditions in order to
obtain a better quality cartilage construct (for example
higher collagen and glycosaminoglycan contents for
sponges seeded with small numbers of cells). In another
set of experiments [68–71] using high density culture
(106 cells/cm2) of the same cells (fetal bovine chondro-
cytes) on plastic, we noted [71] that the addition of fresh
ascorbic acid (25mg/ml) to the culture induced increases
in both cell proliferation and total protein and collagen
synthesis as well as a progressive cell maturation (type I
and X collagen synthesis after 30 days). After comparing
these results [49,71], we decided to examine the influence
of fresh ascorbic acid addition on fetal bovine chondro-
cyte proliferation and metabolic response after culture for
1 month within native and DPPA-treated type I collagen
sponges. Here we describe the chondrocyte response
(with initial seedings of 106 and 107 cells per sponge) by
quantitation of DNA content as well as gene expression
of collagens I, II and X and matrix metalloproteinases-2
and -13 (MMP-2 and -13), by RT-PCR on RNA isolated
after 1 month. We also measured the levels of total
collagen and collagens I and II neosynthesised after 7 and
30 days, the level of active and inactive MMP-2 after 7,
15 and 30 days and the content of sulphated glycosami-
noglycans deposited in the matrix after 30 days.

2. Materials and methods

2.1. Collagen sponges

Collagen scaffolds were made as previously described
[49]. In brief, collagen sponges, manufactured by
Coletica (Lyon, France), were made up of collagen
extracted from the skin of young calves containing 90–
95% (dry weight) native type I collagen and 4–9% type
III collagen. Control sponges (denoted by H) and DPPA
sponges (control sponges cross-linked using the diphe-
nylphosphorylazide method [49,72]; denoted by D) were
used in this study. Individual discs were cut out with a
10mm diameter punch before being sterilised with
15 kGy b radiation.

2.2. Chondrocyte seeding onto collagen scaffolds

After enzymatic isolation, fetal bovine chondrocytes
were cultured as previously described [49]. Briefly, each
sponge (10mm diameter� 6mm thick disc) was seeded
with 106 or 107 chondrocytes deposited onto the sponge

in a volume of 50 ml, then further incubated in 24-well
culture plates at 371C with 5% CO2 for 2 h. Subse-
quently, 2ml of complete culture medium [RPMI/
NCTC (v/v) medium (Seromeds, Strasbourg, France/
Sigma, Saint Quentin Fallavier, France) containing 10%
fetal calf serum (Seromeds), 50U/ml penicillin, 50 mg/
ml streptomycin and 1 ng/ml amphotericin] were added
to each well. The sponges were maintained in culture for
48 h to allow the cells to attach to the scaffold.

2.3. Cell-seeded sponge cultivation

Sponges were cultured in 24-well plates for 1 month,
changing the medium every 3 days. In some experi-
ments, fresh l-ascorbic acid was added to the medium
throughout the culture at various concentrations: 8mg/l
(0.05mm) for the first 24 h, 10mg/l (0.06mm) between 24
and 48 h and 25mg/l (0.14mm) thereafter. Throughout
the study, unseeded sponges were maintained in culture
as controls.

2.4. Cell proliferation

Numbers of chondrocytes per sponge were calculated
from the amounts of DNA measured using the Hoechst
33258 dye [73], based on the known DNA content per
chondrocyte of 8 pg [71].

2.5. Collagen synthesis and typing

Collagen synthesis was measured on days 7 and 30 by
labelling the culture with 20 mCi per sponge of 35S
methionine (1000Ci/mmol, SJ 204 Amersham Bios-
ciences, Orsay, France) for 14 h in fresh RPMI lacking
methionine and in the absence of fetal calf serum, as
previously described [69]. After labelling, the medium
and washed sponges were dialysed separately against
water to eliminate unincorporated radiolabel. Samples
were frozen, freeze-dried and submitted separately to
limited pepsin digestion as previously described [49].
Pepsin treatment with magnetic stirring almost totally
solubilised the sponges. The content of dpm in the
pepsin-treated samples gave the level of total protein
synthesis while pepsin-resistant proteins, assumed to be
collagenous, were retained following dialysis. After
lyophilisation or acetone precipitation (volume ratio
1:5) samples were dissolved in Laemmli’s buffer and
counted for their radioactive content.

Pepsin-digested samples were analysed by SDS-
PAGE using 6% separating gels under non-reducing
conditions, as previously described [49]. Volumes
corresponding to the same amount of material were
loaded on each lane of the gel. Bands corresponding to
types I, II and XI collagens were visualised by
fluorography and their relative proportions were quan-
tified densitometrically on the fluorographs with a

M.-C. Ronzi"ere et al. / Biomaterials 24 (2003) 851–861852

stephane
Zone de texte 



Personal Densitometer (Amersham Biosciences) using
Image Quant software as previously described [69].

2.6. Glycosaminoglycan content

Amounts of sulphated GAG deposited in the cultured
sponges were determined spectrophotometrically at
525 nm using dimethylmethylene blue dye and shark
chondroitin sulphate (Sigma) as standard [74].

2.7. Metalloproteinase analysis

Gelatinase activity was measured by gelatin-substrate
zymography as described [75] using the culture medium
from bovine chondrocytes grown in collagen sponges for
24 or 48 h in RPMI/NCTC medium without fetal calf
serum. From each culture medium 5–10 ml samples were
mixed with 4X Laemmli’s loading buffer and subjected
to electrophoresis in 8% polyacrylamide gels containing
0.1% gelatin. After electrophoresis, gels were washed
with 50mm Tris-HCl buffer (pH 7.5) containing 50mm

NaCl and 2.5% Triton X100 then incubated at 371C for
16 h in 50mm Tris-HCl buffer (pH 7.5) containing
50mm NaCl, 10mm CaCl2. Gels were stained with 0.5%
Coomassie brillant blue R-250, then destained and
analysed using a Personal densitometer and Image
Quant software (Amersham Biosciences).

2.8. Histology and immunochemistry

Samples were extensively rinsed in phosphate-buf-
fered saline (PBS), fixed for 24 h with 2.5% parafor-
maldehyde in PBS prior to inclusion in Tissue Tek OCT.
For general evaluation, sections (5–7 mm thick) were
stained with hematoxylin-eosin. Proteoglycan staining
was performed using safranin-O. For immunofluores-
cence staining, cryostat sections were post-fixed in 2.5%
paraformaldehyde in PBS for 1 h, rinsed in PBS, treated
with 0.2% hyaluronidase (Sigma Type III, 800U/mg) in
PBS for 1 h at 371C then incubated for 1 h in 1% bovine
serum albumin before treatment with monoclonal
antibodies. Antibodies against chicken type-II collagen
(Neomarkers, Interchim, Montlu-con, France) which
also recognise bovine protein and monoclonal antibo-
dies against bovine type-I collagen (Sigma) were used in
this study. Samples were then incubated for 1 h at room
temperature with the primary antibodies diluted in PBS/
1% BSA (1:100 for anti-type-II and anti-type-I col-
lagen), then washed with PBS and incubated with
fluorescein-conjugated goat anti-mouse serum. Samples
mounted in glycerol/PBS (1/1) were examined using a
Zeiss Universal microscope equipped for epifluores-
cence.

2.9. Total RNA extraction

RNA was extracted from the construct after 1 month
in culture using a RNeasy kit (Qiagen, Courtabœuf,
France). Additional steps included protein digestion
using proteinase K and on-column DNase digestion
using RNase-free DNase set (Qiagen). RNA was eluted
from the membrane with diethylpyrocarbonate-treated
water. RNA purity was confirmed spectrophotometri-
cally (260/280 ratio) and ranged between 1.6 and 2.1.

2.10. Reverse transcription and polymerase chain

reaction (RT-PCR)

Reverse transcription of 1 mg of total RNA was
carried out in a 40 ml reaction volume with 200 U of
SuperScript II RNase H� (GibcoBRL/Life Technolo-
gies, Cergy Pontoise, France) under the following
conditions, previously described [76]: 421C for 50min
and 701C for 15min, cDNA was then submitted to
RNase H digestion using 4 units of enzyme (GibcoBRL/
Life Technologies) for 30min at 371C. For PCR, specific
primers were designed for the Col1a1, Col1a2, Col2a1,
Col10a1, MMP-2, MMP-13 and Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) genes according
to their respective sequences (see Table 1). Each 50 ml
volume reaction contained: 1 ml RT product, 50 mm of
each dNTP, 0.2 mm each primer, 0.5–1.5mm MgCl2 and
2.5 U Amplitaq DNA polymerase (Applied Biosystems,
Les Ulis, France). A denaturation step of 2min at 941C
was carried out before the amplification step which
consisted of 23–40 cycles (23 cycles for GAPDH, Col1a2
and Col2a1, 31 cycles for MMP-2 and 40 cycles for
MMP-13, Col10a1 and Col1a1) of 30 s at 941C, 30–45 s
at the annealing temperature, 45 s at 721C followed
by a final extension step of 5min at 721C. All PCR
products were subcloned into the pCR 2.1-TOPO
vector (Invitrogen, Groningen, The Netherlands) and
subjected to sequencing for their identification (Genome
Express SA, Grenoble, France). Amplified products
were analysed by electrophoresis on 2% agarose gels
followed by staining with ethidium bromide. The
amplification signal obtained for the GAPDH gene
was used to normalise the amount of cDNA in each
sample.

3. Results

3.1. Cell proliferation

Total amounts of DNA were determined in sponges
seeded with 106 and 107 chondrocytes cultured in
control (H) and cross-linked (D) scaffolds and in
medium either supplemented or not with ascorbic
acid. No significant differences were observed between
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control and DPPA sponges. With 106 cells per sponge
(Fig. 1), chondrocyte numbers consistently increased
with time reaching, in the absence of ascorbic acid and
after 4 weeks in culture in the control and cross-linked
sponges, 3.5� 106 and 4.9� 106 cells respectively. In
contrast, in the presence of ascorbic acid, almost 2-fold
increases in cell number were observed, reaching
6.5� 106 and 8.5� 106 cells, respectively. With 107 cells
per sponge, after an initial decrease, cell numbers
remained constant throughout culture, again with high-
er values in the presence of ascorbate (12–15� 106 cells
in cross-linked sponges).

3.2. Analysis of matrix components

3.2.1. Chondrocyte gene expression in the presence or

absence of ascorbic acid

The effects of ascorbic acid in the culture medium
using sponges seeded with 106 and 107 cells were
examined on day 30 by comparing relative gene

Table 1

Nucleotide sequences of primers used for RT-PCR

Genes Primers Strand Product size (bp) Annealing

temperature (1C)

Reference

GAPDH ATCACTGCCACCCAGAAGAC + 443 57 Bluteau et al. (2001)

ATGAGGTCCACCACCCTGTT –

Col1a1 CACCTACCACTGCAAGAACAG + 513 45 Personal data

GAATGCACTTTTGGTTTTTGGTG –

Col1a2 GGTTACTACTGGATTGACCC + 425 55 AB008683

GCAGCCATCTACAAGAACAG –

Col2a1 GATCCGCAACATGGAGACTGGCGA + 527 75 Personal data

CAAGAAGCAGACAGGCCCTATGTCCAC –

Col10a1 GCAACAGCATTATGACCCA + 340 51 BTCOL10A1

CACCAAAGGAAGCCATCG –

MMP-2 GGAACAGATCACATACAGG + 414 51 AF135231

CACCAAAGGAAGCCATCG –

MMP-13 GATGCCATAACCAGTCTCC + 488 51 AF072685

GCTGTATTCAAACTGTATGG –

Primers are presented in the 50-30 orientation. No sequences for Col1a1 and Col2a1 are available in the databank; oligonucleotides were designed

from sequences determined in our laboratory. GAPDH primers were obtained from the literature.

Fig. 1. Effect of ascorbic acid on the proliferation of bovine

chondrocytes seeded in collagen sponges. Cells were seeded in either

control sponges (H) or in DPPA sponges (D) at one million (106) and

10 million (107) cells per sponge. Cell numbers were quantified by

measuring the DNA content of the sponges after 7, 13 and 30 days of

culture in absence and in the presence of ascorbic acid. Values

represent the average levels 7 SEM of three separate experiments.

1po0.07; 11po0.03 and 111po0.01 when untreated cultures were

compared with treated cultures.

Fig. 2. Expression of selected genes by bovine chondrocytes grown in

collagen sponges with (asc +) and without (asc �) ascorbic acid

present throughout the culture. After 1 month in culture, RNAs were

extracted from control (H) and cross-linked DPPA (D) sponges,

initially seeded with 106 and 107 cells, followed by RT-PCR as

described under Materials and Methods.

M.-C. Ronzi"ere et al. / Biomaterials 24 (2003) 851–861854

stephane
Zone de texte 



transcript levels in chondrocytes grown in treated or
untreated cultures. As shown in Fig. 2, on the whole,
increases were noted in the expression of all genes
studied (types II, I (a1 and a2 chains), X collagens and
MMPs-2 and -13) as a result of ascorbic acid treatment
for both types of scaffold and for sponges seeded with
106 and 107 cells. In particular, the greatest increase in
gene expression as a result of ascorbic acid treatment
was observed with the sponges seeded with 106 cells for
type I (a2 chain) collagen and MMPs-2 and -13. Type X
collagen mRNA expression was detected in the DPPA-
treated sponges (after 40 PCR cycles) in the presence of
ascorbic acid.

3.2.2. Collagen synthesis and immunolocalisation

In order to confirm the data obtained at the gene
level, we measured neosynthesis of total collagen as well
as individual types I and II collagens, expressed per mg
of DNA and either deposited in the sponge or secreted
into the culture medium, on days 7 and 30 of culture
after labelling for 14 h with 35S methionine (Fig. 3).
Whatever the culture conditions used (both types of
support, under both seeding conditions and with or
without ascorbate) collagen synthesis levels (per cell)
and the percentage of neosynthesised collagen deposited
in the sponge (75–85% of the total) showed only slight
and insignificant variations with the exception of a net
decrease in the collagen synthesised per cell after 30 days
in sponges seeded with 106 cells in the presence of
ascorbate (Fig. 3 B1).

The main differences observed between cultures with
or without ascorbate concerned the neosynthesised type
I/type II collagen ratio. In the absence of ascorbate
(Fig. 3 C1) small amounts of type I collagen (5–15% of
total) were observed mostly after 30 days and especially
in the culture medium. In the presence of ascorbate,
these values reached 10–35% of the collagen deposited
in the sponge (Fig. 3 D1) and 30–45% of the collagen
secreted into the medium (Fig. 3 D2). Immunohistology
with antibodies against types II and I collagens (Fig. 4)
demonstrated that type II collagen was located mostly
where cells were forming aggregates in both types of
scaffold and was more abundant (even in the presence of
ascorbate (Fig. 4a)) than type I collagen, present either
in small patches throughout the sponges (Fig. 4b) or at
the periphery of the scaffold. It is interesting to note that
the initial scaffold, still clearly detectable after 1 month
culture, was not recognised by the antibodies against
native type I collagen.

3.2.3. GAG content

Sulphated glycosaminoglycan (sGAG) content was
similar in both control and cross-linked sponges and
was dependent on initial cell density (Fig. 5). After 30
days in culture in absence of ascorbic acid, the amounts
of sGAG in both types of sponge reached a maximum of

0.9mg in sponges initially seeded with 107 cells and only
0.15mg in sponges initially seeded with 106 cells. This
low deposition of sGAG in the latter case, was not
modified by the addition of ascorbic acid, whereas after
1 month in culture a slight increase in sGAG was shown
in native and cross-linked scaffolds for sponges seeded
with 107 cells (+31 and +17% respectively) as
compared with untreated cultures. The net difference
in sGAG content in the sponges seeded with 106 and 107

cells was clearly demonstrated by histology using
Safranin O staining (Fig. 4c and d).

3.3. Metalloproteinase analysis

To investigate the involvement of MMPs in neomatrix
production, the culture media were analysed for
gelatinase activity (MMP-2 and-9) by gelatin substrate
zymography (Fig. 6A). Traces of proMMP-9 were only
detected for cultures in native sponges. Most of the
MMP-2 was present as inactive forms in spent media
and the total content of the pro- and active forms
increased with time to reach values that were not
significantly different either without ascorbic acid
(Fig. 6 B1) or with (Fig. 6 B2). However, a higher
percentage of an active form of MMP-2) was noted after
30 days in the presence of ascorbic acid (Fig. 6 C2) than
in its absence (Fig. 6 C1) (12–18% instead of 8–10%
respectively). MMP-13 activity was not detected in the
medium tested for MMP-2 even after a 10-fold
concentration of the medium.

4. Discussion

Many physiological and biochemical processes appear
to be influenced by ascorbate [77], this being an essential
requirement in normal connective tissue metabolism and
collagen formation. As a reducing agent, ascorbate is a
cofactor for prolyl and lysyl hydroxylase and its absence
prevents the efficient secretion of procollagen. Further-
more, ascorbate is also thought to enhance the
transcription of procollagen mRNA in fibroblasts [78]
without changing the rate of intracellular degradation.
Ascorbate, in the form of stable derivatives such as
vitamin C-phosphate, was also shown to improve cell
proliferation when added in culture of rabbit renal
proximal tubular cells [79], in combination with
dexamethasone in culture of human anterior cruciate
ligament cells [80] or in combination with bFGF in
culture of human vascular myofibroblasts in PGA-
P4HB coated scaffold [81]. Together with several others,
our group has examined the effects of ascorbate on
growth and synthesis of matrix components by cultured
chondrocytes of different origins when plated both at
low [82–87] and high [71,88,89] cell densities and as
explants [90]. In addition, chondrocyte culture in a 3D
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environment (within natural or synthetic matrices) is
now an active domain of research in the preparation of
cell-seeded matrices for use as implants to facilitate
cartilage repair. Among the bioactive factors thought to
be involved in the generation of cartilaginous constructs
in vitro several growth factors (PDGF, EGF, TGF-b,
FGF, IGF) have been tested [15,24,40,61,91,92], while

the specific influence of ascorbate has not yet been
investigated in detail, even though most of the culture
medium usually contains ascorbic acid.

We have thus completed our previous study [49] on
the growth and metabolism of fetal epiphyseal chon-
drocytes cultured within collagen sponges but carried
out without the addition of fresh ascorbic acid. Several

Fig. 3. Effect of ascorbic acid on the levels of collagens neosynthesised by bovine chondrocytes grown in collagen sponges and incubated with 35S

methionine for the last 14 h of culture on days 7 and day 30. Neosynthesised collagen (expressed in dpm/mg DNA� 10�4) deposited in the sponges in

the absence of ascorbic acid (A1) and in its presence (B1). Neosynthesised collagen secreted into the culture medium in the absence of ascorbic acid

(A2) and in its presence (B2). Levels of types II and I collagen (expressed as % of collagen types XI, II and I separated on SDS-PAGE and quantified

as described in Materials and Methods) deposited in the sponges in the absence of ascorbic acid (C1) and in its presence (D1). Levels of types II and I

collagen secreted into the culture medium in the absence of ascorbic acid (C2) and in its presence (D2).
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interesting results have been obtained regarding these
parameters in this study. First, the addition of ascorbate
induced a net increase in cell proliferation (almost a 2-
fold increase after 1 month culture when compared to
culture without ascorbate), independent of the initial
cell-seeding density and of the nature of the collagen
sponge (cross-linked or not). As previously observed [49]
chondrocyte growth rate was dependent on initial cell-
seeding density. With a low initial cell-seeding density
(2.3� 106 cells/cm3) and after 1 month culture, we
observed an up to 8.5-fold increase in cell numbers
within the sponge. This result can be compared to
growth rates obtained by different authors for chon-
drocytes cultured at similar low initial cell-seeding
densities (0.5–2� 106 cells/cm3) and in the presence of

Fig. 6. Effect of the presence of ascorbic acid throughout the culture

on the secretion of MMPs-2 and -9 into the medium by bovine

chondrocytes grown in collagen sponges. Cells were seeded at 106 and

107 per control (H) and DPPA (D) sponges. The sponges were

transferred to serum-free medium 48 h before harvesting the condi-

tioned media samples at days 7, 15 and 30. (A) Culture media,

harvested on day 30, subjected to gelatin zymography. (B) Histograms

showing expression levels in arbitrary units (intensity per cell) of total

MMP-2 (pro-MMP-2 and active MMP-2) in culture in the absence

(B1) or presence (B2) of ascorbic acid. (C) Histograms showing the

percent active MMP-2 compared with total MMP-2 in the culture

medium in the absence (C1) or presence (C2) of ascorbic acid.

Fig. 4. Immunohistology of collagen types II and I and glycosami-

noglycan staining of native collagen sponges initially seeded with fetal

bovine chondrocytes and grown for 1 month with ascorbic acid. (a)

immunolabelling with antibodies against type II collagen in sponges

initially seeded with 107 cells (� 150); (b) immunolabelling with

antibodies against type I collagen in sponges initially seeded with

107 cells (� 150). Glycosaminoglycan staining with safranin O, in

sponges initially seeded with (c) 106 cells and (d) 107 cells (� 150).

Bar=100mm. Arrow heads indicate the sponge and stars the

deposition of GAG.

Fig. 5. Effect of ascorbic acid added throughout the culture on the

total sulphated glycosaminoglycan (sGAG) content in collagen

sponges. Cells were seeded in either control (H) or in DPPA (D)

sponges at 106 and 107 cells per sponge. sGAG content was measured

by a colorimetric method with dimethylmethylene blue. Data are

presented as the mean7SD of triplicate samples.
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ascorbate but in different 3D environments: 5-fold and
2.25-fold increases with rabbit [43] and human [45]
chondrocytes, respectively, after 1 month culture in
collagen gels, a 2.2-fold increase with bovine chondro-
cytes after 57 days in an alginate disk [22], and a 2.2-fold
with sheep articular chondrocytes after 9 weeks in a poly
(l/dl-lactide) porous scaffold [60]. With a high initial
cell-seeding density (2.3� 107 cells/cm3) cell losses were
observed at the beginning of the culture followed by
limited cell growth (maximum 1.5-fold increase after 1
month with ascorbate) as previously noted by several
authors using collagen-GAG [42], polyglycolic acid [52]
or fibrin [15] scaffolds and similar or higher initial cell-
seeding densities. These culture conditions gave prolif-
eration levels similar to those we obtained previously
with the same chondrocytes plated at a high cell density
(0.8� 106 cells/cm2) on plastic [71].

Second, metabolic activities of the chondrocytes were
compared, with or without ascorbate, by analysing the
expression and synthesis of different collagens and
MMPs. With ascorbate, we observed an increase in
the expression of genes encoding collagen types I, II and
X and MMPs-2 and 13 after normalisation to a
reference mRNA (GAPDH) but non-significant in-
creases in global collagen synthesis (dpm/mg DNA)
and sulphated glycosaminoglycan content of the
sponges. After metabolic labelling of the cultures with
35S methionine, pepsin treatment and SDS-PAGE, we
confirmed the relative increase with ascorbate of type I
collagen synthesis with a 2-3-fold increase in the ratio of
neosynthesised collagen types I to II. Even though type
II collagen remained the main collagen synthesised and
present in the sponge (as shown by immunohistology)
after 1 month culture with ascorbate, the high amounts
of type I collagen produced (up to 35% of total collagen
deposited in the sponge and up to 45% of total collagen
secreted in the medium) demonstrate the induction of a
partial loss of the cartilaginous phenotype by ascorbate.
Furthermore, as traces of type X collagen mRNA were
detected in cross-linked sponges after 1 month with
ascorbate, we confirm here that the gene expression of
chondrocytes cultured in a 3D environment may be
significantly influenced by ascorbate as previously
shown with the same cells [71] or with avian, mouse or
bovine chondrocytes [84–89] plated at low or high cell
densities on plastic. This ascorbate induced maturation
was not accompanied by increased synthesis of total
collagen and proteoglycan and deposition of a more
abundant extracellular matrix within the collagen
sponges. It was previously suggested that ascorbate
modulation of chondrocyte gene expression was inde-
pendent of its role in collagen secretion [85].

Matrix metalloproteinases (MMPs) play important
roles in the turnover of matrix components in normal
cartilage. As several data support the hypothesis where-
by matrix degradation in degenerative articular cartilage

could be promoted by an imbalance between the levels
of MMPs and their inhibitors, we analysed the influence
of ascorbate on gene expression and synthesis of MMPs-
2, -9 and -13 by chondrocytes in our 3D culture
conditions. Ascorbate induced a net increase in both
MMP-2 and MMP-13 mRNA, but at the protein level,
only MMP-2 was detected by gelatin zymography with
an increase in its active form (12–18% of total) whereas
MMP-13 activity was undetectable. Parallel induction
by ascorbate of collagen X and MMP-2 and -13 mRNA
is consistent with a previous report [93] that mature
hypertrophic chondrocytes are characterised by high
MMP-2 and MMP-13 mRNA. However, although
MMP-2 can activate pro-MMP-13 [94], its low levels
as an active form under our culture conditions, even in
the presence of ascorbate, could explain the absence of
MMP-13 as an active enzyme.

In conclusion, evidence is provided of an important
role for ascorbic acid in the regulation of chondrocyte
development and matrix formation during culture in
porous 3D collagen sponges. Under these conditions
ascorbate stimulates chondrocyte proliferation but does
not increase cartilage matrix synthesis (at least after 1
month culture) and progressively alters the phenotypic
expression of these cells. Thus further studies to evaluate
the potential of various scaffolds and culture conditions
(for example the effects of growth factors and/or
mechanical stimuli) in preparing functional cartilage
implants should take into account, contrary to most
recent studies, the presence or absence of ascorbic acid
in the culture medium as an important biological
parameter.
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