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). Among them, halo orbits are 3-dimensional periodic orbits diffeomorphic to circles. They are the first kind of the socalled Lissajous orbits. To be selfcontained, we first provide a survey on the circular restricted three-body problem, recall the concepts of Lagrange point and of periodic or quasi-periodic orbits, and recall the mathematical tools in order to show their existence. We then focus more precisely on Lissajous orbits of the second kind, which are almost vertical and have the shape of an eight -we call them eight-shaped Lissajous orbits. Their existence is also well known, and in the Earth-Moon system, we first show how to compute numerically a family of such orbits, based on Linsdtedt Poincaré's method combined with a continuation method on the excursion parameter. Our original contribution is in the investigation of their specific stability properties. In particular, using local Lyapunov exponents we produce numerical evidences that their invariant manifolds share nice global stability properties, which make them of interest in space mission design. More precisely, we show numerically that invariant manifolds of eightshaped Lissajous orbits keep in large time a structure of eight-shaped tubes. This property is compared with halo orbits, the invariant manifolds of which do not share such global stability properties. Finally, we show that the invariant manifolds of eight-shaped Lissajous orbits (viewed in the Earth-Moon system) can be used to visit almost all the surface of the Moon.

Introduction

In the restricted three-body problem, the existence of periodic orbits around the Lagrange points is very well known. Lyapunov orbits (planar orbits) are quite easy to compute and Richardson's work (see [START_REF] Richardson | Analytic construction of periodic orbits about the collinear points[END_REF]) provides a third-order approximation of the classical halo orbits (3-dimensional orbits isomorphic to ellipses) which allows to compute families of halo orbits using a shooting method. Besides Lyapunov and halo orbits, there exist other types of periodic orbits around the Lagrange points, in particular Lissajous orbits (see [START_REF] Gómez | Lissajous orbits around halo orbits[END_REF][START_REF] Gómez | Quasihalo orbits associated with libration points[END_REF][START_REF] Gómez | Dynamics and mission design near libration points, Volumes I, II (Fundamentals: The Case of Collinear Points; Advanced Methods for Collinear Points[END_REF][START_REF] Gómez | Dynamics and mission design near libration points. Volumes III, IV (Advanced methods for collinear points; Advanced methods for triangular points[END_REF][START_REF] Howell | Numerical determination of Lissajous orbits in the restricted three-body problem[END_REF][START_REF] Jorba | Dynamics in the center manifold of the collinear points of the restricted three-body problem[END_REF]). Among those periodic orbits, we focus here on the Lissajous periodic orbits of the second kind, that are almost vertical and have the shape of an eight, and that we call eight-shaped Lissajous orbits. In the first part of this article, we report on the circular restricted three-body problem, recall the main underlying mathematical issues of dynamical systems theory, and then explain how to compute families of eight-shaped Lissajous orbits using a Newton's method that we combine with a continuation method on the excursion parameter. A third-order approximation of eight-shaped Lissajous orbits is calculated using Linstedt Poincaré's method, which is used as an initial guess. The first part of this article (Sections 1 and 2) presents known results, and can be seen as a survey whose goal is to provide a selfcontained article. Our original contribution is mainly in the second part of the work (Section 3), in which stability properties of invariant manifolds of eight-shaped Lissajous orbits are studied and compared to the ones of halo orbits. Using local Lyapunov exponents, we prove that invariant manifolds of eight-shaped Lissajous orbits share strong global stability properties which make them of great interest in mission design analysis. Finally, to provide a relevant example of their applicability, we investigate the accessibility to the Moon surface exploration using eight-shaped Lissajous manifolds.

1.1. Recalls on the circular restricted three-body problem

The circular restricted three-body problem concerns the movement of a body P in the gravitational field of two masses m 1 and m 2 , where the mass of P is negligible with respect to m 1 and m 2 . The masses m 1 and m 2 (with m 1 ≥ m 2 ) are called the primaries and are assumed to have circular coplanar orbits with the same period around their center of mass. In this problem, the influence of any other body is neglected. If the body P is further restricted to move in the plane of the two primaries, the problem is then called planar circular restricted three-body problem. In the solar system it happens that the circular restricted three-body problem provides a good approximation for studying a large class of problems. In our application, the Earth-Moon system shall be considered. Thus, the primaries are the Earth and the Moon and gravitational forces exerted by any other planet or any other body are neglected.

In an inertial frame, the primaries positions and the equations of motion of P are timedependent. It is thus standard to derive the equations of motion of P in a rotating frame whose rotation speed is equal to the rotation speed of the primaries around their center of mass, and whose origin is in the orbital plane of the masses m 1 and m 2 . In such a frame, the positions of m 1 and m 2 are fixed. We consider the rotating frame with the x axis on the m 1 -m 2 line and with origin at the libration point under consideration. The masses m 1 and m 2 move in the xy plane and the z axis is orthogonal to this plane. In addition, we use an adimensional unit system with the following agreements: the distance between the Lagrange point under consideration and the closer primary is equal to 1; the sum of the masses m 1 and m 2 is equal to 1; the angular velocity of the primaries is equal to 1. The body is submitted to the gravitational attraction forces exerted by the primaries, the Coriolis force and the centrifugal force. Let X = (x, y, z, ẋ, ẏ, ż) T = (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) T denote the position and velocity vector of P in the rotating frame. The equations of motion are

ẍ -2 ẏ = ∂Φ ∂x , ÿ + 2 ẋ = ∂Φ ∂y , z = ∂Φ ∂z (1.1)
where

Φ(x, y, z) = x 2 + y 2 2 + 1 -µ r 1 + µ r 2 + µ(1 -µ) 2 , r 1 = (x + µ) 2 + y 2 + z 2 , r 2 = (x -1 + µ) 2 + y 2 + z 2 ,
and x = x 1 and y = x 2 are the abscisses of the primaries m 1 and m 2 . Recall that these equations have a trivial first integral, called Jacobi integral,

J = x 2 + y 2 + 2 1 -µ r 1 + 2 µ r 2 + µ(1 -µ)) -( ẋ2 + ẏ2 + ż2 ),
related to the energy. Hence, if an energy level is fixed then the solutions live in a 5-dimensional energy manifold. The study of that manifold determines the so-called Hill's region of possible motions (see e.g. [START_REF] Koon | Dynamical Systems, the three-body problem and space mission design[END_REF]). The Lagrange points are the equilibrium points of the circular restricted three-body problem. Euler [START_REF] Euler | De motu rectilineo trium corporum se mutuo attrahentium[END_REF] and Lagrange [START_REF] Lagrange | Essai sur le problème des trois corps[END_REF] proved the existence of five equilibrium points: three collinear points on the axis joining the center of the two primaries, generally noted L 1 , L 2 and L 3 , and two equilateral points noted L 4 and L 5 (see Figure 2).

Figure 2. Lagrange points

For a precise computation of the Lagrange points we refer the reader to [START_REF] Szebehely | Theory of orbits: the restricted problem of three bodies[END_REF] (see also [START_REF] Koon | Dynamical Systems, the three-body problem and space mission design[END_REF]). We recall that the collinear points are shown to be unstable (in every system), whereas L 4 and L 5 are proved to be stable under some conditions (see [START_REF] Meyer | Introduction to Hamiltonian dynamical systems and the N-body problem[END_REF]). Actually, it follows from a generalization of a theorem of Lyapunov (due to Moser [START_REF] Moser | On the generalization of a theorem of A. Lyapunov[END_REF]) that, for a value of the Jacobi integral a bit less than the one of the Lagrange points, the solutions of the nonlinear system have the same qualitative behavior as the solutions of the linearized system, in the vicinity of the Lagrange points.

Let us focus on the three collinear Lagrange points. It is standard to expand the nonlinear terms 1 r 1 and 1 r 2 as series in Legendre polynomials, using the formula

1 (x -A) 2 + (y -B) 2 + (z -C) 2 = 1 D +∞ n=0 ρ D n P n Ax + By + Cz Dρ ,
where

D 2 = A 2 + B 2 + C 2 and ρ = x 2 + y 2 + z 2
, and the equations of motion (1.1) around the libration points L i , i = 1, 2, 3, can be written as

ẍ -2 ẏ -(1 + 2c 2 )x = ∂ ∂x n≥3 c n ρ n P n x ρ , ÿ + 2 ẋ + (c 2 -1)x = ∂ ∂y n≥3 c n ρ n P n x ρ , (1.2) 
z + c 2 z = ∂ ∂z n≥3 c n ρ n P n x ρ ,
where

c n = 1 γ (n+1) i µ + (1 -µ)γ (n+1) i (1 -γ i ) (n+1) .
Here, γ i denotes the distance between the Lagrange point L i and the second primary. At the Lagrange points L 1 , L 2 , L 3 , the linearized system consists of the linear part of equations

(1.2), that is, ẍ -2 ẏ -(1 + 2c 2 )x = 0, ÿ + 2 ẋ + (c 2 -1)x = 0, (1.3) z + c 2 z = 0.
It is of the kind saddle×center×center, with eigenvalues (±λ, ±iω p , ±iω v ), where

λ 2 = c 2 -2 + 9c 2 2 -8c 2 2 , ω 2 p = 2 -c 2 + 9c 2 2 -8c 2 2 , ω 2 v = c 2 .
Lyapunov-Poincaré's Theorem implies the existence of a two-parameter family of periodic trajectories around each point (see [START_REF] Meyer | Introduction to Hamiltonian dynamical systems and the N-body problem[END_REF], or see for instance [START_REF] Bonnard | Mécanique céleste et contrôle des véhicules spatiaux[END_REF]). One can also see this twoparameter family as two one-parameter families of periodic orbits. Halo orbits are periodic orbits around the Lagrange points, which are diffeomorphic to circles (see [START_REF] Breakwell | The halo family of 3-dimensional of periodic orbits in the Earth-Moon restricted 3-body problem[END_REF]). Their interest for mission design was first pointed out by Farquhar (see [START_REF] Farquhar | Station-keeping in the vicinity of collinear libration points with an application to a Lunar communications problem[END_REF][START_REF] Farquhar | A halo-orbit lunar station[END_REF]). Other families of periodic orbits, called Lissajous orbits, have been identified and computed in [START_REF] Gómez | Lissajous orbits around halo orbits[END_REF], as well as quasi-periodic orbits (see [START_REF] Gómez | Quasihalo orbits associated with libration points[END_REF]). Halo orbits can be seen as Lissajous orbits of the first kind, and in the present article we focus on Lissajous orbits of the second kind, diffeomorphic to eight-shaped curves. In Section 2 we recall how to prove their existence and explain a way to compute them.

Given a periodic orbit around a Lagrange point, the stable (resp. unstable) manifold of this orbit is defined as the submanifold of the phase space consisting of all points whose future (resp. past) semi-orbits converge to the periodic orbit (such orbits are said asymptotic). It is well known that invariant manifolds of Lissajous orbits act as separatrices in the following sense (see [START_REF] Gómez | Connecting orbits and invariant manifolds in the spatial three-body problem[END_REF]): invariant manifolds can be seen as 4-dimensional tubes, topologically equivalent to S 3 × R, in the 5-dimensional energy manifold mentioned previously. Due to this dimension feature, it happens that they separate two kinds of orbits, called transit orbits and non-transit orbits. The transit orbits are defined as orbits passing from one region to another, inside the 4-dimensional tubes. The non-transit orbits are outside the tubes.

Eight-shaped Lissajous orbits

Periodic solutions of the linearized equations

Let us first investigate the solutions of the linearized system (1.3) around L i , for i = 1, 2, 3. If the initial conditions are restricted to non divergent modes, the bounded solutions of the linear system are written as

x(t) = -A x cos(ω p t + φ), y(t) = κA y sin(ω p t + φ), z(t) = A z cos(ω v t + ψ), (2.1)
where

κ = w 2 p + 1 + c 2 2ω p = 2λ λ 2 + 1 -c 2 ,
and A x , A y and A z are generally referred to as the x-excursion, y-excursion and z-excursion.

One can immediately observe that the bounded solutions of the linear system are periodic if the in-plane and the out-of-plane frequencies, ω p and ω v , have a rational ratio. Moser's Theorem mentioned previously implies that bounded trajectories can also be found for the nonlinear system. They can be seen as perturbations of the bounded trajectories of the linear system, the nonlinear terms acting on the amplitudes and the frequencies. This change of frequencies induced by the nonlinearities has been used by Richardson to calculate an approximation of halo orbits (see [START_REF] Richardson | Analytic construction of periodic orbits about the collinear points[END_REF]). In the next section we use this strategy to calculate an approximation of eight-shaped Lissajous orbits.

In the expression of the bounded solutions of the linear system, the values of the frequencies ω p and ω v are naturally determined from the system and the libration point under consideration. But, as explained before, these eigenfrequencies change for the nonlinear system. If the nonlinearities generate equal frequencies ω p = ω v , then halo orbits are obtained. This was the method used by Richardson to calculate an approximation of halo orbits. Similarly, Lissajous orbits can be obtained whenever the quotient of the two eigenfrequencies is rational but different of 1 (see [START_REF] Gómez | Lissajous orbits around halo orbits[END_REF][START_REF] Gómez | Quasihalo orbits associated with libration points[END_REF]).

Lindstedt Poincaré's method

To calculate approximations of periodic solutions around the libration points, we use Lindstedt-Poincaré's method, based on the vision that the nonlinearities change the solutions of the linearized system by changing their eigenfrequencies. This method is well known and has been very well surveyed e.g. in [START_REF] Masdemont | High order expansions of invariant manifolds of libration point orbits with applications to mission design[END_REF]. The idea is that periodic or quasi-periodic solutions of the linearized system (1.3) are characterized by an harmonic motion in the so-called in-plane (xy) with a certain period, and an oscillation in the so-called out-of-plane z direction with another possible period. For instance, to compute periodic halo orbits, one imposes that both periods coincide. To compute planar and vertical Lyapunov families of periodic orbits, it suffices to take one of the two amplitudes equal to zero; notice that these families of Lyapunov orbits tend to the libration point whenever the amplitude tends to zero (see [START_REF] Masdemont | High order expansions of invariant manifolds of libration point orbits with applications to mission design[END_REF] and references therein for more details).

Here, since we aim at computing an eight-shaped Lissajous orbit, we consider a nominal eightshaped orbit, with frequencies ω p and ω v satisfying ω v = ωp 2 . With such values, the linearized equations are written as

ẍ -2 ẏ -(1 + 2c 2 )x = 0, ÿ + 2 ẋ + (c 2 -1)y = 0, z + ωp 2 2 z = 0, (2.2)
and have periodic orbits parametrized by

x(t) = -A x cos(ω p t + φ), y(t) = κA y sin(ω p t + φ), z(t) = A z cos( ωp 2 t + ψ), • (2.3) 
which are eight-shaped, diffeomorphic to the solution drawn on Figure 3. Imposing

ω v = ωp 2 in the equations of motion (1.2) leads to ẍ -2 ẏ -(1 + 2c 2 )x = ∂ ∂x n≥3 c n ρ n P n x ρ , ÿ + 2 ẋ + (c 2 -1)y = ∂ ∂y n≥3 c n ρ n P n x ρ , (2.4) 
z + ω p 2 2 z = ∂ ∂z n≥3 c n ρ n P n x ρ + ∆z, where ∆ = ( ωp 2 ) 2 -ω 2 v .
In such a way, the reference orbit of the Linsdtedt-Poincaré's method is enforced to an eight-shaped orbit. Then, to take into account the fact that the nonlinearities change the eigenfrequencies, the Linsdtedt-Poincaré's method consists in considering time-varying frequencies in the following way. Set τ = νt, and consider the corrected frequency

ν = 1 + n≥1 ν n , ν n < 1.
The method consists in tuning iteratively the parameters ν n so as to filter out all secular terms appearing in the expansion of the solution and causing a blow up. Let us introduce several notations and assumptions. First, for every integer p and all elements v and w of R p , of coordinates in the canonical basis of

R p , v =      v 1 v 2 . . . v p      and w =      w 1 w 2 . . . w p      , define v • * w ∈ R p as the vector v • * w =      v 1 w 1 v 2 w 2 . . . v p w p     
.

With this notation, the reference solution is written as

q ref (τ ) =   A x A x A z   • *   -cos(ω p τ + φ) κ sin(ω p τ + φ) sin( ωp 2 τ + ψ)   = Ā • * q 0 (τ ).
The reference solution being considered as the first term of a series expansion, it is natural to seek a periodic solution in the form of a series in Ā,

q(τ ) =   x(τ ) y(τ ) z(τ )   = Ā • * q 0 + Ā2 • * q 1 + Ā3 • * q 2 + . . . =   Ax 0 (τ ) + A 2 x 1 (τ ) + A 3 x 2 (τ ) + . . . Ay 0 (τ ) + A 2 y 1 (τ ) + A 3 y 2 (τ ) + . . . Az 0 (τ ) + A 2 z 1 (τ ) + A 3 z 2 (τ ) + . . .  
(2.5) where A n denotes the two-variables polynomial of degree n

A n = n l,p=1 l+p=n λ l,p A l x A p z .
Note that considering an n-th-order approximation of the solution amounts to truncating the series expansion at order n. Finally, the ν n are assumed to have the same order as A n . We next rewrite the equations of motion in terms of these variables,

ν 2 ẍ -2ν ẏ -(1 + 2c 2 )x = 3 2 (2x 2 -y 2 -z 2 ) + 2c 4 x(2x 2 -3y 2 -3z 2 ) + 0(4), ν 2 ÿ + 2ν ẋ + (c 2 -1)y = -3c 3 xz - 3 2 c 4 y(4x 2 -y 2 -z 2 ) + 0(4), (2.6 
)

ν 2 z + ( ω p 2 ) 2 z = -3c 3 xz - 3 2 c 4 z(4x 2 -y 2 -z 2 ) + ∆z + 0(4),
where the remainder term O(4) contains terms of order greater than or equal to 4. Then, plugging the series expansion (2.5) into (2.6), one gets:

• at the first order in A:

A x ẍ0 -2A x ẏ0 -(1 + 2c 2 )A x x 0 = 0, A x ÿ0 + 2A x ẋ0 + (c 2 -1)A x y 0 = 0, A z z0 + A z ( ω p 2 ) 2 z 0 = 0;
• at the second order in A:

A 2 ẍ1 -2A 2 ẏ1 -(1 + 2c 2 )A 2 x 1 = -2ν 1 A x ẍ0 + 2ν 1 A x ẏ0 + 3 2 2A 2 x x 2 0 -A 2 x y 2 0 -A 2 z z 2 0 , A 2 ÿ1 + 2A 2 ẋ1 + (c 2 -1)A 2 y 1 = -2ν 1 A x ÿ0 -2ν 1 A x ẋ0 -3c 3 A 2 x x 0 y 0 , A 2 z1 + ( ω p 2 ) 2 A 2 z 1 = -2ν 1 A z z0 -3c 3 A x A z x 0 z 0 ;
• at the third order in A:

A 3 ẍ2 -2A 3 ẏ2 -(1 + 2c 2 )A 3 x 2 = -2ν 1 A 2 ẍ1 -(ν 1 + 2ν 2 )A x ẍ0 + 2ν 1 A 2 ẏ1 +2A 3 ẏ2 + 2ν 2 A x ẏ0 , A 3 ÿ2 + 2A 3 ẋ2 + (c 2 -1)A 3 y 2 = -2ν 1 A 2 ÿ1 -2ν 1 A 2 ẋ1 -(ν 2 1 + 2ν 2 )A x ÿ2 -2ν 2 A x ẋ0 -3c 3 (A x A 2 x 0 y 1 + A x A 2 y 0 x 1 ) - 3 2 c 4 A x y 0 (4A 2 x x 2 0 -A 2 x y 2 0 -A 2 z z 2 0 ), A 3 z2 + ( ω p 2 ) 2 A 3 z 2 = -2ν 1 A 2 z1 -(ν 2 1 + 2ν 2 )A z z0 -3c 3 (A x A 2 x 0 z 1 + A z A 2 x 1 z 0 ) + ∆A z z 0 .
The Lindstedt-Poincaré's method now consists in determining the coefficients ν n in function of A x and A z so as to filter out the secular terms that appear in the expansion of the solution. At the first order in A, we recover the expected solution

  x 0 (τ ) y 0 (τ ) z 0 (τ )   =   -cos(ω p τ + φ) κ sin(ω p τ + φ) sin( ωp 2 τ + ψ)   .
At the second order in A, the equations in x and y are decoupled from the equation in z, and it is possible to choose ν 1 so as to filter out the possible secular terms that appear whenever modes of the second member of the differential equation coincide with modes of the first member. In our case, the modes of the equation without second member remain the same, that is (±λ, ±iω p ). As a consequence, in the right-hand side, terms of frequency ω p must be cancelled. The terms in x2 0 , y 2 0 , z 2 0 and x 0 z 0 do not raise any problem since they are linearized into 1, cos(2ω p τ ), sin(2ω p τ ). The terms ẍ0 , ÿ0 , ẋ0 and ẏ0 are linearized into cos(ω p τ ) and sin(ω p τ ) and may generate secular terms. Since ν 1 appears as a multiplicative scalar factor of those terms, it suffices to choose ν 1 = 0 to cancel secular terms. With this choice of ν 1 , the resulting differential equation is written as

A 2 ẍ1 -2A 2 ẏ1 -(1 + 2c 2 )A 2 x 1 = 3 2 (2A 2 x x 2 0 -A 2 x y 2 0 -A 2 z z 2 0 ), A 2 ÿ1 + 2A 2 ẋ1 + (c 2 -1)A 2 y 1 = -3c 3 A 2
x x 0 y 0 , and can be solved explicitly. We get

A 2   x 1 (τ ) y 1 (τ ) z 1 (τ )   =   a 21 A 2 x + a 22 A 2 z + (a 23 A 2 x -a 24 A 2 z ) cos(2ω p τ + φ) (b 21 A 2 x -b 22 A 2 z ) sin(2ω p τ + φ) δ r d 21 A x A z (cos(2 ωp 2 τ + ψ) -3)   ,
with δ r = 2 -r, where r characterizes the class of the orbit and in particular its direction of rotation (r = 1 for a first class orbit and r = 3 for a second class orbit).

Then, the next step consists in plugging the obtained expressions of x 1 , y 1 into the equations in x and y at the third order, and to determine the parameter ν 2 so as to filter out the possible secular terms. Easy calculations show that one must choose

ν 2 = s 1 A 2 x + s 2 A 2 z
, where

s 1 = 3 2 c 3 (2a 21 (κ 2 -2) -a 23 (κ 2 + 2) -2κb 21 ) -3 8 (3κ 4 -8κ 2 + 8) 2λ(λ(1 + κ 2 ) -2κ) , s 2 =
where κ = 1 2λ (λ 2 + 1 + 2c 2 ), and λ is solution of

λ 4 + (c 2 -2)λ 2 -(c 2 -1)(1 + 2c 2 ) = 0. The coefficients a ij , b ij and d ij are given by a 21 = 3c 3 (κ 2 -2) 4(1 + 2c 2 ) , a 22 = 3c 3 4(1 + 2c 2 ) , a 23 = - 3c 3 λ 4κd 1 [3κ 3 λ -6κ(κ -λ) + 4], a 24 = - 3c 3 λ 4κd 1 (2 + 3κλ), a 31 = - 9λ 4d 2 (4c 3 (κa 23 -b 21 ) + κc 4 (4 + κ 2 )) + 9λ 2 + 1 -c 2 2d 2 3c 3 (2a 23 -κb 21 ) + c 4 (2 + 3κ 2 ) , a 32 = - 1 d 2 9λ 4 (4c 3 (κa 24 -b 22 ) + κc 4 ) + 3 2 (9λ 2 + 1 -c 2 ) (c 3 (κb 22 + d 21 -2a 24 ) -c 4 ) , b 21 = - 3c 3 λ 2d 1 (3κλ -4), b 22 = 3c 3 λ d 1 , b 31 = 3 8d 2 8λ 3c 3 (κb 21 -2a 23 ) -c 4 (2 + 3κ 2 ) +(9λ 2 + 1 + 2c 2 ) 4c 3 (κa 23 -b 21 ) + κc 4 (4 + κ 2 ) , b 32 = 1 d 2 9λ (3c 3 (κb 22 + d 21 -2a 24 ) -c 4 ) + 3 8 (9λ 2 + 1 + 2c 2 ) (4c 3 (κa 24 -b 22 ) + κc 4 ) , d 21 = - c 3 2λ 2 , d 31 = 3 64λ 2 (4c 3 a 24 + c 4 ), d 32 = 3 64λ 2 4c 3 a 23 -d 21 + c 4 (4 + κ 2 ) , with d 1 = 3λ 2
κ κ(6λ 2 -1) -2λ and d 2 = 8λ 2 κ κ(11λ 2 -1) -2λ . Secular terms appearing in the third-order equation in z cannot be removed by choosing a coefficient ν i as previously. It is necessary to specify amplitude and phase angle constraint relationships in order to filter out these secular terms. The amplitude constraint relationship is

l 1 A 2 x + l 2 A 2 z + ∆ = 0,
where

l 1 = a 1 + 2l 2 s 1 and l 2 = a 2 + 2l 2 s 2 , with a 1 = -3 2 c 3 (2a 21 + a 23 + 5d 21 ) -3 8 c 4 (12 -k 2
) and a 2 = 3 2 (a 24 -2a 22 ) + 9 8 c 4 , and the phase angle constraint relationship is

ψ = φ + rπ 2 , r = 1, 3.
Note that the formulas defining the coefficients l i , a i,j , b i,j and d ij are the same as the ones obtained by Richardson in [START_REF] Richardson | Analytic construction of periodic orbits about the collinear points[END_REF] to determine a third-order approximation of the halo orbits. With these relations, calculations lead to

A 3   x 2 (τ ) y 2 (τ ) z 2 (τ )   =   (a 31 A 3 x -a 32 A x A 2 z ) cos(3ω p τ + φ) (b 31 A 3 x -b 32 A x A 2 z ) sin(3ω p τ + φ) δ r (d 32 A z A 2 x -d 31 A 3 z ) cos(3 ωp 2 τ + ψ)   .
Finally, we arrive at the following third-order approximation of eight-shaped Lissajous orbits:

x = a 21 A 2 x + a 22 A 2 z -A x cos(τ 1 ) + (a 23 A 2 x -a 24 A 2 z ) cos(2τ 1 ) +(a 31 A 3 x -a 32 A x A 2 z ) cos(3τ 1 ), y = kA x sin(τ 1 ) + (b 21 A 2 x -b 22 A 2 z ) sin(2τ 1 ) + (b 31 A 3 x -b 32 A x A 2 z ) sin(3τ 1 ), z = δ r A z cos(τ 2 ) + δ n d 21 A x A z (cos(2τ 2 ) -3) + δ n (d 32 A z A 2 x -d 31 A 3 z ) cos(3τ 2 ),
where τ 1 = ω p τ + φ and τ 2 = ωp 2 τ + ψ. These formulas provide an approximation of possible initial points of eight-shaped Lissajous orbits, parametrized by their z-excursion A z . As we will see in the next section, these third-order approximations are satisfactory for small values of A z but are not precise enough for larger values, and we will use a continuation method to compute our periodic orbits.

Computation of a family of eight-shaped Lissajous orbits

In the previous section, a third-order approximation of eight-shaped Lissajous periodic orbits has been calculated analytically. In this section we show how to compute a family of eight-shaped Lissajous orbits, parametrized by the z-excursion A z . The previous third-order approximation of those orbits, used as an initial guess in a Newton-like procedure, permits to compute some eightshaped Lissajous orbits for small values of A z but is not precise enough to initialize successfully the Newton method for larger values. To overcome this problem, one may then try to derive an approximation of larger order, so as to get a more precise initial guess, in the hope that it will suffice to make converge the Newton procedure (as done e.g. in [START_REF] Gómez | Lissajous orbits around halo orbits[END_REF][START_REF] Gómez | Quasihalo orbits associated with libration points[END_REF][START_REF] Koon | Dynamical Systems, the three-body problem and space mission design[END_REF][START_REF] Masdemont | High order expansions of invariant manifolds of libration point orbits with applications to mission design[END_REF] where this procedure has been implemented). Instead of that, we use here a continuation method on the parameter A z , in order to generate a family of eight-shaped Lissajous orbits. The procedure is detailed next.

We first recall how Newton's method is usually implemented to compute periodic orbits in the restricted three body problem. Notice that, if (x(t), y(t), z(t)) is a solution of the system, then (x(-t), -y(-t), z(-t)) is also solution. Using this symmetry property, the method consists in determining an adapted initial condition X 0 on the plane y = 0, with a velocity orthogonal to this plane, thus of the form X 0 = (x 0 , 0, z 0 , 0, ẏ0 , 0) T , generating a semiorbit which reintersects the plane y = 0 orthogonally. Fixing the z-excursion z 0 , Newton's method consists in tuning the values of the initial coordinates x 0 , ẏ0 and of the orbital period T so that the corresponding solution verifies y( T 2 ) = ẋ( T 2 ) = ż( T 2 ) = 0. This shooting method permits to reach a very good precision and is then used at every step of the iteration procedure of the continuation method described next.

Let A z be the z-excursion of the eight-shaped Lissajous orbit to be computed, and X 0 the corresponding initial condition to be determined. If A 0 z is the z-excursion of the first eightshaped Lissajous orbit computed thanks to the third-order approximation, the continuation method consists in making the z-excursion vary from A 0 z to A z , according to an appropriate subdivision, and solving at each iteration the Newton's problem initialized with the result of the previous step. More precisely, let A n z be the n-th z-excursion of the subdivision. Assume that each eight-shaped Lissajous orbit has already been computed for A p z , p ∈ 1, . . . , n, the resulting initial condition being noted X p 0 . In order to compute the eight-shaped Lissajous orbit of z-excursion A n+1 z , the continuation method consists in using the initial condition X n 0 as a first guess for the Newton's method. If the subdivision is fine enough then the Newton's method converges to a point which is then chosen as initial guess X n+1 0 . The latter is used to compute the eight-shaped Lissajous orbit of z-excursion A n+1 z , and the procedure goes on by iteration, until the eight-shaped Lissajous orbit of z-excursion A z is computed. Table [START_REF] Abarbanel | Variation of Lyapunov exponents on a strange attractor[END_REF] draws a diagram of the continuation procedure. Figure 5 represents the projections of a family of eight-shaped Lissajous orbits on the planes (x, y), (y, z) and (x, z) computed using the continuation method.

Newton's Initial information

-→ Numerical results method A 0 z , X 0 0 -→ X 1 0 A 1 z , X 1 0 -→ X 2 0 . . . . . . . . . A n-1 z , X n-1 0 -→ X n 0 A z , X n 0 -→ X 0 Table 1.
Remark 2.1. To generate a starting point of the above computed family, we used the approximation at the third order described in the previous section. Then, the family has been generated by continuation on the excursion parameter. For the continuation method to hold, it is necessary that one does not encounter any singularity. In particular, our family must not contain any orbit of collision. Note that it is not our aim to generate exhaustive families of orbits, but rather to compute some of them and then to investigate their stability properties. Our work is prospective.

Remark 2.2. It is interesting to compare the approximations derived from the Lindstedt-Poincaré method with the continuation method. Such simulation results are reported in Table 2.3, in which the first column consists of the excursion parameters A z of some family of eight-shaped Lissajous orbits around the Lagrange point L 2 in the Earth-Moon system, and the second (resp. the third) column reports the norm of the difference of initial points (resp. velocities) of both methods. All data are given in normalized units, in the sense that the distance of the point L 2 to the Moon is equal to 1, and the rotation period around the Moon is equal to 2π. We observe on this table that the precision deteriorates while A z increases, as expected. Notice also that, when applying the Newton method with the starting point determined by the third-order Linstedt-Poincaré approximation, the method converges only for the two smallest values of the table (this means that the approximation point falls into the domain of convergence of the Newton method) and diverges for larger values.

3. Properties of invariant manifolds of eight-shaped Lissajous orbits near L 1

Empiric stability

The interest of eight-shaped Lissajous orbits is mainly in two properties shared by their invariant manifolds. The stable (resp. unstable) manifold of an eight-shaped Lissajous orbit is the submanifold of the phase space consisting of all points whose future (resp. past) semi-orbits converge to it (asymptotic orbits). Locally, in the neighborhood of a given eight-shaped Lissajous orbit, they look like eight-shaped tubes (see Figure 6).

To compute the invariant manifolds, their linear approximation is first used around periodic orbits. At each point a of a given eight-shaped Lissajous orbit Σ, one computes the eigenvectors V s (a) and V u (a) associated with the real eigenvalues of the monodromy matrix at a that are lower and greater than 1. Then, one gets an approximation of the stable and unstable manifolds by propagating the orbits solutions of the equations of motion starting from initial conditions where a belongs to the eight-shaped Lissajous orbit, V (a) is a normalized stable or unstable eigenvector of the monodromy matrix at a, and ε is a positive real number, small enough to ensure a good linear approximation but however not too small in order to avoid too long integration times. Indeed, the asymptotic orbits which generate the invariant manifolds rotate strongly when tending to the eight-shaped Lissajous orbit (see e.g. [START_REF] Koon | Dynamical Systems, the three-body problem and space mission design[END_REF]). Some numerical results are provided on Figure 7, for the Lagrange point L 1 in the Earth-Moon system. In the sequel, all our simulations concern orbits around the Lagrange point L 1 in the Earth-Moon system. In this system, denoting by M E the mass of the Earth and by M M the mass of the Moon, there holds µ = M M M E +M M = 0.01215616930968. A first important property that we observe on the numerical simulations is that, contrarily to halo orbits, the invariant manifolds of eight-shaped Lissajous orbits seem to keep the same structure in large time. This global stability property which is numerically observed is also This property is of particular interest for mission design. Note that such a stability property does not hold for halo orbits. Indeed, the invariant manifolds of a classical halo orbit have the aspect of a regular tube in the neighborhood of the orbit but this regular aspect is not persistent far away from the halo orbit and/or in large integration time; in particular these tubes behave in a chaotic way in large time. In contrast, the regular structure of invariant manifolds of eightshaped Lissajous orbits is conserved even after a large integration time. This global stability property may be relevant for mission computation since it allows to predict the behavior of the trajectories which propagate on and inside these invariant manifolds in large time.

X 0 = a + εV (a), A z norm of
Remark 3.1. As pointed out by one of the reviewers, this stability property is in accordance with the fact that eight-shaped Lissajous orbits should not have any homoclinic nor heteroclinic connections (see [START_REF] Arona | Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant tori in Hill's problem[END_REF]).

We next investigate in more details these stability properties of invariant manifolds of halo and eight-shaped Lissajous orbits (related to the Lagrange point L 1 of the Earth-Moon system) using Lyapunov exponents.

Local Lyapunov Exponents

The concept of Lyapunov exponents (or characteristic exponents) was introduced in [START_REF] Lyapunov | The general problem of the stability of motion[END_REF] in order to investigate the stability properties of solutions of differential equations, and has been extensively used and studied in the literature. Lyapunov exponents measure the exponential convergence or divergence of nearby trajectories in a dynamical system, and provide indications on the behavior in large time of solutions under infinitesimal perturbations. A positive Lyapunov exponent means that nearby trajectories may diverge, whereas a negative Lyapunov exponent indicates a stability property. Computational issues have been studied e.g. in [START_REF] Dieci | On the computation of Lyapunov exponents for continuous dynamical systems[END_REF] (see also references therein). We use here this concept to investigate stability features of the invariant manifolds of eight-shaped Lissajous orbits.

First of all, recall the following general facts. Consider a nonlinear differential equation ẋ(t) = f (t, x(t)) in R n , with x(0) = x 0 , where f is of class C 1 . An important consequence of the seminal article [START_REF] Oseledec | A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems[END_REF] of Oseledec is that the Lyapunov exponents of an ergodic dynamical system do not depend on the specific trajectory; more precisely, given any invariant measure µ for the flow, they are the same for µ-almost every initial condition. Let now x(•) be a solution; for every s ∈ R, the resolvent t → Φ(t, s) along x(•) (also called state transition matrix) is defined as the unique n × n matrix solution of the linearized system along x(•)

Ẏ (t) = ∂f ∂x (t, x(t)).Y (t), Y (s) = I n .
For every t ≥ 0, set Λ x 0 (t) = Φ(t, 0) T Φ(t, 0)

1/2t
. Then, in the ergodic case the matrix Λ = lim t→+∞ Λ x 0 (t) is well defined and is symmetric positive definite, is almost everywhere independent on x 0 with respect to an ergodic measure (see [START_REF] Oseledec | A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems[END_REF]), and the Lyapunov exponents λ i are defined as the logarithm of the eigenvalues µ i of Λ; moreover, denoting v i the eigenvectors associated to the eigenvalues µ i , for i = 1, . . . , n, one has

λ i = lim t→+∞ 1 t ln Φ(t, 0)v i ,
where • denotes the Euclidean norm. These coefficients provide an indication on how nearby trajectories of the system may converge or diverge from x(•). Notice that this is an ergodic result, that is valuable whenever t tends to +∞: in ergodic systems, almost all trajectories yield the same Lyapunov exponents. The situation is different if trajectories are followed in finite time. Instead of taking the limit, one defines, for ∆ > 0, the local Lyapunov exponent (in short, LLE)

λ(t, ∆) = 1 ∆ ln maximal eigenvalue of Φ(t + ∆, t)Φ T (t + ∆, t) . (3.1) 
Note that, if ∆ tends to +∞, one recovers the usual Lyapunov exponent. The parameter ∆ stands for a positive duration over which the effect of some perturbations is tested. Contrarily to the Lyapunov exponents, the LLEs depend on the initial point, on the specific reference trajectory x(•) that is followed, and on the duration ∆. Such exponents, defined e.g. in [START_REF] Dieci | On the computation of Lyapunov exponents for continuous dynamical systems[END_REF][START_REF] Eckhardt | Local Lyapunov exponents in chaotic systems[END_REF], give information on the nonuniform properties of the system, and provide an indication on the effect a perturbation at time t would be expected to have over a duration ∆. Large LLEs indicate that the trajectory crosses a region where the dependence with respect to initial conditions is strong, hence the predictability of the evolution of the trajectory in such a region region is restricted. If they are small, or negative, then the predictability in this region of the space is improved. Definitions and algorithms to compute such exponents were given in [START_REF] Abarbanel | Variation of Lyapunov exponents on a strange attractor[END_REF][START_REF] Benettin | Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory, and Part 2: Numerical Application[END_REF][START_REF] Dieci | On the computation of Lyapunov exponents for continuous dynamical systems[END_REF][START_REF] Eckhardt | Local Lyapunov exponents in chaotic systems[END_REF][START_REF] Wolf | Determining Lyapunov exponents from a time series[END_REF][START_REF] Wolff | Local Lyapunov exponents: looking closely at chaos[END_REF]. In [START_REF] Anderson | Application of local Lyapunov exponents to maneuver design and navigation in the three-body problem[END_REF], a stability technique based on local Lyapunov exponents is applied for maneuver design and navigation in the three-body problem. It is shown in [START_REF] Dellnitz | Set oriented approximation of invariant manifolds: review of concepts for astrodynamical problems[END_REF] that finite-time Lyapunov exponents can provide useful information on the qualitative behavior of trajectories in the context of astrodynamics. Local Lyapunov exponents are used to determine the behavior of nearby trajectories in finite time. They provide indications on the effects that perturbations or maneuvers will have on trajectories over a certain period of time. In the case of the circular restricted three-body problem, which is known to be chaotic, local Lyapunov exponents cannot be expected to be negative. It is however interesting to compute local Lyapunov exponents in our study to measure the stability of eight-shaped Lissajous orbits and of their invariant manifolds, and compare them with the ones of classical halo orbits and of their invariant manifolds. When ∆ is large, the eigenvectors of the matrix Φ(t + ∆, t)Φ T (t + ∆, t) tend to align along the eigenspace associated with the maximal eigenvalue. A Gram-Schmidt reduction procedure can be used for the computation of Lyapunov exponents in order to identify the eigenelements. Nevertheless, since we are only interested in the maximal eigenvalue of the above matrix, this procedure is not necessary. Concerning the units, the Lyapunov exponents measure the rate at which a system creates or destroys information, and are usually expressed in information per second or per day.

In our study, the local Lyapunov exponents were computed every 0.1-day time step along selected trajectories, with ∆ = 1 day (see Figure 9). Note that similar results are obtained for other values of ∆ (for instance, ∆ = 20 days), and thus are not reported here. On Figure 9, LLEs are computed along a halo orbit and an eight-shaped Lissajous orbit of similar energy, around the Lagrange point L 1 in the Earth-Moon system. The first observation that can be done is that in both cases the LLEs are positive. As said before this is in accordance with the chaotic character of the whole system. This means that in both cases nearby trajectories of the periodic orbit may diverge over a certain period of time. However both LLEs behave differently. On the one hand the maximal value of the LLE of the halo orbit is greater than the values of the LLE of the eight-shaped Lissajous orbit, which remains almost constant. On the other hand, the interval between minimal and maximal values of the LLE of the halo orbit contains the set of values of the LLE of the eight-shaped Lissajous orbit, and the mean values of the LLEs of both orbits seem to be almost the same. This fact can be explained from the following fact: the closer a trajectory gets to a primary (the Moon in this case), the higher its LLE will be. Since the eight-shaped Lissajous orbit is almost vertical, its distance to the primaries remains almost constant during its whole period, and its LLE remains almost constant too. On the contrary, for the same value of energy, the x-excursion of the halo orbit varies a lot (several thousands of kilometers) and hence the orbit gets closer to the Moon. Its LLE varies from a minimal value corresponding to the furthermost point to the Moon, to a maximal value corresponding to the closest point to the Moon. Depending on the energy value, this maximal value gets larger as the orbit gets closer to the Moon. Finally, the stability properties of these periodic orbits are related to their geographic situation. These specificities make that the plots of their LLE versus time are different, but their geographic situation around the same Lagrange point makes that none of them can be said more stable than the other. The situation is completely different for their manifolds. On Figure 10, local Lyapunov exponents are computed along the invariant manifolds of the previous halo and eightshaped Lissajous orbits. The stability difference was not evident concerning the periodic orbits, but this is not the case for their invariant manifolds. In the Earth's realm (in blue on the figure), the LLEs of the invariant manifolds are close for both periodic orbits (by looking closer, the LLEs of the eight-shaped Lissajous orbit manifolds is lower, but the difference is small). In the Moon's realm, the stability difference is evident. The LLEs of the halo orbit manifolds reach 11 days (-1) whereas the LLEs of the eight-shaped Lissajous manifolds take values lower than 5 days (-1) and the difference is similar concerning the mean values. This confirms that some trajectories of the halo orbit manifolds (and the manifolds themselves) are very unstable. As a consequence, predicting the behavior of such a trajectory may happen to be difficult. Things are going differently for the asymptotic trajectories generating the eight-shaped Lissajous manifolds. Their LLEs indicate possible instabilities but, in spite of their small distance to the Moon (which, as mentioned previously, may create instabilities), their LLEs take reasonable values. Notice also that the plot of the LLEs of the eight-shaped Lissajous manifolds has a very smooth aspect, in contrast with the chaotic aspect of the LLEs of halo orbit manifolds. This is in accordance with the fact that the eight-shaped Lissajous manifolds keep their regular structure of eight-shaped tube even after a large integration time. This nice stability property over large time of the eight-shaped Lissajous manifolds is of potential interest for mission design with low cost.

We stress once again that our simulations lead to similar results for every Lissajous orbit of our one-parameter family of orbits, but we do not claim that the property holds for any possible eight-shaped Lissajous orbit; our current study is prospective, certainly not exhaustive. By the way, the question of deriving rigorously a stability statement, possibly based on the study of some Lyapunov function or something similar, is open. The second interesting property concerning the invariant manifolds of eight-shaped Lissajous orbits is the large accessible lunar region that they cover over large time. By propagating the invariant manifolds of an eight-shaped Lissajous orbit, we observe an oscillating behavior around both primaries. For a given invariant manifold, the part that oscillates around the bigger primary stays rather far from it but the part around the smaller one gets close to it. Our study concerns the Earth-Moon system, and we observe that the part of the invariant manifold in the Earth region stays too far from the Earth to plan a mission using it for a direct departure from the Earth. At the opposite, the part that oscillates around the smaller primary (the Moon) oscillates close to it and thus may be used for a departure or a capture around the Moon (see Figure 11). The oscillation of these invariant manifolds is not new compared with what can be observed in the classical case of halo orbits. Nevertheless, the constant oscillation of invariant manifolds of eight-shaped Lissajous orbits in the lunar region on the one hand, and the global eight-shaped structure of these manifolds on the other hand, are interesting properties for mission design. Indeed, such invariant manifolds may be used to visit almost all the surface of the Moon, at any time, as shown next. Notice however that, in practice, some other restrictions must be considered, such as eclipse avoidance, that may cause unfeasibility of the mission (see e.g. [START_REF] Canalías | Assessment of mission design including utilization of libration points and weak stability boundaries[END_REF][START_REF] Gómez | Dynamics and mission design near libration points, Volumes I, II (Fundamentals: The Case of Collinear Points; Advanced Methods for Collinear Points[END_REF][START_REF] Gómez | Dynamics and mission design near libration points. Volumes III, IV (Advanced methods for collinear points; Advanced methods for triangular points[END_REF] for such issues and possible maneuvers).

The idea of using the specific properties of the dynamics around Lagrange points in order to explore lunar regions is far to be new (see e.g. [START_REF] Belbruno | Calculation of weak stability boundary ballistic lunar transfer trajectories[END_REF][START_REF] Dunham | Libration Points Missions[END_REF][START_REF] Farquhar | The utilization of Halo orbits in advanced lunar operations[END_REF][START_REF] Gómez | Invariant manifolds, the spatial three-body problem and space mission design[END_REF][START_REF] Marsden | Low energy transfer to the Moon[END_REF][START_REF] Miller | Sun-perturbated Earth-to-Moon transfers with ballistic capture[END_REF]) but has received recently a renewal of interest, in view of new space missions possibly involving a lunar space station (see e.g. [START_REF] Farquhar | Utilization of libration points for human exploration in the Sun-Earth-Moon system and beyond[END_REF][START_REF] Koon | Dynamical Systems, the three-body problem and space mission design[END_REF][START_REF] Lo | Lunar sample return via the interplanetary highway[END_REF][START_REF] Renk | Exploration missions in the Sun-Earth-Moon system: a detailed view on selected transfer problems[END_REF][START_REF] Yazdi | A lunar exploration architecture using lunar libration point one[END_REF]).

Lunar strip covered by the invariant manifolds. On Figure 12, we have computed the projection onto the Moon of the invariant manifolds of an eight-shaped Lissajous orbit. We observe that, over a long period, a large surface of the Moon may be scanned, depending on the value of the z-excursion of the orbit. First, on Figure 12, we observe that, for every value of the z-excursion of the eight-shaped Lissajous orbit, every longitude can be reached. This is due to the oscillation property observed previously. However, this oscillation staying at the equator's level, the latitudes flown over by the manifolds depend on the z-excursion of the eight-shaped Lissajous orbit. If the z-excursion is small, then the latitudes reached are small too. Larger latitudes are reached whenever the z excursion is getting larger. For a z-excursion value equal to 50000 km, and for larger values of the z-excursion, almost all the lunar surface can be scanned from the invariant manifolds. Only the poles cannot be reached directly. A maneuver should be performed to fly over the lunar poles. Anyway, these results show the relevance of invariant manifolds of the eight-shaped Lissajous orbits under consideration to scan almost all the Moon's surface at low cost.

The perigee-angle representation. To complete the previous results, we provide the plot of the invariant manifolds in the perigee-angle plane. For each asymptotic trajectory of the invariant manifolds, the minimal distance to the Moon (perigee) and the corresponding latitude (angle) are computed.

On Figure 13, it is observed that the angles of the perigees range between 20 and 45 degrees. The fact that the range of angles drawn on this figure is smaller than the range of angles covered by the manifolds is not contradictory, since trajectories of invariant manifolds, close to the Moon, reach their closest point to the Moon for a value of inclination between 20 to 45 degrees. Notice that these closest points correspond to positions on the hidden face of the Moon and generally occur at the first oscillation of the manifold around the Moon, i.e, within short time. Figure 13 shows that the minimal distance to the Moon oscillates between 1500 and 5000 kilometers, depending on the z-excursion of the eight-shaped Lissajous orbit (see Table 3.3). The minimal distances are reached after a 9-to-50 days journey from the periodic orbit, but it is clear that for each trajectory 9 days are sufficient to get close enough to the Moon to be captured.

The results about the invariant manifolds oscillating around the Earth are not provided here, since they do not appear to be as relevant as those concerning the Moon. We however mention that the minimal distance between the manifolds of the exterior realm and the Earth oscillate between 115000 and 125000 km, also depending on the value of the z-excursion, with a 40-days journey between the perigee and the eight-shaped Lissajous orbit. This journey duration can be half reduced since similar approach distances are reached after 20 days. In both cases, the corresponding inclinations are meaningless given the large distance between the manifolds and the Earth.

Finally, these results highlight the potential interest of eight-shaped Lissajous orbits (related to the Lagrange point L 1 in the Earth-Moon system) and of their invariant manifolds. Using them, every point located on a circular band around the lunar equator may be reached from the periodic orbit. Except the poles, almost every point of the lunar surface may be flown over from an eight-shaped Lissajous orbit with a large z-excursion.

Conclusion

In this article, we focused on particular periodic orbits around Lagrange points in the circular restricted three-body problem, called eight-shaped Lissajous orbits. A third-order approximation of these orbits has been derived using Lindstedt-Poincaré's method, and families of eight-shaped Lissajous orbits have been computed using a shooting method combined with a continuation method. Then we have shown that eight-shaped Lissajous orbits related to the Lagrange point L 1 in the Earth-Moon system have interesting features. First, their invariant manifolds keep a stable eight-shaped structure over large time, in contrast to the ones of halo orbits. This fact has been put in evidence by computing local invariant manifolds of eight-shaped Lissajous orbits permit to scan almost all the surface of the Moon, depending on the value of the z-excursion. These properties are of potential interest for low cost mission design. Of course such strategies may require a long time transfer and then a compromise has to be found between the energy consumption and the time of transfer. Note also that, having in mind an Earth-Moon mission, invariant manifolds oscillating around the Earth cannot be used directly for a departure from the Earth, due to their too large distance to the Earth. On the contrary, the stability properties of the eight-shaped Lissajous orbits invariant manifolds and the accessibility to the lunar surface provide interesting perspectives, such as easy and economic communications between a spacecraft exploring the Moon and an orbital station based on an eight-shaped Lissajous orbit around the Lagrange point L 1 in the Earth-Moon system. From such an orbital station, almost every point of the Moon may be visited at any time with a low cost.
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 1 Figure 1. The restricted three-body problem
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 3 Figure 3. Representation of the curve x(t) = cos(2t), y(t) = sin(2t), z(t) = 20 cos(t), where t ∈ [0, 2π].

  Continuation method algorithm A single eight-shaped Lissajous orbit around Lunar L 1 (that is the Lagrange point L 1 in the Earth-Moon system) is represented on Figure 4 in position and velocity spaces.
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 4 Figure 4. (a) Eight-shaped Lissajous orbit around Lunar L 1 in the position space. (b) Eight-shaped Lissajous orbit around Lunar L 1 in the velocity space.
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 5 Figure 5. Family of eight-shaped Lissajous orbits and their projection on the (x, y), (y, z) and (x, z)-planes.
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 6 Figure 6. Invariant manifolds in the neighborhood of an eight-shaped Lissajous orbit

  (a) Invariant manifolds of an eight-shaped Lissajous orbit (b) Invariant manifolds of a halo orbit
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 7 Figure 7. Invariant manifolds of an eight-shaped Lissajous orbit and of a halo orbit

  (a) Invariant manifold of an eight-shaped Lissajous orbit around the Lagrange point L1 in the Earth-Moon system (b) Images of the eight-shaped Lissajous orbit by the flow at different times
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 9 Figure 9. (a) Local Lyapunov exponent along a halo orbit. (b) Local Lyapunov exponent along an eight-shaped Lissajous orbit.
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 10 Figure 10. (a) Local Lyapunov exponent of the invariant manifolds of a halo orbit. (b) Local Lyapunov exponents of the invariant manifolds of a eight-shaped Lissajous orbit.
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 3 Accessible lunar region with the eight-shaped Lissajous invariant manifolds related to the Lagrange point L 1 in the Earth-Moon system
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 11 Figure 11. Invariant manifolds of an eight-shaped Lissajous orbit in the neighborhood of the Moon.
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 12 Figure 12. Lunar strip covered by the invariant manifolds for (a) Az=10000 km and (b) Az=50000 km.
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 13 Figure 13. Invariant manifolds of eight-shaped Lissajous orbits in the perigeeangle plane
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		the difference norm of difference
		of initial points	of initial velocities
	00010	2.480508256e-003	2.571078939e-009
	00100	3.963632986e-003	2.543435521e-007
	00500	1.572915399e-002	6.357949547e-006
	01000	3.116814309e-002	2.543210324e-005
	02000	6.219001345e-002	1.017338378e-004
	03000	9.324351620e-002	2.289214928e-004
	04000	1.243040288e-001	4.070222970e-004
	05000	1.553663195e-001	6.360745378e-004
	06000	1.864283990e-001	9.161277288e-004
	07000	2.174892057e-001	1.247242823e-003
	08000	2.485480265e-001	1.629492124e-003
	09000	2.796043035e-001	2.062960975e-003
	10000	3.106575570e-001	2.547746083e-003
	15000	4.658639258e-001	5.745728564e-003
	20000	6.209357375e-001	1.024907118e-002
	25000	7.758283810e-001	1.608681682e-002
	30000	9.304997024e-001	2.329998323e-002
	35000	1.084910366e+000	3.194329031e-002
	40000	1.239024778e+000	4.208546810e-002
	45000	1.392812237e+000	5.380583070e-002
	50000	1.546248002e+000	6.718267632e-002
	55000	1.699313566e+000	8.226533883e-002
	60000	1.851994604e+000	9.901585020e-002

Table 3 .

 3 Lyapunov exponents. Second, we have shown that Minimal approach time and distance of the manifolds to the Earth and to the Moon in function of the z-excursion of the eight-shaped Lissajous orbit.

	z-excursion of	Approach time Approach distance Approach time Approach distance
	the eight-shaped	to the Earth	to the Earth	to the Moon	to the Moon
	Lissajous orbit (in km)	(in days)	(in km)	(in days)	(in km)
	1000	40	116730	43	1673
	5000	40	116650	43	1627
	10000	40	116800	43	1514
	20000	40	117380	9	4502
	30000	40	118340	9	5122
	40000	40	119670	39	3280
	50000	40	121340	42	3333

c
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