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Abstract Euler and Lagrange proved the existence of five equilibrium points in the cir-

cular restricted three-body problem. These equilibrium points are known as Lagrange

points (Euler points or libration points) L1, . . . , L5. The existence of families of periodic

and quasi-periodic orbits around those points is well known (see [15,16,31]). Among

them, halo orbits are 3-dimensional periodic orbits diffeomorphic to circles. They are

the first type of so-called Lissajous orbits. In this article we focus on Lissajous orbits of

the second type, which are almost vertical and have the shape of an eight, and that we

call Eight Lissajous orbits. In the Earth-Moon system, we first compute numerically a

family of such orbits, based on Linsdtedt Poincaré’s method combined with a contin-

uation method on the excursion parameter. Then, we study their specific properties.

In particular, we put in evidence, using local Lyapunov exponents, that their invariant

manifolds share nice global stability properties, which make them of interest in space

mission design. More precisely, we show numerically that invariant manifolds of Eight

Lissajous orbits keep in large time a structure of eight-shaped tubes. This property is

compared with halo orbits, the invariant manifolds of which do not share such global

stability properties. Finally, we show that the invariant manifolds of Eight Lissajous

orbits can be used to visit almost all the Moon surface in the Earth-Moon system.
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1 Introduction

In the restricted three-body problem, the existence of periodic orbits around the La-

grange points is very well known. Lyapunov orbits (planar orbits) are quite easy to

compute and Richardson’s work (see [31]) provides a third-order approximation of the

classical halo orbits (3-dimensional orbits isomorphic to ellipses) which allows to com-

pute families of halo orbits through a shooting method. Besides Lyapunov and halo

orbits, there exist other types of periodic orbits around the Lagrange points, in par-

ticular Lissajous orbits (see[15–18,?]). Among those periodic orbits, we focus here on

the Lissajous periodic orbits which can be considered as Lissajous orbits of the second

kind, that we call Eight Lissajous orbits, and that are almost vertical and have the

shape of an eight. In the first part of the article, we report on the circular restricted

three-body problem and recall how to compute families of Eight Lissajous orbits using

a Newton’s method, that we combine with a continuation method on the excursion

parameter. A third-order approximation of Eight Lissajous is calculated using Linst-

edt Poincaré’s method, which serves as an initial guess. Then, stability properties of

invariant manifolds of Eight Lissajous orbits are studied and compared to those of halo

orbits. Using local Lyapunov exponents, we prove that invariant manifolds of Eight Lis-

sajous orbits share strong global stability properties which make them of great interest

in mission design analysis. Finally, to provide a relevant example of their applicability,

we investigate the accessibility to the Moon surface exploration using Eight Lissajous

manifolds.

1.1 Recalls on the circular restricted three-body problem

The circular restricted three-body problem concerns the movement of a body P in the

gravitational field of two masses m1 and m2, where the mass of P is negligible with

respect to m1 and m2. The masses m1 and m2 (with m1 ≥ m2) are called the primaries

and are assumed to have circular coplanar orbits with the same period around their

center of mass. In this problem, the influence of any other body is neglected. If the

body P is further restricted to move in the plane of the two primaries, the problem is

then called planar circular restricted three-body problem.

In the solar system it happens that the circular restricted three-body problem

provides a good approximation for studying a large clas of problems. In our application,

the Earth-Moon system shall be considered. Thus, the primaries are the Earth and the

Moon and gravitational forces exerted by any other planet or any other body are

neglected.

In an inertial frame, the primaries positions and the equations of motion of P are

time-dependent. It is thus standard to derive the equations of motion of P in a rotating

frame whose rotation speed is equal to the rotation speed of the primaries around their

center of mass, and whose origin is in the orbital plane of the masses m1 and m2. In

such a frame, the positions of m1 and m2 are fixed. We consider the rotating frame
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Fig. 1 The restricted three-body problem

with the x axis on the m1-m2 line and with origin at the libration point considered.

The masses m1 and m2 move in the xy plane and the z axis is orthogonal to this plane.

In addition, we adopt an adimensional unit system with the following agreements: the

distance between the Lagrange point considered and the closer primary is 1; the sum

of the masses m1 and m2 is 1; the angular velocity of the primaries is 1. The body is

submitted to the gravitational attraction forces exerted by the primaries, the Coriolis

force and the centrifugal force. Denote by

X = (x, y, z, ẋ, ẏ, ż)T = (x1, x2, x3, x4, x5, x6)
T

the position and velocity vector of P in the rotating frame. The equations of motion

are

ẍ− 2ẏ =
∂Φ

∂x

ÿ + 2ẋ =
∂Φ

∂y
(1)

z̈ =
∂Φ

∂z

where

Φ(x, y, z) =
x2 + y2

2
+

1 − µ

r1
+
µ

r2
+
µ(1 − µ)

2
,

and

r1 =
q

(x+ µ)2 + y2 + z2, r2 =
q

(x− 1 + µ)2 + y2 + z2,

and where x = x1 and y = x2 are the abscisses of the primaries m1 and m2. Recall

that these equations admit a trivial first integral, called Jacobi integral,

J = x
2 + y

2 + 2
1 − µ

r1
+ 2

µ

r2
+ µ(1 − µ)) − (ẋ2 + ẏ

2 + ż
2),

related to the energy. Hence, if an energy level is fixed, the solutions live in a 5-

dimensional energy manifold. The study of that manifold determines the so-called

Hill’s region of possible motion (see e.g. [19]).
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The Lagrange points are the equilibrium points of the circular restricted three-body

problem. Euler [10] and Lagrange [20] proved the existence of five equilibrium points,

three collinear points on the axis joining the center of the two primaries, generally

noted L1, L2 and L3, and two equilateral points noted L4 and L5 (see Figure 2).

Fig. 2 Lagrange points

For a precise computation of the coordinates of Lagrange points, we refer the reader

to [34] (see also [19]). Concerning their stability, we recall that the collinear points are

shown to be unstable in every system, whereas L4 and L5 are proved to be stable under

some conditions (see [26]). Actually, it follows from a generalization of a theorem of

Lyapunov, due to Moser (see [28]), that, for a value of the Jacobi integral a bit less than

that of Lagrange points, the solutions of the nonlinear system have the same qualitative

behavior than the solutions of the linearized system, in the vicinity of Lagrange points.

Let us focus on the three collinear Lagrange points. It is standard to expand the

nonlinear terms 1
r1

and 1
r2

as series with Legendre polynomials, using the formula

1
p

(x−A)2 + (y −B)2 + (z − C)2
=

1

D

+∞
X

n=0

“ ρ

D

”n
Pn

„

Ax+By + Cz

Dρ

«

,

where D2 = A2 + B2 + C2 + D2 and ρ = x2 + y2 + z2, and this leads to write the

equations of motion (1) around the libration point Li, i = 1, 2, 3, as

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

X

n≥3

cnρ
n
Pn

„

x

ρ

«

,

ÿ + 2ẋ+ (c2 − 1)x =
∂

∂y

X

n≥3

cnρ
n
Pn

„

x

ρ

«

, (2)

z̈ + c2z =
∂

∂z

X

n≥3

cnρ
n
Pn

„

x

ρ

«

,
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where

cn =
1

γ
(n+1)
i

 

µ+
(1 − µ)γ

(n+1)
i

(1 − γi)(n+1)

!

.

Here, γi denotes the distance between the Lagrange point Li and the second primary.

At the Lagrange points L1, L2, L3, the linearized system consists of the linear part

of equations (2),

ẍ− 2ẏ − (1 + 2c2)x = 0,

ÿ + 2ẋ+ (c2 − 1)x = 0,

z̈ + c2z = 0.

It is of the type saddle×center×center, with eigenvalues (±λ,±iωp,±iωv), where

λ
2 =

c2 − 2 +
q

9c22 − 8c2

2
, ω

2
p =

2 − c2 +
q

9c22 − 8c2

2
, ω

2
v = c2.

Lyapunov-Poincaré’s Theorem implies the existence of a two-parameter family of

periodic trajectories around each point (see [26], or see for instance [6]). One can also see

this two-parameter family as two one-parameter families of periodic orbits. Halo orbits

are periodic orbits around Lagrange points, which are diffeomorphic to circles. Their

interest for mission design was first pointed out by Farquhar (see [11,12]. Other families

of periodic orbits, called Lissajous orbits, have been put in evidence and computed in

[15], so as quasi-periodic orbits (see [16]). Halo orbits may be seen as Lissajous orbits

of the first kind, and in the present article we are interested in Lissajous orbits of the

second kind, topologically equivalent to eight-shaped curves. Their existence and the

way to compute them is recalled in Section 2.

Given a periodic orbit around a Lagrange point, the stable (resp., unstable) mani-

fold of this orbit is defined as the submanifold of the phase space which is formed by

all points whose future (resp., past) semi-orbits converge to the periodic orbit (such

orbits are said asymptotic). It is well known that invariant manifolds of Lissajous orbits

act as separatrices, in the following sense (see [14]). Invariant manifolds are kinds of

4-dimensional tubes, topologically equivalent to S3 × R, in the 5-dimensional energy

manifold mentioned formerly. Due to this dimensionality, it happens that they separate

two types of orbits, called transit orbits and non-transit orbits. The transit orbits are

defined as orbits passing from one region to another, inside the 4-dimensional tubes.

The non-transit orbits are outside the tubes.

2 Eight Lissajous orbits

2.1 Periodic solutions of the linearized equations

Let us first investigate the solutions of the linearized system (2) around Li, i = 1, 2, 3. If

the initial conditions are restricted to the non divergent modes, the bounded solutions

of the linear system are written as

x(t) = −Axcos(ωpt+ φ),

y(t) = κAysin(ωpt+ φ),

z(t) = Azcos(ωvt+ ψ),

(3)
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where

κ =
w2

p + 1 + c2

2ωp
=

2λ

λ2 + 1 − c2
,

and Ax, Ay and Az are generally refered to as the x-excursion, y-excursion and z-

excursion. One can immediately observe that the bounded solutions of the linear system

are periodic if the in-plane and the out-of-plane frequencies, ωp and ωv, have a rational

ratio.

Moser’s theorem mentioned formerly implies that bounded trajectories can also be

found for the nonlinear system. They may be seen as perturbations of the bounded

trajectories of the linear system, the nonlinear terms acting on the amplitudes and the

frequencies. This change of frequencies induced by the nonlinearities has been used by

Richardson to calculate an approximation of halo orbits (see [31]). We will use it in

the next section to calculate an approximation of Eight Lissajous orbits.

In the expression of the bounded solutions of the linear system, the values of the

frequencies ωp and ωv are naturally fixed by the system and the libration point consid-

ered. But, as explained before, these eigenfrequencies change for the nonlinear system.

If the nonlinearities generate equal frequencies ωp = ωv, then halo orbits are obtained.

This is what Richardson did to calculate an approximation of halo orbits. Similarly,

if the quotient of the two eigenfrequencies is rational but different of the unity, other

types of bounded solutions can be obtained (see [15,16]).

2.2 Lindstedt Poincaré’s method

To calculate approximations of periodic solutions around the libration points, we use

Lindstedt-Poincaré’s method, based on the vision that the nonlinearities change the

solutions of the linearized system by changing their eigenfrequencies. Since we aim

at computing an Eight Lissajous orbit, we consider as a reference an eight-shaped

orbit, with frequencies ωp and ωv satisfying ωv =
ωp

2 . With such values, the linearized

equations are
ẍ− 2ẏ − (1 + 2c2)x = 0,

ÿ + 2ẋ+ (c2 − 1)y = 0,

z̈ +
`ωp

2

´2
z = 0,

(4)

and admit periodic orbits parametrized by

x(t) = −Ax cos(ωpt+ φ),

y(t) = κAy sin(ωpt+ φ),

z(t) = Az cos(
ωp

2 t+ ψ),

· (5)

which are eight-shaped, diffeomorphic to the solution drawn on Figure (3).

Enforcing the relation ωv =
ωp

2 in the equations of motion (2) leads to

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

X

n≥3

cnρ
n
Pn

„

x

ρ

«

,

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

X

n≥3

cnρ
n
Pn

„

x

ρ

«

, (6)

z̈ +
“ωp

2

”2
z =

∂

∂z

X

n≥3

cnρ
n
Pn

„

x

ρ

«

+∆z,
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Fig. 3 Representation of the curve x(t) = cos(2t), y(t) = sin(2t), z(t) = 20 cos(t), where
t ∈ [0, 2π].

where ∆ = (
ωp

2 )2 − ω2
v . In such a way, the reference orbit of the Linsdtedt-Poincaré’s

method is enforced to an eight-shaped orbit. Then, to take into account the fact that

the nonlinearities affect the eigenfrequencies, the Linsdtedt-Poincaré’s method consists

in considering time-varying frequencies in the following way. Define

τ = νt,

and the correction frequency

ν = 1 +
X

n≥1

νn, νn < 1·

The method consists then in adjusting iteratively the parameters νn so as to filter out

secular terms which appear in the development of the successive approximations of the

solution and are causing a blow up of the solutions. Let us introduce several notations

and assumptions.

First, for every integer p and all elements v and w of R
p, of coordinates in the

canonical basis of R
p,

v =

0

B

B

B

@

v1
v2
...

vp

1

C

C

C

A

and w =

0

B

B

B

@

w1

w2

...

wp

1

C

C

C

A

,

define v · ∗w ∈ R
p as the vector

v · ∗w =

0

B

B

B

@

v1w1

v2w2

...

vpwp

1

C

C

C

A

.

With this notation, the reference solution writes

qref (τ) =

0

@

Ax

Ax

Az

1

A · ∗

0

@

− cos(ωpτ + φ)

κ sin(ωpτ + φ)

sin(
ωp

2 τ + ψ)

1

A = Ā · ∗q0(τ).
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The reference solution being considered as the first term of a series expansion, it is

natural to seek a periodic solution in the form of a series in Ā,

q(τ) =

0

@

x(τ)

y(τ)

z(τ)

1

A = Ā·∗q0+Ā
2·∗q1+Ā

3·∗q2+. . . =

0

@

Ax0(τ) +A2x1(τ) +A3x2(τ) + . . .

Ay0(τ) +A2y1(τ) +A3y2(τ) + . . .

Az0(τ) +A2z1(τ) +A3z2(τ) + . . .

1

A

(7)

where An stands for the two-variables polynomial of degree n

A
n =

n
X

l,p=1

l+p=n

λl,pA
l
xA

p
z .

Note that considering an n-th-order approximation of the solution amounts to trun-

cating the series expansion at order n. Finally, the νn are assumed to have the same

order than An. We next rewrite the equations of motion in terms of these variables,

ν
2
ẍ− 2νẏ − (1 + 2c2)x =

3

2
(2x2 − y

2 − z
2) + 2c4x(2x

2 − 3y2 − 3z2) + 0(4),

ν
2
ÿ + 2νẋ+ (c2 − 1)y = −3c3xz −

3

2
c4y(4x

2 − y
2 − z

2) + 0(4), (8)

ν
2
z̈ + (

ωp

2
)2z = −3c3xz −

3

2
c4z(4x

2 − y
2 − z

2) +∆z + 0(4),

where O(4) denotes terms of order greater than or equal to 4. Then, plugging the series

expansion (7) into (8), one gets:

– at the first order in A:

Axẍ0 − 2Axẏ0 − (1 + 2c2)Axx0 = 0,

Axÿ0 + 2Axẋ0 + (c2 − 1)Axy0 = 0,

Az z̈0 +Az(
ωp

2
)2z0 = 0;

– at the second order in A:

A
2
ẍ1 − 2A2

ẏ1 − (1 + 2c2)A
2
x1 = −2ν1Axẍ0 + 2ν1Axẏ0

+
3

2

“

2A2
xx

2
0 −A

2
xy

2
0 −A

2
zz

2
0

”

,

A
2
ÿ1 + 2A2

ẋ1 + (c2 − 1)A2
y1 = −2ν1Axÿ0 − 2ν1Axẋ0 − 3c3A

2
xx0y0,

A
2
z̈1 + (

ωp

2
)2A2

z1 = −2ν1Az z̈0 − 3c3AxAzx0z0;

– at the third order in A:

A
3
ẍ2 − 2A3

ẏ2 − (1 + 2c2)A
3
x2 = −2ν1A

2
ẍ1 − (ν1 + 2ν2)Axẍ0 + 2ν1A

2
ẏ1

+2A3
ẏ2 + 2ν2Axẏ0,

A
3
ÿ2 + 2A3

ẋ2 + (c2 − 1)A3
y2 = −2ν1A

2
ÿ1 − 2ν1A

2
ẋ1 − (ν2

1 + 2ν2)Axÿ2

−2ν2Axẋ0 − 3c3(AxA
2
x0y1 +AxA

2
y0x1)

−
3

2
c4Axy0(4A

2
xx

2
0 −A

2
xy

2
0 −A

2
zz

2
0),

A
3
z̈2 + (

ωp

2
)2A3

z2 = −2ν1A
2
z̈1 − (ν2

1 + 2ν2)Az z̈0

−3c3(AxA
2
x0z1 +AzA

2
x1z0) +∆Azz0.
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Now, Lindstedt-Poincaré’s method consists in adjusting the coefficients νn in func-

tion of Ax and Az to filter out the secular terms that can appear in the expansion of

the solution. Note that the presence of secular terms causes divergence of the series

expansion and blow-up of the truncated solution.

At the first order in A, we recover the expected solution

0

@

x0(τ)

y0(τ)

z0(τ)

1

A =

0

@

− cos(ωpτ + φ)

κ sin(ωpτ + φ)

sin(
ωp

2 τ + ψ)

1

A .

At the second order in A, equations in the (x, y)-plane are decoupled from the z-

equation, and it is possible to choose ν1 so as to filter out the possible secular terms

which appear whenever modes of the second member of the differential equation coin-

cide with modes of the first member. In our case, the modes of the equation without

second member remain the same, that is (±λ,±iωp). As a consequence, in the second

member, terms of frequency equal to ωp must be avoided. The terms in x2
0, y

2
0 , z20

and x0z0 do not raise any problem since they are linearized in 1, cos(2ωpτ), sin(2ωpτ).

The terms ẍ0, ÿ0, ẋ0 and ẏ0 are linearized in cos(ωpτ) and sin(ωpτ) and may generate

secular terms. Since ν1 appears as a multiplicative scalar factor of those terms, it is

sufficient to choose ν1 = 0 to filter out secular terms. With that choice of ν1, the

resulting differential equation is written as

A
2
ẍ1 − 2A2

ẏ1 − (1 + 2c2)A
2
x1 =

3

2
(2A2

xx
2
0 −A

2
xy

2
0 −A

2
zz

2
0),

A
2
ÿ1 + 2A2

ẋ1 + (c2 − 1)A2
y1 = −3c3A

2
xx0y0,

and can be solved explicitly. We find

A
2

0

@

x1(τ)

y1(τ)

z1(τ)

1

A =

0

@

a21A
2
x + a22A

2
z + (a23A

2
x − a24A

2
z) cos(2ωpτ + φ)

(b21A
2
x − b22A

2
z) sin(2ωpτ + φ)

δrd21AxAz(cos(2
ωp

2 τ + ψ) − 3)

1

A ,

where δr = 2 − r, r specifying the class of the orbit, especially its sense of rotation

(r = 1 for a first class orbit and r = 3 for a second class orbit).

Then, the next step consists in plugging the obtained expressions of x1, y1 into the

equations in the plane (x, y) at the third order, and to choose the parameter ν2 so as

to filter out the possible secular terms. Easy calculations show that one must choose

ν2 = s1A
2
x + s2A

2
z ,

where

s1 =
3
2 c3(2a21(κ

2 − 2) − a23(κ
2 + 2) − 2κb21) −

3
8 (3κ4 − 8κ2 + 8)

2λ(λ(1 + κ2) − 2κ)
,

s2 =
3
2 c3(2a22(κ

2 − 2) − a24(κ
2 + 2) + 2κb22 + 5d21) + 3

8 c4(12 − κ2)

2λ(λ(1 + κ2) − 2κ)
,

where κ = 1
2λ

(λ2 + 1 + 2c2), and λ is solution of

λ
4 + (c2 − 2)λ2 − (c2 − 1)(1 + 2c2) = 0.
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The expressions of the coefficients aij , bij and dij are given by

a21 =
3c3(κ

2 − 2)

4(1 + 2c2)
, a22 =

3c3
4(1 + 2c2)

,

a23 = −
3c3λ

4κd1
[3κ3

λ− 6κ(κ− λ) + 4], a24 = −
3c3λ

4κd1
(2 + 3κλ)

a31 = −
9λ

4d2
(4c3(κa23 − b21) + κc4(4 + κ

2))

+

„

9λ2 + 1 − c2

2d2

«

“

3c3(2a23 − κb21) + c4(2 + 3κ2)
”

,

a32 = −
1

d2

„

9λ

4
(4c3(κa24 − b22) + κc4)

+
3

2
(9λ2 + 1 − c2) (c3(κb22 + d21 − 2a24) − c4)

«

,

b21 = −
3c3λ

2d1
(3κλ− 4), b22 =

3c3λ

d1
,

b31 =
3

8d2

„

8λ
“

3c3(κb21 − 2a23) − c4(2 + 3κ2)
”

+(9λ2 + 1 + 2c2)
“

4c3(κa23 − b21) + κc4(4 + κ
2)
”

«

,

b32 =
1

d2

„

9λ (3c3(κb22 + d21 − 2a24) − c4)

+
3

8
(9λ2 + 1 + 2c2) (4c3(κa24 − b22) + κc4)

«

d21 = −
c3

2λ2
, d31 =

3

64λ2
(4c3a24 + c4),

d32 =
3

64λ2

“

4c3a23 − d21 + c4(4 + κ
2)
”

,

with d1 = 3λ2

κ

“

κ(6λ2 − 1) − 2λ
”

and d2 = 8λ2

κ

“

κ(11λ2 − 1) − 2λ
”

.

Secular terms appearing in the third-order z equation cannot be removed by pre-

scribing a coefficient νi as previously. It is necessary to specify amplitude and phase

angle constraint relationships in order to filter out these secular terms. The amplitude

constraint relationship is

l1A
2
x + l2A

2
z +∆ = 0,

where l1 = a1+2l2s1 and l2 = a2+2l2s2, with a1 = − 3
2 c3(2a21+a23+5d21)−

3
8 c4(12−

k2) and a2 = 3
2 (a24 − 2a22) + 9

8 c4, and the phase angle constraint relationship is

ψ = φ+
rπ

2
, r = 1, 3.

Note that the formulas defining the coefficients li, ai,j , bi,j and dij are the same than

those obtained by Richardson in [31] to determine a third-order approximation of the

halo orbits.

With these relations, calculations lead to

A
3

0

@

x2(τ)

y2(τ)

z2(τ)

1

A =

0

@

(a31A
3
x − a32AxA

2
z) cos(3ωpτ + φ)

(b31A
3
x − b32AxA

2
z) sin(3ωpτ + φ)

δr(d32AzA
2
x − d31A

3
z) cos(3

ωp

2 τ + ψ)

1

A .
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Finally, we arrive at the following third-order approximation of Eight Lissajous orbits:

x = a21A
2
x + a22A

2
z −Ax cos(τ1) + (a23A

2
x − a24A

2
z) cos(2τ1)

+(a31A
3
x − a32AxA

2
z) cos(3τ1),

y = kAx sin(τ1) + (b21A
2
x − b22A

2
z) sin(2τ1) + (b31A

3
x − b32AxA

2
z) sin(3τ1),

z = δrAz cos(τ2) + δnd21AxAz(cos(2τ2) − 3) + δn(d32AzA
2
x − d31A

3
z) cos(3τ2),

where τ1 = ωpτ + φ and τ2 =
ωp

2 τ + ψ.

2.3 Computation of a family of Eight Lissajous orbits

In the previous section, a third-order approximation of Eight Lissajous periodic orbits

has been calculated analytically. In this section we show how to compute a family of

Eight Lissajous orbits, parametrized by the z-excursion Az . The previous third-order

approximation of those orbits, used as an initial guess in a Newton-like procedure,

permits to compute some Eight Lissajous orbits but is not precise enough to compute

numerically a whole family. One may then try to derive an approximation of greater

order, so as to generate a more precise initial guess, in the hope that it will suffice

to make converge the Newton procedure. Instead of that, we use here a continuation

method on the parameter Az , in order to generate a family of Eight Lissajous orbits.

The procedure is detailed next.

Let us first recall how Newton’s method is usually implemented to compute peri-

odic orbits in the restricted three body problem. First, notice that, if (x(t), y(t), z(t))

is a solution of the system, then (x(−t),−y(−t), z(−t)) is also solution. Given this

symmetry, Newton’s method consists in determining an adapted initial condition X0

on the plane y = 0, with a velocity orthogonal to this plane,

X0 = (x0, 0, z0, 0, ẏ0, 0)T ,

generating a semiorbit which reintersects the plane y = 0 orthogonally. Fixing the z-

excursion z0, Newton’s method consists in adjusting the values of the initial coordinates

x0, ẏ0 and the orbital period T so that the corresponding solution verifies y(T
2 ) =

ẋ(T
2 ) = ż(T

2 ) = 0. This method is first used to compute an Eight Lissajous orbit which

serves as an initial point in the continuation method. This shooting method permits

to reach a very good precision. Using Matlab, we determine x0, ẏ0 and T such that

‖y(T
2 )‖ ≤ 10−14, ‖ẋ(T

2 )‖ ≤ 10−14 and ‖ż(T
2 )‖ ≤ 10−14. Newton’s method is then used

at every step of the iteration procedure of the continuation method described next.

Let Az be the z-excursion of the Eight Lissajous orbit to be computed, and X0 the

corresponding initial condition to be determined. If A0
z is the z-excursion of the first

Eight Lissajous orbit computed thanks to the third-order approximation, the continu-

ation method consists in making the z-excursion vary from A0
z to Az , according to an

appropriate subdivision, and solving at each iteration the Newton’s problem initialized

with an initial condition which is the final point obtained from the previous step.

More precisely, let An
z be the n-th z-excursion of the subdivision. Assume that each

Eight Lissajous orbit has already been computed for Ap
z , p ∈ 1, . . . , n, the resulting

initial condition being noted X
p
0 . In order to compute the Eight Lissajous orbit of

z-excursion An+1
z , the continuation method consists in using the initial condition Xn

0

as a first guess for the Newton’s method. If the subdivision is fine enough chosen, then
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the Newton’s method converges to a point which is then chosen as initial guess Xn+1
0 .

The latter is used to compute the Eight Lissajous orbit of z-excursion An+1
z , and the

procedure goes on by iteration, until the Eight Lissajous orbit of z-excursion Az is

computed. Table (1) summarizes the continuation procedure.

Newton’s
Initial information −→ Numerical results

method
A0

z
, X0

0
−→ X1

0

ւ

A1
z
, X1

0
−→ X2

0

ւ

...
...

...
ւ

An−1
z , Xn−1

0
−→ Xn

0

ւ
Az , Xn

0
−→ X0

Table 1 Continuation method algorithm

A single Eight Lissajous orbit around Lunar L1 (that is the Lagrange point L1 in

the Earth-Moon system) is represented on Figure (4) in position and velocity spaces.

(a) (b)

Fig. 4 (a) Eight Lissajous orbit around Lunar L1 in the position space. (b) Eight Lissajous
orbit around Lunar L1 in the velocity space.

Figure 5 represents the projections of a family of Eight Lissajous orbits on the

planes (x, y), (y, z) and (x, z) computed using the continuation method.
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(a) (b)

(c) (d)

Fig. 5 Family of Eight Lissajous orbits and their projection on the (x, y), (y, z) and (x, z)-
planes.

3 Properties of invariant manifolds of Eight Lissajous orbits

3.1 Empiric stability

The interest of Eight Lissajous orbits is essentially based on two properties presented

by their invariant manifolds. The stable (resp., unstable) manifold of an Eight Lissajous

orbit is the submanifold of the phase space which is formed by all points whose future

(resp., past) semi-orbits converge to it (asymptotic orbits). Locally, in the neighborhood

of the Eight Lissajous orbit, they look like eight-shaped tubes (see Figure 6).

To compute the invariant manifolds, their linear approximation is first used around

periodic orbits. At each point a of a given Eight Lissajous orbit Σ, one computes the

eigenvectors V s(a) and V u(a) associated to the real eigenvalues of the monodromy

matrix at a that are lower and greater than 1. Then, one gets an approximation of the

stable and unstable manifolds by propagating the orbits solutions of the equations of

motion starting from initial conditions

X0 = a+ ǫV (a),

where a belongs to the Eight Lissajous orbit, V (a) is a normalized stable or unstable

eigenvector of the monodromy matrix at a, and ǫ is a real, small enough so as to
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Fig. 6 Invariant manifolds in the neighborhood of an Eight Lissajous orbit

ensure a good linear approximation is correct but also not too small in order to avoid

too long integration times. Indeed, the asymptotic orbits which form the invariant

manifolds rotate strongly when tending to the Eight Lissajous orbit (see e.g. [19]).

Some numerical results are provided on Figure 7, for the Lagrange point L1 in the

Earth-Moon system.

(a) Invariant manifolds of an Eight Lissajous
orbit

(b) Invariant manifolds of a halo orbit

Fig. 7 Invariant manifolds of an Eight Lissajous orbit and of a halo orbit

A first important property that we observe on the numerical simulations is that the

invariant manifolds of Eight Lissajous orbits seem to keep the same structure in large

time. This global stability property which is numerically observed is also illustrated

on Figure 8 where different images by the flow of an Eight Lissajous orbit at different

times are represented.

This property is of particular interest for mission design. Note that such a stability

property does not hold for halo orbits. Indeed, the invariant manifold of a classical halo

orbit have the aspect of a regular tube in the neighborhood of the orbit but this regular

aspect is not persistent far away from the halo orbit and/or in large integration time; in

particular these tubes behave in a chaotic way in large time (see Figure 7). In contrast,

the regular structure of invariant manifolds of Eight Lissajous orbits is conserved even

after a large integration time. This global stability property may be relevant for mission

computation since it allows to predict the behavior of the trajectories which propagate

on and inside these invariant manifolds in large time. We next investigate in more
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(a) Invariant manifold of an Eight Lis-
sajous orbit around the Lagrange point L1

in the Earth-Moon system

(b) Images by the flow of the Eight Lis-
sajous orbit at different times

Fig. 8

details these stability properties of invariant manifolds of halo and Eight Lissajous

orbits using Lyapunov exponents.

3.2 Local Lyapunov Exponents

The concept of Lyapunov exponents, introduced in [23], is used here to investigate

stability properties of invariant manifolds of Eight Lissajous orbits. Lyapunov expo-

nents measure the exponential convergence or divergence of nearby trajectories in a

dynamical system. They provide indications on the behavior in large time of solutions

under infinitesimal perturbations. A positive Lyapunov exponent means that nearby

trajectories may diverge, whereas a negative Lyapunov exponent indicates a stability

property. In [1], the authors define and compute local Lyapunov exponents in several

types of motion using a result of Osedelec (see [29]). In [35], algorithms are presented,

which permit to estimate Lyapunov exponents from an experimental time series. In

[2], a stability technique based on local Lyapunov exponents is applied for maneuver

design and navigation in the three-body problem. Finally, it is shown in [8] that finite-

time Lyapunov exponents can provide useful information on the qualitative behavior

of trajectories in the context of astrodynamics. Local Lyapunov exponents are used

to determine the behavior of nearby trajectories in finite time. They provide indica-

tions on the effects that perturbations or maneuvers will have on trajectories after a

specified duration. In the case of the circular restricted three-body problem, which is

known to be chaotic, local Lyapunov exponents cannot be expected to be negative. It

is however interesting to use local Lyapunov exponents in our study to measure the

stability of Eight Lissajous orbits and of their invariant manifolds, and compare it with

the stability of classical halo orbits and of their invariant manifolds.

Let us first recall the way to compute such Lyapunov exponents. Let ẋ = f(x, t)

stand for the equations of motion, and let x(·) be a reference trajectory, supposed to

be defined on [0,+∞). Let t ≥ 0. Consider a perturbation term δx(t); the solution of

the linearized equation along x(·), starting from t, is given by

δx(·) = Φ(·, t)δx(t)
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where Φ(·, t) is the state transition matrix. For ∆ > 0, the local Lyapunov exponent

(in short, LLE) λ(t,∆) is defined by

λ(t,∆) =
1

∆
ln

„

maximal eigenvalue of
q

Φ(t+∆, t)ΦT (t+∆, t)

«

. (9)

Note that, if∆ tends to +∞, one recovers the usual Lyapunov exponent. The parameter

∆ stands for a positive duration over which the effect of perturbations is tested. In other

words, the LLE λ(t,∆) provides an indication on the effect a perturbation at time t

would be expected to have over a duration ∆.

When ∆ is large, the eigenvectors of the matrix
p

Φ(t+∆, t)ΦT (t+∆, t) tend to

align along the eigenspace associated with the maximal eigenvalue. A Gram Schmidt

reduction procedure may be used for the computation of Lyapunov exponents so as to

identify the eigenelements. Nevertheless, since we are only interested in the maximal

eigenvalue of
p

Φ(t+∆, t)ΦT (t+∆, t), this procedure is not necessary. Concerning the

units, the Lyapunov exponents measure the rate at which a system creates or destroys

information, and are usually expressed in information/s.

In our study, the local Lyapunov exponents were computed every 0.1-day time step

along selected trajectories, with ∆ = 1 day (see Figure 9). Note that similar results are

obtained for other values of ∆ (for instance, ∆ = 20 days), and thus are not reported

here.

(a) (b)

Fig. 9 (a) Local Lyapunov exponent of a halo orbit. (b) Local Lyapunov exponent of a Eight
Lissajous orbit.

On Figure (9), LLE are computed along a halo orbit and an Eight Lissajous orbit

of similar energy, around the Lagrange point L1 in the Earth-Moon system. The first

observation that can be done is that in both cases, the LLE are positive. As said

before, this is due to the chaotic character of the whole system. This means that in

both cases, nearby trajectories of the periodic orbit may diverge over a certain time

period. However both LLE behave differently. On the one hand, the maximal value of

the LLE of the halo orbit is greater than the values of the LLE of the Eight Lissajous

orbit, which remains almost constant. On the other hand, the interval between minimal

and maximal values of the LLE of the halo orbit contains the set of values of the LLE

of the Eight Lissajous orbit, and the mean values of the LLE of both orbits seem to

be almost the same. This fact can be explained from the following fact: the closer
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a trajectory gets from a primary (the Moon in this case), the higher its LLE will

be. Since the Eight Lissajous orbit is almost vertical, its distance from the primaries

remains almost the same during all its period, and its LLE remains almost constant too.

On the contrary, for the same value of energy, the x-excursion of the halo orbit varies

a lot (several thousands of kilometers) and hence the orbit gets closer to the Moon.

Its LLE varies from a minimal value corresponding to the furthermost point to the

Moon, to a maximal value corresponding to the closest point to the Moon. Depending

on the energy value, this maximal value gets larger as the orbit gets closer to the

Moon. Finally, the stability properties of these periodic orbits are related to their the

geographic situation. Their specificities make that the plots of their LLE versus time

are different, but their geographic situation around the same Lagrange point makes

that none of them can be said more stable than the other.

(a) (b)

Fig. 10 (a) Local Lyapunov exponent of the invariant manifolds of a halo orbit. (b) Local
Lyapunov exponents of the invariant manifolds of a Eight Lissajous orbit.

The situation is completely different for their invariant manifolds. On Figure (10),

local Lyapunov exponents are computed along the invariant manifolds of the previous

halo and Eight Lissajous orbits. The stability difference was not evident concerning

the periodic orbits, but this is not the case for their invariant manifolds. In the Earth’s

realm (in blue on the figure), the LLE of the invariant manifolds are close for both

periodic orbits (by looking closer, the LLE of the Eight Lissajous orbit manifolds is

shown to be lower but the difference is small). In the Moon’s realm, the stability

difference is evident. The LLE of the halo orbit manifolds reach 11 days(−1) whereas

the LLE of the Eight Lissajous manifolds keeps values lower than 5 days(−1) and the

difference is similar concerning the mean values. It confirms that some trajectories

of the halo orbit manifolds (and the manifolds themselves) are very unstable. As a

consequence, predicting the behavior of such a trajectory may happen to be difficult.

Things are going differently for the asymptotic trajectories forming the Eight Lissajous

manifolds. Their LLE indicate possible instabilities but, in spite of their small distance

to the Moon (which, as mentioned previously, may create instabilities), their LLE keep

reasonable values. Notice also that the plot of the LLE of the Eight Lissajous manifolds

has a very smooth aspect, in contrast with the chaotic aspect of the LLE of halo orbit

manifolds. This is in accordance with the fact that the Eight Lissajous manifolds keep
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their regular structure of eight-shaped tube even after a large integration time. This

nice stability property in large time of the Eight Lissajous manifolds is of potential

interest for mission design with low cost.

3.3 Accessible lunar region with the Eight Lissajous invariant manifolds in the

Earth-Moon system

The second interesting property concerning the invariant manifolds of Eight Lissajous

orbits is based on the large accessible lunar region that they cover in large time. By

propagating the invariant manifolds of an Eight Lissajous orbit, we observe an oscillat-

ing behavior around both primaries. The invariant manifolds which oscillate around the

bigger primary stay rather far from it but the invariant manifolds around the smaller

one get close to it. Our application concerns the Earth-Moon system, and we observe

that the invariant manifolds of the Earth region stay too far from the Earth to plan a

mission using them for a direct departure from the Earth, but the invariant manifolds

which oscillate around the smaller primary (the Moon) oscillate close to it and thus

may be used for a departure or a capture around the Moon (see Figure 11).

Fig. 11 Invariant manifolds of an Eight Lissajous orbit in the neighborhood of the Moon.

The oscillation of these invariant manifolds is not new compared with what can

be observed in the classical case of halo orbits. Nevertheless, the constant oscillation

of invariant manifolds of Eight Lissajous orbits in the lunar region on the one part,

and global eight-shaped structure of these manifolds on the other part, are interesting

properties for mission design. Indeed, such invariant manifolds may be used to visit

almost all the surface of the Moon, at any time, as shown next.

Lunar strip covered by the invariant manifolds. On Figure 12, we have computed the

projection on the Moon of invariant manifolds of an Eight Lissajous orbit. We observe
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that, over a long period, a large surface of the Moon may be scanned, depending on

the value of the z-excursion of the orbit.

(a) (b)

Fig. 12 Lunar strip covered by the invariant manifolds for (a) Az=10000 km and (b)
Az=50000 km.

First, on Figure 12, we observe that, for every value of the z-excursion of the Eight

Lissajous orbit, every longitude can be reached. This is due to the oscillation property

observed previously. However, this oscillation staying at the equator’s level, the lati-

tudes flied over by the manifolds depend on the z-excursion of the Eight Lissajous orbit.

If the z-excursion is small, then the latitudes reached are small too. Larger latitudes

are reached whenever the z excursion is getting larger. For a z-excursion value equal

to 50000 km, and for larger values of the z-excursion, almost all the lunar surface can

be scanned from the invariant manifolds. Only the poles cannot be reached directly. A

maneuver should be performed to fly over the lunar poles. Anyway, these results show

the relevance of invariant manifolds of Eight Lissajous orbits to scan almost all the

Moon’s surface at low cost.

The perigee-angle representation. To complete the previous results, we provide the

plot of the invariant manifolds in the perigee-angle plane. For each asymptotic trajec-

tory of the invariant manifolds, the minimal distance to the Moon (perigee) and the

corresponding latitude (angle) are computed.

On Figure 13, it is observed that the angles of the perigees range between 20 and 45

degrees. The fact that the range of angles drawn on this figure is smaller than the range

of angles covered by the manifolds is not contradictory, since trajectories of invariant

manifolds, close to the Moon, reach their closest point to the Moon for a value of

inclination between 20 to 45 degrees. Notice that these closest points correspond to

positions on the hidden face of the Moon and generally occur at the first oscillation of

the manifold around the Moon, i.e, in short time.

Figure 13 shows that the minimal distance to the Moon oscillates between 1500 and

5000 kilometers, depending on the z-excursion of the Eight Lissajous orbit (see Table

2). The minimal distances are reached after a 9-to-50 days journey from the periodic

orbit, but it is clear that for each trajectory 9 days are sufficient to get close enough

to the Moon to be captured.
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Fig. 13 Invariant manifolds of Eight Lissajous orbits in the perigee-angle plane

The results about the invariant manifolds oscillating around the Earth are not

provided here, since they do not appear to be as relevant as those concerning the

Moon. We however mention that the minimal distance between the manifolds of the

exterior realm and the Earth oscillate between 115000 and 125000 km, also depending

on the value of the z-excursion, with a 40-days journey between the perigee and the

Eight Lissajous orbit. This journey duration can be half reduced since similar approach

distances are reached after 20 days. In both cases, the corresponding inclinations are

meaningless given the large distance between the manifolds and the Earth. One can

just observe that the invariant manifolds oscillate around the Earth at the equator

level.

Finally, these results highlight the potential interest of Eight Lissajous orbits and

of their invariant manifolds. Using them, every point located on a band encircling the

lunar equator may be reached from the periodic orbit. Except the poles, almost every

point of the lunar surface may be flied over from an Eight Lissajous orbit with a large

z-excursion. Note that this may be realized at any time since the ephemeride is not

considered in the restricted three-body problem.

z-excursion of Approach time Approach distance Approach time Approach distance
the Eight Lissajous to the Earth to the Earth to the Moon to the Moon

orbit (in km) (in days) (in km) (in days) (in km)
1000 40 116730 43 1673
5000 40 116650 43 1627
10000 40 116800 43 1514
20000 40 117380 9 4502
30000 40 118340 9 5122
40000 40 119670 39 3280
50000 40 121340 42 3333

Table 2 Minimal approach time and distance of the manifolds to the Earth and to the Moon
in function of the z-excursion of the Eight Lissajous orbit.



21

Conclusion

In this article, we focused on particular periodic orbits around Lagrange points in the

circular restricted three-body problem, called Eight Lissajous orbits. A third-order ap-

proximation of these orbits has been established using Lindstedt-Poincaré’s method.

Families of Eight Lissajous orbits have been computed using a shooting method com-

bined with a continuation method, the previous third-order approximation serving as

an initial guess. Then, we have shown that Eight Lissajous orbits have interesting fea-

tures. First, their invariant manifolds keep in large time a stable eight-shaped structure,

in contrast to those of halo orbits. This fact has been put in evidence by computing

local Lyapunov exponents. Second, in the Earth-Moon system, we have shown that in-

variant manifolds of Eight Lissajous orbits permit to scan almost all the Moon surface,

depending on the value of the z-excursion. These properties are of potential interest for

mission design at low cost. Of course such strategies may require a long time transfer

and then a compromise has to be found between the energy consumption and the time

of transfer. Note also that, having in mind an Earth-Moon mission, invariant manifolds

oscillating around the Earth cannot be used directly for a departure from the Earth,

due to their too large distance. At the contrary, the stability of the Eight Lissajous

orbits invariant manifolds and the accessibility to the lunar surface provide interesting

perspectives, such as easy and economic communications between a spacecraft explor-

ing the Moon and an orbital station based on an Eight Lissajous orbit around the

Lagrange points L1 or L2 in the Earth-Moon system. From such an orbital station,

almost every point of the Moon may be visited at any time with a low cost.
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14. Gómez, G., W. S. Koon, M. Lo, J. E. Marsden, J. Masdemont, and S. D. Ross (2004).
Connecting orbits and invariant manifolds in the spatial three-body problem, Nonlinearity,
17, 1571-1606.
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