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Abstract

A recent communication has proposed a conjectural procedure for representing a category of optimal
control problems in bond graph language [1]. This paper aims at providing a fundamental theory for
proving the effectiveness of this procedure. The class of problem that the procedure can deal with has
been extended. Its application was formerly restricted to linear time invariant siso system. The systems
considered now are linear time invariant mimo systems. The optimisation objective is the minimization
of dissipation and input. The developments concerning the optimal control problem are based on the
Pontryagin Maximum Principle and the proof of the effectiveness of the procedure makes a broad use of the
port-Hamiltonian concept. As a result, the bond graph representation of the given optimisation problem
enables the analytical system, which provides the optimal solution, to be derived. The work presented
in this paper is the first step in research with perspectives towards formulating dynamic optimisation
problems in bond graph and, towards coupling this formulation with a sizing methodology using bond
graph language and a state-space inverse model approach. This sizing methodology, however, is not the
topic of this paper and thus is not presented here.

Keywords: Optimal control, bond graph, Pontryagin Maximum Principle, port-Hamiltonian system,
bicausality.

Nomenclature

‘T’ . . . . . . . . . . . . . . . . . . Transposed matrix superscript
‘-1’ . . . . . . . . . . . . . . . . . . . . . Inversed matrix superscript
‘r,c’ . . . . . . . . . . . Resistance, conductance port indices
ȧ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time derivative of a
∂A
∂x

. . . . . . .Gradient operator on A with respect to x
∂2A
∂a∂b

. . . . Second partial derivative of A with respect
to a and b components

∂a
∂x

. . . .Matrix composed in rows by the gradients of
the a components with respect to x

tr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Matrix trace
t0, tf . . . . . . . . . . . . . . . . . . . . . . . . Initial and final times
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State vector
x0, xf . . . . . . . . . . . . . . . . Initial and final state vectors

xI, xC . . . . . . . . I-element, C-element energy variable
vectors

λ . . . . . . . . . . . . Lagrange multiplier or co-state vector
xλ . . . . . . . . . . . . . . . . . . . . . . . . . Optimizing-state vector
xλI, xλC . . . . . I-element, C-element optimizing-state

vectors
Λx, Λλ . . . . Terms of the optimizing-state equations
λI, λC . . . . . . . . I-element, C-element co-state vectors
u, y . . . . . . . . . . . . . . . . . . . . . . . . . . Input, output vectors
uR, yR . . . . . Input, output vectors associated to the

dissipative phenomena
ue, uf . . . . . . . . . . . . . . . . . . . .Effort, flow input vectors
uopt . . . . . . . . . . . . . . . . . Optimal input solution vector
e, f . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effort, flow vectors
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eR, fR . . . . . . . . .Effort, flow vectors of R-elements in
the dualized representations

eopt, fopt . . . . . Effort, flow vectors in the optimizing
bond graph

V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Performance index
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Lagrangian
H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hamiltonian
Pdiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dissipation power
Hp . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pontryagin function
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identity matrix
H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hessian matrix of H

R . . . . . . . . . . . . . . . . . . R-element characteristic matrix
Ru . . . . . . . . . . . . . .Control weighted matrix on inputs
Rue

, Ruf
. . . . . .Control weighted matrices on effort,

flow inputs

RR . . . . .R-element characteristic matrix in dualized
representations

T . . . . . . . . Coupling R-element characteristic matrix
J . . . . . . . Poisson Structure matrix associated to the

junction structure
S . . . Matrix associated with the R-elements and the

junction structure transformations
g . . . . .Matrix associated with the junction structure

transformations between the storage elements
and the sources

gR . . . Matrix associated with the junction structure
transformations between the storage elements

and the R-elements in dualized representations
Π . . . . . .Matrix of the second derivatives of Hp with

respect to the x and u components

1 Introduction

Dynamic optimisation involves systems where the variables are functions of time and where the models are
governed by Differential- (either Ordinary or Algebraic) Equations [2, 3, 4]. Also, in many optimisation
problems, the performance index1 is energy, state and/or input based. There is a justification for raising the
question: "to what extent bond graph language, that straightforwardly displays both the dynamics and the
energy topology of a system model, can be used for representing the formulation of an optimisation problem?".
In a bond graph language context, research dealing with optimisation have principally a sensitivity approach
[5, 6, 7, 8, 9].

Introducing optimisation into bond graph language brings more insight and a new vision about optimi-
sation as can be experienced through this paper. Moreover coupling optimisation and bond graph has also
System Engineering arguments. In fact a perspective is to extend a methodology concerning mechatronic
system sizing on dynamic and energy criteria [10, 11, 12, 13]. With this in view, integration of the actuating
line component specifications, optimal control, multivariable control, energy minimization in a context of
sustainable development, design specifications not precisely defined, and structure synthesis, all the afore-
mentioned are expected to be dealt with. Optimal control is the first step in this perspective of introducing
a more general optimisation problem into bond graph language and, concerning this, a conjectural procedure
has been recently proposed [1]. The objective of the present paper is to provide a theoretical framework for
proving the effectiveness of this procedure.

The proposed procedure concerns the optimal control of linear time invariant systems where the perfor-
mance index is an integral of a certain functional. Several approaches such as variational methods, dynamic
programing or gradient methods exist to deal with this category of optimisation problem [3]. The develop-
ments presented here are based on the variational methods and more precisely on the Pontryagin Maximum
Principle. They aim at providing a bond graph representation that provides the analytical system of equa-
tions giving the optimal control solution. So the main contribution of the present work is to provide a new
way for formulating this analytical system and this new way is based on bond graph language. As already
mentioned the optimisation problem undertaken corresponds to finding the optimal control of a linear time
invariant mimo system. The integral performance index is based on inputs and dissipation energy. Boundary
conditions are supposed fixed, in particular for both final time and final state, and finally no constraint exists
on the inputs or the state. This voluntary restricted hypothesis framework has enabled the first step in the
coupling of optimisation and bond graph to be clearly investigated and offers encouraging perspectives for
future works.

The next section (Section 2) gives the procedure for building the bond graph representation corresponding
to the given optimal control problem. Section 3 gives a proposition and its demonstration that justify the

1Although historically speaking the terminology is closely related to the application domain, the terms ‘performance index’,
‘cost-function’ and ‘objective-function’ can be indifferently used for designating the criterion that is to be optimized [3].
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former procedure and prove its effectiveness. The key idea of the proof is to apply the Pontryagin Maximum
Principle to a generic port-Hamiltonian system. The port-Hamiltonian system is an analytical expression of
the dynamic equations governing a model, and clearly and mathematically reflects the energy topology of the
system model. Then the proposed procedure is illustrated in section 4 using a DC motor example. Section
5 draws three important features of the proposed work from the optimisation point of view. These features
concern the extremum sufficient condition, the general unstability property of the formulated optimal system
and the form of the differential equation system obtained. Finally the conclusion (section 6) summarizes the
present work and gives some elements for future developments.

Additionally, two appendices give, respectively, bases on partial dualization in the bond graph used for the
procedure effectiveness proof (appendix A) and on the bicausality concept for the bond graph exploitation
that gives the optimal control system (appendix B).

2 Procedure for the bond graph formulation of an optimal control

problem

Starting from the bond graph of a model, the object of the optimal control problem, the procedure presented
here enables an augmented bond graph to be set up. This augmented bond graph consists of the original
model representation coupled to an optimizing bond graph. It furnishes, by its bicausal exploitation, the set
of differential-algebraic equations that gives the solution to the optimal control problem. The procedure is
stated as follows:
Given:

• a linear time invariant model of a mimo system and its bond graph representation,

• the input controls to determine with respect to the integral performance index (1) to minimize, that is
the integral of half a quadratic form based on dissipative energy and control,

• fixed-boundary conditions for the time and state space, and

• no constraint on inputs or state,
the following procedure enables the bond graph representation of the given optimal control problem to

be obtained.

Procedure: Optimal control bond graph construction

1. For the input controls to be determined, add to the model bond graph a multiport R-element character-
ized by the control weighted matrix in the performance index. This multiport R-element is connected
to a junction array inserted into the control source bond and corresponding to the variable nature of
the control i.e. a 0 (resp. 1 or combined 0 and 1)-junction array for effort (resp. flow or combined
effort and flow) variables.

2. Duplicate the model bond graph with its element parameters except for the multiport R-elements. For
the multiport R-elements, the characteristic matrices are transposed and reversed sign. The duplicated
representation is hereafter called the optimizing bond graph.

3. For the dissipative phenomena involved in the integral performance index, couple the corresponding
multiport R-elements respectively in the model and the optimizing bond graphs. Add the matrix

1
2

[

R + T
]

as the lower extra diagonal submatrix. R =

[

Rrr Rrc

Rcr Rcc

]

(r –resp. c– corresponding to the

ports in resistance –resp. conductance– causality –see appendix A– when the bond graph is in integral
causality), this R is the characteristic matrix of the corresponding multiport R-elements in the model

bond graph and T =

[

RT
rr −RT

cr

−RT
rc RT

cc

]

. In the case of the 1-port R-elements, the lower extra diagonal

matrix is simply constituted by the model R-element parameters in its diagonal.

4. For the input controls to be determined, couple the multiport R-elements added at step 1 respectively
in the model and the optimizing bond graphs by setting the lower extra diagonal submatrix to the
control weighted matrix.
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5. Replace, in the model bond graph, the source elements involved in the input controls to be determined
by double detectors and, in the optimizing bond graph, by double sources. The double sources impose
both null efforts and flows.

6. Assign bicausality to the bond graph obtained. Bicausality propagates from the double sources to the
double detectors through the R-elements added at step 1. The analytical exploitation of the bicausal
bond graph representation obtained provides the equation system and the optimal control solution to
the given problem.

End of the procedure

In this procedure, concerning the coupling R-elements, the following convention has been adopted. The
first half of the components of the conjugate variable vectors correspond to the model bond graph while the
second half corresponds to the optimizing bond graph.

Before presenting a proof of the effectiveness of the procedure, a very simple example is now presented to
briefly illustrate the different steps of the bond graph construction (steps 1-5). The bond graph representation
of the chosen example is shown in Fig. 1-a. It represents a simple second order model like, for instance, a
RLC-circuit fed by a voltage source in the electrical domain or a spring-damper-mass with a force applied
to the mass in the mechanical domain. The graphical steps are illustrated respectively in Fig. 1-b to f. The
Fig. 1-b shows the introduction of an R-element onto a 0-junction between the effort source and the rest of
the model bond graph. This may be interpreted as a dissipation of the energy supply device or as taking
into account a control weighted factor. The added R-element does not change the dynamic behaviour of
the original model at all. Then the model bond graph is duplicated into the optimizing bond graph (Fig.
1-c) where the R-elements are characterized by a reversed sign parameter. The right-hand side R-element is
replaced by a global 2-port R-element where the lower extra diagonal coefficient is set to R (Fig. 1-d). In
Fig. 1-e the same operation is applied to the left-hand side R-element. Finally the step before the final one
shown in Fig. 1-f shows the replacement of the effort source by a double source in the optimizing bond graph
and by a double detector in the model bond graph.

Since the objective of this small first example is only to illustrate the graphical operations of the procedure,
no bicausal exploitation has been undertaken at this stage. The corresponding step 6 is applied to the section
4 example which illustrates this. For a brief introduction to bicausality, see appendix B.

3 Proof of the effectiveness of the procedure

The objective of this section is to prove that the bond graph representation obtained by the above procedure
corresponds well to the given optimal control problem. Firstly a proposition concerning this results is given.
The proof of this proposition is based on the port-Hamiltonian system concept [14, 15, 16, 17]. This concept
is well adapted to the demonstration of the procedure effectiveness since the port-Hamiltonian system can be
viewed as the geometric counterpart of a graphical bond graph representation. This mathematical formulation
is mid-way between a global formulation, such as the one of the state space equations, and the energy-based
graphical representation of bond graph language. Thus a presentation of the port-Hamiltonian formulation is
given in the following proof framework. Then the Pontryagin Maximum Principle is recalled as the optimum
control formulation. Finally the proof of the proposition is developed by applying the Pontryagin method to
the port-Hamiltonian formulation.

Proposition

Given a linear time invariant model with its bond graph representation (Fig. 2-a) and subject to an optimal
control problem with input and dissipation-based integral performance index of the form (1); and given the
boundary conditions of this optimal control problem; the bond graph representation, whose the analytical
exploitation provides the set of differential-algebraic equations that gives the solution of the given optimal
problem, is displayed in Fig. 2-b where the junction structure and the multiport IC-element are identical.

V =

∫ tf

t0

1

2

(

uT
e · R−1

ue
· ue + uT

f ·Ruf
· uf + Pdiss

)

dt (1)
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Figure 1: Illustration of the procedure 1 to 5 steps

where Rue
and Ruf

are control weighted matrices, Pdiss is the dissipation power at certain multiport

R-element ports, T =

[

RT
rr −RT

cr

−RT
rc RT

cc

]

(with R =

[

Rrr Rrc

Rcr Rcc

]

, r –resp. c– corresponding to R-element ports

in resistance –resp. conductance– causality –see apendix A– when the bond graph is in integral causality).
A multibond graph notation has been adopted [18] where GJS stands for Generalized Junction Structure.

Proof of the proposition

Port-Hamiltonian system

Consider a system with the total stored energy represented by its Hamiltonian H . H is expressed in
the linear case as a quadratic form of x ∈ R

n, the state space vector corresponding to the energy variables
in bond graph language (equation 2). H represents the total stored energy in the system and by taking
appropriate references, it is supposed that H (x) is strictly positive. Furthermore the Hessian matrix H of
the Hamiltonian H is symmetric (H = HT) due to the reversibility property and also because it verifies the
Maxwell reciprocity property [19, 20]. With the previous hypothesis about H , H is also definite positive.

H : R
n

−→ R

x 7−→ H (x) = 1
2xT · H · x

(2)

where the superscript ‘T’ denotes the symbol of a transposed matrix or vector.
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Figure 2: (a) model bond graph and (b) optimal control bond graph
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First port-Hamiltonian systems are introduced for conservative, i.e. not dissipative, models. In the hy-
pothesis framework of linear time invariant systems, they are given by (3) [14, 16, 17].

{

ẋ = J ·
∂H(x)

∂x
+ g · u

y = gT ·
∂H(x)

∂x

(3)

where J and g are constant matrices associated to junction structure transformations in the bond graph,

u =
[

uT
e uT

f

]T

∈ R
m and y ∈ R

m are respectively the system input and output vectors, and ∂·
∂x

denotes the

gradient operator with respect to the vector x.
In the port-Hamiltonian system framework, u and y are the power conjugate variable vectors at the

environmental ports of the system. Also J is a Poisson Structure matrix satisfying the skew-symmetry
property i.e. J = −JT [15]. One peculiarity of the port-Hamiltonian description is to clearly display the
energy topology of the physical model in a mathematical manner. If dissipative phenomena are considered,
the port-Hamiltonian system is now supposed to be written:















ẋ = J ·
∂H(x)

∂x
+ g · u − gR · uR

y = gT ·
∂H(x)

∂x

yR = gT
R ·

∂H(x)
∂x

(4)

where uR ∈ R
r and yR ∈ R

r are the input and output vectors associated to the dissipative phenomena,
and gR is a matrix associated to the junction structure transformation between the storage elements and the
R-elements.

By an appropriate dualization of the dissipative constitutive laws, it is always possible to consider that the
inputs are efforts (uR = eR) while the outputs are flows (yR = fR). Thus, in the linear case, the dissipative
constitutive laws can be written:

eR = RR · fR (5)

where RR is the matrix that characterizes the dissipative phenomena.

A generic causal bond graph representation of equations (4) and (5) is given in Fig. 3 where x =
[

xT
I xT

C

]T
.

For the sake of conciseness, partial dualization has been used for R-element ports with conductance causality
and the multiport flow source [21]. This introduces symplectic gyrators that inverse the effort and flow roles
and enable every case of port element causality assignment, for multiport R- and source elements, in a unique
causal representation to be treated, without loss of generality, in the demonstration (see appendix A). In
figure 3 the symplectic gyrators are encapsulated in the word [GJS]. From equation (2), it can be deduced
that:

∂H (x)

∂x
= H · x (6)

Also, the vector fR can now be expressed in terms of the state vector:

fR = gT
R ·

∂H (x)

∂x
= gT

R · H · x (7)

Due to dualization the matrix RR, that characterizes the multiport R-element in the figure 3 generic
causal bond graph, differs from the matrix of the figure 2-a multiport R-element in the original bond graph.

Finally the port-Hamiltonian system for a dissipative linear time invariant model can be written:
{

ẋ = [J − S] · H · x + g · u

y = gT · H · x
(8)

where S, given by equation (9), is a positive definite matrix if RR is also a positive definite matrix.

S = gR · RR · gT
R (9)

Now the method of the Pontryagin Maximum principle will be recalled.
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∂xI

ẋI
∂H
∂xC

ẋC
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Figure 3: Generic causal bond graph representation for a port-Hamiltonian system

Pontryagin Maximum Principle

Consider the state space model (10) and the integral performance index or cost function V to minimize
(11) [22, 23, 4].

ẋ = f (x, u) (10)

V =

∫ tf

t0

L (x, u)dt (11)

where x ∈ R
n is the state space vector, u ∈ R

m is the control vector where each component here is
supposed unbounded, f is a differentiable function of x and u, and L, the Lagrangian, is supposed to be a
positive definite function of x and u. The integral performance index minimization is considered between
the given initial state x0 = x (t0) at time t0 and final state xf = x (tf) at time tf .

The first step of the Pontryagin method is to build the Pontryagin function Hp given by:

Hp : R
n × R

n × R
m −→ R

(x, λ, u) 7−→ Hp (x, λ, u) = L (x, u) + λT · f (x, u)
(12)

where λ ∈ R
n is the vector of co-state variables (or covariant vector) usually called Lagrange multiplier

vector of the associated constrained variational problem, and the subscript ‘p’ distinguishes the Pontryagin
function of the optimisation problem from the Hamiltonian of the system.

The set of 2n+m first order differential-algebraic equations (13) provides the optimal solution for x (n-
state equations), λ (n-costate equations) and u (m Euler equations in terms of the vector u components)
with the boundary conditions x0 and xf .















ẋ =
∂Hp(x,λ,u)

∂λ

λ̇ = −
∂Hp(x,λ,u)

∂x

∂Hp(x,λ,u)
∂u

= 0

(13)

Unlike the classical presentation of the Pontryagin Maximum Principle, it is chosen not to calculate a
priori the optimal controls from the Euler equations in terms of the vector u components. It is shown below
why it is preferable here.

The last step of the demonstration is the application of the Pontryagin Maximum Principle to the equation
(8) system.
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Figure 4: Generic causal bond graph representation for a port-Hamiltonian system with non-ideal energy
supplies

Application of the Pontryagin Maximum Principle to the port-Hamiltonian systems

The integral performance index considered here corresponds to the minimization of certain energy dissi-
pation and inputs. Equation (11) in this case becomes:

V =

∫ tf

t0

1

2

(

uT
· R−1

u · u + Pdiss

)

dt =

∫ tf

t0

1

2

(

uT
·R−1

u · u + eT
R · fR

)

dt (14)

where Ru is a diagonal matrix of positive elements that represent control weighted factors, and Pdiss

is the dissipation power expressed as the inner product of the power conjugate vectors of the R-elements.
The coefficient 1

2 , without changing the optimisation problem, enables a coefficient 2 in certain terms in the
following to be eliminated.

The matrix Ru may be interpreted as characterizing some dissipative phenomena embedded in the energy
supplies thus considered as non-ideal [4]. The bond graph implementation is displayed in Fig. 4.

The Pontryagin function (12) applied to the port-Hamiltonian system (8) with the equation (5) and the
integral performance index (14) gives:

Hp =
1

2
uT

· R−1
u · u +

1

2
fT

R · RR · fR + λT
·

[

[J − S] ·H · x + g · u
]

(15)

From this expression the set of differential-algebraic equations (13) providing the optimal solution are
now derived:

ẋ = [J − S] ·H · x + g · u (16)

λ̇ = −
∂

∂x

[

1

2
fT

R ·RR · fR

]

−
[

λT
· [J − S] · H

]T
(17)

R−1
u · u +

[

λT
· g
]T

= 0 (18)

While equation (16) can be derived from the Fig. 4 bond graph representation, the key issue of the bond
graph formulation of the optimal control problem under consideration resides in the translation of equations
(17) and (18) into this language.

Let us first concentrate on equation (17). It can be re-written using the symmetry and skew-symmetry
properties of matrices H and J respectively, also using equation (7), and the expression (9) of matrix S as
the equation (19) shows.

λ̇ = −
∂fR

∂x

T
·

1
2

[

RR + RT
R

]

· fR − HT ·
[

JT − ST
]

· λ

= −H · gR ·
1
2

[

RR + RT
R

]

· fR + H ·
[

J + gR · RT
R · gT

R

]

· λ
(19)
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Figure 5: Bond graph translation of the term Λλ contribution in equation (20)

where ∂·
∂x

now denotes the partial derivative of a vector with respect to the x which is a matrix, composed
in rows by the gradients of the vector components with respect to x.

Before introducing the bond graph translation of this equation, the variable mapping xλ = H−1 · λ is
carried out (H is definite positive by hypothesis and thus invertible). This gives:

ẋλ = −gR ·
1
2

[

RR + RT
R

]

· fR +
[

J + gR · RT
R · gT

R

]

· H · xλ

= Λx + Λλ

(20)

with Λx = −gR ·
1
2

[

RR + RT
R

]

· fR and Λλ =
[

J + gR · RT
R · gT

R

]

· H · xλ.
The reason for this variable mapping is that the co-state vector λ is analog to a co-energy vector in bond

graph language while the vector xλ is analog to an energy vector. Since this new vector is not the co-state
vector and to distinguish it from the state vector x, it is called optimizing-state vector.

A first inspection shows clearly that the second term Λλ of the equation (20) second member corresponds
to the eigen dynamics of the optimizing-state while the first term Λx, is related to the coupling between both
the state and optimizing-state systems. Concerning the term Λλ, it is not difficult to see that it is closely
analog to the expression of the state equations as equation (21) shows.

x :
[

J − gR ·RR · gT
R

]

·H −→ xλ :
[

J − gR ·
(

−RT
R

)

· gT
R

]

· H (21)

In consequence the Fig. 4 bond graph structure embedding the multiport storage element, the multi-
port R-element, and the junction structure between these two can be reproduced to represent the term Λλ

contributing to ẋλ (Fig. 5) just by changing RR into −RT
R.

An inspection of the term Λx in equation (20) shows that its contribution stems from the previously
introduced multiport R-element through the junction structure transformation characterized by gR. So the
term 1

2

[

RR + RT
R

]

· fR is calculated from the vector fR and contributes to the effort vector on the same
R-element multibond. This results in the Fig. 6 bond graph translation that is a concatenation of the Fig.
4 and 5 bond graphs where the multiport R-elements have been replaced by a global multiport R-element.
This R-element is characterized by the two matrices RR and −RT

R arranged in block diagonal, and by the
complementary lower extra diagonal submatrix 1

2

[

RR + RT
R

]

(the minus sign in the term Λx in equation 20
stems from the junction structure, in the same way as the minus sign in front of the matrix S in equation
16). This multiport R-element represents the coupling between the state and optimizing-state equations. It
is proposed to call the added bond graph representation optimizing-bond graph, mirroring to some extent the
original one.

It remains now to treat equation (18) which corresponds to the Euler equation with respect to the control
vector u.
First it is re-written as follows:

R−1
u · u + gT

· λ = 0 (22)
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Figure 6: Bond graph translation of both state and optimizing-state equations (16) and (20)

This equation can be interpreted as a flow vector balance between a vector stemming from the control
vector u in the original system and a vector coming from the vector λ through the junction structure
transformation characterized by g. This balance is translated by mirroring, in the optimizing bond graph, the
left-hand side part of the Fig. 4 model bond graph between the junction structure and the modulated effort
source (figure 7). Likewise, the multiport R-elements are concatenated into a global multiport R-element
characterized by the matrix (23).

(

Ru 0

Ru −Ru

)

(23)

Now by imposing simultaneously the balance of the two flow vectors and a null effort vector to the
optimizing bond graph 0-junction array (figure 7), the Euler equation (18) with respect to u is verified as the
following development proves it using the figure 7 vector notations:

eopt = Ru · f − Ru · fopt = f − fopt from the second vector characteristic law of the R-element
fopt = −gT · λ from the flow vector balance
f = R−1

u · e = R−1
u · u from the first vector characteristic law of the R-element

so
eopt = R−1

u · u + gT · λ = 0

It is justified here not to have calculated a priori the optimal controls from the Euler equations in terms
of the vector u components.

Finally the bond graph element that enables both a null effort vector and a balance of the two flow vectors
to be imposed onto a 0-junction array is a multiport double source null effort vector and null flow vector. It is
connected to the bottom 0-junction array of the figure 7 bond graph. Such an element initializes bicausality
[24, 25] propagation in the bond graph and thus requires the presence likewise of a multiport double detector
[11, 12, 13]. In the mathematical formulation of the optimal control design problem, the role of the control
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Figure 7: Bond graph translation of Euler equation (18) with respect to u

vector u is changed into an output vector while the power conjugate vector y keeps its original output role.
Thus the multiport double detector replaces the original multiport MSe element in the figure 4 bond graph.

The final generic causal bond graph representation, in the partial dualization context, of the given optimal
control problem, is displayed in figure 8 and proves, by applying reverse dualization (see appendix A), the
proposition and so the effectiveness of the section 2 procedure.

End of the proof

At this point it is worthwhile noting that, in the application of the procedure, there is no need to transform
the original bond graph model into a partially dualized version. Dualization has been used in this section only
for a concise demonstration reason and the procedure applies with a traditional bond graph representation
displaying every element of the set {Se, Sf, I, C, R, TF, GY, 1, 0}. The correspondence between the different
multiport R-element matrices of the figure 8 generic bond graph and that of figure 2-b is developed in
appendix A. Also only certain of the inputs and certain of the dissipation phenomena can be involved in
the optimal control problem and more precisely in the performance index. It is not difficult to see that the
procedure still applies. In this case, the corresponding multiport R-elements are left uncoupled in the step
3 procedure for the uninvolved dissipation phenomena. Likewise, for the inputs excluded from the optimal
control design problem, the multiport source elements are not replaced by double detectors and no R-element
is added at the procedure step 1. The DC motor example presented in the next section illustrates such a
case where not all the dissipation phenomena are taken into consideration in the integral performance index.

4 Illustrative example: a DC motor

A DC motor model is presented in Fig. 9. It consists of the armature circuit composed of a voltage source u,
a resistance R and an inductance L. The electromechanical coupling is characterized by the torque constant
kc and on the mechanical side, the rotor inertia Jm, viscous friction on rotor (parameter bm), a reduction
gear (parameter 1/N) with a stiffness k, the load inertia Jc and a viscous friction on load shaft (parameter
bc) are taken into consideration. The model is linear and, in the optimal control context, the aim is, with
given initial conditions at t0 and given final conditions at tf , to determinate u with the integral performance
index (24) that corresponds to the input and a certain dissipative energy minimization.

V =

∫ tf

t0

1

2

(

u2

Ru
+ PR + Pbc

)

dt (24)

where Ru is a control weighted factor, PR is the electrical power loss and Pbc
the power dissipation on

the load shaft.
The bond graph representation of this DC motor model is given in Fig. 10. It shows the MSe element

for the voltage source, three I-elements for the three energy storage phenomena, associated respectively to
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Figure 9: A DC motor model
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Figure 11: Bicausal bond graph representation of the DC motor optimal control problem

the magnetic energy, and the kinetic energies of the rotor and the load shaft motions, a C-element for the
energy storage associated to the reduction gear stiffness, and three R-elements for the dissipation phenomena
in the electrical circuit, on the rotor and the load shafts. The GY-element represents the electromechanical
coupling and the TF-element is associated to the power conserving coupling in the reduction gear.

The equation (24) performance index involves the left-hand and right-hand side R-elements only.
The section 2 procedure application and, more particularly, the first five steps provide the Fig. 11 bicausal

bond graph representation.
The bicausality assignment, as displayed on the Fig. 11 bond graph, enables the optimal control system
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(25) to be obtained. This constitutes the final step of the section 2 procedure.


















































































ṗ1 = −
R
L p1 −

kc

Jm
p2 −

Ru

L pλ1

ṗ2 = kc

L p1 −
bm

Jm
p2 −

k
Nq3

q̇3 = 1
JmNp2 −

1
Jc

p4

ṗ4 = kq3 −
bc

Jc
p4

ṗλ1
= −

R
L p1 + R

L pλ1
−

kc

Jm
pλ2

ṗλ2
= kc

L pλ1
+ bm

Jm
pλ2

−
k
Nqλ3

q̇λ3
= 1

JmNpλ2
−

1
Jc

pλ4

ṗλ4
= −

bc

Jc
p4 + kqλ3

+ bc

Jc
pλ4

u = −
Ru

L pλ1

y = 1
Lp1 −

1
Lpλ1

(25)

The application of the Pontryagin Maximum Principle leads to the same result with analytical develop-
ments compared to the bond graph graphical approach for deriving the equations.

The next section shows a number of key features of the approach of this paper for an optimal control
bond graph formulation.

5 Key features

Sufficient condition The optimal system (13), stemming from the Euler-Lagrange conditions on the
Pontryagin function (12), represents necessary conditions for an optimum existence. To determine whether
it is a minimum, a maximum or none of them, one has to inspect the second variation of the functional in the
performance index. This can be achieved by studying the definiteness of the matrix Π (equation 26) [4, 26].

Π =

(

∂2Hp

∂x2

∂2Hp

∂x∂u
∂2Hp

∂x∂u

∂2Hp

∂u2

)

u=uopt

(26)

where Hp is the Pontryagin function, x the state vector, u the control vector, and subscript ‘u=uopt
’

indicating that the terms are evaluated for the optimal control.
For the optimal control problem considered in this paper, the Pontryagin function (15) is expanded using

(7) to give:

Hp =
1

2
uT

· R−1
u · u +

1

2
xT

·H · gR ·RR · gT
R · H · x + λT

·

[

[J − S] · H · x + g · u
]

(27)

The expression of matrix Π is in this case:

Π =

(

Q 0

0 Ru

)

u=uopt

(28)

where Q = H · gR ·RR · gT
R · H = HSH using equation (9).

By hypothesis, Ru is diagonal with positive elements. Thus it is sufficient to study the matrix Q [27, 28].
In the particular case of the multiport R-elements with positive definite characteristic matrices, a minimum
can be concluded.

Instability behavior Instability is a known feature of the optimal control system (13) [29]. Without get-
ting in depth in a theoretical demonstration, this feature can be easily viewed by inspecting the corresponding
state matrix (Equ. 16 and 17). In fact the trace tropt of this matrix is given by :

tropt = tr ([J − S] ·H) − tr
(

H ·
[

JT
− ST

])

= tr ([J − S] ·H) − tr ([J− S] ·H)

= 0,
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since for any matrix M, tr (M) = tr
(

MT
)

.
Now the trace of a matrix is invariant and so is also the sum of the eigenvalues. For the optimal control

system (16) and (17) this means that if at least one eigenvalue with a negative real part exists, then one with
an opposite real part as well exists. It can be concluded that this system is unstable.

This feature is very important for numerical simulation considerations when an indirect approach is
followed in the optimal control problem resolution. It is worthwhile noting also that the boundary conditions
have no incidence on this unstability result.

Ordinary form of the differential equations The state space system Equ. (8), considered for the proof
of the procedure effectiveness, has been implicitly supposed to be an Ordinary Differential Equation (ODE)
system. This corresponds to a causal bond graph with no zero-order causal path (ZCP) that would otherwise
add algebraic equations to the model (index of the Differential Algebraic Equation (DAE) system greater
than 0) [30]. In fact the procedure still applies to a large extent when zero-order causal paths appear in the
causal bond graph. The condition is that these ZCPs must be solvable with respect to an algebraic variable
so that the DAE system can be transformed into an ODE one. In fact this is the great majority of cases.
One unfavourable case, given in [30], is when ZCPs of class 3 or 4 touch ZCPs of class 1. This corresponds
to causal loops between one storage element in integral causality and one in derivative causality, touching a
causal mesh or a causal cycle of loop gains different from 1. This rare case is thus implicitly excluded from
the proposed procedure of this paper.

6 Conclusion

In this paper a procedure and the proof of its effectiveness has been given for introducing an optimal control
formulation into the bond graph language. The class of the optimal control problems presented concerns linear
time invariant MIMO systems where the integral performance index corresponds to inputs and a dissipative
energy minimisation. The procedure enables the formulation to be set up exclusively at a graphical (namely
bond graph) level. The proof of its effectiveness uses the Pontryagin principle applied to the port-Hamiltonian
formulation of the system.

The main contribution of this paper is to provide an alternative way to derive an optimal control system
for the type of optimisation problems specified. However no method has been given for solving the system
of equations obtained. The corresponding approach is indirect and further investigations are required to
exploit the bond graph stemming from the procedure at a numerical simulation level. Thus the key issue
is now to couple numerical methods designed for two point boundary-value problems. The shooting or the
multiple shooting method, the collocation method or the finite differences method are examples of numerical
techniques for the two point boundary-value problem [26].

As already stated in the introduction, a bond graph formulation of an optimisation problem brings a new
view and a graphical visualization of this type of problem. This can facilitate the analysis of the coupling
between the state space and the co-state one, and also facilitate the interpretation of the state and co-state
variable roles or the output role assigned to the inputs to be determined. In particular the bond graph
representation shows clearly that the co-state variables can be interpreted as co-energy variables and that,
by appropriate mapping, energy-like variables corresponding to them can be made explicit on bond graph
storage elements. Also the bond graph formulation shows clearly the appearence of the adjoint system [31, 32]
that has already been pointed out in previous works [33, 34]. This confers some generic features of certain
parts of the proposed procedure with regard to other types of optimisation problems.

A set of perspectives opens the extension of the procedure to time variant and then to non linear problems,
to other boundary conditions and to performance indexes other than those based on energy dissipation.
Practical problems always involve inequality constraints. They correspond to the fact that certain variables
cannot be physically greater than given values. This can be considered for state variables and for inputs.
Works has to be done to introduce these constraints into the bond graph representation.

Finally, though the work in this paper has been presented in the context of an optimal control problem
formulation in bond graph language, it must be viewed rather as the problem of the input determination
corresponding to a dynamic optimization problem. It is completely equivalent from the mathematical point
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of view but the authors’ objective in the future is to couple this procedure to a sizing methodology based on
an inverse model approach. In this design context the aim is to specify the technological components that
constitute an actuacting line [11, 12, 13].
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Appendix

A Partial dualization

The generic bond graph representation used for the proof of the proposed procedure is based on the dualization
concept [21]. Dualization is realized by a symplectic gyrator or unit gyrator (Fig. 12-a) and enables the nature
of the power variables to be exchanged. The implicit constitutive relation of this element is given by:

(

e1

e2

)

−

(

0 I

I 0

)

·

(

f1

f2

)

= 0

where I is the identity matrix. One important property is that two symplectic multiport gyrators in series
are equivalent to a multibond (Fig. 12-b). In the context of this paper, this multiport element has been used
to simplify the development of the proof of the procedure effectiveness by means of dualization and partial
dualization presented hereafter. Correspondence between the characteric matrices of original and dualized
multiport R-elements are also detailed.

Dualization of the multiport R-elements Though not directly used in the proof, this dualization case
enables this technique to be understood well. The symplectic multiport gyrator enables both the figures
13-a and 13-b partial bond graph representations to be used equivalently. The implicit constitutive relation
equivalence is shown by:

e − R · f = 0

⇔ fR − R · eR = 0

⇔ eR − R−1
· fR = 0
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Partial dualization of the multiport R-elements Partial dualization is used here in a causal context.
Concerning R-elements, it enables unique type of causality (here resistance causality) to be dealt with.
Consider the figure 14-a causal multiport R-element collecting all individual 1-port or multiport R-elements
of a general causal bond graph. Without loss of generality the ports of this multiport R-element have been
classified in such a way that the first ones correspond to the resistance causality and the last ones to the
conductance causality. The use of a multiport symplectic gyrator enables the conductance causality ports to
be dualized (Fig. 14-b). The equivalence between both the R-element constitutive matrices is shown by:

{

er − Rrr · fr − Rrc · fc = 0

ec − Rcr · fr − Rcc · fc = 0

⇔

{

er =
(

Rrr − RrcR
−1
cc Rcr

)

· fr + RrcR
−1
cc · ec

fc = −R−1
cc Rcr · fr + R−1

cc · ec

⇔ eR = RR · fR

with eR =

(

er

fc

)

and fR =

(

fr

ec

)

.

The following convention is recalled here: the power variable on the half arrow side is a flow while, on
the other side, it is an effort.

Correspondence between RT
R and T The proof of the procedure effectiveness shows the appearance of

the matrix RT
R in the optimizing bond graph (Fig. 8). It is essential to see the correspondence with the

general bond graph representation (Fig. 2-b). Starting with the matrix RT
R (Fig. 15-a) the corresponding

matrix T is obtained by:
{

eopt.r =
(

Rrr − RrcR
−1
cc Rcr

)T
· fopt.r −

(

R−1
cc Rcr

)T
· eopt.c

fopt.c =
(

RrcR
−1
cc

)T
· fopt.r +

(

R−1
cc

)T
· eopt.c

⇔

{

eopt.r = RT
rr · fopt.r − RT

cr · fopt.c

eopt.c = −RT
rc · fopt.r + RT

cc · fopt.c

One important feature of the matrix T is that it is causality dependent.
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eopt.r

eopt.r

fopt.r

fopt.r

eopt.c

eopt.c

eopt.c

fopt.c

fopt.c

fopt.c

IR:T =

[

RT
rr −RT

cr

−RT
rc RT

cc

]

IR:RT
R =

[

(

Rrr − RrcR
−1
cc Rcr

)T
−
(

R−1
cc Rcr

)T

(

RrcR
−1
cc

)T (

R−1
cc

)T

]

IS IG IY

≡

(a)

(b)

Figure 15: Bond graph correspondence between (a) RT
R and (b) T

Correspondence between −RT
R and −RT Based on a development similar to that of the previous

paragraph, it is not difficult to show that the matrix −RT
R in the figure 8 bond graph corresponds to the

matrix −RT in the figure 2-b bond graph representation.
In the particular case where the R-elements are 1-port elements, the matrix R is diagonal and RT = T =

R. This simplifies the final matrices that are thus causality independent.

Dualization of the multiport flow sources Dualization of the multiport flow sources is also used in the
proof of the procedure effectiveness in order to simplify the causality cases. It is shown in figure 16.

IM ISf

IM ISe IS IG IY

≡

u

u

u

u

u

Figure 16: Dualization of the multiport flow sources

Dualization of the 0-junction arrays The correspondence between the figure 8 bond graph representa-
tion and the figure 2-b one requires the dualization of the 0-junction arrays as well. It is shown in figure 17.
This dualization is coordinated with the one of a multiport flow source and the one of a multiport R-element.
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Figure 17: Dualization of the 0-junction arrays

B Bicausality

The bicausality concept [24] is an extension of the causality concept corresponding to a strict mathematical
point of view on a power bond. Considering the figure 18-a acausal bond graph representation of a power
bond, this can be viewed as a graphical representation of a power connection between two subsystem power
ports, thus constraining the power variables (effort and flow) to be identical. The mathematical representation
of this power port connection can be expressed by the two implicit equations :

{

e1 − e2 = 0
f1 − f2 = 0

Causality corresponds to the organisation of these two equations with a strong physical interpretation and
gives both the assignment possibilities of the figure 18-b causal power bonds. However inspection of the
previous implicit equations shows that from a strict mathematical point of view, it is possible to have two
other calculus schemes displayed in the figure 18-c called bicausal power bonds. This bicausal assignment
has no physical interpretation. It only means that both power variables are mathematically determined at
the same time by the same subsystem set of equations. The interest of using bicausality, and thus this
assignment, becomes obvious for deriving inverse models [11, 25, 12, 13]. In the bicausity assignment the
stroke is split into two half-strokes, one dedicated to effort assignment (half arrow opposite side), and the
other one dedicated to flow assignment (half arrow side).

It remains now to introduce two new elements into the representation that, on one side, initiate a bi-
causality assignment, and, on the other side, properly terminate this bicausal assignment. The element from
which bicausality starts is a double source (Fig. 19-a) and the element where bicausality terminates is a
double sensor (Fig. 19-b).

Concerning the bond graph bicausal assignment, the element constraints are the same as for the causality
assignment. The difference resides in the fact that effort and flow assignments are now uncoupled. In the
bicausal bond graph, bicausality and causality coexist but junction constraints show that two bicausal paths
cannot be adjacent. Finally bicausality is assigned from a double source to a double sensor, this means that
these elements are necessarly present in pairs.
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e1

f1

e2

f2

{

e1 := e2

f2 := f1

{

e2 := e1

f1 := f2

{

e1 := e2

f1 := f2

{

e2 := e1

f2 := f1

(a)

(b)

(c)

Figure 18: Power bond (a) acausal, (b) in causal assignment, and (c) in bicausal assignment
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E,F
¨SeSf

DeDf

u, y

e := E

f := F

u := e

y := f

Figure 19: (a) Double source, (b) double sensor
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