
HAL Id: hal-00312820
https://hal.science/hal-00312820

Submitted on 26 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Path-repair algorithm
Narendra Jussien, Olivier Lhomme

To cite this version:
Narendra Jussien, Olivier Lhomme. The Path-repair algorithm. Electronic Notes in Discrete Mathe-
matics, 2000, 4, pp.2-16. �10.1016/S1571-0653(05)80102-7�. �hal-00312820�

https://hal.science/hal-00312820
https://hal.archives-ouvertes.fr

The Path-repair algorithm

Narendra Jussien and Olivier Lhomme

�Ecole des Mines de Nantes { BP 20722 { F-44307 Nantes Cedex 3

fNarendra.Jussien,Olivier.Lhommeg@emn.fr

Abstract

In this paper, we introduce a new solving algorithm for Constraint Satisfaction

Problems: the path-repair algorithm. The two main points of that algorithm are: it

makes use of a repair algorithm (local search) as a basis and it works on a partial

instantiation in order to be able to use �ltering techniques. Di�erent versions are

presented and �rst experiments with both systematic and non systematic versions

show promising results.

1 Introduction

Many industrial and engineering problems can be modeled as constraint sat-

isfaction problems (csps). A csp is de�ned as a set of variables each with an

associated domain of possible values and a set of constraints over the variables.

Most of constraint solving algorithms are built upon backtracking mechanisms.

Those algorithms usually explore the search space systematically, and thus

guarantee to �nd a solution if one exists. Backtracking-based search algorithms

are usually improved by some �ltering techniques which aim at pruning the

search space in order to decrease the overall duration of the search.

Another series of constraint solving algorithms are local search algorithms.

They perform a probabilistic exploration of the search space and therefore

cannot guarantee to �nd a solution. The interest of local algorithms (eg. Tabu

search [12], GSAT [25]) is that, following local gradients in the search space,

they may be far more e�cient (wrt reponse time) than systematic ones to �nd

a solution.

Several works have studied cooperation between local and systematic search

[6,8,20,22,23,30]. Those hybrid approaches have led to good results on large

scale problems. Three categories of hybrid approaches can be found in the

literature:

Preprint submitted to Elsevier Preprint 17 September 1999

(1) performing a local search before or after a systematic search;

(2) performing a systematic search improved with a local search at some

points of the search (typically for optimisation problems, to try to improve

the quality of a solution);

(3) performing an overall local search, and using systematic search 1 either

to select a candidate neighbor or to prune the search space.

The hybrid approach presented in this paper falls in the third category. It will

use �ltering methods to both prune the search space and help in choosing the

neighbor in a local search. This leads to a new search technique over csps

which is called path-repair. Di�erents variations of this search technique are

discussed, some of them are shown to be complete. Very promising �rst results

are presented.

The paper is organized as follows. Section 2 gives some notations. Section 3

presents the path-repair algorithm. Section 4 discusses related works and �-

nally section 5 summarizes the �rst results obtained in the �eld of open shop

scheduling problems.

2 Preliminaries

A csp is a couple < V;C > where V is a set of variables and C = fc1; : : : ; cmg
a set of constraints. Domains of the variables are handled as unary constraints.

For a given constraints set S = fc1; : : : ; ckg, Ŝ will be the logical conjunction

of the constraints in S: Ŝ = (c1 ^ : : : ^ ck). By convention: ?̂ = true.

Classical csp solving simultaneously involves a �ltering algorithm (to a priori

prune the search tree) and an enumeration mechanism (to overcome �ltering

algorithm incompleteness). For example, for binary csp over �nite domains,

arc-consistency can be used as �ltering technique. After a �ltering step, three

situations may arise:

(1) the domain of a variable becomes empty: there is no feasible solution;

(2) all the domains are reduced to a single value: those values assigned to

their respective variables provide a feasible solution for the considered

problem;

(3) there exists at least one domain which contains at least 2 values: search

has not yet been successful. In a classical approach, it would be time for

enumeration through a backtrack-based mechanism.

1 Note that �ltering techniques can be considered as a limited form of systematic

search.

2

In a more general way, for any �ltering algorithm 2 � applied on the set

C of constraints of a given csp (let C
0 = �(C)), there exists a function

obviousInference which, when applied on C
0, answers:

� noSolution i� it is immediate to infer that no solution can be �nd for C (as

in situation 1 above).

� allSolution i� the current constraints system 3 can immediately provide a

solution that veri�es all the constraints in C 0 (as in situation 2 above).

�
ounder in all other situations (as in situation 3 above).

The function obviousInference has typically a low computational cost. Its

aim is to make explicit the use of some properties that depends on the used

�ltering algorithm. The example of arc-consistency �ltering with an empty

domain or with only singleton domains has already been given, but a function

obviousInference can be made explicit in many other �ltering or pruning

algorithms. For example, in integer linear programming, the aim is to �nd an

optimal integer solution. This can be done by using the simplex algorithm

over the reals. If there is no real solution or if the real optimum has only

integer values, then a obviousInference function would respectively return

noSolution or allSolution.

Enumerating discrete binary csps is assigning a value 4 a to a variable vk i.e.

adding a new constraint vk = a in the system. For other kinds of problems,

enumerating may be di�erent: for example, for numeric csp, enumerating

is adding a splitting constraint (eg. v
`
< a). When dealing with scheduling

problems, enumerating is often adding a precedence constraint between two

tasks of the problem.

In the next section, the path-repair algorithm is presented through an abstrac-

tion of the solved problems: they may be discrete binary csp, numeric csp as

well as scheduling problems. This will be possible thanks to:

(1) the parameter � which represents the �ltering algorithm used;

(2) the function obviousInference, tightly related to the used �ltering al-

gorithm, that is able to examine a set of constraint in order to continue

or not the computation;

(3) the concept of enumerating constraint. An hypothesis holds over the way

such constraints are generated: there exists an integer 5 Ne such that

2 A �ltering algorithm � applied on a set C of constraints returns a new set C0 =

�(C) such that C � C0 (redundant constraints may have been added).
3 We consider that domain reductions are added as redundant constraints in the

constraint system.
4 a is an element of the domain of variable v

k
.

5 For discrete csps where enumerating constraint are value assignmentsNe is clearly

the number of involved variables. For numeric csps Ne strongly depends on the

3

whatever the set E of at least N
e
di�erent enumerating constraints, the

call obviousInference(�(C [E)) will not answer
ounder. This con-

dition is necessary to ensure termination (in the case of the systematic

version of the algorithm), and is ful�lled by any reasonnable search strat-

egy.

3 The path-repair algorithm

The idea of the path-repair algorithm is very simple. First observe that:

� current local search algorithms mainly work upon a total instantiation of

the variables;

� backtracking-based search algorithms work upon a partial instantiation of

the variables.

The ability of backtracking-based search algorithms to be combined with �l-

tering techniques only comes from the fact that they work upon a partial

instantiation of the variables. Thus, a local search algorithm working upon a

partial instantiation of the variables would have the same ability.

Indeed, the path-repair algorithm is such an algorithm. The considered partial

instantiation is de�ned by a set of enumerating constraints (as de�ned above)

upon the variables of the problem. Such a constraint set de�nes a path in the

search tree.

3.1 Principles of path-repair

The principle of the path-repair algorithm as shown in �gure 1 is the following:

let P be a path in the search tree. At each node of that path, an enumerating

constraint has been added. Let CP be the set of added enumerating constraints

while moving along P .

The path-repair algorithm starts with an initial path (it may range from the

empty path, to a path that de�nes a complete assignment). The main loop

�rst checks the conditions of failure
6 . A �ltering algorithm is then applied

on C [C
P
giving a new set of constraints C 0 = �(C [C

P
). The function

obviousInference is then called over C 0. Three cases may occur:

desired precision on the result.
6 These conditions depend on the instance of the algorithm; examples are given in

the following sections.

4

procedure Path-repair(C)

P := initial path

loop

if conditions of failure veri�ed then

return failure

else

C
0 := �(C [CP)

if obviousInference(C0
) = noSolution then

let k be a nogood explaining the failure

P := neighbor(P,k,�)

else if obviousInference(C
0
) = allSolution then

return C0

else

P := extend(P,�)

end loop

Fig. 1. The path-repair algorithm

� obviousInference(C 0
) = allSolution: a solution has been found. The al-

gorithm terminates and returns C 0.

� obviousInference(C 0
) = flounder: the path-repair algorithm tries to ex-

tend the current path P by adding an enumerating constraint. That be-

havior is similar to that of backtracking-based search algorithms. For that

purpose, a function extend(P,�) is assumed to exists that chooses an enu-

merating constraint to be added and adds it to P . The meaning of parameter

� will be made clear later.

� obviousInference(C 0
) = noSolution: C [C

P
is inconsistent. We will say

that P is a dead-end, or P is inconsistent : P cannot be extended. The path-

repair algorithm will thus try to repair the current path by choosing a new

path through the function neighbor(P,k,�). Parameters k and � will be

explained later.

The path-repair algorithm appears here as a search method that handles par-

tial instantiations and uses �ltering techniques to prune the search space. The

key components of this algorithm are the neighboring computation functions

(neighbor) and the extension functions (extend).

3.2 Properties of the neighborhood of path-repair

In a local search algorithm such as gsat (on boolean csps), an inconsistent

instantiation is replaced by a new one built from the �rst one by negating

the value of one of its variables. That variable is choosen by a heuristic (for

example: the one whose negation will allow the greatest number of clauses

5

to become satis�ed). More generally, a local search algorithm uses complete

instantiations (called states) and replaces an inconsistent state with another

state chosen among its neighbors.

The path-repair algorithm works in the same way except that it uses par-

tial instantiations (paths): as soon as a path becomes inconsistent, one of its

neighbors needs to be chosen. A path (partial instantiation) synthetizes all the

included complete instantiations. Switching paths is like setting aside many

irrelevant complete instantiations in one movement.

Like any local search algorithm, path-repair may use a heuristic way to select

an interesting neighbor. The algorithm can even choose a neighbor in order to

implement a systematic search algorithm. Completeness comes from the fact

that a path summarizes numerous complete instantiations.

The following sections discuss neighboring path, heuristic choices and speci�c

techniques leading to a systematic algorithm. We previously introduced a pa-

rameter � in the neighboring computation functions (neighbor) and extension

functions (extend). � can be used to store a context that varies according to

the chosen version of the algorithm. In the primitive version that is being

presented in this paper, that context is not used.

3.3 Neighboring path

It seems to be a good idea to select a neighboring path P 0 which does not have

the drawbacks of the current path P (recall that in path-repair, neighbors of

path P are computed i� P is inconsistent). For example, it would be interesting

to get to a consistent neighbor P 0
i.e. such that obviousInference(�(C [

C 0

P
0)) = allSolution. Obviously, that is not a�ordable to compute in the

general case.

Therefore, we may prefer to get at least to a partially consistent neighbor P 0

i.e. such that obviousInference(�(C [C 0

P
0)) 6= noSolution. Unfortunately,

the only way to get there (without using computing resources) is to get back

to an already explored node but, doing so, we would achieve a kind of back-

tracking mechanism, what is not wanted in the path-repair algorithm.

Nevertheless, what can be done is to avoid the neighbors that can already

be known as inconsistent. Such an information can be extracted from an in-

consistent path P . Indeed, inconsistency means that Ĉ ^ Ĉ
P
=) false. It is

possible to compute a subset of CP that is alone inconsistent with C. Such a

subset will be called a nogood [7].

De�nition 1 (Nogood) A nogood k for a set of constraints C and a path

6

P , is a set of constraints such that: k � CP and Ĉ ^ k̂ =) false.

As long as constraints in a computed nogood k remain altogether in a given

path P
0, that path will remain inconsistent. Therefore, in order to get a path

with some hopes to be consistent, we need to remove from the current path

P at least one of the constraints in k.

Note that if current path P is inconsistent, C
P
is a valid nogood. Obviously,

a strict subset will be much more interesting and will give a more precise

neighborhood. A minimal (for the inclusion) nogood would be the best, but

it is very expensive to compute one [28]. Therefore, non minimal nogoods will

be computed in practice.

As for now, our neighborhood remains very general. In the following, more

interesting neighborhoods are described. Our point here is to show that the

concept of nogood is crucial for path-repair :

� nogoods allow relevant neighborhoods to be considered,

� nogoods can be used to derive e�cient neighbor selecting heuristics for a

non-systematic path-repair algorithm,

� nogoods can be used to derive a complete path-repair algorithm.

Nogoods are provided by the �ltering algorithm as soon as it can prove that

no solution exists in the subsequent complete paths derived from the current

partial path. In �ltering based constraint solving algorithms, a contradiction

is raised as soon as the domain of a variable v becomes empty. Suppose that,

for each value (or set of values) ai removed from the domain of v, a set of

enumerating constraints k
i
� C

P
is given. k

i
is called a removal explanation

for ai and is such that: Ĉ ^ k̂i =) v 6= ai. If so, k =
S
i
ki is a nogood since

no value for v is allowed by the union of ki. Therefore, in order to compute

nogoods, it is su�cient to be able to compute an explanation for each value

(or set of values) removal for the domain of the failing variable.

Value removals are direct consequences of the �ltering algorithms. Therefore,

value removal explanations can be easily computed by using a trace mechanism

within the �ltering algorithm and memorizing the reason why a removal is done

[16].

For example, let us consider two variables v1 and v2 whose domains are both

f1; 2; 3g. Let c1 be the constraint: v1 > 3 and let c2 be the constraint: v2 > v1.

Let us assume the used �ltering algorithm is arc-consistency �ltering. The

constraint c1 explains the fact that f1; 2g should be removed from v1. After-

wards, c2 forces to remove f1; 2g from v2. An explanation of the removal of

f1; 2g from v2 will be: c1 ^ c2 because c2 makes that removal only because

previous removals occured in v1 due to c1.

7

3.4 Path-repair instances

3.4.1 Heuristic choice of neighbors

In a local search algorithm, the neighbor selection is very important. Many

heuristics may be used. For path-repair it is the same, di�erent heuristics can

be used.

As for now, we have de�ned a neighbor of a path P according to a nogood k

as a path that does not contain at least one constraint from k. Indeed, a more

precise neighborhood can be computed. Let c be a constraint to be removed

from CP . As long as all the constraints in knc remain in the active path, c will

never be satis�able. Thus, the negation of c can be added in the new path.

A possible neighborhood for an inconsistent set of constraints CP , according to

a nogood k � CP is made from the sets of constraints CP i
di�erent from CP by

the negation of one constraint in k. Let us take an example. Let P be the path

(c1; c2; c3;:c4; c5). Let the nogood k be the set fc2; c3;:c4g. The neighborhood
so de�ned is the set of the three paths (c1;:c2; c3;:c4; c5), (c1; c2;:c3;:c4; c5),
and(c1; c2; c3; c4; c5).

Now, there remains to specify which neighbor to choose among the above

de�ned neighbors. That degree of freedom for the choice of the constraint

in k to be negated allows the use heuristic techniques. In an initial version,

we wanted to try to adapt the min-con
ict heuristic [19] that minimizes the

number of unveri�ed constraints. But, when using a �ltering algorithm such a

mechanism may not be very e�cient: the �rst unveri�ed constraint stops the

algorithm.

In our current implementation, an integer (weight) is associated with each con-

straint counting the number of times that the constraint appeared in a nogood.

The heuristic consists in choosing to negate the constraint with the greatest

weight. A similar approach counting the number of times that a constraint

has not been veri�ed has been successfully used for gsat [24].

3.4.2 Tabu path-repair

The tabu version of path-repair uses a tabu list of a given size s. The s last

computed nogoods are kept in a list �. A valid neighbor is de�ned as a path

that does not completely contain any of the nogoods in �. In other words,

at least one constraint in each nogood of � is not (or is negated) in the new

neighbor. To compute such a neighbor in a reasonable time, a greedy algorithm

can be used. Figure 2 shows an implementation of the neighbor function for

tabu path-repair that has been used for solving scheduling problems. It chooses

8

function neighbor(P, k, �)

/* precondition: k � CP */

add k to the list of nogoods �

if sizeOf(�) > s then

remove the oldest element of �

L := ordered list (by decreasing weight) of constraints in k

repeat

remove the �rst constraint c from L

P
0 := P except that :c replaces c

if C
P

0 covers all nogoods in � then

return P 0

until L empty

return stop (or extend the neighborhood)

Fig. 2. The neighbor function for tabu path-repair

to negate the constraint with the greatest weight that, when negated, makes

the new path cover all the nogoods in �. If such a constraint does not exist,

the neighborhood could be extended (for example, we may try to negate 2

constraints). In our implementation for open shop problems (see section 5),

this case is handled as a stopping criterion.

Note that, in the same way, the function extend(P,�) should use � in order

to correctly extend the partially consistent current path.

3.4.3 A systematic instance

Backtracking-based approaches are interesting because they provide system-

atic search algorithms. Filtering techniques are then used for e�ciency rea-

sons. Using �ltering techniques is even more interesting within local search

algorithms: it can make them more e�cient but also complete. Let's see how

path-repair can become a systematic algorithm.

Nogoods bring that completeness. The easy way is merely to keep all computed

nogoods. If during the resolution no valid neighbor exists, the considered prob-

lem does not have any feasible solution. Of course, this leads to potentially

exponential storage space in order to keep all the nogoods. It is possible to

avoid this problem and to keep a polynomial storage space. That is what is

done in algorithms such as dynamic backtracking [10], partial order dynamic

backtracking [11] and general partial order backtracking [2].

Those algorithms work on an instantiation of the variables which is locally re-

paired using nogoods. The used recording mechanism requires only polynomial

space. For example, considering dynamic backtracking:

9

� Only nogoods for which at most one constraint is not in the current path

are kept in �;

� the neighbor to be processed is completely deterministic (the chosen enumer-

ating constraint to be undone is the most recent one in the lat encountered

nogood).

In path-repair, such a nogood recording mechanism can be used thus providing

a systematic search algorithm. Such algorithms can be found in a slightly

di�erent way in [16] for dynamic csps and [17] for numeric csps.

4 Related works

The path-repair algorithm takes its roots in many other works, among which

[9] has probably been the most in
uential by highlighting the relationships

between local and systematic search, and by the use of nogoods to guide the

search and make it systematic.

Two algorithms have been designed that have similaritieswith the non-systematic

path-repair algorithm (see section 3.4.2):

� The algorithm proposed by Schaerf [23] can be seen as an instance of the

path-repair algorithm where

� the enumerating contraints are instantiations,

� there is no propagation and no pruning (the �ltering algorithm � only con-

sists in checking if the constraints containing only instantiated variables

are not violated),

� it does not make use of nogoods neither in the the neighbor function nor

in the extend function.

The common idea, which already exists in previous works [15], is essentially

to extend a partial instantiation when it is consistent, and to perform a

local change when the partial solution appears to be a dead-end.

� The idea to use a �ltering algorithm during the running of a local search

has been also used in [26], where an extension to GENET, a local search

method based on an arti�cial neural network aiming at solving binary CSPs,

is introduced. This extension achieves what is called \lazy arc-consistency"

during the search. The lazy arc-consistency �ltering performs a �ltering over

the initial domains. The result is at most the one obtained by �ltering the

domains before any search. In path repair, the �ltering is applied over the

current domains at every step.

The way nogoods are computed by the �ltering algorithm is a well-known tech-

nique that has already been used for di�erent combinations of �ltering algo-

rithm with systematic search algorithms (forward checking + intelligent back-

10

tracking [21], forward checking + dynamic backtracking [29], arc-consistency

+ intelligent backtracking [5], arc-consistency + dynamic backtracking [16],

2B-consistency + dynamic backtracking [17]. Nevertheless, as far as we know,

the tabu version of path-repair is the �rst time such a technique is used in

combination with a local search algorithm.

5 Solving scheduling problems

Classical scheduling shop problems for which a set J of n jobs consisting each

in m tasks (operations) must be scheduled on a set M of m machines can

be considered as csps upon intervals 7 . One of those problems is called the

Open Shop problem[13]. For that problem, operations for a given job may

be sequenced as wanted but only one at a time. We will consider here the

building of non preemptive schedules of minimal makespan 8 . That problem

is NP-hard as soon as min(n;m) � 3.

Constraints on resources (machines and jobs) are propagated thanks to im-

mediate selections from [4]. The consistency level achieved by that technique

does not ensure the computation of a feasible solution. An enumeration step

is therefore needed. For shop problems, enumeration is classically performed

on the relative order on which tasks are scheduled on the resources. When

every possible precedence has been posted, setting the starting date of the

variable to their smallest value provides a feasible solution. Such a precedence

constraint is therefore an enumerating constraint as de�ned in section 2.

One of the best systematic search algorithms developed for the Open Shop

problem is the branch and bound algorithm presented in [3]. It consists in

adding precedence constraints along the critical path of a heuristic solution in

each node. As far as we know, although this is one of the best methods ever,

some problems of size 7 � 7 remain unsolved.

Enumerating techniques used for the Open Shop problem are interesting for

path-repair because they dynamically build independent sub-problems (by

adding precedence constraints). We can suppose that path-repair will be able

to make pro�t of that situation.

We �rst tested systematic versions of path-repair on the Open Shop problem.

We obtained a very high improvement in terms of number of explored nodes

comparing with the results of [3]. Moreover, a problem of size 10�10 has been

solved for the �rst time. Those results have been presented in [14].

7 Variables are starting date of the tasks. Bounds thus represent the least feasible

starting time and the least feasible ending time.
8 Ending time of the last task.

11

procedure minimize-makespan(C)

P := initial path

bound := +1

lastSolution := failure

loop

C := C [\makespan < bound"

Solution := path-repair(C)

if Solution = failure then

return lastSolution

else

bound := value of makespan in Solution

lastSolution := Solution

end loop

Fig. 3. Algorithm used to solve Taillard's problems

We also tested a tabu version of path-repair. Table 1 presents the results ob-

tained on a series of 30 problems from Taillard [27]. In order to put in per-

spective our results, we recall results presented in [1,18]. Those papers present

tabu searches speci�cally developed for the Open Shop problem. Those meth-

ods both use carefully chosen complex parameter values. Results presented in

table 1 show that our simple approach which merely applies principles pre-

sented in this paper already gives very good results.

Our implementation uses a tabu list of size 15. The neighbor function is the

one given in �gure 2. The conditions of failure specifying the exit of the main

loop (�gure 1) are either \stop"returned by the neihgbor function or 1500

iterations reached.

Taillard's problems are optimization problems. This requires a main loop that

calls the function path-repair until improvement is no longer possible (see

�gure 3). Improvements are generated by adding a constraint that speci�es

that the makespan is less than the current best solution found. The initial path

for each call of the function path-repair is the latest path (which describes the

last solution found).

6 Conclusion and future works

In this paper, we introduced a new solving algorithm for csp: the path-repair

algorithm. The two main points of that algorithm are: it makes use of a repair

algorithm (local search) as a basis and it works on a partial instantiation in

order to be able to use �ltering techniques. We showed that the most useful

tool to implement that algorithm was the use of nogoods.

12

Problem Solution PR Dist. L A

4x4-1 193 193 - 193 -

4x4-2 236 236 - 236 -

4x4-3 271 271 - 271 -

4x4-4 250 250 - 250 -

4x4-5 295 295 - 295 -

4x4-6 189 189 - 189 -

4x4-7 201 201 - 201 -

4x4-8 217 217 - 217 -

4x4-9 261 261 - 261 -

4x4-10 217 217 - 217 -

5x5-1 300 301 0.33 % 300 -

5x5-2 262 262 - 262 -

5x5-3 323 323 - 326 -

5x5-4 310 311 0.32 % 310 -

5x5-5 326 326 - 326 -

5x5-6 312 314 0.64 % 303 -

5x5-7 303 304 0.33 % 303 -

5x5-8 300 300 - 300 -

5x5-9 353 356 0.85 % 353 -

5x5-10 326 326 - 326 -

7x7-1 435 435 - 435 437

7x7-2 443 449 1.35 % 447 444

7x7-3 468 473 1.07 % 474 476

7x7-4 463 463 - 463 464

7x7-5 416 416 - 417 417

7x7-6 451 460 2.00 % 459 -

7x7-7 422 430 1.90 % 429 429

7x7-8 424 424 - 424 -

7x7-9 458 458 - 458 458

7x7-10 398 398 - 398 398

Table 1

Results on Taillard's problems { PR : results using path-repair restricted to 1500

moves without improvement, Dist. represents the distance to the optimum value.

L : results obtained by Liaw with 50 000 moves without improvement andA : results

obtained by Alcaide et al. with 100 000 moves without improvement. - : represents

unknown values.

First experiments with both systematic versions (based upon a managing of

the nogoods inspired from dynamic backtracking) and non systematic versions

(using a tabu list) of path-repair have shown promising results.

References

[1] David Alcaide, Joaqu��n Sicilia, and Daniele Vigo. A tabu search algorithm for

the open shop problem. TOP : Trabajos de Investigaci�on Operativa, 5(2):283{

296, 1997.

[2] C. Bliek. Generalizing partial order and dynamic backtracking. In Proceedings

of AAAI, 1998.

[3] P. Brucker, J. Hurink, B. Jurisch, and B. Westmann. A branch and bound

algorithm for the open-shop problem. Technical report, Osnabrueck University,

12 1994.

13

[4] Jacques Carlier and �Eric Pinson. Adjustment of heads and tails for the job-shop

problem. European Journal of Operational Research, 78:146{161, 1994.

[5] P. Codognet, F. Fages, and T. Sola. A metalevel compiler of CLP(FD) and its

combination with intelligent backtracking. In F. Benhamou and A. Colmerauer,

editors, Constraint Logic Programming - Selected Research, chapter 23, pages

437{456. Massachussetts Institute of Technology, 1993.

[6] Philippe David. A constraint-based approach for examination timetabling using

local repair techniques. In Proceedings of the Second International Conference

on the Practice And Theory of Automated Timetabling (Patat'97), pages 132{

145, Toronto, Canada, August 1997.

[7] J. Doyle. A truth maintenance system. Arti�cial Intelligence, 12:231{272, 1979.

[8] C. Gervet. Large combinatorial optimization problem methodology for hybrid

models and solutions (invited talk). In JFPLC, 1998.

[9] Matthew Ginsberg and David McAllester. GSAT and dynamic backtracking.

In Alan Borning, editor, Principles and Practice of Constraint Programming,

volume 874 of Lecture Notes in Computer Science. Springer, May 1994.

(PPCP'94: Second International Workshop, Orcas Island, Seattle, USA).

[10] Matthew L. Ginsberg. Dynamic backtracking. Journal of Arti�cial Intelligence

Research, 1:25{46, 1993.

[11] Matthew L. Ginsberg and David A McAllester. Gsat and dynamic backtracking.

In International Conference on the Principles of Knowledge Representation

(KR94), pages 226{237, 1994.

[12] F. Glover and M. Laguna. Modern heuristic Techniques for Combinatorial

Problems, chapter Tabu Search, C. Reeves. Blackwell Scienti�c Publishing,

1993.

[13] T. Gonzales and S. Sahni. Open-shop scheduling to minimize �nish time.

Journal of the Association for Computing Machinery, 23(4):665{679, 1976.

[14] Christelle Gu�eret, Narendra Jussien, and Christian Prins. Using intelligent

backtracking to improve branch and bound methods: an application to open-

shop problems. European Journal of Operational Research, page to appear,

1999.

[15] Peter Jackson. Introduction to Expert Systems. Readings. Addison Wesley,

1990.

[16] Narendra Jussien. Relaxation de Contraintes pour les probl�emes dynamiques.

1. th�ese, Universit�e de Rennes I, 24 October 1997.

[17] Narendra Jussien and Olivier Lhomme. Dynamic domain splitting for numeric

csp. In European Conference on Arti�cial Intelligence, pages 224{228, Brighton,

United Kingdom, August 1998.

14

[18] Ching-Fang Liaw. A tabu search algorithm for the open shop scheduling

problem. Computers and Operations Research, 26, 1998.

[19] S. Minton, M.D. Johnston, and P. Laird. Minimizing con
icts: A heuristic

repair method for constraint satisfaction and scheduling problems. Arti�cial

Intelligence, 58:161{206, 1992.

[20] G. Pesant and M. Gendreau. A view of local search in constraint programming.

In Proc. of the Principles and Practice of Constraint Programming, pages 353{

366. Springer-Verlag, 1996.

[21] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem.

Computational Intelligence, 9(3):268{299, August 1993. (Also available as

Technical Report AISL-46-91, Stratchclyde, 1991).

[22] E. T. Richards and E. B. Richards. Non-systematic search and learning: An

empirical study. In Proc. of the the Conference on Principles and Practice of

Constraint Programming, Pisa, 1998.

[23] Andrea Schaerf. Combining local search and look-ahead for scheduling and

constraint satisfaction problems. In Proc. of the 15th International Joint Conf.

on Arti�cial Intelligence (IJCAI-96), pages 1254{1259, Nagoya, Japan, 1997.

Morgan Kaufmann.

[24] Bart Selman and Henry Kautz. Domain-independent extensions to gsat: Solving

large structured satis�ability problems. In Ruzena Bajcsy, editor, Proceedings

of International Joint Conference on Arti�cial Intelligence (IJCAI-93), pages

290{295, Chambery, France, August 1993. Morgan Kaufmann.

[25] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving

hard satis�ability problems. In AAAI 92, Tenth National Conference on

Arti�cial Intelligence, pages 440{446, 1992.

[26] P.J. Stuckey and V.W.L. Tam. Extending genet with lazy arc consistency. IEEE

Transactions on Systems, Man, and Cybernetics, 28(5):698{703, 1998.

[27] �E. Taillard. Benchmarks for basic scheduling problems. European Journal of

Operations Research, 64:278{285, 1993.

[28] G. Verfaillie and L. Lobjois. Problemes incoh�erents: expliquer l'incoh�erence,

restaurer la coh�erence. In Actes des JNPC, 1999.

[29] G�erard Verfaillie and Thomas Schiex. Dynamic backtracking for dynamic

csps. In Thomas Schiex and Christian Bessi�ere, editors, Proceedings ECAI'94

Workshop on Constraint Satisfaction Issues raised by Practical Applications,

Amsterdam, August 1994.

[30] M. Yokoo. Weak-commitment search for solving constraint satisfaction

problems. In Proceedings of AAAI, 1994.

15

